Coverage Report

Created: 2025-06-13 06:58

/src/openssl31/crypto/x509/v3_addr.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2006-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * Implementation of RFC 3779 section 2.2.
12
 */
13
14
#include <stdio.h>
15
#include <stdlib.h>
16
#include <assert.h>
17
#include <string.h>
18
19
#include "internal/cryptlib.h"
20
#include <openssl/conf.h>
21
#include <openssl/asn1.h>
22
#include <openssl/asn1t.h>
23
#include <openssl/buffer.h>
24
#include <openssl/x509v3.h>
25
#include "crypto/x509.h"
26
#include "ext_dat.h"
27
#include "x509_local.h"
28
29
#ifndef OPENSSL_NO_RFC3779
30
31
/*
32
 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
33
 */
34
35
ASN1_SEQUENCE(IPAddressRange) = {
36
  ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
37
  ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
38
} ASN1_SEQUENCE_END(IPAddressRange)
39
40
ASN1_CHOICE(IPAddressOrRange) = {
41
  ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
42
  ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
43
} ASN1_CHOICE_END(IPAddressOrRange)
44
45
ASN1_CHOICE(IPAddressChoice) = {
46
  ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
47
  ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
48
} ASN1_CHOICE_END(IPAddressChoice)
49
50
ASN1_SEQUENCE(IPAddressFamily) = {
51
  ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
52
  ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
53
} ASN1_SEQUENCE_END(IPAddressFamily)
54
55
ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
56
  ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
57
                        IPAddrBlocks, IPAddressFamily)
58
static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
59
60
IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
61
IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
62
IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
63
IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
64
65
/*
66
 * How much buffer space do we need for a raw address?
67
 */
68
#define ADDR_RAW_BUF_LEN        16
69
70
/*
71
 * What's the address length associated with this AFI?
72
 */
73
static int length_from_afi(const unsigned afi)
74
466
{
75
466
    switch (afi) {
76
138
    case IANA_AFI_IPV4:
77
138
        return 4;
78
139
    case IANA_AFI_IPV6:
79
139
        return 16;
80
189
    default:
81
189
        return 0;
82
466
    }
83
466
}
84
85
/*
86
 * Extract the AFI from an IPAddressFamily.
87
 */
88
unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
89
53.3k
{
90
53.3k
    if (f == NULL
91
53.3k
            || f->addressFamily == NULL
92
53.3k
            || f->addressFamily->data == NULL
93
53.3k
            || f->addressFamily->length < 2)
94
2.71k
        return 0;
95
50.5k
    return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
96
53.3k
}
97
98
/*
99
 * Expand the bitstring form of an address into a raw byte array.
100
 * At the moment this is coded for simplicity, not speed.
101
 */
102
static int addr_expand(unsigned char *addr,
103
                       const ASN1_BIT_STRING *bs,
104
                       const int length, const unsigned char fill)
105
78.5k
{
106
78.5k
    if (bs->length < 0 || bs->length > length)
107
7.94k
        return 0;
108
70.6k
    if (bs->length > 0) {
109
61.8k
        memcpy(addr, bs->data, bs->length);
110
61.8k
        if ((bs->flags & 7) != 0) {
111
39.5k
            unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
112
39.5k
            if (fill == 0)
113
35.3k
                addr[bs->length - 1] &= ~mask;
114
4.18k
            else
115
4.18k
                addr[bs->length - 1] |= mask;
116
39.5k
        }
117
61.8k
    }
118
70.6k
    memset(addr + bs->length, fill, length - bs->length);
119
70.6k
    return 1;
120
78.5k
}
121
122
/*
123
 * Extract the prefix length from a bitstring.
124
 */
125
80.4k
#define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
126
127
/*
128
 * i2r handler for one address bitstring.
129
 */
130
static int i2r_address(BIO *out,
131
                       const unsigned afi,
132
                       const unsigned char fill, const ASN1_BIT_STRING *bs)
133
100k
{
134
100k
    unsigned char addr[ADDR_RAW_BUF_LEN];
135
100k
    int i, n;
136
137
100k
    if (bs->length < 0)
138
0
        return 0;
139
100k
    switch (afi) {
140
37.3k
    case IANA_AFI_IPV4:
141
37.3k
        if (!addr_expand(addr, bs, 4, fill))
142
5.86k
            return 0;
143
31.4k
        BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
144
31.4k
        break;
145
40.5k
    case IANA_AFI_IPV6:
146
40.5k
        if (!addr_expand(addr, bs, 16, fill))
147
1.98k
            return 0;
148
240k
        for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
149
201k
             n -= 2) ;
150
145k
        for (i = 0; i < n; i += 2)
151
106k
            BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
152
106k
                       (i < 14 ? ":" : ""));
153
38.5k
        if (i < 16)
154
34.3k
            BIO_puts(out, ":");
155
38.5k
        if (i == 0)
156
8.28k
            BIO_puts(out, ":");
157
38.5k
        break;
158
23.1k
    default:
159
173k
        for (i = 0; i < bs->length; i++)
160
150k
            BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
161
23.1k
        BIO_printf(out, "[%d]", (int)(bs->flags & 7));
162
23.1k
        break;
163
100k
    }
164
93.0k
    return 1;
165
100k
}
166
167
/*
168
 * i2r handler for a sequence of addresses and ranges.
