/src/openssl31/crypto/rsa/rsa_gen.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | /*  | 
11  |  |  * NB: these functions have been "upgraded", the deprecated versions (which  | 
12  |  |  * are compatibility wrappers using these functions) are in rsa_depr.c. -  | 
13  |  |  * Geoff  | 
14  |  |  */  | 
15  |  |  | 
16  |  | /*  | 
17  |  |  * RSA low level APIs are deprecated for public use, but still ok for  | 
18  |  |  * internal use.  | 
19  |  |  */  | 
20  |  | #include "internal/deprecated.h"  | 
21  |  |  | 
22  |  | #include <stdio.h>  | 
23  |  | #include <time.h>  | 
24  |  | #include "internal/cryptlib.h"  | 
25  |  | #include <openssl/bn.h>  | 
26  |  | #include <openssl/self_test.h>  | 
27  |  | #include "prov/providercommon.h"  | 
28  |  | #include "rsa_local.h"  | 
29  |  |  | 
30  |  | static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg);  | 
31  |  | static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,  | 
32  |  |                       BIGNUM *e_value, BN_GENCB *cb, int pairwise_test);  | 
33  |  |  | 
34  |  | /*  | 
35  |  |  * NB: this wrapper would normally be placed in rsa_lib.c and the static  | 
36  |  |  * implementation would probably be in rsa_eay.c. Nonetheless, is kept here  | 
37  |  |  * so that we don't introduce a new linker dependency. Eg. any application  | 
38  |  |  * that wasn't previously linking object code related to key-generation won't  | 
39  |  |  * have to now just because key-generation is part of RSA_METHOD.  | 
40  |  |  */  | 
41  |  | int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)  | 
42  | 0  | { | 
43  | 0  |     if (rsa->meth->rsa_keygen != NULL)  | 
44  | 0  |         return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);  | 
45  |  |  | 
46  | 0  |     return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,  | 
47  | 0  |                                         e_value, cb);  | 
48  | 0  | }  | 
49  |  |  | 
50  |  | int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,  | 
51  |  |                                  BIGNUM *e_value, BN_GENCB *cb)  | 
52  | 0  | { | 
53  | 0  | #ifndef FIPS_MODULE  | 
54  |  |     /* multi-prime is only supported with the builtin key generation */  | 
55  | 0  |     if (rsa->meth->rsa_multi_prime_keygen != NULL) { | 
56  | 0  |         return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,  | 
57  | 0  |                                                  e_value, cb);  | 
58  | 0  |     } else if (rsa->meth->rsa_keygen != NULL) { | 
59  |  |         /*  | 
60  |  |          * However, if rsa->meth implements only rsa_keygen, then we  | 
61  |  |          * have to honour it in 2-prime case and assume that it wouldn't  | 
62  |  |          * know what to do with multi-prime key generated by builtin  | 
63  |  |          * subroutine...  | 
64  |  |          */  | 
65  | 0  |         if (primes == 2)  | 
66  | 0  |             return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);  | 
67  | 0  |         else  | 
68  | 0  |             return 0;  | 
69  | 0  |     }  | 
70  | 0  | #endif /* FIPS_MODULE */  | 
71  | 0  |     return rsa_keygen(rsa->libctx, rsa, bits, primes, e_value, cb, 0);  | 
72  | 0  | }  | 
73  |  |  | 
74  |  | #ifndef FIPS_MODULE  | 
75  |  | static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes,  | 
76  |  |                                  BIGNUM *e_value, BN_GENCB *cb)  | 
77  | 0  | { | 
78  | 0  |     BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;  | 
