Coverage Report

Created: 2025-06-13 06:58

/src/openssl31/crypto/rsa/rsa_lib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * RSA low level APIs are deprecated for public use, but still ok for
12
 * internal use.
13
 */
14
#include "internal/deprecated.h"
15
16
#include <openssl/crypto.h>
17
#include <openssl/core_names.h>
18
#ifndef FIPS_MODULE
19
# include <openssl/engine.h>
20
#endif
21
#include <openssl/evp.h>
22
#include <openssl/param_build.h>
23
#include "internal/cryptlib.h"
24
#include "internal/refcount.h"
25
#include "crypto/bn.h"
26
#include "crypto/evp.h"
27
#include "crypto/rsa.h"
28
#include "crypto/security_bits.h"
29
#include "rsa_local.h"
30
31
static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx);
32
33
#ifndef FIPS_MODULE
34
RSA *RSA_new(void)
35
374k
{
36
374k
    return rsa_new_intern(NULL, NULL);
37
374k
}
38
39
const RSA_METHOD *RSA_get_method(const RSA *rsa)
40
128k
{
41
128k
    return rsa->meth;
42
128k
}
43
44
int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)
45
0
{
46
    /*
47
     * NB: The caller is specifically setting a method, so it's not up to us
48
     * to deal with which ENGINE it comes from.
49
     */
50
0
    const RSA_METHOD *mtmp;
51
0
    mtmp = rsa->meth;
52
0
    if (mtmp->finish)
53
0
        mtmp->finish(rsa);
54
0
#ifndef OPENSSL_NO_ENGINE
55
0
    ENGINE_finish(rsa->engine);
56
0
    rsa->engine = NULL;
57
0
#endif
58
0
    rsa->meth = meth;
59
0
    if (meth->init)
60
0
        meth->init(rsa);
61
0
    return 1;
62
0
}
63
64
RSA *RSA_new_method(ENGINE *engine)
65
0
{
66
0
    return rsa_new_intern(engine, NULL);
67
0
}
68
#endif
69
70
RSA *ossl_rsa_new_with_ctx(OSSL_LIB_CTX *libctx)
71
31.3k
{
72
31.3k
    return rsa_new_intern(NULL, libctx);
73
31.3k
}
74
75
static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx)
76
200k
{
77
200k
    RSA *ret = OPENSSL_zalloc(sizeof(*ret));
78
79
200k
    if (ret == NULL) {
80
0
        ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
81
0
        return NULL;
82
0
    }
83
84
200k
    ret->references = 1;
85
200k
    ret->lock = CRYPTO_THREAD_lock_new();
86
200k
    if (ret->lock == NULL) {
87
0
        ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
88
0
        OPENSSL_free(ret);
89
0
        return NULL;
90
0
    }
91
92
200k
    ret->libctx = libctx;
93
200k
    ret->meth = RSA_get_default_method();
94
200k
#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
95
200k
    ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
96
200k
    if (engine) {
97
0
        if (!ENGINE_init(engine)) {
98
0
            ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
99
0
            goto err;
100
0
        }
101
0
        ret->engine = engine;
102
200k
    } else {
103
200k
        ret->engine = ENGINE_get_default_RSA();
104
200k
    }
105
200k
    if (ret->engine) {
106
0
        ret->meth = ENGINE_get_RSA(ret->engine);
107
0
        if (ret->meth == NULL) {
108
0
            ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
109
0
            goto err;
110
0
        }
111
0
    }
112
200k
#endif
113
114
200k
    ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
115
200k
#ifndef FIPS_MODULE
116
200k
    if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) {
117
0
        goto err;
118
0
    }
119
200k
#endif
120
121
200k
    if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
122
0
        ERR_raise(ERR_LIB_RSA, ERR_R_INIT_FAIL);
123
0
        goto err;
124
0
    }
125
126
200k
    return ret;
127
128
0
 err:
129
0
    RSA_free(ret);
130
0
    return NULL;
131
200k
}
132
133
void RSA_free(RSA *r)
134
1.15M
{
135
1.15M
    int i;
136
137
1.15M
    if (r == NULL)
138
567k
        return;
139
140
582k
    CRYPTO_DOWN_REF(&r->references, &i, r->lock);
141
582k
    REF_PRINT_COUNT("RSA", r);
142
582k
    if (i > 0)
143
177k
        return;
144
405k
    REF_ASSERT_ISNT(i < 0);
145
146
405k
    if (r->meth != NULL && r->meth->finish != NULL)
147
405k
        r->meth->finish(r);
148
405k
#if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
149
405k
    ENGINE_finish(r->engine);
150
405k
#endif
151
152
405k
#ifndef FIPS_MODULE
153
405k
    CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);
154
405k
#endif
155
156
405k
    CRYPTO_THREAD_lock_free(r->lock);
157
158
405k
    BN_free(r->n);
159
405k
    BN_free(r->e);
160
405k
    BN_clear_free(r->d);
161
405k
    BN_clear_free(r->p);
162
405k
    BN_clear_free(r->q);
163
405k
    BN_clear_free(r->dmp1);
164
405k
    BN_clear_free(r->dmq1);
165
405k
    BN_clear_free(r->iqmp);
166
167
#if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS)
168
    ossl_rsa_acvp_test_free(r->acvp_test);
