/src/openssl31/crypto/pem/pem_lib.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* We need to use some engine deprecated APIs */ |
11 | | #define OPENSSL_SUPPRESS_DEPRECATED |
12 | | |
13 | | #include <stdio.h> |
14 | | #include "crypto/ctype.h" |
15 | | #include <string.h> |
16 | | #include "internal/cryptlib.h" |
17 | | #include <openssl/buffer.h> |
18 | | #include <openssl/objects.h> |
19 | | #include <openssl/evp.h> |
20 | | #include <openssl/rand.h> |
21 | | #include <openssl/x509.h> |
22 | | #include <openssl/pem.h> |
23 | | #include <openssl/pkcs12.h> |
24 | | #include "crypto/asn1.h" |
25 | | #include <openssl/des.h> |
26 | | #include <openssl/engine.h> |
27 | | |
28 | 0 | #define MIN_LENGTH 4 |
29 | | |
30 | | static int load_iv(char **fromp, unsigned char *to, int num); |
31 | | static int check_pem(const char *nm, const char *name); |
32 | | int ossl_pem_check_suffix(const char *pem_str, const char *suffix); |
33 | | |
34 | | int PEM_def_callback(char *buf, int num, int rwflag, void *userdata) |
35 | 0 | { |
36 | 0 | int i, min_len; |
37 | 0 | const char *prompt; |
38 | | |
39 | | /* We assume that the user passes a default password as userdata */ |
40 | 0 | if (userdata) { |
41 | 0 | i = strlen(userdata); |
42 | 0 | i = (i > num) ? num : i; |
43 | 0 | memcpy(buf, userdata, i); |
44 | 0 | return i; |
45 | 0 | } |
46 | | |
47 | 0 | prompt = EVP_get_pw_prompt(); |
48 | 0 | if (prompt == NULL) |
49 | 0 | prompt = "Enter PEM pass phrase:"; |
50 | | |
51 | | /* |
52 | | * rwflag == 0 means decryption |
53 | | * rwflag == 1 means encryption |
54 | | * |
55 | | * We assume that for encryption, we want a minimum length, while for |
56 | | * decryption, we cannot know any minimum length, so we assume zero. |
57 | | */ |
58 | 0 | min_len = rwflag ? MIN_LENGTH : 0; |
59 | |
|
60 | 0 | i = EVP_read_pw_string_min(buf, min_len, num, prompt, rwflag); |
61 | 0 | if (i != 0) { |
62 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_PROBLEMS_GETTING_PASSWORD); |
63 | 0 | memset(buf, 0, (unsigned int)num); |
64 | 0 | return -1; |
65 | 0 | } |
66 | 0 | return strlen(buf); |
67 | 0 | } |
68 | | |
69 | | void PEM_proc_type(char *buf, int type) |
70 | 0 | { |
71 | 0 | const char *str; |
72 | 0 | char *p = buf + strlen(buf); |
73 | |
|
74 | 0 | if (type == PEM_TYPE_ENCRYPTED) |
75 | 0 | str = "ENCRYPTED"; |
76 | 0 | else if (type == PEM_TYPE_MIC_CLEAR) |
77 | 0 | str = "MIC-CLEAR"; |
78 | 0 | else if (type == PEM_TYPE_MIC_ONLY) |
79 | 0 | str = "MIC-ONLY"; |
80 | 0 | else |
81 | 0 | str = "BAD-TYPE"; |
82 | |
|
83 | 0 | BIO_snprintf(p, PEM_BUFSIZE - (size_t)(p - buf), "Proc-Type: 4,%s\n", str); |
84 | 0 | } |
85 | | |
86 | | void PEM_dek_info(char *buf, const char *type, int len, const char *str) |
87 | 0 | { |
88 | 0 | long i; |
89 | 0 | char *p = buf + strlen(buf); |
90 | 0 | int j = PEM_BUFSIZE - (size_t)(p - buf), n; |
91 | |
|
92 | 0 | n = BIO_snprintf(p, j, "DEK-Info: %s,", type); |
93 | 0 | if (n > 0) { |
94 | 0 | j -= n; |
95 | 0 | p += n; |
96 | 0 | for (i = 0; i < len; i++) { |
97 | 0 | n = BIO_snprintf(p, j, "%02X", 0xff & str[i]); |
98 | 0 | if (n <= 0) |
99 | 0 | return; |
100 | 0 | j -= n; |
101 | 0 | p += n; |
102 | 0 | } |
103 | 0 | if (j > 1) |
104 | 0 | strcpy(p, "\n"); |
105 | 0 | } |
106 | 0 | } |
107 | | |
108 | | #ifndef OPENSSL_NO_STDIO |
109 | | void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, |
110 | | pem_password_cb *cb, void *u) |
111 | 0 | { |
112 | 0 | BIO *b; |
113 | 0 | void *ret; |
114 | |
|
115 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
116 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
117 | 0 | return 0; |
118 | 0 | } |
119 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
120 | 0 | ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u); |
121 | 0 | BIO_free(b); |
122 | 0 | return ret; |
123 | 0 | } |
124 | | #endif |
125 | | |
126 | | static int check_pem(const char *nm, const char *name) |
127 | 55.4k | { |
128 | | /* Normal matching nm and name */ |
129 | 55.4k | if (strcmp(nm, name) == 0) |
130 | 55.4k | return 1; |
131 | | |
132 | | /* Make PEM_STRING_EVP_PKEY match any private key */ |
133 | | |
134 | 0 | if (strcmp(name, PEM_STRING_EVP_PKEY) == 0) { |
135 | 0 | int slen; |
136 | 0 | const EVP_PKEY_ASN1_METHOD *ameth; |
137 | 0 | if (strcmp(nm, PEM_STRING_PKCS8) == 0) |
138 | 0 | return 1; |
139 | 0 | if (strcmp(nm, PEM_STRING_PKCS8INF) == 0) |
140 | 0 | return 1; |
141 | 0 | slen = ossl_pem_check_suffix(nm, "PRIVATE KEY"); |
142 | 0 | if (slen > 0) { |
143 | | /* |
144 | | * NB: ENGINE implementations won't contain a deprecated old |
145 | | * private key decode function so don't look for them. |
146 | | */ |