79  | 0  |     int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;  | 
80  | 0  |     int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;  | 
81  | 0  |     RSA_PRIME_INFO *pinfo = NULL;  | 
82  | 0  |     STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;  | 
83  | 0  |     BN_CTX *ctx = NULL;  | 
84  | 0  |     BN_ULONG bitst = 0;  | 
85  | 0  |     unsigned long error = 0;  | 
86  | 0  |     int ok = -1;  | 
87  |  | 
  | 
88  | 0  |     if (bits < RSA_MIN_MODULUS_BITS) { | 
89  | 0  |         ok = 0;             /* we set our own err */  | 
90  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);  | 
91  | 0  |         goto err;  | 
92  | 0  |     }  | 
93  |  |  | 
94  |  |     /* A bad value for e can cause infinite loops */  | 
95  | 0  |     if (e_value != NULL && !ossl_rsa_check_public_exponent(e_value)) { | 
96  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE);  | 
97  | 0  |         return 0;  | 
98  | 0  |     }  | 
99  |  |  | 
100  | 0  |     if (primes < RSA_DEFAULT_PRIME_NUM || primes > ossl_rsa_multip_cap(bits)) { | 
101  | 0  |         ok = 0;             /* we set our own err */  | 
102  | 0  |         ERR_raise(ERR_LIB_RSA, RSA_R_KEY_PRIME_NUM_INVALID);  | 
103  | 0  |         goto err;  | 
104  | 0  |     }  | 
105  |  |  | 
106  | 0  |     ctx = BN_CTX_new_ex(rsa->libctx);  | 
107  | 0  |     if (ctx == NULL)  | 
108  | 0  |         goto err;  | 
109  | 0  |     BN_CTX_start(ctx);  | 
110  | 0  |     r0 = BN_CTX_get(ctx);  | 
111  | 0  |     r1 = BN_CTX_get(ctx);  | 
112  | 0  |     r2 = BN_CTX_get(ctx);  | 
113  | 0  |     if (r2 == NULL)  | 
114  | 0  |         goto err;  | 
115  |  |  | 
116  |  |     /* divide bits into 'primes' pieces evenly */  | 
117  | 0  |     quo = bits / primes;  | 
118  | 0  |     rmd = bits % primes;  | 
119  |  | 
  | 
120  | 0  |     for (i = 0; i < primes; i++)  | 
121  | 0  |         bitsr[i] = (i < rmd) ? quo + 1 : quo;  | 
122  |  | 
  | 
123  | 0  |     rsa->dirty_cnt++;  | 
124  |  |  | 
125  |  |     /* We need the RSA components non-NULL */  | 
126  | 0  |     if (!rsa->n && ((rsa->n = BN_new()) == NULL))  | 
127  | 0  |         goto err;  | 
128  | 0  |     if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))  | 
129  | 0  |         goto err;  | 
130  | 0  |     BN_set_flags(rsa->d, BN_FLG_CONSTTIME);  | 
131  | 0  |     if (!rsa->e && ((rsa->e = BN_new()) == NULL))  | 
132  | 0  |         goto err;  | 
133  | 0  |     if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))  | 
134  | 0  |         goto err;  | 
135  | 0  |     BN_set_flags(rsa->p, BN_FLG_CONSTTIME);  | 
136  | 0  |     if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))  | 
137  | 0  |         goto err;  | 
138  | 0  |     BN_set_flags(rsa->q, BN_FLG_CONSTTIME);  | 
139  | 0  |     if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL))  | 
140  | 0  |         goto err;  | 
141  | 0  |     BN_set_flags(rsa->dmp1, BN_FLG_CONSTTIME);  | 
142  | 0  |     if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL))  | 
143  | 0  |         goto err;  | 
144  | 0  |     BN_set_flags(rsa->dmq1, BN_FLG_CONSTTIME);  | 
145  | 0  |     if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL))  | 
146  | 0  |         goto err;  | 
147  | 0  |     BN_set_flags(rsa->iqmp, BN_FLG_CONSTTIME);  | 
148  |  |  | 
149  |  |     /* initialize multi-prime components */  | 
150  | 0  |     if (primes > RSA_DEFAULT_PRIME_NUM) { | 
151  | 0  |         rsa->version = RSA_ASN1_VERSION_MULTI;  | 