169
#endif
170
171
405k
#ifndef FIPS_MODULE
172
405k
    RSA_PSS_PARAMS_free(r->pss);
173
405k
    sk_RSA_PRIME_INFO_pop_free(r->prime_infos, ossl_rsa_multip_info_free);
174
405k
#endif
175
405k
    BN_BLINDING_free(r->blinding);
176
405k
    BN_BLINDING_free(r->mt_blinding);
177
405k
    OPENSSL_free(r);
178
405k
}
179
180
int RSA_up_ref(RSA *r)
181
177k
{
182
177k
    int i;
183
184
177k
    if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0)
185
0
        return 0;
186
187
177k
    REF_PRINT_COUNT("RSA", r);
188
177k
    REF_ASSERT_ISNT(i < 2);
189
177k
    return i > 1 ? 1 : 0;
190
177k
}
191
192
OSSL_LIB_CTX *ossl_rsa_get0_libctx(RSA *r)
193
0
{
194
0
    return r->libctx;
195
0
}
196
197
void ossl_rsa_set0_libctx(RSA *r, OSSL_LIB_CTX *libctx)
198
104k
{
199
104k
    r->libctx = libctx;
200
104k
}
201
202
#ifndef FIPS_MODULE
203
int RSA_set_ex_data(RSA *r, int idx, void *arg)
204
0
{
205
0
    return CRYPTO_set_ex_data(&r->ex_data, idx, arg);
206
0
}
207
208
void *RSA_get_ex_data(const RSA *r, int idx)
209
0
{
210
0
    return CRYPTO_get_ex_data(&r->ex_data, idx);
211
0
}
212
#endif
213
214
/*
215
 * Define a scaling constant for our fixed point arithmetic.
216
 * This value must be a power of two because the base two logarithm code
217
 * makes this assumption.  The exponent must also be a multiple of three so
218
 * that the scale factor has an exact cube root.  Finally, the scale factor
219
 * should not be so large that a multiplication of two scaled numbers
220
 * overflows a 64 bit unsigned integer.
221
 */
222
static const unsigned int scale = 1 << 18;
223
static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
224
225
/* Define some constants, none exceed 32 bits */
226
static const unsigned int log_2  = 0x02c5c8;    /* scale * log(2) */
227
static const unsigned int log_e  = 0x05c551;    /* scale * log2(M_E) */
228
static const unsigned int c1_923 = 0x07b126;    /* scale * 1.923 */
229
static const unsigned int c4_690 = 0x12c28f;    /* scale * 4.690 */
230
231
/*
232
 * Multiply two scaled integers together and rescale the result.
233
 */
234
static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
235
1.00M
{
236
1.00M
    return a * b / scale;
237
1.00M
}
238
239
/*
240
 * Calculate the cube root of a 64 bit scaled integer.
241
 * Although the cube root of a 64 bit number does fit into a 32 bit unsigned
242
 * integer, this is not guaranteed after scaling, so this function has a
243
 * 64 bit return.  This uses the shifting nth root algorithm with some
244
 * algebraic simplifications.
245
 */
246
static uint64_t icbrt64(uint64_t x)
247
47.7k
{
248
47.7k
    uint64_t r = 0;
249
47.7k
    uint64_t b;
250
47.7k
    int s;
251
252
1.09M
    for (s = 63; s >= 0; s -= 3) {
253
1.05M
        r <<= 1;
254
1.05M
        b = 3 * r * (r + 1) + 1;
255
1.05M
        if ((x >> s) >= b) {
256
259k
            x -= b << s;
257
259k
            r++;
258
259k
        }
259
1.05M
    }
260
47.7k
    return r * cbrt_scale;
261
47.7k
}
262
263
/*
264
 * Calculate the natural logarithm of a 64 bit scaled integer.
265
 * This is done by calculating a base two logarithm and scaling.
266
 * The maximum logarithm (base 2) is 64 and this reduces base e, so
267
 * a 32 bit result should not overflow.  The argument passed must be
268
 * greater than unity so we don't need to handle negative results.
269
 */
270
static uint32_t ilog_e(uint64_t v)
271
47.7k
{
272
47.7k
    uint32_t i, r = 0;
273
274
    /*
275
     * Scale down the value into the range 1 .. 2.
276
     *
277
     * If fractional numbers need to be processed, another loop needs
278
     * to go here that checks v < scale and if so multiplies it by 2 and
279
     * reduces r by scale.  This also means making r signed.
280
     */
281
399k
    while (v >= 2 * scale) {
282
351k
        v >>= 1;
283
351k
        r += scale;
284
351k
    }
285
907k
    for (i = scale / 2; i != 0; i /= 2) {
286
859k
        v = mul2(v, v);
287
859k
        if (v >= 2 * scale) {
288
426k
            v >>= 1;
289
426k
            r += i;
290
426k
        }
291
859k
    }
292
47.7k
    r = (r * (uint64_t)scale) / log_e;
293
47.7k
    return r;
294
47.7k
}
295
296
/*
297
 * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
298
 * Modulus Lengths.
299
 *
300
 * Note that this formula is also referred to in SP800-56A rev3 Appendix D:
301
 * for FFC safe prime groups for modp and ffdhe.
302
 * After Table 25 and Table 26 it refers to
303
 * "The maximum security strength estimates were calculated using the formula in
304
 * Section 7.5 of the FIPS 140 IG and rounded to the nearest multiple of eight
305
 * bits".