147 | 0 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); |
148 | 0 | if (ameth && ameth->old_priv_decode) |
149 | 0 | return 1; |
150 | 0 | } |
151 | 0 | return 0; |
152 | 0 | } |
153 | | |
154 | 0 | if (strcmp(name, PEM_STRING_PARAMETERS) == 0) { |
155 | 0 | int slen; |
156 | 0 | const EVP_PKEY_ASN1_METHOD *ameth; |
157 | 0 | slen = ossl_pem_check_suffix(nm, "PARAMETERS"); |
158 | 0 | if (slen > 0) { |
159 | 0 | ENGINE *e; |
160 | 0 | ameth = EVP_PKEY_asn1_find_str(&e, nm, slen); |
161 | 0 | if (ameth) { |
162 | 0 | int r; |
163 | 0 | if (ameth->param_decode) |
164 | 0 | r = 1; |
165 | 0 | else |
166 | 0 | r = 0; |
167 | 0 | #ifndef OPENSSL_NO_ENGINE |
168 | 0 | ENGINE_finish(e); |
169 | 0 | #endif |
170 | 0 | return r; |
171 | 0 | } |
172 | 0 | } |
173 | 0 | return 0; |
174 | 0 | } |
175 | | /* If reading DH parameters handle X9.42 DH format too */ |
176 | 0 | if (strcmp(nm, PEM_STRING_DHXPARAMS) == 0 |
177 | 0 | && strcmp(name, PEM_STRING_DHPARAMS) == 0) |
178 | 0 | return 1; |
179 | | |
180 | | /* Permit older strings */ |
181 | | |
182 | 0 | if (strcmp(nm, PEM_STRING_X509_OLD) == 0 |
183 | 0 | && strcmp(name, PEM_STRING_X509) == 0) |
184 | 0 | return 1; |
185 | | |
186 | 0 | if (strcmp(nm, PEM_STRING_X509_REQ_OLD) == 0 |
187 | 0 | && strcmp(name, PEM_STRING_X509_REQ) == 0) |
188 | 0 | return 1; |
189 | | |
190 | | /* Allow normal certs to be read as trusted certs */ |
191 | 0 | if (strcmp(nm, PEM_STRING_X509) == 0 |
192 | 0 | && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) |
193 | 0 | return 1; |
194 | | |
195 | 0 | if (strcmp(nm, PEM_STRING_X509_OLD) == 0 |
196 | 0 | && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) |
197 | 0 | return 1; |
198 | | |
199 | | /* Some CAs use PKCS#7 with CERTIFICATE headers */ |
200 | 0 | if (strcmp(nm, PEM_STRING_X509) == 0 |
201 | 0 | && strcmp(name, PEM_STRING_PKCS7) == 0) |
202 | 0 | return 1; |
203 | | |
204 | 0 | if (strcmp(nm, PEM_STRING_PKCS7_SIGNED) == 0 |
205 | 0 | && strcmp(name, PEM_STRING_PKCS7) == 0) |
206 | 0 | return 1; |
207 | | |
208 | 0 | #ifndef OPENSSL_NO_CMS |
209 | 0 | if (strcmp(nm, PEM_STRING_X509) == 0 |
210 | 0 | && strcmp(name, PEM_STRING_CMS) == 0) |
211 | 0 | return 1; |
212 | | /* Allow CMS to be read from PKCS#7 headers */ |
213 | 0 | if (strcmp(nm, PEM_STRING_PKCS7) == 0 |
214 | 0 | && strcmp(name, PEM_STRING_CMS) == 0) |
215 | 0 | return 1; |
216 | 0 | #endif |
217 | | |
218 | 0 | return 0; |
219 | 0 | } |
220 | | |
221 | | static void pem_free(void *p, unsigned int flags, size_t num) |
222 | 650k | { |
223 | 650k | if (flags & PEM_FLAG_SECURE) |
224 | 2.74k | OPENSSL_secure_clear_free(p, num); |
225 | 647k | else |
226 | 647k | OPENSSL_free(p); |
227 | 650k | } |
228 | | |
229 | | static void *pem_malloc(int num, unsigned int flags) |
230 | 581k | { |
231 | 581k | return (flags & PEM_FLAG_SECURE) ? OPENSSL_secure_malloc(num) |
232 | 581k | : OPENSSL_malloc(num); |
233 | 581k | } |
234 | | |
235 | | static int pem_bytes_read_bio_flags(unsigned char **pdata, long *plen, |
236 | | char **pnm, const char *name, BIO *bp, |
237 | | pem_password_cb *cb, void *u, |
238 | | unsigned int flags) |
239 | 55.4k | { |
240 | 55.4k | EVP_CIPHER_INFO cipher; |
241 | 55.4k | char *nm = NULL, *header = NULL; |
242 | 55.4k | unsigned char *data = NULL; |
243 | 55.4k | long len = 0; |
244 | 55.4k | int ret = 0; |
245 | | |
246 | 55.4k | do { |
247 | 55.4k | pem_free(nm, flags, 0); |
248 | 55.4k | pem_free(header, flags, 0); |
249 | 55.4k | pem_free(data, flags, len); |
250 | 55.4k | if (!PEM_read_bio_ex(bp, &nm, &header, &data, &len, flags)) { |
251 | 0 | if (ERR_GET_REASON(ERR_peek_error()) == PEM_R_NO_START_LINE) |
252 | 0 | ERR_add_error_data(2, "Expecting: ", name); |
253 | 0 | return 0; |
254 | 0 | } |
255 | 55.4k | } while (!check_pem(nm, name)); |
256 | 55.4k | if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) |
257 | 0 | goto err; |
258 | 55.4k | if (!PEM_do_header(&cipher, data, &len, cb, u)) |
259 | 0 | goto err; |
260 | | |
261 | 55.4k | *pdata = data; |
262 | 55.4k | *plen = len; |
263 | | |
264 | 55.4k | if (pnm != NULL) |
265 | 0 | *pnm = nm; |
266 | | |
267 | 55.4k | ret = 1; |
268 | | |
269 | 55.4k | err: |
270 | 55.4k | if (!ret || pnm == NULL) |
271 | 55.4k | pem_free(nm, flags, 0); |
272 | 55.4k | pem_free(header, flags, 0); |
273 | 55.4k | if (!ret) |
274 | 0 | pem_free(data, flags, len); |
275 | 55.4k | return ret; |
276 | 55.4k | } |
277 | | |
278 | | int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, |
279 | | const char *name, BIO *bp, pem_password_cb *cb, |
280 | 55.4k | void *u) { |
281 | 55.4k | return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, |
282 | 55.4k | PEM_FLAG_EAY_COMPATIBLE); |