169
 */
170
static int i2r_IPAddressOrRanges(BIO *out,
171
                                 const int indent,
172
                                 const IPAddressOrRanges *aors,
173
                                 const unsigned afi)
174
49.7k
{
175
49.7k
    int i;
176
136k
    for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
177
94.3k
        const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
178
94.3k
        BIO_printf(out, "%*s", indent, "");
179
94.3k
        switch (aor->type) {
180
86.5k
        case IPAddressOrRange_addressPrefix:
181
86.5k
            if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
182
6.05k
                return 0;
183
80.4k
            BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
184
80.4k
            continue;
185
7.79k
        case IPAddressOrRange_addressRange:
186
7.79k
            if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
187
1.19k
                return 0;
188
6.60k
            BIO_puts(out, "-");
189
6.60k
            if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
190
595
                return 0;
191
6.00k
            BIO_puts(out, "\n");
192
6.00k
            continue;
193
94.3k
        }
194
94.3k
    }
195
41.9k
    return 1;
196
49.7k
}
197
198
/*
199
 * i2r handler for an IPAddrBlocks extension.
200
 */
201
static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
202
                            void *ext, BIO *out, int indent)
203
27.3k
{
204
27.3k
    const IPAddrBlocks *addr = ext;
205
27.3k
    int i;
206
72.2k
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
207
52.8k
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
208
52.8k
        const unsigned int afi = X509v3_addr_get_afi(f);
209
52.8k
        switch (afi) {
210
9.32k
        case IANA_AFI_IPV4:
211
9.32k
            BIO_printf(out, "%*sIPv4", indent, "");
212
9.32k
            break;
213
15.6k
        case IANA_AFI_IPV6:
214
15.6k
            BIO_printf(out, "%*sIPv6", indent, "");
215
15.6k
            break;
216
27.8k
        default:
217
27.8k
            BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
218
27.8k
            break;
219
52.8k
        }
220
52.8k
        if (f->addressFamily->length > 2) {
221
44.5k
            switch (f->addressFamily->data[2]) {
222
3.28k
            case 1:
223
3.28k
                BIO_puts(out, " (Unicast)");
224
3.28k
                break;
225
2.86k
            case 2:
226
2.86k
                BIO_puts(out, " (Multicast)");
227
2.86k
                break;
228
5.44k
            case 3:
229
5.44k
                BIO_puts(out, " (Unicast/Multicast)");
230
5.44k
                break;
231
4.67k
            case 4:
232
4.67k
                BIO_puts(out, " (MPLS)");
233
4.67k
                break;
234
2.00k
            case 64:
235
2.00k
                BIO_puts(out, " (Tunnel)");
236
2.00k
                break;
237
5.44k
            case 65:
238
5.44k
                BIO_puts(out, " (VPLS)");
239
5.44k
                break;
240
2.00k
            case 66:
241
2.00k
                BIO_puts(out, " (BGP MDT)");
242
2.00k
                break;
243
984
            case 128:
244
984
                BIO_puts(out, " (MPLS-labeled VPN)");
245
984
                break;
246
17.8k
            default:
247
17.8k
                BIO_printf(out, " (Unknown SAFI %u)",
248
17.8k
                           (unsigned)f->addressFamily->data[2]);
249
17.8k
                break;
250
44.5k
            }
251
44.5k
        }
252
52.8k
        switch (f->ipAddressChoice->type) {
253
3.04k
        case IPAddressChoice_inherit:
254
3.04k
            BIO_puts(out, ": inherit\n");
255
3.04k
            break;
256
49.7k
        case IPAddressChoice_addressesOrRanges:
257
49.7k
            BIO_puts(out, ":\n");
258
49.7k
            if (!i2r_IPAddressOrRanges(out,
259
49.7k
                                       indent + 2,
260
49.7k
                                       f->ipAddressChoice->
261
49.7k
                                       u.addressesOrRanges, afi))
262
7.84k
                return 0;
263
41.9k
            break;
264
52.8k
        }
265
52.8k
    }
266
19.4k
    return 1;
267
27.3k
}
268
269
/*
270
 * Sort comparison function for a sequence of IPAddressOrRange
271
 * elements.
272
 *
273
 * There's no sane answer we can give if addr_expand() fails, and an
274
 * assertion failure on externally supplied data is seriously uncool,
275
 * so we just arbitrarily declare that if given invalid inputs this
276
 * function returns -1.  If this messes up your preferred sort order
277
 * for garbage input, tough noogies.
278
 */
279
static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
280
                                const IPAddressOrRange *b, const int length)
281
0
{
282
0
    unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
283
0
    int prefixlen_a = 0, prefixlen_b = 0;
284
0
    int r;
285
286
0
    switch (a->type) {
287
0
    case IPAddressOrRange_addressPrefix:
288
0
        if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
289
0
            return -1;
290
0
        prefixlen_a = addr_prefixlen(a->u.addressPrefix);
291
0
        break;
292
0
    case IPAddressOrRange_addressRange:
293
0
        if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
294
0
            return -1;
295
0
        prefixlen_a = length * 8;
296
0
        break;
297
0
    }
298
299
0
    switch (b->type) {
300
0
    case IPAddressOrRange_addressPrefix:
301
0
        if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
302
0
            return -1;
303
0
        prefixlen_b = addr_prefixlen(b->u.addressPrefix);
304
0
        break;
305
0
    case IPAddressOrRange_addressRange:
306
0
        if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
307
0
            return -1;
308
0
        prefixlen_b = length * 8;
309
0
        break;
310
0
    }
311
312
0
    if ((r = memcmp(addr_a, addr_b, length)) != 0)
313
0
        return r;
314
0
    else
315
0
        return prefixlen_a - prefixlen_b;
316
0
}
317
318
/*
319
 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
320
 * comparison routines are only allowed two arguments.
321
 */
322
static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
323
                                  const IPAddressOrRange *const *b)
324
0
{
325
0
    return IPAddressOrRange_cmp(*a, *b, 4);
326
0
}
327
328
/*
329
 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
330
 * comparison routines are only allowed two arguments.
