/src/openssl31/crypto/stack/stack.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include "internal/cryptlib.h" |
12 | | #include "internal/numbers.h" |
13 | | #include <openssl/stack.h> |
14 | | #include <errno.h> |
15 | | #include <openssl/e_os2.h> /* For ossl_inline */ |
16 | | |
17 | | /* |
18 | | * The initial number of nodes in the array. |
19 | | */ |
20 | | static const int min_nodes = 4; |
21 | | static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX |
22 | | ? (int)(SIZE_MAX / sizeof(void *)) : INT_MAX; |
23 | | |
24 | | struct stack_st { |
25 | | int num; |
26 | | const void **data; |
27 | | int sorted; |
28 | | int num_alloc; |
29 | | OPENSSL_sk_compfunc comp; |
30 | | }; |
31 | | |
32 | | OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, |
33 | | OPENSSL_sk_compfunc c) |
34 | 158k | { |
35 | 158k | OPENSSL_sk_compfunc old = sk->comp; |
36 | | |
37 | 158k | if (sk->comp != c) |
38 | 158k | sk->sorted = 0; |
39 | 158k | sk->comp = c; |
40 | | |
41 | 158k | return old; |
42 | 158k | } |
43 | | |
44 | | OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) |
45 | 3.43M | { |
46 | 3.43M | OPENSSL_STACK *ret; |
47 | | |
48 | 3.43M | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) |
49 | 0 | goto err; |
50 | | |
51 | 3.43M | if (sk == NULL) { |
52 | 53 | ret->num = 0; |
53 | 53 | ret->sorted = 0; |
54 | 53 | ret->comp = NULL; |
55 | 3.43M | } else { |
56 | | /* direct structure assignment */ |
57 | 3.43M | *ret = *sk; |
58 | 3.43M | } |
59 | | |
60 | 3.43M | if (sk == NULL || sk->num == 0) { |
61 | | /* postpone |ret->data| allocation */ |
62 | 67 | ret->data = NULL; |
63 | 67 | ret->num_alloc = 0; |
64 | 67 | return ret; |
65 | 67 | } |
66 | | |
67 | | /* duplicate |sk->data| content */ |
68 | 3.43M | ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc); |
69 | 3.43M | if (ret->data == NULL) |
70 | 0 | goto err; |
71 | 3.43M | memcpy(ret->data, sk->data, sizeof(void *) * sk->num); |
72 | 3.43M | return ret; |
73 | | |
74 | 0 | err: |
75 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
76 | 0 | OPENSSL_sk_free(ret); |
77 | 0 | return NULL; |
78 | 3.43M | } |
79 | | |
80 | | OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk, |
81 | | OPENSSL_sk_copyfunc copy_func, |
82 | | OPENSSL_sk_freefunc free_func) |
83 | 907k | { |
84 | 907k | OPENSSL_STACK *ret; |
85 | 907k | int i; |
86 | | |
87 | 907k | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) |
88 | 0 | goto err; |
89 | | |
90 | 907k | if (sk == NULL) { |
91 | 105 | ret->num = 0; |
92 | 105 | ret->sorted = 0; |
93 | 105 | ret->comp = NULL; |
94 | 907k | } else { |
95 | | /* direct structure assignment */ |
96 | 907k | *ret = *sk; |
97 | 907k | } |
98 | | |
99 | 907k | if (sk == NULL || sk->num == 0) { |
100 | | /* postpone |ret| data allocation */ |
101 | 105 | ret->data = NULL; |
102 | 105 | ret->num_alloc = 0; |
103 | 105 | return ret; |
104 | 105 | } |
105 | | |
106 | 907k | ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes; |
107 | 907k | ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc); |
108 | 907k | if (ret->data == NULL) |
109 | 0 | goto err; |
110 | | |
111 | 8.79M | for (i = 0; i < ret->num; ++i) { |
112 | 7.88M | if (sk->data[i] == NULL) |
113 | 0 | continue; |
114 | 7.88M | if ((ret->data[i] = copy_func(sk->data[i])) == NULL) { |
115 | 0 | while (--i >= 0) |
116 | 0 | if (ret->data[i] != NULL) |
117 | 0 | free_func((void *)ret->data[i]); |
118 | 0 | goto err; |
119 | 0 | } |
120 | 7.88M | } |
121 | 907k | return ret; |
122 | | |
123 | 0 | err: |
124 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
125 | 0 | OPENSSL_sk_free(ret); |
126 | 0 | return NULL; |
127 | 907k | } |
128 | | |
129 | | OPENSSL_STACK *OPENSSL_sk_new_null(void) |
130 | 112M | { |
131 | 112M | return OPENSSL_sk_new_reserve(NULL, 0); |
132 | 112M | } |
133 | | |
134 | | OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c) |