283 | 55.4k | } |
284 | | |
285 | | int PEM_bytes_read_bio_secmem(unsigned char **pdata, long *plen, char **pnm, |
286 | | const char *name, BIO *bp, pem_password_cb *cb, |
287 | 0 | void *u) { |
288 | 0 | return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, |
289 | 0 | PEM_FLAG_SECURE | PEM_FLAG_EAY_COMPATIBLE); |
290 | 0 | } |
291 | | |
292 | | #ifndef OPENSSL_NO_STDIO |
293 | | int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, |
294 | | const void *x, const EVP_CIPHER *enc, |
295 | | const unsigned char *kstr, int klen, |
296 | | pem_password_cb *callback, void *u) |
297 | 0 | { |
298 | 0 | BIO *b; |
299 | 0 | int ret; |
300 | |
|
301 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
302 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
303 | 0 | return 0; |
304 | 0 | } |
305 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
306 | 0 | ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u); |
307 | 0 | BIO_free(b); |
308 | 0 | return ret; |
309 | 0 | } |
310 | | #endif |
311 | | |
312 | | int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, |
313 | | const void *x, const EVP_CIPHER *enc, |
314 | | const unsigned char *kstr, int klen, |
315 | | pem_password_cb *callback, void *u) |
316 | 0 | { |
317 | 0 | EVP_CIPHER_CTX *ctx = NULL; |
318 | 0 | int dsize = 0, i = 0, j = 0, ret = 0; |
319 | 0 | unsigned char *p, *data = NULL; |
320 | 0 | const char *objstr = NULL; |
321 | 0 | char buf[PEM_BUFSIZE]; |
322 | 0 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
323 | 0 | unsigned char iv[EVP_MAX_IV_LENGTH]; |
324 | |
|
325 | 0 | if (enc != NULL) { |
326 | 0 | objstr = EVP_CIPHER_get0_name(enc); |
327 | 0 | if (objstr == NULL || EVP_CIPHER_get_iv_length(enc) == 0 |
328 | 0 | || EVP_CIPHER_get_iv_length(enc) > (int)sizeof(iv) |
329 | | /* |
330 | | * Check "Proc-Type: 4,Encrypted\nDEK-Info: objstr,hex-iv\n" |
331 | | * fits into buf |
332 | | */ |
333 | 0 | || strlen(objstr) + 23 + 2 * EVP_CIPHER_get_iv_length(enc) + 13 |
334 | 0 | > sizeof(buf)) { |
335 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_UNSUPPORTED_CIPHER); |
336 | 0 | goto err; |
337 | 0 | } |
338 | 0 | } |
339 | | |
340 | 0 | if ((dsize = i2d(x, NULL)) <= 0) { |
341 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_ASN1_LIB); |
342 | 0 | dsize = 0; |
343 | 0 | goto err; |
344 | 0 | } |
345 | | /* dsize + 8 bytes are needed */ |
346 | | /* actually it needs the cipher block size extra... */ |
347 | 0 | data = OPENSSL_malloc((unsigned int)dsize + 20); |
348 | 0 | if (data == NULL) { |
349 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
350 | 0 | goto err; |
351 | 0 | } |
352 | 0 | p = data; |
353 | 0 | i = i2d(x, &p); |
354 | |
|
355 | 0 | if (enc != NULL) { |
356 | 0 | if (kstr == NULL) { |
357 | 0 | if (callback == NULL) |
358 | 0 | klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); |
359 | 0 | else |
360 | 0 | klen = (*callback) (buf, PEM_BUFSIZE, 1, u); |
361 | 0 | if (klen <= 0) { |
362 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_READ_KEY); |
363 | 0 | goto err; |
364 | 0 | } |
365 | | #ifdef CHARSET_EBCDIC |
366 | | /* Convert the pass phrase from EBCDIC */ |
367 | | ebcdic2ascii(buf, buf, klen); |
368 | | #endif |
369 | 0 | kstr = (unsigned char *)buf; |
370 | 0 | } |
371 | | /* Generate a salt */ |
372 | 0 | if (RAND_bytes(iv, EVP_CIPHER_get_iv_length(enc)) <= 0) |
373 | 0 | goto err; |
374 | | /* |
375 | | * The 'iv' is used as the iv and as a salt. It is NOT taken from |
376 | | * the BytesToKey function |
377 | | */ |
378 | 0 | if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL)) |
379 | 0 | goto err; |
380 | | |
381 | 0 | if (kstr == (unsigned char *)buf) |
382 | 0 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
383 | |
|
384 | 0 | buf[0] = '\0'; |
385 | 0 | PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); |
386 | 0 | PEM_dek_info(buf, objstr, EVP_CIPHER_get_iv_length(enc), (char *)iv); |
387 | | /* k=strlen(buf); */ |
388 | |
|
389 | 0 | ret = 1; |
390 | 0 | if ((ctx = EVP_CIPHER_CTX_new()) == NULL |
391 | 0 | || !EVP_EncryptInit_ex(ctx, enc, NULL, key, iv) |
392 | 0 | || !EVP_EncryptUpdate(ctx, data, &j, data, i) |
393 | 0 | || !EVP_EncryptFinal_ex(ctx, &(data[j]), &i)) |
394 | 0 | ret = 0; |
395 | 0 | if (ret == 0) |
396 | 0 | goto err; |
397 | 0 | i += j; |
398 | 0 | } else { |
399 | 0 | ret = 1; |
400 | 0 | buf[0] = '\0'; |
401 | 0 | } |
402 | 0 | i = PEM_write_bio(bp, name, buf, data, i); |
403 | 0 | if (i <= 0) |
404 | 0 | ret = 0; |
405 | 0 | err: |
406 | 0 | OPENSSL_cleanse(key, sizeof(key)); |
407 | 0 | OPENSSL_cleanse(iv, sizeof(iv)); |
408 | 0 | EVP_CIPHER_CTX_free(ctx); |