306
 *
307
 * The formula is:
308
 *
309
 * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
310
 *           \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
311
 * The two cube roots are merged together here.
312
 */
313
uint16_t ossl_ifc_ffc_compute_security_bits(int n)
314
105k
{
315
105k
    uint64_t x;
316
105k
    uint32_t lx;
317
105k
    uint16_t y, cap;
318
319
    /*
320
     * Look for common values as listed in standards.
321
     * These values are not exactly equal to the results from the formulae in
322
     * the standards but are defined to be canonical.
323
     */
324
105k
    switch (n) {
325
40.9k
    case 2048:      /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
326
40.9k
        return 112;
327
318
    case 3072:      /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
328
318
        return 128;
329
317
    case 4096:      /* SP 800-56B rev 2 Appendix D */
330
317
        return 152;
331
152
    case 6144:      /* SP 800-56B rev 2 Appendix D */
332
152
        return 176;
333
21
    case 7680:      /* FIPS 140-2 IG 7.5 */
334
21
        return 192;
335
399
    case 8192:      /* SP 800-56B rev 2 Appendix D */
336
399
        return 200;
337
23
    case 15360:     /* FIPS 140-2 IG 7.5 */
338
23
        return 256;
339
105k
    }
340
341
    /*
342
     * The first incorrect result (i.e. not accurate or off by one low) occurs
343
     * for n = 699668.  The true value here is 1200.  Instead of using this n
344
     * as the check threshold, the smallest n such that the correct result is
345
     * 1200 is used instead.
346
     */
347
63.4k
    if (n >= 687737)
348
22
        return 1200;
349
63.4k
    if (n < 8)
350
15.6k
        return 0;
351
352
    /*
353
     * To ensure that the output is non-decreasing with respect to n,
354
     * a cap needs to be applied to the two values where the function over
355
     * estimates the strength (according to the above fast path).
356
     */
357
47.7k
    if (n <= 7680)
358
46.7k
        cap = 192;
359
988
    else if (n <= 15360)
360
540
        cap = 256;
361
448
    else
362
448
        cap = 1200;
363
364
47.7k
    x = n * (uint64_t)log_2;
365
47.7k
    lx = ilog_e(x);
366
47.7k
    y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
367
47.7k
                   / log_2);
368
47.7k
    y = (y + 4) & ~7;
369
47.7k
    if (y > cap)
370
138
        y = cap;
371
47.7k
    return y;
372
63.4k
}
373
374
375
376
int RSA_security_bits(const RSA *rsa)
377
105k
{
378
105k
    int bits = BN_num_bits(rsa->n);
379
380
105k
#ifndef FIPS_MODULE
381
105k
    if (rsa->version == RSA_ASN1_VERSION_MULTI) {
382
        /* This ought to mean that we have private key at hand. */
383
965
        int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos);
384
385
965
        if (ex_primes <= 0 || (ex_primes + 2) > ossl_rsa_multip_cap(bits))
386
826
            return 0;
387
965
    }
388
104k
#endif
389
104k
    return ossl_ifc_ffc_compute_security_bits(bits);
390
105k
}
391
392
int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
393
30.7k
{
394
    /* If the fields n and e in r are NULL, the corresponding input
395
     * parameters MUST be non-NULL for n and e.  d may be
396
     * left NULL (in case only the public key is used).
397
     */
398
30.7k
    if ((r->n == NULL && n == NULL)
399
30.7k
        || (r->e == NULL && e == NULL))
400
0
        return 0;
401
402
30.7k
    if (n != NULL) {
403
30.7k
        BN_free(r->n);
404
30.7k
        r->n = n;
405
30.7k
    }
406
30.7k
    if (e != NULL) {
407
30.7k
        BN_free(r->e);
408
30.7k
        r->e = e;
409
30.7k
    }
410
30.7k
    if (d != NULL) {
411
30.1k
        BN_clear_free(r->d);
412
30.1k
        r->d = d;
413
30.1k
        BN_set_flags(r->d, BN_FLG_CONSTTIME);
414
30.1k
    }
415
30.7k
    r->dirty_cnt++;
416
417
30.7k
    return 1;
418
30.7k
}
419
420
int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)
421
30.1k
{
422
    /* If the fields p and q in r are NULL, the corresponding input
423
     * parameters MUST be non-NULL.
424
     */
425
30.1k
    if ((r->p == NULL && p == NULL)
426
30.1k
        || (r->q == NULL && q == NULL))
427
0
        return 0;
428
429
30.1k
    if (p != NULL) {
430
30.1k
        BN_clear_free(r->p);
431
30.1k
        r->p = p;
432
30.1k
        BN_set_flags(r->p, BN_FLG_CONSTTIME);
433
30.1k
    }
434
30.1k
    if (q != NULL) {
435
30.1k
        BN_clear_free(r->q);
436
30.1k
        r->q = q;
437
30.1k
        BN_set_flags(r->q, BN_FLG_CONSTTIME);
438
30.1k
    }
439
30.1k
    r->dirty_cnt++;
440
441
30.1k
    return 1;
442
30.1k
}
443
444
int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)
445
30.1k
{
446
    /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input
447
     * parameters MUST be non-NULL.