331
 */
332
static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
333
                                  const IPAddressOrRange *const *b)
334
0
{
335
0
    return IPAddressOrRange_cmp(*a, *b, 16);
336
0
}
337
338
/*
339
 * Calculate whether a range collapses to a prefix.
340
 * See last paragraph of RFC 3779 2.2.3.7.
341
 */
342
static int range_should_be_prefix(const unsigned char *min,
343
                                  const unsigned char *max, const int length)
344
173
{
345
173
    unsigned char mask;
346
173
    int i, j;
347
348
    /*
349
     * It is the responsibility of the caller to confirm min <= max. We don't
350
     * use ossl_assert() here since we have no way of signalling an error from
351
     * this function - so we just use a plain assert instead.
352
     */
353
173
    assert(memcmp(min, max, length) <= 0);
354
355
753
    for (i = 0; i < length && min[i] == max[i]; i++) ;
356
437
    for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
357
173
    if (i < j)
358
99
        return -1;
359
74
    if (i > j)
360
12
        return i * 8;
361
62
    mask = min[i] ^ max[i];
362
62
    switch (mask) {
363
4
    case 0x01:
364
4
        j = 7;
365
4
        break;
366
4
    case 0x03:
367
4
        j = 6;
368
4
        break;
369
8
    case 0x07:
370
8
        j = 5;
371
8
        break;
372
7
    case 0x0F:
373
7
        j = 4;
374
7
        break;
375
6
    case 0x1F:
376
6
        j = 3;
377
6
        break;
378
5
    case 0x3F:
379
5
        j = 2;
380
5
        break;
381
4
    case 0x7F:
382
4
        j = 1;
383
4
        break;
384
24
    default:
385
24
        return -1;
386
62
    }
387
38
    if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
388
7
        return -1;
389
31
    else
390
31
        return i * 8 + j;
391
38
}
392
393
/*
394
 * Construct a prefix.
395
 */
396
static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr,
397
                              const int prefixlen, const int afilen)
398
0
{
399
0
    int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
400
0
    IPAddressOrRange *aor;
401
402
0
    if (prefixlen < 0 || prefixlen > (afilen * 8))
403
0
        return 0;
404
0
    if ((aor = IPAddressOrRange_new()) == NULL)
405
0
        return 0;
406
0
    aor->type = IPAddressOrRange_addressPrefix;
407
0
    if (aor->u.addressPrefix == NULL &&
408
0
        (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
409
0
        goto err;
410
0
    if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
411
0
        goto err;
412
0
    aor->u.addressPrefix->flags &= ~7;
413
0
    aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
414
0
    if (bitlen > 0) {
415
0
        aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
416
0
        aor->u.addressPrefix->flags |= 8 - bitlen;
417
0
    }
418
419
0
    *result = aor;
420
0
    return 1;
421
422
0
 err:
423
0
    IPAddressOrRange_free(aor);
424
0
    return 0;
425
0
}
426
427
/*
428
 * Construct a range.  If it can be expressed as a prefix,
429
 * return a prefix instead.  Doing this here simplifies
430
 * the rest of the code considerably.
431
 */
432
static int make_addressRange(IPAddressOrRange **result,
433
                             unsigned char *min,
434
                             unsigned char *max, const int length)
435
0
{
436
0
    IPAddressOrRange *aor;
437
0
    int i, prefixlen;
438
439
0
    if (memcmp(min, max, length) > 0)
440
0
        return 0;
441
442
0
    if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
443
0
        return make_addressPrefix(result, min, prefixlen, length);
444
445
0
    if ((aor = IPAddressOrRange_new()) == NULL)
446
0
        return 0;
447
0
    aor->type = IPAddressOrRange_addressRange;
448
0
    if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
449
0
        goto err;
450
0
    if (aor->u.addressRange->min == NULL &&
451
0
        (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
452
0
        goto err;
453
0
    if (aor->u.addressRange->max == NULL &&
454
0
        (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
455
0
        goto err;
456
457
0
    for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
458
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
459
0
        goto err;
460
0
    aor->u.addressRange->min->flags &= ~7;
461
0
    aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
462
0
    if (i > 0) {
463
0
        unsigned char b = min[i - 1];
464
0
        int j = 1;
465
0
        while ((b & (0xFFU >> j)) != 0)
466
0
            ++j;
467
0
        aor->u.addressRange->min->flags |= 8 - j;
468
0
    }
469
470
0
    for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
471
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
472
0
        goto err;
473
0
    aor->u.addressRange->max->flags &= ~7;
474
0
    aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
475
0
    if (i > 0) {
476
0
        unsigned char b = max[i - 1];
477
0
        int j = 1;
478
0
        while ((b & (0xFFU >> j)) != (0xFFU >> j))
479
0
            ++j;
480
0
        aor->u.addressRange->max->flags |= 8 - j;
481
0
    }
482
483
0
    *result = aor;
484
0
    return 1;
485
486
0
 err:
487
0
    IPAddressOrRange_free(aor);
488
0
    return 0;
489
0
}
490
491
/*
492
 * Construct a new address family or find an existing one.