152  | 0  |         prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);  | 
153  | 0  |         if (prime_infos == NULL)  | 
154  | 0  |             goto err;  | 
155  | 0  |         if (rsa->prime_infos != NULL) { | 
156  |  |             /* could this happen? */  | 
157  | 0  |             sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos,  | 
158  | 0  |                                        ossl_rsa_multip_info_free);  | 
159  | 0  |         }  | 
160  | 0  |         rsa->prime_infos = prime_infos;  | 
161  |  |  | 
162  |  |         /* prime_info from 2 to |primes| -1 */  | 
163  | 0  |         for (i = 2; i < primes; i++) { | 
164  | 0  |             pinfo = ossl_rsa_multip_info_new();  | 
165  | 0  |             if (pinfo == NULL)  | 
166  | 0  |                 goto err;  | 
167  | 0  |             (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);  | 
168  | 0  |         }  | 
169  | 0  |     }  | 
170  |  |  | 
171  | 0  |     if (BN_copy(rsa->e, e_value) == NULL)  | 
172  | 0  |         goto err;  | 
173  |  |  | 
174  |  |     /* generate p, q and other primes (if any) */  | 
175  | 0  |     for (i = 0; i < primes; i++) { | 
176  | 0  |         adj = 0;  | 
177  | 0  |         retries = 0;  | 
178  |  | 
  | 
179  | 0  |         if (i == 0) { | 
180  | 0  |             prime = rsa->p;  | 
181  | 0  |         } else if (i == 1) { | 
182  | 0  |             prime = rsa->q;  | 
183  | 0  |         } else { | 
184  | 0  |             pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);  | 
185  | 0  |             prime = pinfo->r;  | 
186  | 0  |         }  | 
187  | 0  |         BN_set_flags(prime, BN_FLG_CONSTTIME);  | 
188  |  | 
  | 
189  | 0  |         for (;;) { | 
190  | 0  |  redo:  | 
191  | 0  |             if (!BN_generate_prime_ex2(prime, bitsr[i] + adj, 0, NULL, NULL,  | 
192  | 0  |                                        cb, ctx))  | 
193  | 0  |                 goto err;  | 
194  |  |             /*  | 
195  |  |              * prime should not be equal to p, q, r_3...  | 
196  |  |              * (those primes prior to this one)  | 
197  |  |              */  | 
198  | 0  |             { | 
199  | 0  |                 int j;  | 
200  |  | 
  | 
201  | 0  |                 for (j = 0; j < i; j++) { | 
202  | 0  |                     BIGNUM *prev_prime;  | 
203  |  | 
  | 
204  | 0  |                     if (j == 0)  | 
205  | 0  |                         prev_prime = rsa->p;  | 
206  | 0  |                     else if (j == 1)  | 
207  | 0  |                         prev_prime = rsa->q;  | 
208  | 0  |                     else  | 
209  | 0  |                         prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,  | 
210  | 0  |                                                              j - 2)->r;  | 
211  |  | 
  | 
212  | 0  |                     if (!BN_cmp(prime, prev_prime)) { | 
213  | 0  |                         goto redo;  | 
214  | 0  |                     }  | 
215  | 0  |                 }  | 
216  | 0  |             }  | 
217  | 0  |             if (!BN_sub(r2, prime, BN_value_one()))  | 
218  | 0  |                 goto err;  | 
219  | 0  |             ERR_set_mark();  | 
220  | 0  |             BN_set_flags(r2, BN_FLG_CONSTTIME);  | 
221  | 0  |             if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) { | 
222  |  |                /* GCD == 1 since inverse exists */  | 
223  | 0  |                 break;  | 
224  | 0  |             }  | 
225  | 0  |             error = ERR_peek_last_error();  | 