135 | 7.51M | { |
136 | 7.51M | return OPENSSL_sk_new_reserve(c, 0); |
137 | 7.51M | } |
138 | | |
139 | | /* |
140 | | * Calculate the array growth based on the target size. |
141 | | * |
142 | | * The growth fraction is a rational number and is defined by a numerator |
143 | | * and a denominator. According to Andrew Koenig in his paper "Why Are |
144 | | * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less |
145 | | * than the golden ratio (1.618...). |
146 | | * |
147 | | * We use 3/2 = 1.5 for simplicity of calculation and overflow checking. |
148 | | * Another option 8/5 = 1.6 allows for slightly faster growth, although safe |
149 | | * computation is more difficult. |
150 | | * |
151 | | * The limit to avoid overflow is spot on. The modulo three correction term |
152 | | * ensures that the limit is the largest number than can be expanded by the |
153 | | * growth factor without exceeding the hard limit. |
154 | | * |
155 | | * Do not call it with |current| lower than 2, or it will infinitely loop. |
156 | | */ |
157 | | static ossl_inline int compute_growth(int target, int current) |
158 | 6.49M | { |
159 | 6.49M | const int limit = (max_nodes / 3) * 2 + (max_nodes % 3 ? 1 : 0); |
160 | | |
161 | 12.9M | while (current < target) { |
162 | | /* Check to see if we're at the hard limit */ |
163 | 6.49M | if (current >= max_nodes) |
164 | 0 | return 0; |
165 | | |
166 | | /* Expand the size by a factor of 3/2 if it is within range */ |
167 | 6.49M | current = current < limit ? current + current / 2 : max_nodes; |
168 | 6.49M | } |
169 | 6.49M | return current; |
170 | 6.49M | } |
171 | | |
172 | | /* internal STACK storage allocation */ |
173 | | static int sk_reserve(OPENSSL_STACK *st, int n, int exact) |
174 | 333M | { |
175 | 333M | const void **tmpdata; |
176 | 333M | int num_alloc; |
177 | | |
178 | | /* Check to see the reservation isn't exceeding the hard limit */ |
179 | 333M | if (n > max_nodes - st->num) { |
180 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
181 | 0 | return 0; |
182 | 0 | } |
183 | | |
184 | | /* Figure out the new size */ |
185 | 333M | num_alloc = st->num + n; |
186 | 333M | if (num_alloc < min_nodes) |
187 | 28.3M | num_alloc = min_nodes; |
188 | | |
189 | | /* If |st->data| allocation was postponed */ |
190 | 333M | if (st->data == NULL) { |
191 | | /* |
192 | | * At this point, |st->num_alloc| and |st->num| are 0; |
193 | | * so |num_alloc| value is |n| or |min_nodes| if greater than |n|. |
194 | | */ |
195 | 18.4M | if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) { |
196 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
197 | 0 | return 0; |
198 | 0 | } |
199 | 18.4M | st->num_alloc = num_alloc; |
200 | 18.4M | return 1; |
201 | 18.4M | } |
202 | | |
203 | 315M | if (!exact) { |
204 | 315M | if (num_alloc <= st->num_alloc) |
205 | 307M | return 1; |
206 | 8.18M | num_alloc = compute_growth(num_alloc, st->num_alloc); |
207 | 8.18M | if (num_alloc == 0) { |
208 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
209 | 0 | return 0; |
210 | 0 | } |
211 | 8.18M | } else if (num_alloc == st->num_alloc) { |
212 | 0 | return 1; |
213 | 0 | } |
214 | | |
215 | 8.18M | tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc); |
216 | 8.18M | if (tmpdata == NULL) { |
217 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
218 | 0 | return 0; |
219 | 0 | } |
220 | | |
221 | 8.18M | st->data = tmpdata; |
222 | 8.18M | st->num_alloc = num_alloc; |
223 | 8.18M | return 1; |
224 | 8.18M | } |
225 | | |
226 | | OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n) |
227 | 121M | { |
228 | 121M | OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK)); |
229 | | |
230 | 121M | if (st == NULL) { |
231 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
232 | 0 | return NULL; |
233 | 0 | } |
234 | | |
235 | 121M | st->comp = c; |
236 | | |