493
 */
494
static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
495
                                             const unsigned afi,
496
                                             const unsigned *safi)
497
0
{
498
0
    IPAddressFamily *f;
499
0
    unsigned char key[3];
500
0
    int keylen;
501
0
    int i;
502
503
0
    key[0] = (afi >> 8) & 0xFF;
504
0
    key[1] = afi & 0xFF;
505
0
    if (safi != NULL) {
506
0
        key[2] = *safi & 0xFF;
507
0
        keylen = 3;
508
0
    } else {
509
0
        keylen = 2;
510
0
    }
511
512
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
513
0
        f = sk_IPAddressFamily_value(addr, i);
514
0
        if (f->addressFamily->length == keylen &&
515
0
            !memcmp(f->addressFamily->data, key, keylen))
516
0
            return f;
517
0
    }
518
519
0
    if ((f = IPAddressFamily_new()) == NULL)
520
0
        goto err;
521
0
    if (f->ipAddressChoice == NULL &&
522
0
        (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
523
0
        goto err;
524
0
    if (f->addressFamily == NULL &&
525
0
        (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
526
0
        goto err;
527
0
    if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
528
0
        goto err;
529
0
    if (!sk_IPAddressFamily_push(addr, f))
530
0
        goto err;
531
532
0
    return f;
533
534
0
 err:
535
0
    IPAddressFamily_free(f);
536
0
    return NULL;
537
0
}
538
539
/*
540
 * Add an inheritance element.
541
 */
542
int X509v3_addr_add_inherit(IPAddrBlocks *addr,
543
                            const unsigned afi, const unsigned *safi)
544
0
{
545
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
546
0
    if (f == NULL ||
547
0
        f->ipAddressChoice == NULL ||
548
0
        (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
549
0
         f->ipAddressChoice->u.addressesOrRanges != NULL))
550
0
        return 0;
551
0
    if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
552
0
        f->ipAddressChoice->u.inherit != NULL)
553
0
        return 1;
554
0
    if (f->ipAddressChoice->u.inherit == NULL &&
555
0
        (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
556
0
        return 0;
557
0
    f->ipAddressChoice->type = IPAddressChoice_inherit;
558
0
    return 1;
559
0
}
560
561
/*
562
 * Construct an IPAddressOrRange sequence, or return an existing one.
563
 */
564
static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
565
                                               const unsigned afi,
566
                                               const unsigned *safi)
567
0
{
568
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
569
0
    IPAddressOrRanges *aors = NULL;
570
571
0
    if (f == NULL ||
572
0
        f->ipAddressChoice == NULL ||
573
0
        (f->ipAddressChoice->type == IPAddressChoice_inherit &&
574
0
         f->ipAddressChoice->u.inherit != NULL))
575
0
        return NULL;
576
0
    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
577
0
        aors = f->ipAddressChoice->u.addressesOrRanges;
578
0
    if (aors != NULL)
579
0
        return aors;
580
0
    if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
581
0
        return NULL;
582
0
    switch (afi) {
583
0
    case IANA_AFI_IPV4:
584
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
585
0
        break;
586
0
    case IANA_AFI_IPV6:
587
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
588
0
        break;
589
0
    }
590
0
    f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
591
0
    f->ipAddressChoice->u.addressesOrRanges = aors;
592
0
    return aors;
593
0
}
594
595
/*
596
 * Add a prefix.
597
 */
598
int X509v3_addr_add_prefix(IPAddrBlocks *addr,
599
                           const unsigned afi,
600
                           const unsigned *safi,
601
                           unsigned char *a, const int prefixlen)
602
0
{
603
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
604
0
    IPAddressOrRange *aor;
605
606
0
    if (aors == NULL
607
0
            || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi)))
608
0
        return 0;
609
0
    if (sk_IPAddressOrRange_push(aors, aor))
610
0
        return 1;
611
0
    IPAddressOrRange_free(aor);
612
0
    return 0;
613
0
}
614
615
/*
616
 * Add a range.
617
 */
618
int X509v3_addr_add_range(IPAddrBlocks *addr,
619
                          const unsigned afi,
620
                          const unsigned *safi,
621
                          unsigned char *min, unsigned char *max)
622
0
{
623
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
624
0
    IPAddressOrRange *aor;
625
0
    int length = length_from_afi(afi);
626
0
    if (aors == NULL)
627
0
        return 0;
628
0
    if (!make_addressRange(&aor, min, max, length))
629
0
        return 0;
630
0
    if (sk_IPAddressOrRange_push(aors, aor))
631
0
        return 1;
632
0
    IPAddressOrRange_free(aor);
633
0
    return 0;
634
0
}
635
636
/*
637
 * Extract min and max values from an IPAddressOrRange.
638
 */
639
static int extract_min_max(IPAddressOrRange *aor,
640
                           unsigned char *min, unsigned char *max, int length)
641
414
{
642
414
    if (aor == NULL || min == NULL || max == NULL)
643
0
        return 0;
644
414
    switch (aor->type) {
645
162
    case IPAddressOrRange_addressPrefix:
646
162
        return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
647
162
                addr_expand(max, aor->u.addressPrefix, length, 0xFF));
648
252
    case IPAddressOrRange_addressRange:
649
252
        return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
650
252
                addr_expand(max, aor->u.addressRange->max, length, 0xFF));
651
414
    }
652
0
    return 0;
653
414
}
654
655
/*
656
 * Public wrapper for extract_min_max().
657
 */
658
int X509v3_addr_get_range(IPAddressOrRange *aor,
659
                          const unsigned afi,
660
                          unsigned char *min,
661
                          unsigned char *max, const int length)
662
0
{
663
0
    int afi_length = length_from_afi(afi);
664
0
    if (aor == NULL || min == NULL || max == NULL ||
665
0
        afi_length == 0 || length < afi_length ||
666
0
        (aor->type != IPAddressOrRange_addressPrefix &&
667
0
         aor->type != IPAddressOrRange_addressRange) ||
668
0
        !extract_min_max(aor, min, max, afi_length))
669
0
        return 0;
670
671
0
    return afi_length;
672
0
}
673
674
/*
675
 * Sort comparison function for a sequence of IPAddressFamily.
676
 *
677
 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
678
 * the ordering: I can read it as meaning that IPv6 without a SAFI
679
 * comes before IPv4 with a SAFI, which seems pretty weird.  The
680
 * examples in appendix B suggest that the author intended the
681
 * null-SAFI rule to apply only within a single AFI, which is what I
682
 * would have expected and is what the following code implements.