448
     */
449
30.1k
    if ((r->dmp1 == NULL && dmp1 == NULL)
450
30.1k
        || (r->dmq1 == NULL && dmq1 == NULL)
451
30.1k
        || (r->iqmp == NULL && iqmp == NULL))
452
0
        return 0;
453
454
30.1k
    if (dmp1 != NULL) {
455
30.1k
        BN_clear_free(r->dmp1);
456
30.1k
        r->dmp1 = dmp1;
457
30.1k
        BN_set_flags(r->dmp1, BN_FLG_CONSTTIME);
458
30.1k
    }
459
30.1k
    if (dmq1 != NULL) {
460
30.1k
        BN_clear_free(r->dmq1);
461
30.1k
        r->dmq1 = dmq1;
462
30.1k
        BN_set_flags(r->dmq1, BN_FLG_CONSTTIME);
463
30.1k
    }
464
30.1k
    if (iqmp != NULL) {
465
30.1k
        BN_clear_free(r->iqmp);
466
30.1k
        r->iqmp = iqmp;
467
30.1k
        BN_set_flags(r->iqmp, BN_FLG_CONSTTIME);
468
30.1k
    }
469
30.1k
    r->dirty_cnt++;
470
471
30.1k
    return 1;
472
30.1k
}
473
474
#ifndef FIPS_MODULE
475
/*
476
 * Is it better to export RSA_PRIME_INFO structure
477
 * and related functions to let user pass a triplet?
478
 */
479
int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[],
480
                                BIGNUM *coeffs[], int pnum)
481
0
{
482
0
    STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL;
483
0
    RSA_PRIME_INFO *pinfo;
484
0
    int i;
485
486
0
    if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0)
487
0
        return 0;
488
489
0
    prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
490
0
    if (prime_infos == NULL)
491
0
        return 0;
492
493
0
    if (r->prime_infos != NULL)
494
0
        old = r->prime_infos;
495
496
0
    for (i = 0; i < pnum; i++) {
497
0
        pinfo = ossl_rsa_multip_info_new();
498
0
        if (pinfo == NULL)
499
0
            goto err;
500
0
        if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) {
501
0
            BN_clear_free(pinfo->r);
502
0
            BN_clear_free(pinfo->d);
503
0
            BN_clear_free(pinfo->t);
504
0
            pinfo->r = primes[i];
505
0
            pinfo->d = exps[i];
506
0
            pinfo->t = coeffs[i];
507
0
            BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
508
0
            BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
509
0
            BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
510
0
        } else {
511
0
            ossl_rsa_multip_info_free(pinfo);
512
0
            goto err;
513
0
        }
514
0
        (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
515
0
    }
516
517
0
    r->prime_infos = prime_infos;
518
519
0
    if (!ossl_rsa_multip_calc_product(r)) {
520
0
        r->prime_infos = old;
521
0
        goto err;
522
0
    }
523
524
0
    if (old != NULL) {
525
        /*
526
         * This is hard to deal with, since the old infos could
527
         * also be set by this function and r, d, t should not
528
         * be freed in that case. So currently, stay consistent
529
         * with other *set0* functions: just free it...
530
         */
531
0
        sk_RSA_PRIME_INFO_pop_free(old, ossl_rsa_multip_info_free);
532
0
    }
533
534
0
    r->version = RSA_ASN1_VERSION_MULTI;
535
0
    r->dirty_cnt++;
536
537
0
    return 1;
538
0
 err:
539
    /* r, d, t should not be freed */
540
0
    sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
541
0
    return 0;
542
0
}
543
#endif
544
545
void RSA_get0_key(const RSA *r,
546
                  const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
547
144k
{
548
144k
    if (n != NULL)
549
144k
        *n = r->n;
550
144k
    if (e != NULL)
551
144k
        *e = r->e;
552
144k
    if (d != NULL)
553
144k
        *d = r->d;
554
144k
}
555
556
void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)
557
0
{
558
0
    if (p != NULL)
559
0
        *p = r->p;
560
0
    if (q != NULL)
561
0
        *q = r->q;
562
0
}
563
564
#ifndef FIPS_MODULE
565
int RSA_get_multi_prime_extra_count(const RSA *r)
566
60.5k
{
567
60.5k
    int pnum;
568
569
60.5k
    pnum = sk_RSA_PRIME_INFO_num(r->prime_infos);
570
60.5k
    if (pnum <= 0)
571
57.0k
        pnum = 0;
572
60.5k
    return pnum;
573
60.5k
}
574
575
int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[])
576
0
{
577
0
    int pnum, i;
578
0
    RSA_PRIME_INFO *pinfo;
579
580
0
    if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
581
0
        return 0;
582
583
    /*
584
     * return other primes
585
     * it's caller's responsibility to allocate oth_primes[pnum]
586
     */
587
0
    for (i = 0; i < pnum; i++) {
588
0
        pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
589
0
        primes[i] = pinfo->r;
590
0
    }
591
592
0
    return 1;
593
0
}
594
#endif
595
596
void RSA_get0_crt_params(const RSA *r,
597
                         const BIGNUM **dmp1, const BIGNUM **dmq1,
598
                         const BIGNUM **iqmp)
599
0
{
600
0
    if (dmp1 != NULL)
601
0
        *dmp1 = r->dmp1;
602
0
    if (dmq1 != NULL)
603
0
        *dmq1 = r->dmq1;
604
0
    if (iqmp != NULL)
605
0
        *iqmp = r->iqmp;
606
0
}
607
608
#ifndef FIPS_MODULE
609
int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[],
610
                                    const BIGNUM *coeffs[])
611
0
{
612
0
    int pnum;
613
614
0
    if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
615
0
        return 0;
616
617
    /* return other primes */
618
0
    if (exps != NULL || coeffs != NULL) {
619
0
        RSA_PRIME_INFO *pinfo;
620
0
        int i;
621
622
        /* it's the user's job to guarantee the buffer length */
623
0