409 | 0 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
410 | 0 | OPENSSL_clear_free(data, (unsigned int)dsize); |
411 | 0 | return ret; |
412 | 0 | } |
413 | | |
414 | | int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, |
415 | | pem_password_cb *callback, void *u) |
416 | 55.4k | { |
417 | 55.4k | int ok; |
418 | 55.4k | int keylen; |
419 | 55.4k | long len = *plen; |
420 | 55.4k | int ilen = (int) len; /* EVP_DecryptUpdate etc. take int lengths */ |
421 | 55.4k | EVP_CIPHER_CTX *ctx; |
422 | 55.4k | unsigned char key[EVP_MAX_KEY_LENGTH]; |
423 | 55.4k | char buf[PEM_BUFSIZE]; |
424 | | |
425 | 55.4k | #if LONG_MAX > INT_MAX |
426 | | /* Check that we did not truncate the length */ |
427 | 55.4k | if (len > INT_MAX) { |
428 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_HEADER_TOO_LONG); |
429 | 0 | return 0; |
430 | 0 | } |
431 | 55.4k | #endif |
432 | | |
433 | 55.4k | if (cipher->cipher == NULL) |
434 | 55.4k | return 1; |
435 | 2 | if (callback == NULL) |
436 | 0 | keylen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u); |
437 | 2 | else |
438 | 2 | keylen = callback(buf, PEM_BUFSIZE, 0, u); |
439 | 2 | if (keylen < 0) { |
440 | 2 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_PASSWORD_READ); |
441 | 2 | return 0; |
442 | 2 | } |
443 | | #ifdef CHARSET_EBCDIC |
444 | | /* Convert the pass phrase from EBCDIC */ |
445 | | ebcdic2ascii(buf, buf, keylen); |
446 | | #endif |
447 | | |
448 | 0 | if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]), |
449 | 0 | (unsigned char *)buf, keylen, 1, key, NULL)) |
450 | 0 | return 0; |
451 | | |
452 | 0 | ctx = EVP_CIPHER_CTX_new(); |
453 | 0 | if (ctx == NULL) |
454 | 0 | return 0; |
455 | | |
456 | 0 | ok = EVP_DecryptInit_ex(ctx, cipher->cipher, NULL, key, &(cipher->iv[0])); |
457 | 0 | if (ok) |
458 | 0 | ok = EVP_DecryptUpdate(ctx, data, &ilen, data, ilen); |
459 | 0 | if (ok) { |
460 | | /* Squirrel away the length of data decrypted so far. */ |
461 | 0 | *plen = ilen; |
462 | 0 | ok = EVP_DecryptFinal_ex(ctx, &(data[ilen]), &ilen); |
463 | 0 | } |
464 | 0 | if (ok) |
465 | 0 | *plen += ilen; |
466 | 0 | else |
467 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_DECRYPT); |
468 | |
|
469 | 0 | EVP_CIPHER_CTX_free(ctx); |
470 | 0 | OPENSSL_cleanse((char *)buf, sizeof(buf)); |
471 | 0 | OPENSSL_cleanse((char *)key, sizeof(key)); |
472 | 0 | return ok; |
473 | 0 | } |
474 | | |
475 | | /* |
476 | | * This implements a very limited PEM header parser that does not support the |
477 | | * full grammar of rfc1421. In particular, folded headers are not supported, |
478 | | * nor is additional whitespace. |
479 | | * |
480 | | * A robust implementation would make use of a library that turns the headers |
481 | | * into a BIO from which one folded line is read at a time, and is then split |
482 | | * into a header label and content. We would then parse the content of the |
483 | | * headers we care about. This is overkill for just this limited use-case, but |
484 | | * presumably we also parse rfc822-style headers for S/MIME, so a common |
485 | | * abstraction might well be more generally useful. |
486 | | */ |
487 | | int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher) |
488 | 20.1k | { |
489 | 20.1k | static const char ProcType[] = "Proc-Type:"; |
490 | 20.1k | static const char ENCRYPTED[] = "ENCRYPTED"; |
491 | 20.1k | static const char DEKInfo[] = "DEK-Info:"; |
492 | 20.1k | const EVP_CIPHER *enc = NULL; |
493 | 20.1k | int ivlen; |
494 | 20.1k | char *dekinfostart, c; |
495 | | |
496 | 20.1k | cipher->cipher = NULL; |
497 | 20.1k | memset(cipher->iv, 0, sizeof(cipher->iv)); |
498 | 20.1k | if ((header == NULL) || (*header == '\0') || (*header == '\n')) |
499 | 20.1k | return 1; |
500 | | |
501 | 0 | if (strncmp(header, ProcType, sizeof(ProcType)-1) != 0) { |
502 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_NOT_PROC_TYPE); |
503 | 0 | return 0; |
504 | 0 | } |
505 | 0 | header += sizeof(ProcType)-1; |
506 | 0 | header += strspn(header, " \t"); |
507 | |
|
508 | 0 | if (*header++ != '4' || *header++ != ',') |
509 | 0 | return 0; |
510 | 0 | header += strspn(header, " \t"); |
511 | | |
512 | | /* We expect "ENCRYPTED" followed by optional white-space + line break */ |
513 | 0 | if (strncmp(header, ENCRYPTED, sizeof(ENCRYPTED)-1) != 0 || |
514 | 0 | strspn(header+sizeof(ENCRYPTED)-1, " \t\r\n") == 0) { |
515 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_NOT_ENCRYPTED); |
516 | 0 | return 0; |
517 | 0 | } |
518 | 0 | header += sizeof(ENCRYPTED)-1; |
519 | 0 | header += strspn(header, " \t\r"); |
520 | 0 | if (*header++ != '\n') { |
521 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_SHORT_HEADER); |