683
 */
684
static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
685
                               const IPAddressFamily *const *b_)
686
450
{
687
450
    const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
688
450
    const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
689
450
    int len = ((a->length <= b->length) ? a->length : b->length);
690
450
    int cmp = memcmp(a->data, b->data, len);
691
450
    return cmp ? cmp : a->length - b->length;
692
450
}
693
694
static int IPAddressFamily_check_len(const IPAddressFamily *f)
695
1.74k
{
696
1.74k
    if (f->addressFamily->length < 2 || f->addressFamily->length > 3)
697
56
        return 0;
698
1.69k
    else
699
1.69k
        return 1;
700
1.74k
}
701
702
/*
703
 * Check whether an IPAddrBLocks is in canonical form.
704
 */
705
int X509v3_addr_is_canonical(IPAddrBlocks *addr)
706
358
{
707
358
    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
708
358
    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
709
358
    IPAddressOrRanges *aors;
710
358
    int i, j, k;
711
712
    /*
713
     * Empty extension is canonical.
714
     */
715
358
    if (addr == NULL)
716
9
        return 1;
717
718
    /*
719
     * Check whether the top-level list is in order.
720
     */
721
606
    for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
722
324
        const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
723
324
        const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
724
725
324
        if (!IPAddressFamily_check_len(a) || !IPAddressFamily_check_len(b))
726
19
            return 0;
727
728
305
        if (IPAddressFamily_cmp(&a, &b) >= 0)
729
48
            return 0;
730
305
    }
731
732
    /*
733
     * Top level's ok, now check each address family.
734
     */
735
564
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
736
466
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
737
466
        int length = length_from_afi(X509v3_addr_get_afi(f));
738
739
        /*
740
         * Inheritance is canonical.  Anything other than inheritance or
741
         * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
742
         */
743
466
        if (f == NULL || f->ipAddressChoice == NULL)
744
0
            return 0;
745
466
        switch (f->ipAddressChoice->type) {
746
2
        case IPAddressChoice_inherit:
747
2
            continue;
748
464
        case IPAddressChoice_addressesOrRanges:
749
464
            break;
750
0
        default:
751
0
            return 0;
752
466
        }
753
754
464
        if (!IPAddressFamily_check_len(f))
755
8
            return 0;
756
757
        /*
758
         * It's an IPAddressOrRanges sequence, check it.
759
         */
760
456
        aors = f->ipAddressChoice->u.addressesOrRanges;
761
456
        if (sk_IPAddressOrRange_num(aors) == 0)
762
0
            return 0;
763
497
        for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
764
95
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
765
95
            IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
766
767
95
            if (!extract_min_max(a, a_min, a_max, length) ||
768
95
                !extract_min_max(b, b_min, b_max, length))
769
28
                return 0;
770
771
            /*
772
             * Punt misordered list, overlapping start, or inverted range.
773
             */
774
67
            if (memcmp(a_min, b_min, length) >= 0 ||
775
67
                memcmp(a_min, a_max, length) > 0 ||
776
67
                memcmp(b_min, b_max, length) > 0)
777
17
                return 0;
778
779
            /*
780
             * Punt if adjacent or overlapping.  Check for adjacency by
781
             * subtracting one from b_min first.
782
             */
783
354
            for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
784
50
            if (memcmp(a_max, b_min, length) >= 0)
785
9
                return 0;
786
787
            /*
788
             * Check for range that should be expressed as a prefix.
789
             */
790
41
            if (a->type == IPAddressOrRange_addressRange &&
791
41
                range_should_be_prefix(a_min, a_max, length) >= 0)
792
0
                return 0;
793
41
        }
794
795
        /*
796
         * Check range to see if it's inverted or should be a
797
         * prefix.
798
         */
799
402
        j = sk_IPAddressOrRange_num(aors) - 1;
800
402
        {
801
402
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
802
402
            if (a != NULL && a->type == IPAddressOrRange_addressRange) {
803
252
                if (!extract_min_max(a, a_min, a_max, length))
804
67
                    return 0;
805
185
                if (memcmp(a_min, a_max, length) > 0 ||
806
185
                    range_should_be_prefix(a_min, a_max, length) >= 0)
807
55
                    return 0;
808
185
            }
809
402
        }
810
402
    }
811
812
    /*
813
     * If we made it through all that, we're happy.
814
     */
815
98
    return 1;
816
282
}
817
818
/*
819
 * Whack an IPAddressOrRanges into canonical form.
820
 */
821
static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
822
                                      const unsigned afi)
823
0
{
824
0
    int i, j, length = length_from_afi(afi);
825
826
    /*
827
     * Sort the IPAddressOrRanges sequence.
828
     */
829
0
    sk_IPAddressOrRange_sort(aors);
830
831
    /*
832
     * Clean up representation issues, punt on duplicates or overlaps.
833
     */
834
0
    for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
835
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
836
0
        IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
837
0
        unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
838
0
        unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
839
840
0
        if (!extract_min_max(a, a_min, a_max, length) ||
841
0
            !extract_min_max(b, b_min, b_max, length))
842
0
            return 0;
843
844
        /*
845
         * Punt inverted ranges.
846
         */
847
0
        if (memcmp(a_min, a_max, length) > 0 ||
848
0
            memcmp(b_min, b_max, length) > 0)
849
0
            return 0;
850
851
        /*
852
         * Punt overlaps.
853
         */
854
0
        if (memcmp(a_max, b_min, length) >= 0)
855
0
            return 0;
856
857
        /*
858
         * Merge if a and b are adjacent.  We check for
859
         * adjacency by subtracting one from b_min first.
