Coverage Report

Created: 2025-06-13 06:58

/src/openssl31/providers/implementations/rands/seeding/rand_unix.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#ifndef _GNU_SOURCE
11
# define _GNU_SOURCE
12
#endif
13
#include "internal/e_os.h"
14
#include <stdio.h>
15
#include "internal/cryptlib.h"
16
#include <openssl/rand.h>
17
#include <openssl/crypto.h>
18
#include "crypto/rand_pool.h"
19
#include "crypto/rand.h"
20
#include "internal/dso.h"
21
#include "internal/nelem.h"
22
#include "prov/seeding.h"
23
24
#ifdef __linux
25
# include <sys/syscall.h>
26
# ifdef DEVRANDOM_WAIT
27
#  include <sys/shm.h>
28
#  include <sys/utsname.h>
29
# endif
30
#endif
31
#if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
32
# include <sys/types.h>
33
# include <sys/sysctl.h>
34
# include <sys/param.h>
35
#endif
36
#if defined(__OpenBSD__)
37
# include <sys/param.h>
38
#endif
39
#if defined(__DragonFly__)
40
# include <sys/param.h>
41
# include <sys/random.h>
42
#endif
43
44
#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
45
     || defined(__DJGPP__)
46
# include <sys/types.h>
47
# include <sys/stat.h>
48
# include <fcntl.h>
49
# include <unistd.h>
50
# include <sys/time.h>
51
52
static uint64_t get_time_stamp(void);
53
54
/* Macro to convert two thirty two bit values into a sixty four bit one */
55
100
# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
56
57
/*
58
 * Check for the existence and support of POSIX timers.  The standard
59
 * says that the _POSIX_TIMERS macro will have a positive value if they
60
 * are available.
61
 *
62
 * However, we want an additional constraint: that the timer support does
63
 * not require an extra library dependency.  Early versions of glibc
64
 * require -lrt to be specified on the link line to access the timers,
65
 * so this needs to be checked for.
66
 *
67
 * It is worse because some libraries define __GLIBC__ but don't
68
 * support the version testing macro (e.g. uClibc).  This means
69
 * an extra check is needed.
70
 *
71
 * The final condition is:
72
 *      "have posix timers and either not glibc or glibc without -lrt"
73
 *
74
 * The nested #if sequences are required to avoid using a parameterised
75
 * macro that might be undefined.
76
 */
77
# undef OSSL_POSIX_TIMER_OKAY
78
/* On some systems, _POSIX_TIMERS is defined but empty.
79
 * Subtracting by 0 when comparing avoids an error in this case. */
80
# if defined(_POSIX_TIMERS) && _POSIX_TIMERS -0 > 0
81
#  if defined(__GLIBC__)
82
#   if defined(__GLIBC_PREREQ)
83
#    if __GLIBC_PREREQ(2, 17)
84
#     define OSSL_POSIX_TIMER_OKAY
85
#    endif
86
#   endif
87
#  else
88
#   define OSSL_POSIX_TIMER_OKAY
89
#  endif
90
# endif
91
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
92
          || defined(__DJGPP__) */
93
94
#if defined(OPENSSL_RAND_SEED_NONE)
95
/* none means none. this simplifies the following logic */
96
# undef OPENSSL_RAND_SEED_OS
97
# undef OPENSSL_RAND_SEED_GETRANDOM
98
# undef OPENSSL_RAND_SEED_LIBRANDOM
99
# undef OPENSSL_RAND_SEED_DEVRANDOM
100
# undef OPENSSL_RAND_SEED_RDTSC
101
# undef OPENSSL_RAND_SEED_RDCPU
102
# undef OPENSSL_RAND_SEED_EGD
103
#endif
104
105
#if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
106
# error "UEFI only supports seeding NONE"
107
#endif
108
109
#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
110
    || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
111
    || defined(OPENSSL_SYS_UEFI))