522 | 0 | return 0; |
523 | 0 | } |
524 | | |
525 | | /*- |
526 | | * https://tools.ietf.org/html/rfc1421#section-4.6.1.3 |
527 | | * We expect "DEK-Info: algo[,hex-parameters]" |
528 | | */ |
529 | 0 | if (strncmp(header, DEKInfo, sizeof(DEKInfo)-1) != 0) { |
530 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_NOT_DEK_INFO); |
531 | 0 | return 0; |
532 | 0 | } |
533 | 0 | header += sizeof(DEKInfo)-1; |
534 | 0 | header += strspn(header, " \t"); |
535 | | |
536 | | /* |
537 | | * DEK-INFO is a comma-separated combination of algorithm name and optional |
538 | | * parameters. |
539 | | */ |
540 | 0 | dekinfostart = header; |
541 | 0 | header += strcspn(header, " \t,"); |
542 | 0 | c = *header; |
543 | 0 | *header = '\0'; |
544 | 0 | cipher->cipher = enc = EVP_get_cipherbyname(dekinfostart); |
545 | 0 | *header = c; |
546 | 0 | header += strspn(header, " \t"); |
547 | |
|
548 | 0 | if (enc == NULL) { |
549 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_UNSUPPORTED_ENCRYPTION); |
550 | 0 | return 0; |
551 | 0 | } |
552 | 0 | ivlen = EVP_CIPHER_get_iv_length(enc); |
553 | 0 | if (ivlen > 0 && *header++ != ',') { |
554 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_MISSING_DEK_IV); |
555 | 0 | return 0; |
556 | 0 | } else if (ivlen == 0 && *header == ',') { |
557 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_UNEXPECTED_DEK_IV); |
558 | 0 | return 0; |
559 | 0 | } |
560 | | |
561 | 0 | if (!load_iv(&header, cipher->iv, EVP_CIPHER_get_iv_length(enc))) |
562 | 0 | return 0; |
563 | | |
564 | 0 | return 1; |
565 | 0 | } |
566 | | |
567 | | static int load_iv(char **fromp, unsigned char *to, int num) |
568 | 12 | { |
569 | 12 | int v, i; |
570 | 12 | char *from; |
571 | | |
572 | 12 | from = *fromp; |
573 | 108 | for (i = 0; i < num; i++) |
574 | 96 | to[i] = 0; |
575 | 12 | num *= 2; |
576 | 104 | for (i = 0; i < num; i++) { |
577 | 102 | v = OPENSSL_hexchar2int(*from); |
578 | 102 | if (v < 0) { |
579 | 10 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_IV_CHARS); |
580 | 10 | return 0; |
581 | 10 | } |
582 | 92 | from++; |
583 | 92 | to[i / 2] |= v << (long)((!(i & 1)) * 4); |
584 | 92 | } |
585 | | |
586 | 2 | *fromp = from; |
587 | 2 | return 1; |
588 | 12 | } |
589 | | |
590 | | #ifndef OPENSSL_NO_STDIO |
591 | | int PEM_write(FILE *fp, const char *name, const char *header, |
592 | | const unsigned char *data, long len) |
593 | 0 | { |
594 | 0 | BIO *b; |
595 | 0 | int ret; |
596 | |
|
597 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
598 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
599 | 0 | return 0; |
600 | 0 | } |
601 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
602 | 0 | ret = PEM_write_bio(b, name, header, data, len); |
603 | 0 | BIO_free(b); |
604 | 0 | return ret; |
605 | 0 | } |
606 | | #endif |
607 | | |
608 | | int PEM_write_bio(BIO *bp, const char *name, const char *header, |
609 | | const unsigned char *data, long len) |
610 | 0 | { |
611 | 0 | int nlen, n, i, j, outl; |
612 | 0 | unsigned char *buf = NULL; |
613 | 0 | EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); |
614 | 0 | int reason = ERR_R_BUF_LIB; |
615 | 0 | int retval = 0; |
616 | |
|
617 | 0 | if (ctx == NULL) { |
618 | 0 | reason = ERR_R_MALLOC_FAILURE; |
619 | 0 | goto err; |
620 | 0 | } |
621 | | |
622 | 0 | EVP_EncodeInit(ctx); |
623 | 0 | nlen = strlen(name); |
624 | |
|
625 | 0 | if ((BIO_write(bp, "-----BEGIN ", 11) != 11) || |
626 | 0 | (BIO_write(bp, name, nlen) != nlen) || |
627 | 0 | (BIO_write(bp, "-----\n", 6) != 6)) |
628 | 0 | goto err; |
629 | | |
630 | 0 | i = header != NULL ? strlen(header) : 0; |
631 | 0 | if (i > 0) { |
632 | 0 | if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1)) |
633 | 0 | goto err; |
634 | 0 | } |
635 | | |
636 | 0 | buf = OPENSSL_malloc(PEM_BUFSIZE * 8); |
637 | 0 | if (buf == NULL) { |
638 | 0 | reason = ERR_R_MALLOC_FAILURE; |
639 | 0 | goto err; |
640 | 0 | } |
641 | | |
642 | 0 | i = j = 0; |
643 | 0 | while (len > 0) { |
644 | 0 | n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len); |
645 | 0 | if (!EVP_EncodeUpdate(ctx, buf, &outl, &(data[j]), n)) |
646 | 0 | goto err; |
647 | 0 | if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) |
648 | 0 | goto err; |
649 | 0 | i += outl; |
650 | 0 | len -= n; |
651 | 0 | j += n; |
652 | 0 | } |
653 | 0 | EVP_EncodeFinal(ctx, buf, &outl); |
654 | 0 | if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) |
655 | 0 | goto err; |
656 | 0 | if ((BIO_write(bp, "-----END ", 9) != 9) || |
657 | 0 | (BIO_write(bp, name, nlen) != nlen) || |
658 | 0 | (BIO_write(bp, "-----\n", 6) != 6)) |
659 | 0 | goto err; |
660 | 0 | retval = i + outl; |
661 | |
|