237 | 121M | if (n <= 0) |
238 | 120M | return st; |
239 | | |
240 | 1.56M | if (!sk_reserve(st, n, 1)) { |
241 | 0 | OPENSSL_sk_free(st); |
242 | 0 | return NULL; |
243 | 0 | } |
244 | | |
245 | 1.56M | return st; |
246 | 1.56M | } |
247 | | |
248 | | int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n) |
249 | 0 | { |
250 | 0 | if (st == NULL) { |
251 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
252 | 0 | return 0; |
253 | 0 | } |
254 | | |
255 | 0 | if (n < 0) |
256 | 0 | return 1; |
257 | 0 | return sk_reserve(st, n, 1); |
258 | 0 | } |
259 | | |
260 | | int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc) |
261 | 332M | { |
262 | 332M | if (st == NULL) { |
263 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
264 | 0 | return 0; |
265 | 0 | } |
266 | 332M | if (st->num == max_nodes) { |
267 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
268 | 0 | return 0; |
269 | 0 | } |
270 | | |
271 | 332M | if (!sk_reserve(st, 1, 0)) |
272 | 0 | return 0; |
273 | | |
274 | 332M | if ((loc >= st->num) || (loc < 0)) { |
275 | 332M | st->data[st->num] = data; |
276 | 332M | } else { |
277 | 3.43k | memmove(&st->data[loc + 1], &st->data[loc], |
278 | 3.43k | sizeof(st->data[0]) * (st->num - loc)); |
279 | 3.43k | st->data[loc] = data; |
280 | 3.43k | } |
281 | 332M | st->num++; |
282 | 332M | st->sorted = 0; |
283 | 332M | return st->num; |
284 | 332M | } |
285 | | |
286 | | static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc) |
287 | 1.34M | { |
288 | 1.34M | const void *ret = st->data[loc]; |
289 | | |
290 | 1.34M | if (loc != st->num - 1) |
291 | 191k | memmove(&st->data[loc], &st->data[loc + 1], |
292 | 191k | sizeof(st->data[0]) * (st->num - loc - 1)); |
293 | 1.34M | st->num--; |
294 | | |
295 | 1.34M | return (void *)ret; |
296 | 1.34M | } |
297 | | |
298 | | void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p) |
299 | 162k | { |
300 | 162k | int i; |
301 | | |
302 | 162k | if (st == NULL) |
303 | 0 | return NULL; |
304 | | |
305 | 398k | for (i = 0; i < st->num; i++) |
306 | 398k | if (st->data[i] == p) |
307 | 162k | return internal_delete(st, i); |
308 | 0 | return NULL; |
309 | 162k | } |
310 | | |
311 | | void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc) |
312 | 72.6k | { |
313 | 72.6k | if (st == NULL || loc < 0 || loc >= st->num) |
314 | 0 | return NULL; |
315 | | |
316 | 72.6k | return internal_delete(st, loc); |
317 | 72.6k | } |
318 | | |
319 | | static int internal_find(OPENSSL_STACK *st, const void *data, |
320 | | int ret_val_options, int *pnum) |
321 | 50.0k | { |
322 | 50.0k | const void *r; |
323 | 50.0k | int i; |
324 | | |
325 | 50.0k | if (st == NULL || st->num == 0) |
326 | 19.8k | return -1; |
327 | | |
328 | 30.2k | if (st->comp == NULL) { |
329 | 678k | for (i = 0; i < st->num; i++) |
330 | 677k | if (st->data[i] == data) { |
331 | 6.49k | if (pnum != NULL) |
332 | 0 | *pnum = 1; |
333 | 6.49k | return i; |
334 | 6.49k | } |
335 | 897 | if (pnum != NULL) |
336 | 0 | *pnum = 0; |
337 | 897 | return -1; |
338 | 7.39k | } |
339 | | |
340 | 22.8k | if (!st->sorted) { |
341 | 1.57k | if (st->num > 1) |
342 | 0 | qsort(st->data, st->num, sizeof(void *), st->comp); |
343 | 1.57k | st->sorted = 1; /* empty or single-element stack is considered sorted */ |
344 | 1.57k | } |
345 | 22.8k | if (data == NULL) |
346 | 0 | return -1; |
347 | 22.8k | if (pnum != NULL) |
348 | 4.43k | ret_val_options |= OSSL_BSEARCH_FIRST_VALUE_ON_MATCH; |
349 | 22.8k | r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp, |
350 | 22.8k | ret_val_options); |
351 | | |
352 | 22.8k | if (pnum != NULL) { |
353 | 4.43k | *pnum = 0; |
354 | 4.43k | if (r != NULL) { |
355 | 3.18k | const void **p = (const void **)r; |
356 | | |
357 | 6.36k | while (p < st->data + st->num) { |
358 | 3.18k | if (st->comp(&data, p) != 0) |
359 | 0 | break; |
360 | 3.18k | ++*pnum; |
361 | 3.18k | ++p; |