        for (i = 0; i < pnum; i++) {
624
0
            pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
625
0
            if (exps != NULL)
626
0
                exps[i] = pinfo->d;
627
0
            if (coeffs != NULL)
628
0
                coeffs[i] = pinfo->t;
629
0
        }
630
0
    }
631
632
0
    return 1;
633
0
}
634
#endif
635
636
const BIGNUM *RSA_get0_n(const RSA *r)
637
305k
{
638
305k
    return r->n;
639
305k
}
640
641
const BIGNUM *RSA_get0_e(const RSA *r)
642
157k
{
643
157k
    return r->e;
644
157k
}
645
646
const BIGNUM *RSA_get0_d(const RSA *r)
647
94.9k
{
648
94.9k
    return r->d;
649
94.9k
}
650
651
const BIGNUM *RSA_get0_p(const RSA *r)
652
248k
{
653
248k
    return r->p;
654
248k
}
655
656
const BIGNUM *RSA_get0_q(const RSA *r)
657
60.5k
{
658
60.5k
    return r->q;
659
60.5k
}
660
661
const BIGNUM *RSA_get0_dmp1(const RSA *r)
662
60.5k
{
663
60.5k
    return r->dmp1;
664
60.5k
}
665
666
const BIGNUM *RSA_get0_dmq1(const RSA *r)
667
60.5k
{
668
60.5k
    return r->dmq1;
669
60.5k
}
670
671
const BIGNUM *RSA_get0_iqmp(const RSA *r)
672
60.5k
{
673
60.5k
    return r->iqmp;
674
60.5k
}
675
676
const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r)
677
22.9k
{
678
#ifdef FIPS_MODULE
679
    return NULL;
680
#else
681
22.9k
    return r->pss;
682
22.9k
#endif
683
22.9k
}
684
685
/* Internal */
686
int ossl_rsa_set0_pss_params(RSA *r, RSA_PSS_PARAMS *pss)
687
22.9k
{
688
#ifdef FIPS_MODULE
689
    return 0;
690
#else
691
22.9k
    RSA_PSS_PARAMS_free(r->pss);
692
22.9k
    r->pss = pss;
693
22.9k
    return 1;
694
22.9k
#endif
695
22.9k
}
696
697
/* Internal */
698
RSA_PSS_PARAMS_30 *ossl_rsa_get0_pss_params_30(RSA *r)
699
142k
{
700
142k
    return &r->pss_params;
701
142k
}
702
703
void RSA_clear_flags(RSA *r, int flags)
704
131k
{
705
131k
    r->flags &= ~flags;
706
131k
}
707
708
int RSA_test_flags(const RSA *r, int flags)
709
413k
{
710
413k
    return r->flags & flags;
711
413k
}
712
713
void RSA_set_flags(RSA *r, int flags)
714
131k
{
715
131k
    r->flags |= flags;
716
131k
}
717
718
int RSA_get_version(RSA *r)
719
0
{
720
    /* { two-prime(0), multi(1) } */
721
0
    return r->version;
722
0
}
723
724
#ifndef FIPS_MODULE
725
ENGINE *RSA_get0_engine(const RSA *r)
726
0
{
727
0
    return r->engine;
728
0
}
729
730
int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2)
731
34.0k
{
732
    /* If key type not RSA or RSA-PSS return error */
733
34.0k
    if (ctx != NULL && ctx->pmeth != NULL
734
34.0k
        && ctx->pmeth->pkey_id != EVP_PKEY_RSA
735
34.0k
        && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
736
0
        return -1;
737
34.0k
     return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);
738
34.0k
}
739
#endif
740
741
DEFINE_STACK_OF(BIGNUM)
742
743
int ossl_rsa_set0_all_params(RSA *r, const STACK_OF(BIGNUM) *primes,
744
                             const STACK_OF(BIGNUM) *exps,
745
                             const STACK_OF(BIGNUM) *coeffs)
746
29.9k
{
747
29.9k
#ifndef FIPS_MODULE
748
29.9k
    STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL;
749
29.9k
#endif
750
29.9k
    int pnum;
751
752
29.9k
    if (primes == NULL || exps == NULL || coeffs == NULL)
753
0
        return 0;
754
755
29.9k
    pnum = sk_BIGNUM_num(primes);
756
29.9k
    if (pnum < 2)
757
0
        return 0;
758
759
29.9k
    if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0),
760
29.9k
                          sk_BIGNUM_value(primes, 1)))
761
0
        return 0;
762
763
29.9k
    if (pnum == sk_BIGNUM_num(exps)
764
29.9k
        && pnum == sk_BIGNUM_num(coeffs) + 1) {
765
766
29.9k
        if (!RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0),
767
29.9k
                                 sk_BIGNUM_value(exps, 1),
768
29.9k
                                 sk_BIGNUM_value(coeffs, 0)))
769
0
        return 0;
770
29.9k
    }
771
772
29.9k
#ifndef FIPS_MODULE
773
29.9k
    old_infos = r->prime_infos;
774
29.9k
#endif
775
776
29.9k
    if (pnum > 2) {
777
0
#ifndef FIPS_MODULE
778
0
        int i;
779
780
0
        prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
781
0
        if (prime_infos == NULL)
782
0
            return 0;
783
784
0
        for (i = 2; i < pnum; i++) {
785
0
            BIGNUM *prime = sk_BIGNUM_value(primes, i);
786
0
            BIGNUM *exp = sk_BIGNUM_value(exps, i);
787
0
            BIGNUM *coeff = sk_BIGNUM_value(coeffs, i - 1);
788
0
            RSA_PRIME_INFO *pinfo = NULL;
789
790
0
            if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL))
791
0
                goto err;
792
793
            /* Using ossl_rsa_multip_info_new() is wasteful, so allocate directly */
794
0
            if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL) {
795
0
                ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
796
0
                goto err;
797
0
            }
798
799
0
            pinfo->r = prime;
800
0
            pinfo->d = exp;
801
0
            pinfo->t = coeff;
802
0
            BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
803
0
            BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
804
0
            BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
805
0
            (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
806
0
        }
807
808
0
        r->prime_infos = prime_infos;
809
810
0
        if (!ossl_rsa_multip_calc_product(r)) {
811
0
            r->prime_infos = old_infos;
812
0
            goto err;