662 | 0 | err: |
663 | 0 | if (retval == 0) |
664 | 0 | ERR_raise(ERR_LIB_PEM, reason); |
665 | 0 | EVP_ENCODE_CTX_free(ctx); |
666 | 0 | OPENSSL_clear_free(buf, PEM_BUFSIZE * 8); |
667 | 0 | return retval; |
668 | 0 | } |
669 | | |
670 | | #ifndef OPENSSL_NO_STDIO |
671 | | int PEM_read(FILE *fp, char **name, char **header, unsigned char **data, |
672 | | long *len) |
673 | 0 | { |
674 | 0 | BIO *b; |
675 | 0 | int ret; |
676 | |
|
677 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
678 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
679 | 0 | return 0; |
680 | 0 | } |
681 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
682 | 0 | ret = PEM_read_bio(b, name, header, data, len); |
683 | 0 | BIO_free(b); |
684 | 0 | return ret; |
685 | 0 | } |
686 | | #endif |
687 | | |
688 | | /* Some helpers for PEM_read_bio_ex(). */ |
689 | | static int sanitize_line(char *linebuf, int len, unsigned int flags, int first_call) |
690 | 5.08M | { |
691 | 5.08M | int i; |
692 | 5.08M | if (first_call) { |
693 | | /* Other BOMs imply unsupported multibyte encoding, |
694 | | * so don't strip them and let the error raise */ |
695 | 129k | const unsigned char utf8_bom[3] = {0xEF, 0xBB, 0xBF}; |
696 | | |
697 | 129k | if (len > 3 && memcmp(linebuf, utf8_bom, 3) == 0) { |
698 | 4 | memmove(linebuf, linebuf + 3, len - 3); |
699 | 4 | linebuf[len - 3] = 0; |
700 | 4 | len -= 3; |
701 | 4 | } |
702 | 129k | } |
703 | | |
704 | 5.08M | if (flags & PEM_FLAG_EAY_COMPATIBLE) { |
705 | | /* Strip trailing whitespace */ |
706 | 55.4M | while ((len >= 0) && (linebuf[len] <= ' ')) |
707 | 50.9M | len--; |
708 | | /* Go back to whitespace before applying uniform line ending. */ |
709 | 4.55M | len++; |
710 | 4.55M | } else if (flags & PEM_FLAG_ONLY_B64) { |
711 | 996k | for (i = 0; i < len; ++i) { |
712 | 992k | if (!ossl_isbase64(linebuf[i]) || linebuf[i] == '\n' |
713 | 992k | || linebuf[i] == '\r') |
714 | 2.18k | break; |
715 | 992k | } |
716 | 5.93k | len = i; |
717 | 529k | } else { |
718 | | /* EVP_DecodeBlock strips leading and trailing whitespace, so just strip |
719 | | * control characters in-place and let everything through. */ |
720 | 76.2M | for (i = 0; i < len; ++i) { |
721 | 75.9M | if (linebuf[i] == '\n' || linebuf[i] == '\r') |
722 | 250k | break; |
723 | 75.7M | if (ossl_iscntrl(linebuf[i])) |
724 | 49.1M | linebuf[i] = ' '; |
725 | 75.7M | } |
726 | 529k | len = i; |
727 | 529k | } |
728 | | /* The caller allocated LINESIZE+1, so this is safe. */ |
729 | 5.08M | linebuf[len++] = '\n'; |
730 | 5.08M | linebuf[len] = '\0'; |
731 | 5.08M | return len; |
732 | 5.08M | } |
733 | | |
734 | 1.00M | #define LINESIZE 255 |
735 | | /* Note trailing spaces for begin and end. */ |
736 | | static const char beginstr[] = "-----BEGIN "; |
737 | | static const char endstr[] = "-----END "; |
738 | | static const char tailstr[] = "-----\n"; |
739 | 121k | #define BEGINLEN ((int)(sizeof(beginstr) - 1)) |
740 | 847k | #define ENDLEN ((int)(sizeof(endstr) - 1)) |
741 | 282k | #define TAILLEN ((int)(sizeof(tailstr) - 1)) |
742 | | static int get_name(BIO *bp, char **name, unsigned int flags) |
743 | 40.3k | { |
744 | 40.3k | char *linebuf; |
745 | 40.3k | int ret = 0; |
746 | 40.3k | int len; |
747 | 40.3k | int first_call = 1; |
748 | | |
749 | | /* |
750 | | * Need to hold trailing NUL (accounted for by BIO_gets() and the newline |
751 | | * that will be added by sanitize_line() (the extra '1'). |
752 | | */ |
753 | 40.3k | linebuf = pem_malloc(LINESIZE + 1, flags); |
754 | 40.3k | if (linebuf == NULL) { |
755 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
756 | 0 | return 0; |
757 | 0 | } |
758 | | |
759 | 40.3k | do { |
760 | 40.3k | len = BIO_gets(bp, linebuf, LINESIZE); |
761 | | |
762 | 40.3k | if (len <= 0) { |
763 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_NO_START_LINE); |
764 | 0 | goto err; |
765 | 0 | } |
766 | | |
767 | | /* Strip trailing garbage and standardize ending. */ |
768 | 40.3k | len = sanitize_line(linebuf, len, flags & ~PEM_FLAG_ONLY_B64, first_call); |
769 | 40.3k | first_call = 0; |
770 | | |
771 | | /* Allow leading empty or non-matching lines. */ |
772 | 40.3k | } while (strncmp(linebuf, beginstr, BEGINLEN) != 0 |
773 | 40.3k | || len < TAILLEN |
774 | 40.3k | || strncmp(linebuf + len - TAILLEN, tailstr, TAILLEN) != 0); |
775 | 40.3k | linebuf[len - TAILLEN] = '\0'; |
776 | 40.3k | len = len - BEGINLEN - TAILLEN + 1; |
777 | 40.3k | *name = pem_malloc(len, flags); |
778 | 40.3k | if (*name == NULL) { |
779 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
780 | 0 | goto err; |
781 | 0 | } |
782 | 40.3k | memcpy(*name, linebuf + BEGINLEN, len); |
783 | 40.3k | ret = 1; |
