Coverage Report

Created: 2025-06-13 06:58

/src/openssl31/providers/implementations/kdfs/scrypt.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2017-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdlib.h>
11
#include <stdarg.h>
12
#include <string.h>
13
#include <openssl/evp.h>
14
#include <openssl/kdf.h>
15
#include <openssl/err.h>
16
#include <openssl/core_names.h>
17
#include <openssl/proverr.h>
18
#include "crypto/evp.h"
19
#include "internal/numbers.h"
20
#include "prov/implementations.h"
21
#include "prov/provider_ctx.h"
22
#include "prov/providercommon.h"
23
#include "prov/provider_util.h"
24
25
#ifndef OPENSSL_NO_SCRYPT
26
27
static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new;
28
static OSSL_FUNC_kdf_dupctx_fn kdf_scrypt_dup;
29
static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free;
30
static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset;
31
static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive;
32
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params;
33
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params;
34
static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params;
35
static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params;
36
37
static int scrypt_alg(const char *pass, size_t passlen,
38
                      const unsigned char *salt, size_t saltlen,
39
                      uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
40
                      unsigned char *key, size_t keylen, EVP_MD *sha256,
41
                      OSSL_LIB_CTX *libctx, const char *propq);
42
43
typedef struct {
44
    OSSL_LIB_CTX *libctx;
45
    char *propq;
46
    unsigned char *pass;
47
    size_t pass_len;
48
    unsigned char *salt;
49
    size_t salt_len;
50
    uint64_t N;
51
    uint64_t r, p;
52
    uint64_t maxmem_bytes;
53
    EVP_MD *sha256;
54
} KDF_SCRYPT;
55
56
static void kdf_scrypt_init(KDF_SCRYPT *ctx);
57
58
static void *kdf_scrypt_new_inner(OSSL_LIB_CTX *libctx)
59
30
{
60
30
    KDF_SCRYPT *ctx;
61
62
30
    if (!ossl_prov_is_running())
63
0
        return NULL;
64
65
30
    ctx = OPENSSL_zalloc(sizeof(*ctx));
66
30
    if (ctx == NULL) {
67
0
        ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
68
0
        return NULL;
69
0
    }
70
30
    ctx->libctx = libctx;
71
30
    kdf_scrypt_init(ctx);
72
30
    return ctx;
73
30
}
74
75
static void *kdf_scrypt_new(void *provctx)
76
30
{
77
30
    return kdf_scrypt_new_inner(PROV_LIBCTX_OF(provctx));
78
30
}
79
80
static void kdf_scrypt_free(void *vctx)
81
30
{
82
30
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
83
84
30
    if (ctx != NULL) {
85
30
        OPENSSL_free(ctx->propq);
86
30
        EVP_MD_free(ctx->sha256);
87
30
        kdf_scrypt_reset(ctx);
88
30
        OPENSSL_free(ctx);
89
30
    }
90
30
}
91
92
static void kdf_scrypt_reset(void *vctx)
93
30
{
94
30
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
95
96
30
    OPENSSL_free(ctx->salt);
97
30
    ctx->salt = NULL;
98
30
    OPENSSL_clear_free(ctx->pass, ctx->pass_len);
99
30
    ctx->pass = NULL;
100
30
    kdf_scrypt_init(ctx);
101
30
}
102
103
static void *kdf_scrypt_dup(void *vctx)
104
0
{
105
0
    const KDF_SCRYPT *src = (const KDF_SCRYPT *)vctx;
106
0
    KDF_SCRYPT *dest;
107
108
0
    dest = kdf_scrypt_new_inner(src->libctx);
109
0
    if (dest != NULL) {
110
0
        if (src->sha256 != NULL && !EVP_MD_up_ref(src->sha256))
111
0
            goto err;
112
0
        if (src->propq != NULL) {
113
0
            dest->propq = OPENSSL_strdup(src->propq);
114
0
            if (dest->propq == NULL)
115
0
                goto err;
116
0
        }
117
0
        if (!ossl_prov_memdup(src->salt, src->salt_len,
118
0
                              &dest->salt, &dest->salt_len)
119
0
                || !ossl_prov_memdup(src->pass, src->pass_len,
120
0
                                     &dest->pass , &dest->pass_len))
121
0
            goto err;
122
0
        dest->N = src->N;
123
0
        dest->r = src->r;
124
0
        dest->p = src->p;
125
0
        dest->maxmem_bytes = src->maxmem_bytes;
126
0
        dest->sha256 = src->sha256;
127
0
    }
128
0
    return dest;
129
130
0
 err:
131
0
    kdf_scrypt_free(dest);
132
0
    return NULL;
133
0
}
134
135
static void kdf_scrypt_init(KDF_SCRYPT *ctx)
136
60
{
137
    /* Default values are the most conservative recommendation given in the
138
     * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
139
     * for this parameter choice (approx. 128 * r * N * p bytes).