112
113
# if defined(OPENSSL_SYS_VOS)
114
115
#  ifndef OPENSSL_RAND_SEED_OS
116
#   error "Unsupported seeding method configured; must be os"
117
#  endif
118
119
#  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
120
#   error "Unsupported HP-PA and IA32 at the same time."
121
#  endif
122
#  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
123
#   error "Must have one of HP-PA or IA32"
124
#  endif
125
126
/*
127
 * The following algorithm repeatedly samples the real-time clock (RTC) to
128
 * generate a sequence of unpredictable data.  The algorithm relies upon the
129
 * uneven execution speed of the code (due to factors such as cache misses,
130
 * interrupts, bus activity, and scheduling) and upon the rather large
131
 * relative difference between the speed of the clock and the rate at which
132
 * it can be read.  If it is ported to an environment where execution speed
133
 * is more constant or where the RTC ticks at a much slower rate, or the
134
 * clock can be read with fewer instructions, it is likely that the results
135
 * would be far more predictable.  This should only be used for legacy
136
 * platforms.
137
 *
138
 * As a precaution, we assume only 2 bits of entropy per byte.
139
 */
140
size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
141
{
142
    short int code;
143
    int i, k;
144
    size_t bytes_needed;
145
    struct timespec ts;
146
    unsigned char v;
147
#  ifdef OPENSSL_SYS_VOS_HPPA
148
    long duration;
149
    extern void s$sleep(long *_duration, short int *_code);
150
#  else
151
    long long duration;
152
    extern void s$sleep2(long long *_duration, short int *_code);
153
#  endif
154
155
    bytes_needed = ossl_rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
156
157
    for (i = 0; i < bytes_needed; i++) {
158
        /*
159
         * burn some cpu; hope for interrupts, cache collisions, bus
160
         * interference, etc.
161
         */
162
        for (k = 0; k < 99; k++)
163
            ts.tv_nsec = random();
164
165
#  ifdef OPENSSL_SYS_VOS_HPPA
166
        /* sleep for 1/1024 of a second (976 us).  */
167
        duration = 1;
168
        s$sleep(&duration, &code);
169
#  else
170
        /* sleep for 1/65536 of a second (15 us).  */
171
        duration = 1;
172
        s$sleep2(&duration, &code);
173
#  endif
174
175
        /* Get wall clock time, take 8 bits. */
176
        clock_gettime(CLOCK_REALTIME, &ts);
177
        v = (unsigned char)(ts.tv_nsec & 0xFF);
178
        ossl_rand_pool_add(pool, arg, &v, sizeof(v) , 2);
179
    }
180
    return ossl_rand_pool_entropy_available(pool);
181
}
182
183
void ossl_rand_pool_cleanup(void)
184
{
185
}
186
187
void ossl_rand_pool_keep_random_devices_open(int keep)
188
{
189
}
190
191
# else
192
193
#  if defined(OPENSSL_RAND_SEED_EGD) && \
194
        (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
195
#   error "Seeding uses EGD but EGD is turned off or no device given"
196
#  endif
197
198
#  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
199
#   error "Seeding uses urandom but DEVRANDOM is not configured"
200
#  endif
201
202
#  if defined(OPENSSL_RAND_SEED_OS)
203
#   if !defined(DEVRANDOM)
204
#    error "OS seeding requires DEVRANDOM to be configured"
205
#   endif
206
#   define OPENSSL_RAND_SEED_GETRANDOM
207
#   define OPENSSL_RAND_SEED_DEVRANDOM
208
#  endif
209
210
#  if defined(OPENSSL_RAND_SEED_LIBRANDOM)
211
#   error "librandom not (yet) supported"
212
#  endif
213
214
#  if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
215
/*
216
 * sysctl_random(): Use sysctl() to read a random number from the kernel
217
 * Returns the number of bytes returned in buf on success, -1 on failure.