813
0
        }
814
#else
815
        return 0;
816
#endif
817
0
    }
818
819
29.9k
#ifndef FIPS_MODULE
820
29.9k
    if (old_infos != NULL) {
821
        /*
822
         * This is hard to deal with, since the old infos could
823
         * also be set by this function and r, d, t should not
824
         * be freed in that case. So currently, stay consistent
825
         * with other *set0* functions: just free it...
826
         */
827
0
        sk_RSA_PRIME_INFO_pop_free(old_infos, ossl_rsa_multip_info_free);
828
0
    }
829
29.9k
#endif
830
831
29.9k
    r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT;
832
29.9k
    r->dirty_cnt++;
833
834
29.9k
    return 1;
835
0
#ifndef FIPS_MODULE
836
0
 err:
837
    /* r, d, t should not be freed */
838
0
    sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
839
0
    return 0;
840
29.9k
#endif
841
29.9k
}
842
843
DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM)
844
845
int ossl_rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes,
846
                             STACK_OF(BIGNUM_const) *exps,
847
                             STACK_OF(BIGNUM_const) *coeffs)
848
188k
{
849
188k
#ifndef FIPS_MODULE
850
188k
    RSA_PRIME_INFO *pinfo;
851
188k
    int i, pnum;
852
188k
#endif
853
854
188k
    if (r == NULL)
855
0
        return 0;
856
857
    /* If |p| is NULL, there are no CRT parameters */
858
188k
    if (RSA_get0_p(r) == NULL)
859
127k
        return 1;
860
861
60.5k
    sk_BIGNUM_const_push(primes, RSA_get0_p(r));
862
60.5k
    sk_BIGNUM_const_push(primes, RSA_get0_q(r));
863
60.5k
    sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r));
864
60.5k
    sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r));
865
60.5k
    sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r));
866
867
60.5k
#ifndef FIPS_MODULE
868
60.5k
    pnum = RSA_get_multi_prime_extra_count(r);
869
331k
    for (i = 0; i < pnum; i++) {
870
270k
        pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
871
270k
        sk_BIGNUM_const_push(primes, pinfo->r);
872
270k
        sk_BIGNUM_const_push(exps, pinfo->d);
873
270k
        sk_BIGNUM_const_push(coeffs, pinfo->t);
874
270k
    }
875
60.5k
#endif
876
877
60.5k
    return 1;
878
188k
}
879
880
#ifndef FIPS_MODULE
881
/* Helpers to set or get diverse hash algorithm names */
882
static int int_set_rsa_md_name(EVP_PKEY_CTX *ctx,
883
                               /* For checks */
884
                               int keytype, int optype,
885
                               /* For EVP_PKEY_CTX_set_params() */
886
                               const char *mdkey, const char *mdname,
887
                               const char *propkey, const char *mdprops)
888
0
{
889
0
    OSSL_PARAM params[3], *p = params;
890
891
0
    if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
892
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
893
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
894
0
        return -2;
895
0
    }
896
897
    /* If key type not RSA return error */
898
0
    switch (keytype) {
899
0
    case -1:
900
0
        if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
901
0
            && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
902
0
            return -1;
903
0
        break;
904
0
    default:
905
0
        if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
906
0
            return -1;
907
0
        break;
908
0
    }
909
910
    /* Cast away the const. This is read only so should be safe */
911
0
    *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, 0);
912
0
    if (evp_pkey_ctx_is_provided(ctx) && mdprops != NULL) {
913
        /* Cast away the const. This is read only so should be safe */
914
0
        *p++ = OSSL_PARAM_construct_utf8_string(propkey, (char *)mdprops, 0);
915
0
    }
916
0
    *p++ = OSSL_PARAM_construct_end();
917
918
0
    return evp_pkey_ctx_set_params_strict(ctx, params);
919
0
}
920
921
/* Helpers to set or get diverse hash algorithm names */
922
static int int_get_rsa_md_name(EVP_PKEY_CTX *ctx,
923
                               /* For checks */
924
                               int keytype, int optype,
925
                               /* For EVP_PKEY_CTX_get_params() */
926
                               const char *mdkey,
927
                               char *mdname, size_t mdnamesize)
928
0
{
929
0
    OSSL_PARAM params[2], *p = params;
930
931
0
    if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
932
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
933
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
934
0
        return -2;
935
0
    }
936
937
    /* If key type not RSA return error */
938
0
    switch (keytype) {
939
0
    case -1:
940
0
        if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
941
0
            && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
942
0
            return -1;
943
0
        break;
944
0
    default:
945
0
        if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
946
0
            return -1;
947
0
        break;
948
0
    }
949
950
    /* Cast away the const. This is read only so should be safe */
951
0
    *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, mdnamesize);
952
0
    *p++ = OSSL_PARAM_construct_end();
953
954
0
    return evp_pkey_ctx_get_params_strict(ctx, params);
955
0
}
956
957
/*
958
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
959
 * simply because that's easier.