140
     */
141
60
    ctx->N = 1 << 20;
142
60
    ctx->r = 8;
143
60
    ctx->p = 1;
144
60
    ctx->maxmem_bytes = 1025 * 1024 * 1024;
145
60
}
146
147
static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
148
                             const OSSL_PARAM *p)
149
60
{
150
60
    OPENSSL_clear_free(*buffer, *buflen);
151
60
    *buffer = NULL;
152
60
    *buflen = 0;
153
154
60
    if (p->data_size == 0) {
155
13
        if ((*buffer = OPENSSL_malloc(1)) == NULL) {
156
0
            ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
157
0
            return 0;
158
0
        }
159
47
    } else if (p->data != NULL) {
160
47
        if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
161
0
            return 0;
162
47
    }
163
60
    return 1;
164
60
}
165
166
static int set_digest(KDF_SCRYPT *ctx)
167
0
{
168
0
    EVP_MD_free(ctx->sha256);
169
0
    ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq);
170
0
    if (ctx->sha256 == NULL) {
171
0
        ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
172
0
        return 0;
173
0
    }
174
0
    return 1;
175
0
}
176
177
static int set_property_query(KDF_SCRYPT *ctx, const char *propq)
178
0
{
179
0
    OPENSSL_free(ctx->propq);
180
0
    ctx->propq = NULL;
181
0
    if (propq != NULL) {
182
0
        ctx->propq = OPENSSL_strdup(propq);
183
0
        if (ctx->propq == NULL) {
184
0
            ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
185
0
            return 0;
186
0
        }
187
0
    }
188
0
    return 1;
189
0
}
190
191
static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen,
192
                             const OSSL_PARAM params[])
193
0
{
194
0
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
195
196
0
    if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params))
197
0
        return 0;
198
199
0
    if (ctx->pass == NULL) {
200
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
201
0
        return 0;
202
0
    }
203
204
0
    if (ctx->salt == NULL) {
205
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
206
0
        return 0;
207
0
    }
208
209
0
    if (ctx->sha256 == NULL && !set_digest(ctx))
210
0
        return 0;
211
212
0
    return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt,
213
0
                      ctx->salt_len, ctx->N, ctx->r, ctx->p,
214
0
                      ctx->maxmem_bytes, key, keylen, ctx->sha256,
215
0
                      ctx->libctx, ctx->propq);
216
0
}
217
218
static int is_power_of_two(uint64_t value)
219
0
{
220
0
    return (value != 0) && ((value & (value - 1)) == 0);
221
0
}
222
223
static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[])
224
{
225
    const OSSL_PARAM *p;
226
    KDF_SCRYPT *ctx = vctx;
227
    uint64_t u64_value;
228
229
    if (params == NULL)
230
        return 1;
231
232
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
233
        if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p))
234
            return 0;
235
236
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL)
237
        if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p))
238
            return 0;
239
240
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N))
241
        != NULL) {
242
        if (!OSSL_PARAM_get_uint64(p, &u64_value)
243
            || u64_value <= 1
244
            || !is_power_of_two(u64_value))
245
            return 0;
246
        ctx->N = u64_value;
247
    }
248
249
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R))
250
        != NULL) {
251
        if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
252
            return 0;
253
        ctx->r = u64_value;
254
    }
255
256
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P))
257
        != NULL) {
258
        if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
259
            return 0;
260
        ctx->p = u64_value;
261
    }
262
263
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM))
264
        != NULL) {
265
        if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
266
            return 0;
267
        ctx->maxmem_bytes = u64_value;
268
    }
269
270
    p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES);
271
    if (p != NULL) {
272
        if (p->data_type != OSSL_PARAM_UTF8_STRING
273
            || !set_property_query(ctx, p->data)
274
            || !set_digest(ctx))
275
            return 0;
276
    }
277
    return 1;
278
}
279
280
static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx,
281
                                                        ossl_unused void *p_ctx)
282
34
{
283
34
    static const OSSL_PARAM known_settable_ctx_params[] = {
284
34
        OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
285
34
        OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
286
34
        OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL),
287
34
        OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL),
288
34
        OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL),
289
34
        OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL),
290
34
        OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
291
34
        OSSL_PARAM_END
292
34
    };
293
34
    return known_settable_ctx_params;