218
 */
219
static ssize_t sysctl_random(char *buf, size_t buflen)
220
{
221
    int mib[2];
222
    size_t done = 0;
223
    size_t len;
224
225
    /*
226
     * Note: sign conversion between size_t and ssize_t is safe even
227
     * without a range check, see comment in syscall_random()
228
     */
229
230
    /*
231
     * On FreeBSD old implementations returned longs, newer versions support
232
     * variable sizes up to 256 byte. The code below would not work properly
233
     * when the sysctl returns long and we want to request something not a
234
     * multiple of longs, which should never be the case.
235
     */
236
#if   defined(__FreeBSD__)
237
    if (!ossl_assert(buflen % sizeof(long) == 0)) {
238
        errno = EINVAL;
239
        return -1;
240
    }
241
#endif
242
243
    /*
244
     * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
245
     * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
246
     * it returns a variable number of bytes with the current version supporting
247
     * up to 256 bytes.
248
     * Just return an error on older NetBSD versions.
249
     */
250
#if   defined(__NetBSD__) && __NetBSD_Version__ < 400000000
251
    errno = ENOSYS;
252
    return -1;
253
#endif
254
255
    mib[0] = CTL_KERN;
256
    mib[1] = KERN_ARND;
257
258
    do {
259
        len = buflen > 256 ? 256 : buflen;
260
        if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
261
            return done > 0 ? done : -1;
262
        done += len;
263
        buf += len;
264
        buflen -= len;
265
    } while (buflen > 0);
266
267
    return done;
268
}
269
#  endif
270
271
#  if defined(OPENSSL_RAND_SEED_GETRANDOM)
272
273
#   if defined(__linux) && !defined(__NR_getrandom)
274
#    if defined(__arm__)
275
#     define __NR_getrandom    (__NR_SYSCALL_BASE+384)
276
#    elif defined(__i386__)
277
#     define __NR_getrandom    355
278
#    elif defined(__x86_64__)
279
#     if defined(__ILP32__)
280
#      define __NR_getrandom   (__X32_SYSCALL_BIT + 318)
281
#     else
282
#      define __NR_getrandom   318
283
#     endif
284
#    elif defined(__xtensa__)
285
#     define __NR_getrandom    338
286
#    elif defined(__s390__) || defined(__s390x__)
287
#     define __NR_getrandom    349
288
#    elif defined(__bfin__)
289
#     define __NR_getrandom    389
290
#    elif defined(__powerpc__)
291
#     define __NR_getrandom    359
292
#    elif defined(__mips__) || defined(__mips64)
293
#     if _MIPS_SIM == _MIPS_SIM_ABI32
294
#      define __NR_getrandom   (__NR_Linux + 353)
295
#     elif _MIPS_SIM == _MIPS_SIM_ABI64
296
#      define __NR_getrandom   (__NR_Linux + 313)
297
#     elif _MIPS_SIM == _MIPS_SIM_NABI32
298
#      define __NR_getrandom   (__NR_Linux + 317)
299
#     endif
300
#    elif defined(__hppa__)
301
#     define __NR_getrandom    (__NR_Linux + 339)
302
#    elif defined(__sparc__)
303
#     define __NR_getrandom    347
304
#    elif defined(__ia64__)
305
#     define __NR_getrandom    1339
306
#    elif defined(__alpha__)
307
#     define __NR_getrandom    511
308
#    elif defined(__sh__)
309
#     if defined(__SH5__)
310
#      define __NR_getrandom   373
311
#     else
312
#      define __NR_getrandom   384
313
#     endif
314
#    elif defined(__avr32__)
315
#     define __NR_getrandom    317
316
#    elif defined(__microblaze__)
317
#     define __NR_getrandom    385
318
#    elif defined(__m68k__)
319
#     define __NR_getrandom    352
320
#    elif defined(__cris__)
321
#     define __NR_getrandom    356
322
#    elif defined(__aarch64__)
323
#     define __NR_getrandom    278
324
#    else /* generic */
325
#     define __NR_getrandom    278
326
#    endif
327
#   endif
328
329
/*
330
 * syscall_random(): Try to get random data using a system call
331
 * returns the number of bytes returned in buf, or < 0 on error.