362 | 3.18k | } |
363 | 3.18k | } |
364 | 4.43k | } |
365 | | |
366 | 22.8k | return r == NULL ? -1 : (int)((const void **)r - st->data); |
367 | 22.8k | } |
368 | | |
369 | | int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data) |
370 | 86.4k | { |
371 | 86.4k | return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, NULL); |
372 | 86.4k | } |
373 | | |
374 | | int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data) |
375 | 0 | { |
376 | 0 | return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH, NULL); |
377 | 0 | } |
378 | | |
379 | | int OPENSSL_sk_find_all(OPENSSL_STACK *st, const void *data, int *pnum) |
380 | 59.9k | { |
381 | 59.9k | return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, pnum); |
382 | 59.9k | } |
383 | | |
384 | | int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data) |
385 | 332M | { |
386 | 332M | if (st == NULL) |
387 | 0 | return -1; |
388 | 332M | return OPENSSL_sk_insert(st, data, st->num); |
389 | 332M | } |
390 | | |
391 | | int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data) |
392 | 0 | { |
393 | 0 | return OPENSSL_sk_insert(st, data, 0); |
394 | 0 | } |
395 | | |
396 | | void *OPENSSL_sk_shift(OPENSSL_STACK *st) |
397 | 0 | { |
398 | 0 | if (st == NULL || st->num == 0) |
399 | 0 | return NULL; |
400 | 0 | return internal_delete(st, 0); |
401 | 0 | } |
402 | | |
403 | | void *OPENSSL_sk_pop(OPENSSL_STACK *st) |
404 | 1.12M | { |
405 | 1.12M | if (st == NULL || st->num == 0) |
406 | 7.61k | return NULL; |
407 | 1.11M | return internal_delete(st, st->num - 1); |
408 | 1.12M | } |
409 | | |
410 | | void OPENSSL_sk_zero(OPENSSL_STACK *st) |
411 | 0 | { |
412 | 0 | if (st == NULL || st->num == 0) |
413 | 0 | return; |
414 | 0 | memset(st->data, 0, sizeof(*st->data) * st->num); |
415 | 0 | st->num = 0; |
416 | 0 | } |
417 | | |
418 | | void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func) |
419 | 25.9M | { |
420 | 25.9M | int i; |
421 | | |
422 | 25.9M | if (st == NULL) |
423 | 6.84M | return; |
424 | 134M | for (i = 0; i < st->num; i++) |
425 | 115M | if (st->data[i] != NULL) |
426 | 115M | func((char *)st->data[i]); |
427 | 19.1M | OPENSSL_sk_free(st); |
428 | 19.1M | } |
429 | | |
430 | | void OPENSSL_sk_free(OPENSSL_STACK *st) |
431 | 158M | { |
432 | 158M | if (st == NULL) |
433 | 32.2M | return; |
434 | 126M | OPENSSL_free(st->data); |
435 | 126M | OPENSSL_free(st); |
436 | 126M | } |
437 | | |
438 | | int OPENSSL_sk_num(const OPENSSL_STACK *st) |
439 | 973M | { |
440 | 973M | return st == NULL ? -1 : st->num; |
441 | 973M | } |
442 | | |
443 | | void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i) |
444 | 1.43G | { |
445 | 1.43G | if (st == NULL || i < 0 || i >= st->num) |
446 | 2.20k | return NULL; |
447 | 1.43G | return (void *)st->data[i]; |
448 | 1.43G | } |
449 | | |
450 | | void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data) |
451 | 16.1M | { |
452 | 16.1M | if (st == NULL) { |
453 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
454 | 0 | return NULL; |
455 | 0 | } |
456 | 16.1M | if (i < 0 || i >= st->num) { |
457 | 0 | ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT, |
458 | 0 | "i=%d", i); |
459 | 0 | return NULL; |
460 | 0 | } |
461 | 16.1M | st->data[i] = data; |
462 | 16.1M | st->sorted = 0; |
463 | 16.1M | return (void *)st->data[i]; |
464 | 16.1M | } |
465 | | |
466 | | void OPENSSL_sk_sort(OPENSSL_STACK *st) |
467 | 7.59M | { |
468 | 7.59M | if (st != NULL && !st->sorted && st->comp != NULL) { |
469 | 7.58M | if (st->num > 1) |
470 | 143k | qsort(st->data, st->num, sizeof(void *), st->comp); |
471 | 7.58M | st->sorted = 1; /* empty or single-element stack is considered sorted */ |
472 | 7.58M | } |
473 | 7.59M | } |
474 | | |
475 | | int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st) |
476 | 44.6k | { |
477 | 44.6k | return st == NULL ? 1 : st->sorted; |
478 | 44.6k | } |