294
34
}
295
296
static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[])
297
0
{
298
0
    OSSL_PARAM *p;
299
300
0
    if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
301
0
        return OSSL_PARAM_set_size_t(p, SIZE_MAX);
302
0
    return -2;
303
0
}
304
305
static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx,
306
                                                        ossl_unused void *p_ctx)
307
0
{
308
0
    static const OSSL_PARAM known_gettable_ctx_params[] = {
309
0
        OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
310
0
        OSSL_PARAM_END
311
0
    };
312
0
    return known_gettable_ctx_params;
313
0
}
314
315
const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = {
316
    { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new },
317
    { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_scrypt_dup },
318
    { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free },
319
    { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset },
320
    { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive },
321
    { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
322
      (void(*)(void))kdf_scrypt_settable_ctx_params },
323
    { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params },
324
    { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
325
      (void(*)(void))kdf_scrypt_gettable_ctx_params },
326
    { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params },
327
    { 0, NULL }
328
};
329
330
0
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
331
static void salsa208_word_specification(uint32_t inout[16])
332
0
{
333
0
    int i;
334
0
    uint32_t x[16];
335
336
0
    memcpy(x, inout, sizeof(x));
337
0
    for (i = 8; i > 0; i -= 2) {
338
0
        x[4] ^= R(x[0] + x[12], 7);
339
0
        x[8] ^= R(x[4] + x[0], 9);
340
0
        x[12] ^= R(x[8] + x[4], 13);
341
0
        x[0] ^= R(x[12] + x[8], 18);
342
0
        x[9] ^= R(x[5] + x[1], 7);
343
0
        x[13] ^= R(x[9] + x[5], 9);
344
0
        x[1] ^= R(x[13] + x[9], 13);
345
0
        x[5] ^= R(x[1] + x[13], 18);
346
0
        x[14] ^= R(x[10] + x[6], 7);
347
0
        x[2] ^= R(x[14] + x[10], 9);
348
0
        x[6] ^= R(x[2] + x[14], 13);
349
0
        x[10] ^= R(x[6] + x[2], 18);
350
0
        x[3] ^= R(x[15] + x[11], 7);
351
0
        x[7] ^= R(x[3] + x[15], 9);
352
0
        x[11] ^= R(x[7] + x[3], 13);
353
0
        x[15] ^= R(x[11] + x[7], 18);
354
0
        x[1] ^= R(x[0] + x[3], 7);
355
0
        x[2] ^= R(x[1] + x[0], 9);
356
0
        x[3] ^= R(x[2] + x[1], 13);
357
0
        x[0] ^= R(x[3] + x[2], 18);
358
0
        x[6] ^= R(x[5] + x[4], 7);
359
0
        x[7] ^= R(x[6] + x[5], 9);
360
0
        x[4] ^= R(x[7] + x[6], 13);
361
0
        x[5] ^= R(x[4] + x[7], 18);
362
0
        x[11] ^= R(x[10] + x[9], 7);
363
0
        x[8] ^= R(x[11] + x[10], 9);
364
0
        x[9] ^= R(x[8] + x[11], 13);
365
0
        x[10] ^= R(x[9] + x[8], 18);
366
0
        x[12] ^= R(x[15] + x[14], 7);
367
0
        x[13] ^= R(x[12] + x[15], 9);
368
0
        x[14] ^= R(x[13] + x[12], 13);
369
0
        x[15] ^= R(x[14] + x[13], 18);
370
0
    }
371
0
    for (i = 0; i < 16; ++i)
372
0
        inout[i] += x[i];
373
0
    OPENSSL_cleanse(x, sizeof(x));
374
0
}
375
376
static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
377
0
{
378
0
    uint64_t i, j;
379
0
    uint32_t X[16], *pB;
380
381
0
    memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
382
0
    pB = B;
383
0
    for (i = 0; i < r * 2; i++) {
384
0
        for (j = 0; j < 16; j++)
385
0
            X[j] ^= *pB++;
386
0
        salsa208_word_specification(X);
387
0
        memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
388
0
    }
389
0
    OPENSSL_cleanse(X, sizeof(X));
390
0
}
391
392
static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
393
                        uint32_t *X, uint32_t *T, uint32_t *V)
394
0
{
395
0
    unsigned char *pB;
396
0
    uint32_t *pV;
397
0
    uint64_t i, k;
398
399
    /* Convert from little endian input */
400
0
    for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
401
0
        *pV = *pB++;
402
0
        *pV |= *pB++ << 8;
403
0
        *pV |= *pB++ << 16;
404
0
        *pV |= (uint32_t)*pB++ << 24;
405
0
    }
406
407
0
    for (i = 1; i < N; i++, pV += 32 * r)
408
0
        scryptBlockMix(pV, pV - 32 * r, r);
409
410
0
    scryptBlockMix(X, V + (N - 1) * 32 * r, r);
411
412
0
    for (i = 0; i < N; i++) {
413
0
        uint32_t j;
414
0
        j = X[16 * (2 * r - 1)] % N;
415
0
        pV = V + 32 * r * j;
416
0
        for (k = 0; k < 32 * r; k++)
417
0
            T[k] = X[k] ^ *pV++;
418
0
        scryptBlockMix(X, T, r);
419
0
    }
420
    /* Convert output to little endian */
421
0
    for (i = 0, pB = B; i < 32 * r; i++) {
422
0
        uint32_t xtmp = X[i];
423
0
        *pB++ = xtmp & 0xff;
424
0
        *pB++ = (xtmp >> 8) & 0xff;
425
0
        *pB++ = (xtmp >> 16) & 0xff;
426
0
        *pB++ = (xtmp >> 24) & 0xff;
427
0
    }
428
0
}
429
430
#ifndef SIZE_MAX
431
# define SIZE_MAX    ((size_t)-1)
432
#endif
433
434
/*
435
 * Maximum power of two that will fit in uint64_t: this should work on
436
 * most (all?) platforms.