226  | 0  |             if (ERR_GET_LIB(error) == ERR_LIB_BN  | 
227  | 0  |                 && ERR_GET_REASON(error) == BN_R_NO_INVERSE) { | 
228  |  |                 /* GCD != 1 */  | 
229  | 0  |                 ERR_pop_to_mark();  | 
230  | 0  |             } else { | 
231  | 0  |                 goto err;  | 
232  | 0  |             }  | 
233  | 0  |             if (!BN_GENCB_call(cb, 2, n++))  | 
234  | 0  |                 goto err;  | 
235  | 0  |         }  | 
236  |  |  | 
237  | 0  |         bitse += bitsr[i];  | 
238  |  |  | 
239  |  |         /* calculate n immediately to see if it's sufficient */  | 
240  | 0  |         if (i == 1) { | 
241  |  |             /* we get at least 2 primes */  | 
242  | 0  |             if (!BN_mul(r1, rsa->p, rsa->q, ctx))  | 
243  | 0  |                 goto err;  | 
244  | 0  |         } else if (i != 0) { | 
245  |  |             /* modulus n = p * q * r_3 * r_4 ... */  | 
246  | 0  |             if (!BN_mul(r1, rsa->n, prime, ctx))  | 
247  | 0  |                 goto err;  | 
248  | 0  |         } else { | 
249  |  |             /* i == 0, do nothing */  | 
250  | 0  |             if (!BN_GENCB_call(cb, 3, i))  | 
251  | 0  |                 goto err;  | 
252  | 0  |             continue;  | 
253  | 0  |         }  | 
254  |  |         /*  | 
255  |  |          * if |r1|, product of factors so far, is not as long as expected  | 
256  |  |          * (by checking the first 4 bits are less than 0x9 or greater than  | 
257  |  |          * 0xF). If so, re-generate the last prime.  | 
258  |  |          *  | 
259  |  |          * NOTE: This actually can't happen in two-prime case, because of  | 
260  |  |          * the way factors are generated.  | 
261  |  |          *  | 
262  |  |          * Besides, another consideration is, for multi-prime case, even the  | 
263  |  |          * length modulus is as long as expected, the modulus could start at  | 
264  |  |          * 0x8, which could be utilized to distinguish a multi-prime private  | 
265  |  |          * key by using the modulus in a certificate. This is also covered  | 
266  |  |          * by checking the length should not be less than 0x9.  | 
267  |  |          */  | 
268  | 0  |         if (!BN_rshift(r2, r1, bitse - 4))  | 
269  | 0  |             goto err;  | 
270  | 0  |         bitst = BN_get_word(r2);  | 
271  |  | 
  | 
272  | 0  |         if (bitst < 0x9 || bitst > 0xF) { | 
273  |  |             /*  | 
274  |  |              * For keys with more than 4 primes, we attempt longer factor to  | 
275  |  |              * meet length requirement.  | 
276  |  |              *  | 
277  |  |              * Otherwise, we just re-generate the prime with the same length.  | 
278  |  |              *  | 
279  |  |              * This strategy has the following goals:  | 
280  |  |              *  | 
281  |  |              * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key  | 
282  |  |              * 2. stay the same logic with normal 2-prime key  | 
283  |  |              */  | 
284  | 0  |             bitse -= bitsr[i];  | 
285  | 0  |             if (!BN_GENCB_call(cb, 2, n++))  | 
286  | 0  |                 goto err;  | 
287  | 0  |             if (primes > 4) { | 
288  | 0  |                 if (bitst < 0x9)  | 
289  | 0  |                     adj++;  | 
290  | 0  |                 else  | 
291  | 0  |                     adj--;  | 
292  | 0  |             } else if (retries == 4) { | 
293  |  |                 /*  | 