784 | | |
785 | 40.3k | err: |
786 | 40.3k | pem_free(linebuf, flags, LINESIZE + 1); |
787 | 40.3k | return ret; |
788 | 40.3k | } |
789 | | |
790 | | /* Keep track of how much of a header we've seen. */ |
791 | | enum header_status { |
792 | | MAYBE_HEADER, |
793 | | IN_HEADER, |
794 | | POST_HEADER |
795 | | }; |
796 | | |
797 | | /** |
798 | | * Extract the optional PEM header, with details on the type of content and |
799 | | * any encryption used on the contents, and the bulk of the data from the bio. |
800 | | * The end of the header is marked by a blank line; if the end-of-input marker |
801 | | * is reached prior to a blank line, there is no header. |
802 | | * |
803 | | * The header and data arguments are BIO** since we may have to swap them |
804 | | * if there is no header, for efficiency. |
805 | | * |
806 | | * We need the name of the PEM-encoded type to verify the end string. |
807 | | */ |
808 | | static int get_header_and_data(BIO *bp, BIO **header, BIO **data, char *name, |
809 | | unsigned int flags) |
810 | 40.3k | { |
811 | 40.3k | BIO *tmp = *header; |
812 | 40.3k | char *linebuf, *p; |
813 | 40.3k | int len, ret = 0, end = 0, prev_partial_line_read = 0, partial_line_read = 0; |
814 | | /* 0 if not seen (yet), 1 if reading header, 2 if finished header */ |
815 | 40.3k | enum header_status got_header = MAYBE_HEADER; |
816 | 40.3k | unsigned int flags_mask; |
817 | 40.3k | size_t namelen; |
818 | | |
819 | | /* Need to hold trailing NUL (accounted for by BIO_gets() and the newline |
820 | | * that will be added by sanitize_line() (the extra '1'). */ |
821 | 40.3k | linebuf = pem_malloc(LINESIZE + 1, flags); |
822 | 40.3k | if (linebuf == NULL) { |
823 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
824 | 0 | return 0; |
825 | 0 | } |
826 | | |
827 | 403k | while(1) { |
828 | 403k | flags_mask = ~0u; |
829 | 403k | len = BIO_gets(bp, linebuf, LINESIZE); |
830 | 403k | if (len <= 0) { |
831 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
832 | 0 | goto err; |
833 | 0 | } |
834 | | |
835 | | /* |
836 | | * Check if line has been read completely or if only part of the line |
837 | | * has been read. Keep the previous value to ignore newlines that |
838 | | * appear due to reading a line up until the char before the newline. |
839 | | */ |
840 | 403k | prev_partial_line_read = partial_line_read; |
841 | 403k | partial_line_read = len == LINESIZE-1 && linebuf[LINESIZE-2] != '\n'; |
842 | | |
843 | 403k | if (got_header == MAYBE_HEADER) { |
844 | 403k | if (memchr(linebuf, ':', len) != NULL) |
845 | 0 | got_header = IN_HEADER; |
846 | 403k | } |
847 | 403k | if (!strncmp(linebuf, endstr, ENDLEN) || got_header == IN_HEADER) |
848 | 40.3k | flags_mask &= ~PEM_FLAG_ONLY_B64; |
849 | 403k | len = sanitize_line(linebuf, len, flags & flags_mask, 0); |
850 | | |
851 | | /* Check for end of header. */ |
852 | 403k | if (linebuf[0] == '\n') { |
853 | | /* |
854 | | * If previous line has been read only partially this newline is a |
855 | | * regular newline at the end of a line and not an empty line. |
856 | | */ |
857 | 0 | if (!prev_partial_line_read) { |
858 | 0 | if (got_header == POST_HEADER) { |
859 | | /* Another blank line is an error. */ |
860 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
861 | 0 | goto err; |
862 | 0 | } |
863 | 0 | got_header = POST_HEADER; |
864 | 0 | tmp = *data; |
865 | 0 | } |
866 | 0 | continue; |
867 | 0 | } |
868 | | |
869 | | /* Check for end of stream (which means there is no header). */ |
870 | 403k | if (strncmp(linebuf, endstr, ENDLEN) == 0) { |
871 | 40.3k | p = linebuf + ENDLEN; |
872 | 40.3k | namelen = strlen(name); |
873 | 40.3k | if (strncmp(p, name, namelen) != 0 || |
874 | 40.3k | strncmp(p + namelen, tailstr, TAILLEN) != 0) { |
875 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
876 | 0 | goto err; |
877 | 0 | } |
878 | 40.3k | if (got_header == MAYBE_HEADER) { |
879 | 40.3k | *header = *data; |
880 | 40.3k | *data = tmp; |
881 | 40.3k | } |
882 | 40.3k | break; |
883 | 363k | } else if (end) { |
884 | | /* Malformed input; short line not at end of data. */ |
885 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
886 | 0 | goto err; |
887 | 0 | } |
888 | | /* |
889 | | * Else, a line of text -- could be header or data; we don't |
890 | | * know yet. Just pass it through. |
891 | | */ |
892 | 363k | if (BIO_puts(tmp, linebuf) < 0) |
893 | 0 | goto err; |
894 | | /* |
895 | | * Only encrypted files need the line length check applied. |
896 | | */ |
897 | 363k | if (got_header == POST_HEADER) { |
898 | | /* 65 includes the trailing newline */ |
899 | 0 | if (len > 65) |
900 | 0 | goto err; |
901 | 0 | if (len < 65) |