437
 */
438
439
0
#define LOG2_UINT64_MAX         (sizeof(uint64_t) * 8 - 1)
440
441
/*
442
 * Maximum value of p * r:
443
 * p <= ((2^32-1) * hLen) / MFLen =>
444
 * p <= ((2^32-1) * 32) / (128 * r) =>
445
 * p * r <= (2^30-1)
446
 */
447
448
0
#define SCRYPT_PR_MAX   ((1 << 30) - 1)
449
450
static int scrypt_alg(const char *pass, size_t passlen,
451
                      const unsigned char *salt, size_t saltlen,
452
                      uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
453
                      unsigned char *key, size_t keylen, EVP_MD *sha256,
454
                      OSSL_LIB_CTX *libctx, const char *propq)
455
0
{
456
0
    int rv = 0;
457
0
    unsigned char *B;
458
0
    uint32_t *X, *V, *T;
459
0
    uint64_t i, Blen, Vlen;
460
461
    /* Sanity check parameters */
462
    /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
463
0
    if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
464
0
        return 0;
465
    /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
466
0
    if (p > SCRYPT_PR_MAX / r) {
467
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
468
0
        return 0;
469
0
    }
470
471
    /*
472
     * Need to check N: if 2^(128 * r / 8) overflows limit this is
473
     * automatically satisfied since N <= UINT64_MAX.
474
     */
475
476
0
    if (16 * r <= LOG2_UINT64_MAX) {
477
0
        if (N >= (((uint64_t)1) << (16 * r))) {
478
0
            ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
479
0
            return 0;
480
0
        }
481
0
    }
482
483
    /* Memory checks: check total allocated buffer size fits in uint64_t */
484
485
    /*
486
     * B size in section 5 step 1.S
487
     * Note: we know p * 128 * r < UINT64_MAX because we already checked
488
     * p * r < SCRYPT_PR_MAX
489
     */
490
0
    Blen = p * 128 * r;
491
    /*
492
     * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
493
     * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
494
     */
495
0
    if (Blen > INT_MAX) {
496
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
497
0
        return 0;
498
0
    }
499
500
    /*
501
     * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
502
     * This is combined size V, X and T (section 4)
503
     */
504
0
    i = UINT64_MAX / (32 * sizeof(uint32_t));
505
0
    if (N + 2 > i / r) {
506
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
507
0
        return 0;
508
0
    }
509
0
    Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
510
511
    /* check total allocated size fits in uint64_t */
512
0
    if (Blen > UINT64_MAX - Vlen) {
513
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
514
0
        return 0;
515
0
    }
516
517
    /* Check that the maximum memory doesn't exceed a size_t limits */
518
0
    if (maxmem > SIZE_MAX)
519
0
        maxmem = SIZE_MAX;
520
521
0
    if (Blen + Vlen > maxmem) {
522
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
523
0
        return 0;
524
0
    }
525
526
    /* If no key return to indicate parameters are OK */
527
0
    if (key == NULL)
528
0
        return 1;
529
530
0
    B = OPENSSL_malloc((size_t)(Blen + Vlen));
531
0
    if (B == NULL) {
532
0
        ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
533
0
        return 0;
534
0
    }
535
0
    X = (uint32_t *)(B + Blen);
536
0
    T = X + 32 * r;
537
0
    V = T + 32 * r;
538
0
    if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256,
539
0
                                  (int)Blen, B, libctx, propq) == 0)
540
0
        goto err;
541
542
0
    for (i = 0; i < p; i++)
543
0
        scryptROMix(B + 128 * r * i, r, N, X, T, V);
544
545
0
    if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256,
546
0
                                  keylen, key, libctx, propq) == 0)
547
0
        goto err;
548
0
    rv = 1;
549
0
 err:
550
0
    if (rv == 0)
551
0
        ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR);
552
553
0
    OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
554
0
    return rv;
555
0
}
556
557
#endif