294  |  |                  * re-generate all primes from scratch, mainly used  | 
295  |  |                  * in 4 prime case to avoid long loop. Max retry times  | 
296  |  |                  * is set to 4.  | 
297  |  |                  */  | 
298  | 0  |                 i = -1;  | 
299  | 0  |                 bitse = 0;  | 
300  | 0  |                 continue;  | 
301  | 0  |             }  | 
302  | 0  |             retries++;  | 
303  | 0  |             goto redo;  | 
304  | 0  |         }  | 
305  |  |         /* save product of primes for further use, for multi-prime only */  | 
306  | 0  |         if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)  | 
307  | 0  |             goto err;  | 
308  | 0  |         if (BN_copy(rsa->n, r1) == NULL)  | 
309  | 0  |             goto err;  | 
310  | 0  |         if (!BN_GENCB_call(cb, 3, i))  | 
311  | 0  |             goto err;  | 
312  | 0  |     }  | 
313  |  |  | 
314  | 0  |     if (BN_cmp(rsa->p, rsa->q) < 0) { | 
315  | 0  |         tmp = rsa->p;  | 
316  | 0  |         rsa->p = rsa->q;  | 
317  | 0  |         rsa->q = tmp;  | 
318  | 0  |     }  | 
319  |  |  | 
320  |  |     /* calculate d */  | 
321  |  |  | 
322  |  |     /* p - 1 */  | 
323  | 0  |     if (!BN_sub(r1, rsa->p, BN_value_one()))  | 
324  | 0  |         goto err;  | 
325  |  |     /* q - 1 */  | 
326  | 0  |     if (!BN_sub(r2, rsa->q, BN_value_one()))  | 
327  | 0  |         goto err;  | 
328  |  |     /* (p - 1)(q - 1) */  | 
329  | 0  |     if (!BN_mul(r0, r1, r2, ctx))  | 
330  | 0  |         goto err;  | 
331  |  |     /* multi-prime */  | 
332  | 0  |     for (i = 2; i < primes; i++) { | 
333  | 0  |         pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);  | 
334  |  |         /* save r_i - 1 to pinfo->d temporarily */  | 
335  | 0  |         if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))  | 
336  | 0  |             goto err;  | 
337  | 0  |         if (!BN_mul(r0, r0, pinfo->d, ctx))  | 
338  | 0  |             goto err;  | 
339  | 0  |     }  | 
340  |  |  | 
341  | 0  |     { | 
342  | 0  |         BIGNUM *pr0 = BN_new();  | 
343  |  | 
  | 
344  | 0  |         if (pr0 == NULL)  | 
345  | 0  |             goto err;  | 
346  |  |  | 
347  | 0  |         BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);  | 
348  | 0  |         if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) { | 
349  | 0  |             BN_free(pr0);  | 
350  | 0  |             goto err;               /* d */  | 
351  | 0  |         }  | 
352  |  |         /* We MUST free pr0 before any further use of r0 */  | 
353  | 0  |         BN_free(pr0);  | 
354  | 0  |     }  | 
355  |  |  | 
356  | 0  |     { | 
357  | 0  |         BIGNUM *d = BN_new();  | 
358  |  | 
  | 
359  | 0  |         if (d == NULL)  | 
360  | 0  |             goto err;  | 
361  |  |  | 
362  | 0  |         BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);  | 
363  |  |  | 
364  |  |         /* calculate d mod (p-1) and d mod (q - 1) */  | 
365  | 0  |         if (!BN_mod(rsa->dmp1, d, r1, ctx)  | 
366  | 0  |             || !BN_mod(rsa->dmq1, d, r2, ctx)) { | 
367  | 0  |             BN_free(d);  | 
368  | 0  |             goto err;  | 
369  | 0  |         }  | 
370  |  |  | 
371  |  |         /* calculate CRT exponents */  | 
372  | 0  |         for (i = 2; i < primes; i++) { | 
373  | 0  |             pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);  | 
374  |  |             /* pinfo->d == r_i - 1 */  | 
375  | 0  |             if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) { | 