332
 */
333
static ssize_t syscall_random(void *buf, size_t buflen)
334
215
{
335
    /*
336
     * Note: 'buflen' equals the size of the buffer which is used by the
337
     * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
338
     *
339
     *   2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
340
     *
341
     * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
342
     * between size_t and ssize_t is safe even without a range check.
343
     */
344
345
    /*
346
     * Do runtime detection to find getentropy().
347
     *
348
     * Known OSs that should support this:
349
     * - Darwin since 16 (OSX 10.12, IOS 10.0).
350
     * - Solaris since 11.3
351
     * - OpenBSD since 5.6
352
     * - Linux since 3.17 with glibc 2.25
353
     * - FreeBSD since 12.0 (1200061)
354
     *
355
     * Note: Sometimes getentropy() can be provided but not implemented
356
     * internally. So we need to check errno for ENOSYS
357
     */
358
215
#  if !defined(__DragonFly__) && !defined(__NetBSD__)
359
215
#    if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
360
215
    extern int getentropy(void *buffer, size_t length) __attribute__((weak));
361
362
215
    if (getentropy != NULL) {
363
215
        if (getentropy(buf, buflen) == 0)
364
215
            return (ssize_t)buflen;
365
0
        if (errno != ENOSYS)
366
0
            return -1;
367
0
    }
368
#    elif defined(OPENSSL_APPLE_CRYPTO_RANDOM)
369
370
    if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
371
      return (ssize_t)buflen;
372
373
    return -1;
374
#    else
375
    union {
376
        void *p;
377
        int (*f)(void *buffer, size_t length);
378
    } p_getentropy;
379
380
    /*
381
     * We could cache the result of the lookup, but we normally don't
382
     * call this function often.
383
     */
384
    ERR_set_mark();
385
    p_getentropy.p = DSO_global_lookup("getentropy");
386
    ERR_pop_to_mark();
387
    if (p_getentropy.p != NULL)
388
        return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
389
#    endif
390
0
#  endif /* !__DragonFly__ */
391
392
    /* Linux supports this since version 3.17 */
393
0
#  if defined(__linux) && defined(__NR_getrandom)
394
0
    return syscall(__NR_getrandom, buf, buflen, 0);
395
#  elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
396
    return sysctl_random(buf, buflen);
397
#  elif (defined(__DragonFly__)  && __DragonFly_version >= 500700) \
398
     || (defined(__NetBSD__) && __NetBSD_Version >= 1000000000)
399
    return getrandom(buf, buflen, 0);
400
#  else
401
    errno = ENOSYS;
402
    return -1;
403
#  endif
404
215
}
405
#  endif    /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
406
407
#  if defined(OPENSSL_RAND_SEED_DEVRANDOM)
408
static const char *random_device_paths[] = { DEVRANDOM };
409
static struct random_device {
410
    int fd;
411
    dev_t dev;
412
    ino_t ino;
413
    mode_t mode;
414
    dev_t rdev;
415
} random_devices[OSSL_NELEM(random_device_paths)];
416
static int keep_random_devices_open = 1;
417
418
#   if defined(__linux) && defined(DEVRANDOM_WAIT) \
419
       && defined(OPENSSL_RAND_SEED_GETRANDOM)
420
static void *shm_addr;
421
422
static void cleanup_shm(void)
423
0
{
424
0
    shmdt(shm_addr);
425
0
}
426
427
/*
428
 * Ensure that the system randomness source has been adequately seeded.
429
 * This is done by having the first start of libcrypto, wait until the device
430
 * /dev/random becomes able to supply a byte of entropy.  Subsequent starts
431
 * of the library and later reseedings do not need to do this.