860
         */
861
0
        for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
862
0
        if (memcmp(a_max, b_min, length) == 0) {
863
0
            IPAddressOrRange *merged;
864
0
            if (!make_addressRange(&merged, a_min, b_max, length))
865
0
                return 0;
866
0
            (void)sk_IPAddressOrRange_set(aors, i, merged);
867
0
            (void)sk_IPAddressOrRange_delete(aors, i + 1);
868
0
            IPAddressOrRange_free(a);
869
0
            IPAddressOrRange_free(b);
870
0
            --i;
871
0
            continue;
872
0
        }
873
0
    }
874
875
    /*
876
     * Check for inverted final range.
877
     */
878
0
    j = sk_IPAddressOrRange_num(aors) - 1;
879
0
    {
880
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
881
0
        if (a != NULL && a->type == IPAddressOrRange_addressRange) {
882
0
            unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
883
0
            if (!extract_min_max(a, a_min, a_max, length))
884
0
                return 0;
885
0
            if (memcmp(a_min, a_max, length) > 0)
886
0
                return 0;
887
0
        }
888
0
    }
889
890
0
    return 1;
891
0
}
892
893
/*
894
 * Whack an IPAddrBlocks extension into canonical form.
895
 */
896
int X509v3_addr_canonize(IPAddrBlocks *addr)
897
0
{
898
0
    int i;
899
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
900
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
901
902
0
        if (!IPAddressFamily_check_len(f))
903
0
            return 0;
904
905
0
        if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
906
0
            !IPAddressOrRanges_canonize(f->ipAddressChoice->
907
0
                                        u.addressesOrRanges,
908
0
                                        X509v3_addr_get_afi(f)))
909
0
            return 0;
910
0
    }
911
0
    (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
912
0
    sk_IPAddressFamily_sort(addr);
913
0
    if (!ossl_assert(X509v3_addr_is_canonical(addr)))
914
0
        return 0;
915
0
    return 1;
916
0
}
917
918
/*
919
 * v2i handler for the IPAddrBlocks extension.
920
 */
921
static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
922
                              struct v3_ext_ctx *ctx,
923
                              STACK_OF(CONF_VALUE) *values)
924
0
{
925
0
    static const char v4addr_chars[] = "0123456789.";
926
0
    static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
927
0
    IPAddrBlocks *addr = NULL;
928
0
    char *s = NULL, *t;
929
0
    int i;
930
931
0
    if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
932
0
        ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
933
0
        return NULL;
934
0
    }
935
936
0
    for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
937
0
        CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
938
0
        unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
939
0
        unsigned afi, *safi = NULL, safi_;
940
0
        const char *addr_chars = NULL;
941
0
        int prefixlen, i1, i2, delim, length;
942
943
0
        if (!ossl_v3_name_cmp(val->name, "IPv4")) {
944
0
            afi = IANA_AFI_IPV4;
945
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv6")) {
946
0
            afi = IANA_AFI_IPV6;
947
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) {
948
0
            afi = IANA_AFI_IPV4;
949
0
            safi = &safi_;
950
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) {
951
0
            afi = IANA_AFI_IPV6;
952
0
            safi = &safi_;
953
0
        } else {
954
0
            ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR,
955
0
                           "%s", val->name);
956
0
            goto err;
957
0
        }
958
959
0
        switch (afi) {
960
0
        case IANA_AFI_IPV4:
961
0
            addr_chars = v4addr_chars;
962
0
            break;
963
0
        case IANA_AFI_IPV6:
964
0
            addr_chars = v6addr_chars;
965
0
            break;
966
0
        }
967
968
0
        length = length_from_afi(afi);
969
970
        /*
971
         * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
972
         * the other input values.
973
         */
974
0
        if (safi != NULL) {
975
0
            if (val->value == NULL) {
976
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_MISSING_VALUE);
977
0
                goto err;
978
0
            }
979
0
            *safi = strtoul(val->value, &t, 0);
980
0
            t += strspn(t, " \t");
981
0
            if (*safi > 0xFF || *t++ != ':') {
982
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI);
983
0
                X509V3_conf_add_error_name_value(val);
984
0
                goto err;
985
0
            }
986
0
            t += strspn(t, " \t");
987
0
            s = OPENSSL_strdup(t);
988
0
        } else {
989
0
            s = OPENSSL_strdup(val->value);
990
0
        }
991
0
        if (s == NULL) {
992
0
            ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
993
0
            goto err;
994
0
        }
995
996
        /*
997
         * Check for inheritance.  Not worth additional complexity to
998
         * optimize this (seldom-used) case.