376  | 0  |                 BN_free(d);  | 
377  | 0  |                 goto err;  | 
378  | 0  |             }  | 
379  | 0  |         }  | 
380  |  |  | 
381  |  |         /* We MUST free d before any further use of rsa->d */  | 
382  | 0  |         BN_free(d);  | 
383  | 0  |     }  | 
384  |  |  | 
385  | 0  |     { | 
386  | 0  |         BIGNUM *p = BN_new();  | 
387  |  | 
  | 
388  | 0  |         if (p == NULL)  | 
389  | 0  |             goto err;  | 
390  | 0  |         BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);  | 
391  |  |  | 
392  |  |         /* calculate inverse of q mod p */  | 
393  | 0  |         if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) { | 
394  | 0  |             BN_free(p);  | 
395  | 0  |             goto err;  | 
396  | 0  |         }  | 
397  |  |  | 
398  |  |         /* calculate CRT coefficient for other primes */  | 
399  | 0  |         for (i = 2; i < primes; i++) { | 
400  | 0  |             pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);  | 
401  | 0  |             BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME);  | 
402  | 0  |             if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) { | 
403  | 0  |                 BN_free(p);  | 
404  | 0  |                 goto err;  | 
405  | 0  |             }  | 
406  | 0  |         }  | 
407  |  |  | 
408  |  |         /* We MUST free p before any further use of rsa->p */  | 
409  | 0  |         BN_free(p);  | 
410  | 0  |     }  | 
411  |  |  | 
412  | 0  |     ok = 1;  | 
413  | 0  |  err:  | 
414  | 0  |     if (ok == -1) { | 
415  | 0  |         ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);  | 
416  | 0  |         ok = 0;  | 
417  | 0  |     }  | 
418  | 0  |     BN_CTX_end(ctx);  | 
419  | 0  |     BN_CTX_free(ctx);  | 
420  | 0  |     return ok;  | 
421  | 0  | }  | 
422  |  | #endif /* FIPS_MODULE */  | 
423  |  |  | 
424  |  | static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,  | 
425  |  |                       BIGNUM *e_value, BN_GENCB *cb, int pairwise_test)  | 
426  | 0  | { | 
427  | 0  |     int ok = 0;  | 
428  |  | 
  | 
429  |  | #ifdef FIPS_MODULE  | 
430  |  |     ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);  | 
431  |  |     pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */  | 
432  |  | #else  | 
433  |  |     /*  | 
434  |  |      * Only multi-prime keys or insecure keys with a small key length or a  | 
435  |  |      * public exponent <= 2^16 will use the older rsa_multiprime_keygen().  | 
436  |  |      */  | 
437  | 0  |     if (primes == 2  | 
438  | 0  |             && bits >= 2048  | 
439  | 0  |             && (e_value == NULL || BN_num_bits(e_value) > 16))  | 
440  | 0  |         ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);  | 
441  | 0  |     else  | 
442  | 0  |         ok = rsa_multiprime_keygen(rsa, bits, primes, e_value, cb);  | 
443  | 0  | #endif /* FIPS_MODULE */  | 
444  |  | 
  | 
445  | 0  |     if (pairwise_test && ok > 0) { | 
446  | 0  |         OSSL_CALLBACK *stcb = NULL;  | 
447  | 0  |         void *stcbarg = NULL;  | 
448  |  | 
  | 
449  | 0  |         OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg);  | 
450  | 0  |         ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg);  | 
451  | 0  |         if (!ok) { | 
452  | 0  |             ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT);  | 
453  |  |             /* Clear intermediate results */  | 
454  | 0  |             BN_clear_free(rsa->d);  | 
