Coverage Report

Created: 2025-06-13 06:58

/src/openssl31/crypto/rsa/rsa_oaep.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1999-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */
11
12
/*
13
 * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL:
14
 * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security
15
 * proof for the original OAEP scheme, which EME-OAEP is based on. A new
16
 * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern,
17
 * "RSA-OEAP is Still Alive!", Dec. 2000, <URL:
18
 * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements
19
 * for the underlying permutation: "partial-one-wayness" instead of
20
 * one-wayness.  For the RSA function, this is an equivalent notion.
21
 */
22
23
/*
24
 * RSA low level APIs are deprecated for public use, but still ok for
25
 * internal use.
26
 */
27
#include "internal/deprecated.h"
28
29
#include "internal/constant_time.h"
30
31
#include <stdio.h>
32
#include "internal/cryptlib.h"
33
#include <openssl/bn.h>
34
#include <openssl/evp.h>
35
#include <openssl/rand.h>
36
#include <openssl/sha.h>
37
#include "rsa_local.h"
38
39
int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
40
                               const unsigned char *from, int flen,
41
                               const unsigned char *param, int plen)
42
0
{
43
0
    return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,
44
0
                                                   param, plen, NULL, NULL);
45
0
}
46
47
/*
48
 * Perform the padding as per NIST 800-56B 7.2.2.3
49
 *      from (K) is the key material.
50
 *      param (A) is the additional input.
51
 * Step numbers are included here but not in the constant time inverse below
52
 * to avoid complicating an already difficult enough function.
53
 */
54
int ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(OSSL_LIB_CTX *libctx,
55
                                            unsigned char *to, int tlen,
56
                                            const unsigned char *from, int flen,
57
                                            const unsigned char *param,
58
                                            int plen, const EVP_MD *md,
59
                                            const EVP_MD *mgf1md)
60
0
{
61
0
    int rv = 0;
62
0
    int i, emlen = tlen - 1;
63
0
    unsigned char *db, *seed;
64
0
    unsigned char *dbmask = NULL;
65
0
    unsigned char seedmask[EVP_MAX_MD_SIZE];
66
0
    int mdlen, dbmask_len = 0;
67
68
0
    if (md == NULL) {
69
0
#ifndef FIPS_MODULE
70
0
        md = EVP_sha1();
71
#else
72
        ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
73
        return 0;
74
#endif
75
0
    }
76
0
    if (mgf1md == NULL)
77
0
        mgf1md = md;
78
79
0
    mdlen = EVP_MD_get_size(md);
80
0
    if (mdlen <= 0) {
81
0
        ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH);
82
0
        return 0;
83
0
    }
84
85
    /* step 2b: check KLen > nLen - 2 HLen - 2 */
86
0
    if (flen > emlen - 2 * mdlen - 1) {
87
0
        ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
88
0
        return 0;
89
0
    }
90
91
0
    if (emlen < 2 * mdlen + 1) {
92
0
        ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);
93
0
        return 0;
94
0
    }
95
96
    /* step 3i: EM = 00000000 || maskedMGF || maskedDB */
97
0
    to[0] = 0;
98
0
    seed = to + 1;
99
0
    db = to + mdlen + 1;
100
101
    /* step 3a: hash the additional input */
102
0
    if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))
103
0
        goto err;
104
    /* step 3b: zero bytes array of length nLen - KLen - 2 HLen -2 */
105
0
    memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);
106
    /* step 3c: DB = HA || PS || 00000001 || K */
107
0
    db[emlen - flen - mdlen - 1] = 0x01;
108
0
    memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen);
109
    /* step 3d: generate random byte string */
110
0
    if (RAND_bytes_ex(libctx, seed, mdlen, 0) <= 0)
111
0
        goto err;
112
113
0
    dbmask_len = emlen - mdlen;
114
0
    dbmask = OPENSSL_malloc(dbmask_len);
115
0
    if (dbmask == NULL) {
116
0
        ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
117
0
        goto err;
118
0
    }
119
120
    /* step 3e: dbMask = MGF(mgfSeed, nLen - HLen - 1) */
121
0
    if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0)
122
0
        goto err;
123
    /* step 3f: maskedDB = DB XOR dbMask */
124
0
    for (i = 0; i < dbmask_len; i++)
125
0
        db[i] ^= dbmask[i];
126
127
    /* step 3g: mgfSeed = MGF(maskedDB, HLen) */
128
0
    if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0)
129
0
        goto err;
130
    /* stepo 3h: maskedMGFSeed = mgfSeed XOR mgfSeedMask */
131
0
    for (i = 0; i < mdlen; i++)
132
0
        seed[i] ^= seedmask[i];
133
0
    rv = 1;
134
135
0
 err:
136
0
    OPENSSL_cleanse(seedmask, sizeof(seedmask));
137
0
    OPENSSL_clear_free(dbmask, dbmask_len);
138
0
    return rv;
139
0
}
140
141
int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
142
                                    const unsigned char *from, int flen,
143