999
         */
1000
0
        if (strcmp(s, "inherit") == 0) {
1001
0
            if (!X509v3_addr_add_inherit(addr, afi, safi)) {
1002
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE);
1003
0
                X509V3_conf_add_error_name_value(val);
1004
0
                goto err;
1005
0
            }
1006
0
            OPENSSL_free(s);
1007
0
            s = NULL;
1008
0
            continue;
1009
0
        }
1010
1011
0
        i1 = strspn(s, addr_chars);
1012
0
        i2 = i1 + strspn(s + i1, " \t");
1013
0
        delim = s[i2++];
1014
0
        s[i1] = '\0';
1015
1016
0
        if (ossl_a2i_ipadd(min, s) != length) {
1017
0
            ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1018
0
            X509V3_conf_add_error_name_value(val);
1019
0
            goto err;
1020
0
        }
1021
1022
0
        switch (delim) {
1023
0
        case '/':
1024
0
            prefixlen = (int)strtoul(s + i2, &t, 10);
1025
0
            if (t == s + i2
1026
0
                    || *t != '\0'
1027
0
                    || prefixlen > (length * 8)
1028
0
                    || prefixlen < 0) {
1029
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1030
0
                X509V3_conf_add_error_name_value(val);
1031
0
                goto err;
1032
0
            }
1033
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1034
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1035
0
                goto err;
1036
0
            }
1037
0
            break;
1038
0
        case '-':
1039
0
            i1 = i2 + strspn(s + i2, " \t");
1040
0
            i2 = i1 + strspn(s + i1, addr_chars);
1041
0
            if (i1 == i2 || s[i2] != '\0') {
1042
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1043
0
                X509V3_conf_add_error_name_value(val);
1044
0
                goto err;
1045
0
            }
1046
0
            if (ossl_a2i_ipadd(max, s + i1) != length) {
1047
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1048
0
                X509V3_conf_add_error_name_value(val);
1049
0
                goto err;
1050
0
            }
1051
0
            if (memcmp(min, max, length_from_afi(afi)) > 0) {
1052
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1053
0
                X509V3_conf_add_error_name_value(val);
1054
0
                goto err;
1055
0
            }
1056
0
            if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1057
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1058
0
                goto err;
1059
0
            }
1060
0
            break;
1061
0
        case '\0':
1062
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1063
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1064
0
                goto err;
1065
0
            }
1066
0
            break;
1067
0
        default:
1068
0
            ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1069
0
            X509V3_conf_add_error_name_value(val);
1070
0
            goto err;
1071
0
        }
1072
1073
0
        OPENSSL_free(s);
1074
0
        s = NULL;
1075
0
    }
1076
1077
    /*
1078
     * Canonize the result, then we're done.
1079
     */
1080
0
    if (!X509v3_addr_canonize(addr))
1081
0
        goto err;
1082
0
    return addr;
1083
1084
0
 err:
1085
0
    OPENSSL_free(s);
1086
0
    sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1087
0
    return NULL;
1088
0
}
1089
1090
/*
1091
 * OpenSSL dispatch
1092
 */
1093
const X509V3_EXT_METHOD ossl_v3_addr = {
1094
    NID_sbgp_ipAddrBlock,       /* nid */
1095
    0,                          /* flags */
1096
    ASN1_ITEM_ref(IPAddrBlocks), /* template */
1097
    0, 0, 0, 0,                 /* old functions, ignored */
1098
    0,                          /* i2s */
1099
    0,                          /* s2i */
1100
    0,                          /* i2v */
1101
    v2i_IPAddrBlocks,           /* v2i */
1102
    i2r_IPAddrBlocks,           /* i2r */
1103
    0,                          /* r2i */
1104
    NULL                        /* extension-specific data */
1105
};
1106
1107
/*
1108
 * Figure out whether extension sues inheritance.
1109
 */
1110
int X509v3_addr_inherits(IPAddrBlocks *addr)
1111
0
{
1112
0
    int i;
1113
0
    if (addr == NULL)
1114
0
        return 0;
1115
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1116
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1117
0
        if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1118
0
            return 1;
1119
0
    }
1120
0
    return 0;
1121
0
}
1122
1123
/*
1124
 * Figure out whether parent contains child.
1125
 */
1126
static int addr_contains(IPAddressOrRanges *parent,
1127
                         IPAddressOrRanges *child, int length)
1128
0
{
1129
0
    unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1130
0
    unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1131
0
    int p, c;
1132
1133
0
    if (child == NULL || parent == child)
1134
0
        return 1;
1135
0
    if (parent == NULL)
1136
0
        return 0;
1137
1138
0
    p = 0;
1139
0
    for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1140
0
        if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1141
0
                             c_min, c_max, length))
1142
0
            return 0;
1143
0
        for (;; p++) {
1144
0
            if (p >= sk_IPAddressOrRange_num(parent))
1145
0
                return 0;
1146
0
            if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1147
0
                                 p_min, p_max, length))
1148
0
                return 0;
1149
0
            if (memcmp(p_max, c_max, length) < 0)
1150
0
                continue;
1151
0
            if (memcmp(p_min, c_min, length) > 0)
1152
0
                return 0;
1153
0
            break;
1154
0
        }
1155
0
    }
1156
1157
0
    return 1;
1158
0
}
1159
1160
/*
1161
 * Test whether a is a subset of b.
1162
 */
1163
int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1164
0
{
1165
0
    int i;
1166
0
    if (a == NULL || a == b)
1167
0
        return 1;
1168
0
    if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1169
0
        return 0;
1170
0
    (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1171
0
    for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1172
0
        IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1173
0
        int j = sk_IPAddressFamily_find(b, fa);
1174
0
        IPAddressFamily *fb = sk_IPAddressFamily_value(b, j);
1175
1176
0
        if (fb == NULL)
1177
0
            return 0;
1178
0
        if (!IPAddressFamily_check_len(fa) || !IPAddressFamily_check_len(fb))
1179
0
            return 0;
1180
0
        if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1181
0
                           fa->ipAddressChoice->u.addressesOrRanges,
1182
0
                           length_from_afi(X509v3_addr_get_afi(fb))))
1183
0
            return 0;
1184
0
    }
1185
0
    return 1;
1186
0
}
1187
1188
/*
1189
 * Validation error handling via callback.
1190
 */
1191
# define validation_err(_err_)            \
1192
251
    do {                                  \
1193
251
        if (ctx != NULL) {                \
1194
251
            ctx->error = _err_;           \
1195
251
            ctx->error_depth = i;         \
1196
251
            ctx->current_cert = x;        \
1197
251
            rv = ctx->verify_cb(0, ctx);  \
1198
251
        } else {                          \
1199
0
            rv = 0;                       \
1200
0
        }                                 \
1201
251
        if (rv == 0)                      \
1202
251
            goto done;                    \
1203
251
    } while (0)
1204
1205
/*
1206
 * Core code for RFC 3779 2.3 path validation.