902 | 0 | end = 1; |
903 | 0 | } |
904 | 363k | } |
905 | | |
906 | 40.3k | ret = 1; |
907 | 40.3k | err: |
908 | 40.3k | pem_free(linebuf, flags, LINESIZE + 1); |
909 | 40.3k | return ret; |
910 | 40.3k | } |
911 | | |
912 | | /** |
913 | | * Read in PEM-formatted data from the given BIO. |
914 | | * |
915 | | * By nature of the PEM format, all content must be printable ASCII (except |
916 | | * for line endings). Other characters are malformed input and will be rejected. |
917 | | */ |
918 | | int PEM_read_bio_ex(BIO *bp, char **name_out, char **header, |
919 | | unsigned char **data, long *len_out, unsigned int flags) |
920 | 129k | { |
921 | 129k | EVP_ENCODE_CTX *ctx = NULL; |
922 | 129k | const BIO_METHOD *bmeth; |
923 | 129k | BIO *headerB = NULL, *dataB = NULL; |
924 | 129k | char *name = NULL; |
925 | 129k | int len, taillen, headerlen, ret = 0; |
926 | 129k | BUF_MEM * buf_mem; |
927 | | |
928 | 129k | *len_out = 0; |
929 | 129k | *name_out = *header = NULL; |
930 | 129k | *data = NULL; |
931 | 129k | if ((flags & PEM_FLAG_EAY_COMPATIBLE) && (flags & PEM_FLAG_ONLY_B64)) { |
932 | | /* These two are mutually incompatible; bail out. */ |
933 | 4 | ERR_raise(ERR_LIB_PEM, ERR_R_PASSED_INVALID_ARGUMENT); |
934 | 4 | goto end; |
935 | 4 | } |
936 | 129k | bmeth = (flags & PEM_FLAG_SECURE) ? BIO_s_secmem() : BIO_s_mem(); |
937 | | |
938 | 129k | headerB = BIO_new(bmeth); |
939 | 129k | dataB = BIO_new(bmeth); |
940 | 129k | if (headerB == NULL || dataB == NULL) { |
941 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
942 | 0 | goto end; |
943 | 0 | } |
944 | | |
945 | 129k | if (!get_name(bp, &name, flags)) |
946 | 15.7k | goto end; |
947 | 113k | if (!get_header_and_data(bp, &headerB, &dataB, name, flags)) |
948 | 1.90k | goto end; |
949 | | |
950 | 112k | BIO_get_mem_ptr(dataB, &buf_mem); |
951 | 112k | len = buf_mem->length; |
952 | | |
953 | | /* There was no data in the PEM file */ |
954 | 112k | if (len == 0) |
955 | 16 | goto end; |
956 | | |
957 | 112k | ctx = EVP_ENCODE_CTX_new(); |
958 | 112k | if (ctx == NULL) { |
959 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
960 | 0 | goto end; |
961 | 0 | } |
962 | | |
963 | 112k | EVP_DecodeInit(ctx); |
964 | 112k | if (EVP_DecodeUpdate(ctx, (unsigned char*)buf_mem->data, &len, |
965 | 112k | (unsigned char*)buf_mem->data, len) < 0 |
966 | 112k | || EVP_DecodeFinal(ctx, (unsigned char*)&(buf_mem->data[len]), |
967 | 111k | &taillen) < 0) { |
968 | 271 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_BASE64_DECODE); |
969 | 271 | goto end; |
970 | 271 | } |
971 | 111k | len += taillen; |
972 | 111k | buf_mem->length = len; |
973 | | |
974 | 111k | headerlen = BIO_get_mem_data(headerB, NULL); |
975 | 111k | *header = pem_malloc(headerlen + 1, flags); |
976 | 111k | *data = pem_malloc(len, flags); |
977 | 111k | if (*header == NULL || *data == NULL) |
978 | 28 | goto out_free; |
979 | 111k | if (headerlen != 0 && BIO_read(headerB, *header, headerlen) != headerlen) |
980 | 0 | goto out_free; |
981 | 111k | (*header)[headerlen] = '\0'; |
982 | 111k | if (BIO_read(dataB, *data, len) != len) |
983 | 0 | goto out_free; |
984 | 111k | *len_out = len; |
985 | 111k | *name_out = name; |
986 | 111k | name = NULL; |
987 | 111k | ret = 1; |
988 | 111k | goto end; |
989 | | |
990 | 28 | out_free: |
991 | 28 | pem_free(*header, flags, 0); |
992 | 28 | *header = NULL; |
993 | 28 | pem_free(*data, flags, 0); |
994 | 28 | *data = NULL; |
995 | 129k | end: |
996 | 129k | EVP_ENCODE_CTX_free(ctx); |
997 | 129k | pem_free(name, flags, 0); |
998 | 129k | BIO_free(headerB); |
999 | 129k | BIO_free(dataB); |
1000 | 129k | return ret; |
1001 | 28 | } |
1002 | | |
1003 | | int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, |
1004 | | long *len) |
1005 | 71.8k | { |
1006 | 71.8k | return PEM_read_bio_ex(bp, name, header, data, len, PEM_FLAG_EAY_COMPATIBLE); |
1007 | 71.8k | } |
1008 | | |
1009 | | /* |
1010 | | * Check pem string and return prefix length. If for example the pem_str == |
1011 | | * "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" the return value is 3 for the |
1012 | | * string "RSA". |
1013 | | */ |
1014 | | |
1015 | | int ossl_pem_check_suffix(const char *pem_str, const char *suffix) |
1016 | 0 | { |
1017 | 0 | int pem_len = strlen(pem_str); |
1018 | 0 | int suffix_len = strlen(suffix); |
1019 | 0 | const char *p; |
1020 | 0 | if (suffix_len + 1 >= pem_len) |
1021 | 0 | return 0; |
1022 | 0 | p = pem_str + pem_len - suffix_len; |
1023 | 0 | if (strcmp(p, suffix)) |
1024 | 0 | return 0; |
1025 | 0 | p--; |
1026 | 0 | if (*p != ' ') |
1027 | 0 | return 0; |
1028 | 0 | return p - pem_str; |
1029 | 0 | } |