                                    const unsigned char *param, int plen,
144
                                    const EVP_MD *md, const EVP_MD *mgf1md)
145
0
{
146
0
    return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,
147
0
                                                   param, plen, md, mgf1md);
148
0
}
149
150
int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
151
                                 const unsigned char *from, int flen, int num,
152
                                 const unsigned char *param, int plen)
153
0
{
154
0
    return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num,
155
0
                                             param, plen, NULL, NULL);
156
0
}
157
158
int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
159
                                      const unsigned char *from, int flen,
160
                                      int num, const unsigned char *param,
161
                                      int plen, const EVP_MD *md,
162
                                      const EVP_MD *mgf1md)
163
0
{
164
0
    int i, dblen = 0, mlen = -1, one_index = 0, msg_index;
165
0
    unsigned int good = 0, found_one_byte, mask;
166
0
    const unsigned char *maskedseed, *maskeddb;
167
    /*
168
     * |em| is the encoded message, zero-padded to exactly |num| bytes: em =
169
     * Y || maskedSeed || maskedDB
170
     */
171
0
    unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE],
172
0
        phash[EVP_MAX_MD_SIZE];
173
0
    int mdlen;
174
175
0
    if (md == NULL) {
176
0
#ifndef FIPS_MODULE
177
0
        md = EVP_sha1();
178
#else
179
        ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
180
        return -1;
181
#endif
182
0
    }
183
184
0
    if (mgf1md == NULL)
185
0
        mgf1md = md;
186
187
0
    mdlen = EVP_MD_get_size(md);
188
189
0
    if (tlen <= 0 || flen <= 0 || mdlen <= 0)
190
0
        return -1;
191
    /*
192
     * |num| is the length of the modulus; |flen| is the length of the
193
     * encoded message. Therefore, for any |from| that was obtained by
194
     * decrypting a ciphertext, we must have |flen| <= |num|. Similarly,
195
     * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of
196
     * the ciphertext, see PKCS #1 v2.2, section 7.1.2.
197
     * This does not leak any side-channel information.
198
     */
199
0
    if (num < flen || num < 2 * mdlen + 2) {
200
0
        ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);
201
0
        return -1;
202
0
    }
203
204
0
    dblen = num - mdlen - 1;
205
0
    db = OPENSSL_malloc(dblen);
206
0
    if (db == NULL) {
207
0
        ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
208
0
        goto cleanup;
209
0
    }
210
211
0
    em = OPENSSL_malloc(num);
212
0
    if (em == NULL) {
213
0
        ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
214
0
        goto cleanup;
215
0
    }
216
217
    /*
218
     * Caller is encouraged to pass zero-padded message created with
219
     * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
220
     * bounds, it's impossible to have an invariant memory access pattern
221
     * in case |from| was not zero-padded in advance.
222
     */
223
0
    for (from += flen, em += num, i = 0; i < num; i++) {
224
0
        mask = ~constant_time_is_zero(flen);
225
0
        flen -= 1 & mask;
226
0
        from -= 1 & mask;
227
0
        *--em = *from & mask;
228
0
    }
229
230
    /*
231
     * The first byte must be zero, however we must not leak if this is
232
     * true. See James H. Manger, "A Chosen Ciphertext  Attack on RSA
233
     * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).
234
     */
235
0
    good = constant_time_is_zero(em[0]);
236
237
0
    maskedseed = em + 1;
238
0
    maskeddb = em + 1 + mdlen;
239
240
0
    if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))
241
0
        goto cleanup;
242
0
    for (i = 0; i < mdlen; i++)
243
0
        seed[i] ^= maskedseed[i];
244
245
0
    if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))
246
0
        goto cleanup;
247
0
    for (i = 0; i < dblen; i++)
248
0
        db[i] ^= maskeddb[i];
249
250
0
    if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))
251
0
        goto cleanup;
252
253
0
    good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));
254
255
0
    found_one_byte = 0;
256
0
    for (i = mdlen; i < dblen; i++) {
257
        /*
258
         * Padding consists of a number of 0-bytes, followed by a 1.
259
         */
260
0
        unsigned int equals1 = constant_time_eq(db[i], 1);
261
0
        unsigned int equals0 = constant_time_is_zero(db[i]);
262
0
        one_index = constant_time_select_int(~found_one_byte & equals1,
263
0
                                             i, one_index);
264
0
        found_one_byte |= equals1;
265
0
        good &= (found_one_byte | equals0);
266
0
    }
267
268
0
    good &= found_one_byte;
269
270
    /*
271
     * At this point |good| is zero unless the plaintext was valid,
272
     * so plaintext-awareness ensures timing side-channels are no longer a
273
     * concern.