960
 */
961
int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode)
962
17.8k
{
963
17.8k
    return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING,
964
17.8k
                             pad_mode, NULL);
965
17.8k
}
966
967
/*
968
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
969
 * simply because that's easier.
970
 */
971
int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode)
972
0
{
973
0
    return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING,
974
0
                             0, pad_mode);
975
0
}
976
977
/*
978
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
979
 * simply because that's easier.
980
 */
981
int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
982
0
{
983
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
984
0
                             EVP_PKEY_CTRL_MD, 0, (void *)(md));
985
0
}
986
987
int EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX *ctx,
988
                                            const char *mdname,
989
                                            const char *mdprops)
990
0
{
991
0
    return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
992
0
                               OSSL_PKEY_PARAM_RSA_DIGEST, mdname,
993
0
                               OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, mdprops);
994
0
}
995
996
/*
997
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
998
 * simply because that's easier.
999
 */
1000
int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1001
0
{
1002
    /* If key type not RSA return error */
1003
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1004
0
        return -1;
1005
1006
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1007
0
                             EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)(md));
1008
0
}
1009
1010
int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1011
                                      const char *mdprops)
1012
0
{
1013
0
    return
1014
0
        int_set_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1015
0
                            OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, mdname,
1016
0
                            OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, mdprops);
1017
0
}
1018
1019
int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
1020
                                      size_t namesize)
1021
0
{
1022
0
    return int_get_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1023
0
                               OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST,
1024
0
                               name, namesize);
1025
0
}
1026
1027
/*
1028
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1029
 * simply because that's easier.
1030
 */
1031
int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1032
0
{
1033
    /* If key type not RSA return error */
1034
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1035
0
        return -1;
1036
1037
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1038
0
                             EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md);
1039
0
}
1040
1041
/*
1042
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1043
 * simply because that's easier.
1044
 */
1045
int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1046
3.94k
{
1047
3.94k
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1048
3.94k
                             EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1049
3.94k
}
1050
1051
int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1052
                                      const char *mdprops)
1053
0
{
1054
0
    return int_set_rsa_md_name(ctx, -1,
1055
0
                               EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1056
0
                               OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1057
0
                               OSSL_PKEY_PARAM_MGF1_PROPERTIES, mdprops);
1058
0
}
1059
1060
int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
1061
                                      size_t namesize)
1062
0
{
1063
0
    return int_get_rsa_md_name(ctx, -1,
1064
0
                               EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1065
0
                               OSSL_PKEY_PARAM_MGF1_DIGEST, name, namesize);
1066
0
}
1067
1068
/*
1069
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1070
 * simply because that's easier.
1071
 */
1072
int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1073
0
{
1074
0
    return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1075
0
                             EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1076
0
}
1077
1078
int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX *ctx,
1079
                                                 const char *mdname)
1080
0
{
1081
0
    return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1082
0
                               OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1083
0
                               NULL, NULL);
1084
0
}
1085
1086
/*
1087
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1088
 * simply because that's easier.
1089
 */
1090
int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1091
0
{
1092
0
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1093
0
                             EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)(md));
1094
0
}
1095
1096
int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen)
1097
0
{
1098
0
    OSSL_PARAM rsa_params[2], *p = rsa_params;
1099
0
    const char *empty = "";
1100
    /*
1101
     * Needed as we swap label with empty if it is NULL, and label is
1102
     * freed at the end of this function.