432
 */
433
static int wait_random_seeded(void)
434
0
{
435
0
    static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
436
0
    static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
437
0
    int kernel[2];
438
0
    int shm_id, fd, r;
439
0
    char c, *p;
440
0
    struct utsname un;
441
0
    fd_set fds;
442
443
0
    if (!seeded) {
444
        /* See if anything has created the global seeded indication */
445
0
        if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
446
            /*
447
             * Check the kernel's version and fail if it is too recent.
448
             *
449
             * Linux kernels from 4.8 onwards do not guarantee that
450
             * /dev/urandom is properly seeded when /dev/random becomes
451
             * readable.  However, such kernels support the getentropy(2)
452
             * system call and this should always succeed which renders
453
             * this alternative but essentially identical source moot.
454
             */
455
0
            if (uname(&un) == 0) {
456
0
                kernel[0] = atoi(un.release);
457
0
                p = strchr(un.release, '.');
458
0
                kernel[1] = p == NULL ? 0 : atoi(p + 1);
459
0
                if (kernel[0] > kernel_version[0]
460
0
                    || (kernel[0] == kernel_version[0]
461
0
                        && kernel[1] >= kernel_version[1])) {
462
0
                    return 0;
463
0
                }
464
0
            }
465
            /* Open /dev/random and wait for it to be readable */
466
0
            if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
467
0
                if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
468
0
                    FD_ZERO(&fds);
469
0
                    FD_SET(fd, &fds);
470
0
                    while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
471
0
                           && errno == EINTR);
472
0
                } else {
473
0
                    while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
474
0
                }
475
0
                close(fd);
476
0
                if (r == 1) {
477
0
                    seeded = 1;
478
                    /* Create the shared memory indicator */
479
0
                    shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
480
0
                                    IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
481
0
                }
482
0
            }
483
0
        }
484
0
        if (shm_id != -1) {
485
0
            seeded = 1;
486
            /*
487
             * Map the shared memory to prevent its premature destruction.
488
             * If this call fails, it isn't a big problem.
489
             */
490
0
            shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
491
0
            if (shm_addr != (void *)-1)
492
0
                OPENSSL_atexit(&cleanup_shm);
493
0
        }
494
0
    }
495
0
    return seeded;
496
0
}
497
#   else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
498
static int wait_random_seeded(void)
499
{
500
    return 1;
501
}
502
#   endif
503
504
/*
505
 * Verify that the file descriptor associated with the random source is
506
 * still valid. The rationale for doing this is the fact that it is not
507
 * uncommon for daemons to close all open file handles when daemonizing.
508
 * So the handle might have been closed or even reused for opening
509
 * another file.
510
 */
511
static int check_random_device(struct random_device * rd)
512
144
{
513
144
    struct stat st;
514
515
144
    return rd->fd != -1
516
144
           && fstat(rd->fd, &st) != -1
517
144
           && rd->dev == st.st_dev
518
144
           && rd->ino == st.st_ino
519
144
           && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
520
144
           && rd->rdev == st.st_rdev;
521
144
}
522
523
/*
524
 * Open a random device if required and return its file descriptor or -1 on error
525
 */
526
static int get_random_device(size_t n)
527
0
{
528
0
    struct stat st;
529
0
    struct random_device * rd = &random_devices[n];
530
531
    /* reuse existing file descriptor if it is (still) valid */
532
0
    if (check_random_device(rd))
533
0
        return rd->fd;
534
535
    /* open the random device ... */
536
0
    if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
537
0
        return rd->fd;
538
539
    /* ... and cache its relevant stat(2) data */
540
0
    if (fstat(rd->fd, &st) != -1) {
541