274
     */
275
0
    msg_index = one_index + 1;
276
0
    mlen = dblen - msg_index;
277
278
    /*
279
     * For good measure, do this check in constant time as well.
280
     */
281
0
    good &= constant_time_ge(tlen, mlen);
282
283
    /*
284
     * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left.
285
     * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|.
286
     * Otherwise leave |to| unchanged.
287
     * Copy the memory back in a way that does not reveal the size of
288
     * the data being copied via a timing side channel. This requires copying
289
     * parts of the buffer multiple times based on the bits set in the real
290
     * length. Clear bits do a non-copy with identical access pattern.
291
     * The loop below has overall complexity of O(N*log(N)).
292
     */
293
0
    tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen),
294
0
                                    dblen - mdlen - 1, tlen);
295
0
    for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) {
296
0
        mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0);
297
0
        for (i = mdlen + 1; i < dblen - msg_index; i++)
298
0
            db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]);
299
0
    }
300
0
    for (i = 0; i < tlen; i++) {
301
0
        mask = good & constant_time_lt(i, mlen);
302
0
        to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]);
303
0
    }
304
305
0
#ifndef FIPS_MODULE
306
    /*
307
     * To avoid chosen ciphertext attacks, the error message should not
308
     * reveal which kind of decoding error happened.
309
     *
310
     * This trick doesn't work in the FIPS provider because libcrypto manages
311
     * the error stack. Instead we opt not to put an error on the stack at all
312
     * in case of padding failure in the FIPS provider.
313
     */
314
0
    ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);
315
0
    err_clear_last_constant_time(1 & good);
316
0
#endif
317
0
 cleanup:
318
0
    OPENSSL_cleanse(seed, sizeof(seed));
319
0
    OPENSSL_clear_free(db, dblen);
320
0
    OPENSSL_clear_free(em, num);
321
322
0
    return constant_time_select_int(good, mlen, -1);
323
0
}
324
325
/*
326
 * Mask Generation Function corresponding to section 7.2.2.2 of NIST SP 800-56B.
327
 * The variables are named differently to NIST:
328
 *      mask (T) and len (maskLen)are the returned mask.
329
 *      seed (mgfSeed).
330
 * The range checking steps inm the process are performed outside.
331
 */
332
int PKCS1_MGF1(unsigned char *mask, long len,
333
               const unsigned char *seed, long seedlen, const EVP_MD *dgst)
334
616
{
335
616
    long i, outlen = 0;
336
616
    unsigned char cnt[4];
337
616
    EVP_MD_CTX *c = EVP_MD_CTX_new();
338
616
    unsigned char md[EVP_MAX_MD_SIZE];
339
616
    int mdlen;
340
616
    int rv = -1;
341
342
616
    if (c == NULL)
343
0
        goto err;
344
616
    mdlen = EVP_MD_get_size(dgst);
345
616
    if (mdlen < 0)
346
0
        goto err;
347
    /* step 4 */
348
4.53k
    for (i = 0; outlen < len; i++) {
349
        /* step 4a: D = I2BS(counter, 4) */
350
3.91k
        cnt[0] = (unsigned char)((i >> 24) & 255);
351
3.91k
        cnt[1] = (unsigned char)((i >> 16) & 255);
352
3.91k
        cnt[2] = (unsigned char)((i >> 8)) & 255;
353
3.91k
        cnt[3] = (unsigned char)(i & 255);
354
        /* step 4b: T =T || hash(mgfSeed || D) */
355
3.91k
        if (!EVP_DigestInit_ex(c, dgst, NULL)
356
3.91k
            || !EVP_DigestUpdate(c, seed, seedlen)
357
3.91k
            || !EVP_DigestUpdate(c, cnt, 4))
358
0
            goto err;
359
3.91k
        if (outlen + mdlen <= len) {
360
3.32k
            if (!EVP_DigestFinal_ex(c, mask + outlen, NULL))
361
0
                goto err;
362
3.32k
            outlen += mdlen;
363
3.32k
        } else {
364
592
            if (!EVP_DigestFinal_ex(c, md, NULL))
365
0
                goto err;
366
592
            memcpy(mask + outlen, md, len - outlen);
367
592
            outlen = len;
368
592
        }
369
3.91k
    }
370
616
    rv = 0;
371
616
 err:
372
616
    OPENSSL_cleanse(md, sizeof(md));
373
616
    EVP_MD_CTX_free(c);
374
616
    return rv;
375
616
}