1103
     */
1104
0
    void *plabel = label;
1105
0
    int ret;
1106
1107
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1108
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1109
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1110
0
        return -2;
1111
0
    }
1112
1113
    /* If key type not RSA return error */
1114
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1115
0
        return -1;
1116
1117
    /* Accept NULL for backward compatibility */
1118
0
    if (label == NULL && llen == 0)
1119
0
        plabel = (void *)empty;
1120
1121
    /* Cast away the const. This is read only so should be safe */
1122
0
    *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1123
0
                                             (void *)plabel, (size_t)llen);
1124
0
    *p++ = OSSL_PARAM_construct_end();
1125
1126
0
    ret = evp_pkey_ctx_set_params_strict(ctx, rsa_params);
1127
0
    if (ret <= 0)
1128
0
        return ret;
1129
1130
    /* Ownership is supposed to be transferred to the callee. */
1131
0
    OPENSSL_free(label);
1132
0
    return 1;
1133
0
}
1134
1135
int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label)
1136
0
{
1137
0
    OSSL_PARAM rsa_params[2], *p = rsa_params;
1138
0
    size_t labellen;
1139
1140
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1141
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1142
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1143
0
        return -2;
1144
0
    }
1145
1146
    /* If key type not RSA return error */
1147
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1148
0
        return -1;
1149
1150
0
    *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1151
0
                                          (void **)label, 0);
1152
0
    *p++ = OSSL_PARAM_construct_end();
1153
1154
0
    if (!EVP_PKEY_CTX_get_params(ctx, rsa_params))
1155
0
        return -1;
1156
1157
0
    labellen = rsa_params[0].return_size;
1158
0
    if (labellen > INT_MAX)
1159
0
        return -1;
1160
1161
0
    return (int)labellen;
1162
0
}
1163
1164
/*
1165
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1166
 * simply because that's easier.
1167
 */
1168
int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1169
12.2k
{
1170
    /*
1171
     * For some reason, the optype was set to this:
1172
     *
1173
     * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1174
     *
1175
     * However, we do use RSA-PSS with the whole gamut of diverse signature
1176
     * and verification operations, so the optype gets upgraded to this:
1177
     *
1178
     * EVP_PKEY_OP_TYPE_SIG
1179
     */
1180
12.2k
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1181
12.2k
                             EVP_PKEY_CTRL_RSA_PSS_SALTLEN, saltlen, NULL);
1182
12.2k
}
1183
1184
/*
1185
 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1186
 * simply because that's easier.
1187
 */
1188
int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen)
1189
0
{
1190
    /*
1191
     * Because of circumstances, the optype is updated from:
1192
     *
1193
     * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1194
     *
1195
     * to:
1196
     *
1197
     * EVP_PKEY_OP_TYPE_SIG
1198
     */
1199
0
    return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1200
0
                             EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, saltlen);
1201
0
}
1202
1203
int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1204
0
{
1205
0
    OSSL_PARAM pad_params[2], *p = pad_params;
1206
1207
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1208
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1209
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1210
0
        return -2;
1211
0
    }
1212
1213
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1214
0
        return -1;
1215
1216
0
    *p++ = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_PSS_SALTLEN,
1217
0
                                    &saltlen);
1218
0
    *p++ = OSSL_PARAM_construct_end();
1219
1220
0
    return evp_pkey_ctx_set_params_strict(ctx, pad_params);
1221
0
}
1222
1223
int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits)
1224
0
{
1225
0
    OSSL_PARAM params[2], *p = params;
1226
0
    size_t bits2 = bits;
1227
1228
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1229
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1230
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1231
0
        return -2;
1232
0
    }
1233
1234
    /* If key type not RSA return error */
1235
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1236
0
        && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1237
0
        return -1;
1238
1239
0
    *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_BITS, &bits2);
1240
0
    *p++ = OSSL_PARAM_construct_end();
1241
1242
0
    return evp_pkey_ctx_set_params_strict(ctx, params);
1243
0
}
1244
1245
int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1246
0
{
1247
0
    int ret = RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_KEYGEN,
1248
0
                                EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1249
1250
    /*
1251
     * Satisfy memory semantics for pre-3.0 callers of
1252
     * EVP_PKEY_CTX_set_rsa_keygen_pubexp(): their expectation is that input
1253
     * pubexp BIGNUM becomes managed by the EVP_PKEY_CTX on success.
1254
     */
1255
0
    if (ret > 0 && evp_pkey_ctx_is_provided(ctx)) {
1256
0
        BN_free(ctx->rsa_pubexp);
1257
0
        ctx->rsa_pubexp = pubexp;
1258
0
    }
1259
1260
0
    return ret;
1261
0
}
1262
1263
int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1264
0
{
1265
0
    int ret = 0;
1266
1267
    /*
1268
     * When we're dealing with a provider, there's no need to duplicate
1269
     * pubexp, as it gets copied when transforming to an OSSL_PARAM anyway.
1270
     */
1271
0
    if (evp_pkey_ctx_is_legacy(ctx)) {
1272
0
        pubexp = BN_dup(pubexp);
1273
0
        if (pubexp == NULL)
1274
0
            return 0;
1275
0
    }
1276
0
    ret = EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,
1277
0
                            EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1278
0
    if (evp_pkey_ctx_is_legacy(ctx) && ret <= 0)
1279
0
        BN_free(pubexp);
1280
0
    return ret;
1281
0
}
1282
1283
int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes)
1284
0
{
1285
0
    OSSL_PARAM params[2], *p = params;
1286
0
    size_t primes2 = primes;
1287
1288
0
    if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1289
0
        ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1290
        /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1291
0
        return -2;
1292
0
    }
1293
1294
    /* If key type not RSA return error */
1295
0
    if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1296
0
        && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1297
0
        return -1;
1298
1299
0
    *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, &primes2);
1300
0
    *p++ = OSSL_PARAM_construct_end();
1301
1302
0
    return evp_pkey_ctx_set_params_strict(ctx, params);
1303
0
}
1304
#endif