0
        rd->dev = st.st_dev;
542
0
        rd->ino = st.st_ino;
543
0
        rd->mode = st.st_mode;
544
0
        rd->rdev = st.st_rdev;
545
0
    } else {
546
0
        close(rd->fd);
547
0
        rd->fd = -1;
548
0
    }
549
550
0
    return rd->fd;
551
0
}
552
553
/*
554
 * Close a random device making sure it is a random device
555
 */
556
static void close_random_device(size_t n)
557
144
{
558
144
    struct random_device * rd = &random_devices[n];
559
560
144
    if (check_random_device(rd))
561
0
        close(rd->fd);
562
144
    rd->fd = -1;
563
144
}
564
565
int ossl_rand_pool_init(void)
566
36
{
567
36
    size_t i;
568
569
180
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
570
144
        random_devices[i].fd = -1;
571
572
36
    return 1;
573
36
}
574
575
void ossl_rand_pool_cleanup(void)
576
36
{
577
36
    size_t i;
578
579
180
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
580
144
        close_random_device(i);
581
36
}
582
583
void ossl_rand_pool_keep_random_devices_open(int keep)
584
0
{
585
0
    if (!keep)
586
0
        ossl_rand_pool_cleanup();
587
588
0
    keep_random_devices_open = keep;
589
0
}
590
591
#  else     /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
592
593
int ossl_rand_pool_init(void)
594
{
595
    return 1;
596
}
597
598
void ossl_rand_pool_cleanup(void)
599
{
600
}
601
602
void ossl_rand_pool_keep_random_devices_open(int keep)
603
{
604
}
605
606
#  endif    /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
607
608
/*
609
 * Try the various seeding methods in turn, exit when successful.
610
 *
611
 * If more than one entropy source is available, is it
612
 * preferable to stop as soon as enough entropy has been collected
613
 * (as favored by @rsalz) or should one rather be defensive and add
614
 * more entropy than requested and/or from different sources?
615
 *
616
 * Currently, the user can select multiple entropy sources in the
617
 * configure step, yet in practice only the first available source
618
 * will be used. A more flexible solution has been requested, but
619
 * currently it is not clear how this can be achieved without
620
 * overengineering the problem. There are many parameters which
621
 * could be taken into account when selecting the order and amount
622
 * of input from the different entropy sources (trust, quality,
623
 * possibility of blocking).
624
 */
625
size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
626
215
{
627
#  if defined(OPENSSL_RAND_SEED_NONE)
628
    return ossl_rand_pool_entropy_available(pool);
629
#  else
630
215
    size_t entropy_available = 0;
631
632
215
    (void)entropy_available;    /* avoid compiler warning */
633
634
215
#   if defined(OPENSSL_RAND_SEED_GETRANDOM)
635
215
    {
636
215
        size_t bytes_needed;
637
215
        unsigned char *buffer;
638
215
        ssize_t bytes;
639
        /* Maximum allowed number of consecutive unsuccessful attempts */
640
215
        int attempts = 3;
641
642
215
        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
643
430
        while (bytes_needed != 0 && attempts-- > 0) {
644
215
            buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
645
215
            bytes = syscall_random(buffer, bytes_needed);
646
215
            if (bytes > 0) {
647
215
                ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
648
215
                bytes_needed -= bytes;
649
215
                attempts = 3; /* reset counter after successful attempt */
650
215
            } else if (bytes < 0 && errno != EINTR) {
651
0
                break;
652
0
            }
653
215
        }
654
215
    }
655
215
    entropy_available = ossl_rand_pool_entropy_available(pool);
656
215
    if (entropy_available > 0)
657
215
        return entropy_available;
658
0
#   endif
659
660
#   if defined(OPENSSL_RAND_SEED_LIBRANDOM)
661
    {
662
        /* Not yet implemented. */
663
    }
664
#   endif
665
666
0
#   if defined(OPENSSL_RAND_SEED_DEVRANDOM)
667
0
    if (wait_random_seeded()) {
668
0
        size_t bytes_needed;
669
0
        unsigned char *buffer;
670
0
        size_t i;
671
672
0
        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
673
0
        for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
674
0
             i++) {
675
0
            ssize_t bytes = 0;
676
            /* Maximum number of consecutive unsuccessful attempts */
677
0
            int attempts = 3;
678
0