455  | 0  |             BN_clear_free(rsa->p);  | 
456  | 0  |             BN_clear_free(rsa->q);  | 
457  | 0  |             BN_clear_free(rsa->dmp1);  | 
458  | 0  |             BN_clear_free(rsa->dmq1);  | 
459  | 0  |             BN_clear_free(rsa->iqmp);  | 
460  | 0  |             rsa->d = NULL;  | 
461  | 0  |             rsa->p = NULL;  | 
462  | 0  |             rsa->q = NULL;  | 
463  | 0  |             rsa->dmp1 = NULL;  | 
464  | 0  |             rsa->dmq1 = NULL;  | 
465  | 0  |             rsa->iqmp = NULL;  | 
466  | 0  |         }  | 
467  | 0  |     }  | 
468  | 0  |     return ok;  | 
469  | 0  | }  | 
470  |  |  | 
471  |  | /*  | 
472  |  |  * For RSA key generation it is not known whether the key pair will be used  | 
473  |  |  * for key transport or signatures. FIPS 140-2 IG 9.9 states that in this case  | 
474  |  |  * either a signature verification OR an encryption operation may be used to  | 
475  |  |  * perform the pairwise consistency check. The simpler encrypt/decrypt operation  | 
476  |  |  * has been chosen for this case.  | 
477  |  |  */  | 
478  |  | static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg)  | 
479  | 0  | { | 
480  | 0  |     int ret = 0;  | 
481  | 0  |     unsigned int ciphertxt_len;  | 
482  | 0  |     unsigned char *ciphertxt = NULL;  | 
483  | 0  |     const unsigned char plaintxt[16] = {0}; | 
484  | 0  |     unsigned char *decoded = NULL;  | 
485  | 0  |     unsigned int decoded_len;  | 
486  | 0  |     unsigned int plaintxt_len = (unsigned int)sizeof(plaintxt_len);  | 
487  | 0  |     int padding = RSA_PKCS1_PADDING;  | 
488  | 0  |     OSSL_SELF_TEST *st = NULL;  | 
489  |  | 
  | 
490  | 0  |     st = OSSL_SELF_TEST_new(cb, cbarg);  | 
491  | 0  |     if (st == NULL)  | 
492  | 0  |         goto err;  | 
493  | 0  |     OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT,  | 
494  | 0  |                            OSSL_SELF_TEST_DESC_PCT_RSA_PKCS1);  | 
495  |  | 
  | 
496  | 0  |     ciphertxt_len = RSA_size(rsa);  | 
497  |  |     /*  | 
498  |  |      * RSA_private_encrypt() and RSA_private_decrypt() requires the 'to'  | 
499  |  |      * parameter to be a maximum of RSA_size() - allocate space for both.  | 
500  |  |      */  | 
501  | 0  |     ciphertxt = OPENSSL_zalloc(ciphertxt_len * 2);  | 
502  | 0  |     if (ciphertxt == NULL)  | 
503  | 0  |         goto err;  | 
504  | 0  |     decoded = ciphertxt + ciphertxt_len;  | 
505  |  | 
  | 
506  | 0  |     ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa,  | 
507  | 0  |                                        padding);  | 
508  | 0  |     if (ciphertxt_len <= 0)  | 
509  | 0  |         goto err;  | 
510  | 0  |     if (ciphertxt_len == plaintxt_len  | 
511  | 0  |         && memcmp(ciphertxt, plaintxt, plaintxt_len) == 0)  | 
512  | 0  |         goto err;  | 
513  |  |  | 
514  | 0  |     OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt);  | 
515  |  | 
  | 
516  | 0  |     decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa,  | 
517  | 0  |                                       padding);  | 
518  | 0  |     if (decoded_len != plaintxt_len  | 
519  | 0  |         || memcmp(decoded, plaintxt,  decoded_len) != 0)  | 
520  | 0  |         goto err;  | 
521  |  |  | 
522  | 0  |     ret = 1;  | 
523  | 0  | err:  | 
524  | 0  |     OSSL_SELF_TEST_onend(st, ret);  | 
525  | 0  |     OSSL_SELF_TEST_free(st);  | 
526  | 0  |     OPENSSL_free(ciphertxt);  | 
527  |  | 
  | 
528  | 0  |     return ret;  | 
529  | 0  | }  |