1207
 *
1208
 * Returns 1 for success, 0 on error.
1209
 *
1210
 * When returning 0, ctx->error MUST be set to an appropriate value other than
1211
 * X509_V_OK.
1212
 */
1213
static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1214
                                       STACK_OF(X509) *chain,
1215
                                       IPAddrBlocks *ext)
1216
4.59k
{
1217
4.59k
    IPAddrBlocks *child = NULL;
1218
4.59k
    int i, j, ret = 0, rv;
1219
4.59k
    X509 *x;
1220
1221
4.59k
    if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1222
4.59k
            || !ossl_assert(ctx != NULL || ext != NULL)
1223
4.59k
            || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1224
0
        if (ctx != NULL)
1225
0
            ctx->error = X509_V_ERR_UNSPECIFIED;
1226
0
        return 0;
1227
0
    }
1228
1229
    /*
1230
     * Figure out where to start.  If we don't have an extension to
1231
     * check, we're done.  Otherwise, check canonical form and
1232
     * set up for walking up the chain.
1233
     */
1234
4.59k
    if (ext != NULL) {
1235
0
        i = -1;
1236
0
        x = NULL;
1237
4.59k
    } else {
1238
4.59k
        i = 0;
1239
4.59k
        x = sk_X509_value(chain, i);
1240
4.59k
        if ((ext = x->rfc3779_addr) == NULL)
1241
4.24k
            return 1; /* Return success */
1242
4.59k
    }
1243
349
    if (!X509v3_addr_is_canonical(ext))
1244
251
        validation_err(X509_V_ERR_INVALID_EXTENSION);
1245
349
    (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1246
349
    if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1247
0
        ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1248
0
        if (ctx != NULL)
1249
0
            ctx->error = X509_V_ERR_OUT_OF_MEM;
1250
0
        goto done;
1251
0
    }
1252
1253
    /*
1254
     * Now walk up the chain.  No cert may list resources that its
1255
     * parent doesn't list.
1256
     */
1257
358
    for (i++; i < sk_X509_num(chain); i++) {
1258
9
        x = sk_X509_value(chain, i);
1259
9
        if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1260
0
            validation_err(X509_V_ERR_INVALID_EXTENSION);
1261
9
        if (x->rfc3779_addr == NULL) {
1262
9
            for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1263
0
                IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1264
1265
0
                if (!IPAddressFamily_check_len(fc))
1266
0
                    goto done;
1267
1268
0
                if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1269
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1270
0
                    break;
1271
0
                }
1272
0
            }
1273
9
            continue;
1274
9
        }
1275
0
        (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1276
0
                                              IPAddressFamily_cmp);
1277
0
        for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1278
0
            IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1279
0
            int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1280
0
            IPAddressFamily *fp =
1281
0
                sk_IPAddressFamily_value(x->rfc3779_addr, k);
1282
1283
0
            if (fp == NULL) {
1284
0
                if (fc->ipAddressChoice->type ==
1285
0
                    IPAddressChoice_addressesOrRanges) {
1286
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1287
0
                    break;
1288
0
                }
1289
0
                continue;
1290
0
            }
1291
1292
0
            if (!IPAddressFamily_check_len(fc) || !IPAddressFamily_check_len(fp))
1293
0
                goto done;
1294
1295
0
            if (fp->ipAddressChoice->type ==
1296
0
                IPAddressChoice_addressesOrRanges) {
1297
0
                if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1298
0
                    || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1299
0
                                     fc->ipAddressChoice->u.addressesOrRanges,
1300
0
                                     length_from_afi(X509v3_addr_get_afi(fc))))
1301
0
                    (void)sk_IPAddressFamily_set(child, j, fp);
1302
0
                else
1303
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1304
0
            }
1305
0
        }
1306
0
    }
1307
1308
    /*
1309
     * Trust anchor can't inherit.
1310
     */
1311
349
    if (x->rfc3779_addr != NULL) {
1312
959
        for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1313
648
            IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1314
1315
648
            if (!IPAddressFamily_check_len(fp))
1316
29
                goto done;
1317
1318
619
            if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1319
619
                && sk_IPAddressFamily_find(child, fp) >= 0)
1320
0
                validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1321
619
        }
1322
340
    }
1323
320
    ret = 1;
1324
349
 done:
1325
349
    sk_IPAddressFamily_free(child);
1326
349
    return ret;
1327
320
}
1328
1329
#undef validation_err
1330
1331
/*
1332
 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1333
 */
1334
int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1335
4.59k
{
1336
4.59k
    if (ctx->chain == NULL
1337
4.59k
            || sk_X509_num(ctx->chain) == 0
1338
4.59k
            || ctx->verify_cb == NULL) {
1339
0
        ctx->error = X509_V_ERR_UNSPECIFIED;
1340
0
        return 0;
1341
0
    }
1342
4.59k
    return addr_validate_path_internal(ctx, ctx->chain, NULL);
1343
4.59k
}
1344
1345
/*
1346
 * RFC 3779 2.3 path validation of an extension.
1347
 * Test whether chain covers extension.
1348
 */
1349
int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1350
                                  IPAddrBlocks *ext, int allow_inheritance)
1351
0
{
1352
0
    if (ext == NULL)
1353
0
        return 1;
1354
0
    if (chain == NULL || sk_X509_num(chain) == 0)
1355
0
        return 0;
1356
0
    if (!allow_inheritance && X509v3_addr_inherits(ext))
1357
0
        return 0;
1358
0
    return addr_validate_path_internal(NULL, chain, ext);
1359
0
}
1360
1361
#endif                          /* OPENSSL_NO_RFC3779 */