            const int fd = get_random_device(i);
679
680
0
            if (fd == -1)
681
0
                continue;
682
683
0
            while (bytes_needed != 0 && attempts-- > 0) {
684
0
                buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
685
0
                bytes = read(fd, buffer, bytes_needed);
686
687
0
                if (bytes > 0) {
688
0
                    ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
689
0
                    bytes_needed -= bytes;
690
0
                    attempts = 3; /* reset counter on successful attempt */
691
0
                } else if (bytes < 0 && errno != EINTR) {
692
0
                    break;
693
0
                }
694
0
            }
695
0
            if (bytes < 0 || !keep_random_devices_open)
696
0
                close_random_device(i);
697
698
0
            bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
699
0
        }
700
0
        entropy_available = ossl_rand_pool_entropy_available(pool);
701
0
        if (entropy_available > 0)
702
0
            return entropy_available;
703
0
    }
704
0
#   endif
705
706
#   if defined(OPENSSL_RAND_SEED_RDTSC)
707
    entropy_available = ossl_prov_acquire_entropy_from_tsc(pool);
708
    if (entropy_available > 0)
709
        return entropy_available;
710
#   endif
711
712
#   if defined(OPENSSL_RAND_SEED_RDCPU)
713
    entropy_available = ossl_prov_acquire_entropy_from_cpu(pool);
714
    if (entropy_available > 0)
715
        return entropy_available;
716
#   endif
717
718
#   if defined(OPENSSL_RAND_SEED_EGD)
719
    {
720
        static const char *paths[] = { DEVRANDOM_EGD, NULL };
721
        size_t bytes_needed;
722
        unsigned char *buffer;
723
        int i;
724
725
        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
726
        for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
727
            size_t bytes = 0;
728
            int num;
729
730
            buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
731
            num = RAND_query_egd_bytes(paths[i],
732
                                       buffer, (int)bytes_needed);
733
            if (num == (int)bytes_needed)
734
                bytes = bytes_needed;
735
736
            ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
737
            bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
738
        }
739
        entropy_available = ossl_rand_pool_entropy_available(pool);
740
        if (entropy_available > 0)
741
            return entropy_available;
742
    }
743
#   endif
744
745
0
    return ossl_rand_pool_entropy_available(pool);
746
0
#  endif
747
0
}
748
# endif
749
#endif
750
751
#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
752
     || defined(__DJGPP__)
753
int ossl_pool_add_nonce_data(RAND_POOL *pool)
754
100
{
755
100
    struct {
756
100
        pid_t pid;
757
100
        CRYPTO_THREAD_ID tid;
758
100
        uint64_t time;
759
100
    } data;
760
761
    /* Erase the entire structure including any padding */
762
100
    memset(&data, 0, sizeof(data));
763
764
    /*
765
     * Add process id, thread id, and a high resolution timestamp to
766
     * ensure that the nonce is unique with high probability for
767
     * different process instances.
768
     */
769
100
    data.pid = getpid();
770
100
    data.tid = CRYPTO_THREAD_get_current_id();
771
100
    data.time = get_time_stamp();
772
773
100
    return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
774
100
}
775
776
/*
777
 * Get the current time with the highest possible resolution
778
 *
779
 * The time stamp is added to the nonce, so it is optimized for not repeating.
780
 * The current time is ideal for this purpose, provided the computer's clock
781
 * is synchronized.
782
 */
783
static uint64_t get_time_stamp(void)
784
100
{
785
100
# if defined(OSSL_POSIX_TIMER_OKAY)
786
100
    {
787
100
        struct timespec ts;
788
789
100
        if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
790
100
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
791
100
    }
792
0
# endif
793
0
# if defined(__unix__) \
794
0
     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
795
0
    {
796
0
        struct timeval tv;
797
798
0
        if (gettimeofday(&tv, NULL) == 0)
799
0
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
800
0
    }
801
0
# endif
802
0
    return time(NULL);
803
0
}
804
805
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
806
          || defined(__DJGPP__) */