/src/openssl31/ssl/s3_cbc.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 2012-2021 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | /*  | 
11  |  |  * This file has no dependencies on the rest of libssl because it is shared  | 
12  |  |  * with the providers. It contains functions for low level MAC calculations.  | 
13  |  |  * Responsibility for this lies with the HMAC implementation in the  | 
14  |  |  * providers. However there are legacy code paths in libssl which also need to  | 
15  |  |  * do this. In time those legacy code paths can be removed and this file can be  | 
16  |  |  * moved out of libssl.  | 
17  |  |  */  | 
18  |  |  | 
19  |  |  | 
20  |  | /*  | 
21  |  |  * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for  | 
22  |  |  * internal use.  | 
23  |  |  */  | 
24  |  | #include "internal/deprecated.h"  | 
25  |  |  | 
26  |  | #include "internal/constant_time.h"  | 
27  |  | #include "internal/cryptlib.h"  | 
28  |  |  | 
29  |  | #include <openssl/evp.h>  | 
30  |  | #ifndef FIPS_MODULE  | 
31  |  | # include <openssl/md5.h>  | 
32  |  | #endif  | 
33  |  | #include <openssl/sha.h>  | 
34  |  |  | 
35  |  | char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx);  | 
36  |  | int ssl3_cbc_digest_record(const EVP_MD *md,  | 
37  |  |                            unsigned char *md_out,  | 
38  |  |                            size_t *md_out_size,  | 
39  |  |                            const unsigned char *header,  | 
40  |  |                            const unsigned char *data,  | 
41  |  |                            size_t data_size,  | 
42  |  |                            size_t data_plus_mac_plus_padding_size,  | 
43  |  |                            const unsigned char *mac_secret,  | 
44  |  |                            size_t mac_secret_length, char is_sslv3);  | 
45  |  |  | 
46  | 13.9k  | # define l2n(l,c)        (*((c)++)=(unsigned char)(((l)>>24)&0xff), \  | 
47  | 13.9k  |                          *((c)++)=(unsigned char)(((l)>>16)&0xff), \  | 
48  | 13.9k  |                          *((c)++)=(unsigned char)(((l)>> 8)&0xff), \  | 
49  | 13.9k  |                          *((c)++)=(unsigned char)(((l)    )&0xff))  | 
50  |  |  | 
51  |  | # define l2n6(l,c)       (*((c)++)=(unsigned char)(((l)>>40)&0xff), \  | 
52  |  |                          *((c)++)=(unsigned char)(((l)>>32)&0xff), \  | 
53  |  |                          *((c)++)=(unsigned char)(((l)>>24)&0xff), \  | 
54  |  |                          *((c)++)=(unsigned char)(((l)>>16)&0xff), \  | 
55  |  |                          *((c)++)=(unsigned char)(((l)>> 8)&0xff), \  | 
56  |  |                          *((c)++)=(unsigned char)(((l)    )&0xff))  | 
57  |  |  | 
58  | 1.00k  | # define l2n8(l,c)       (*((c)++)=(unsigned char)(((l)>>56)&0xff), \  | 
59  | 1.00k  |                          *((c)++)=(unsigned char)(((l)>>48)&0xff), \  | 
60  | 1.00k  |                          *((c)++)=(unsigned char)(((l)>>40)&0xff), \  | 
61  | 1.00k  |                          *((c)++)=(unsigned char)(((l)>>32)&0xff), \  | 
62  | 1.00k  |                          *((c)++)=(unsigned char)(((l)>>24)&0xff), \  | 
63  | 1.00k  |                          *((c)++)=(unsigned char)(((l)>>16)&0xff), \  | 
64  | 1.00k  |                          *((c)++)=(unsigned char)(((l)>> 8)&0xff), \  | 
65  | 1.00k  |                          *((c)++)=(unsigned char)(((l)    )&0xff))  | 
66  |  |  | 
67  |  | /*  | 
68  |  |  * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's  | 
69  |  |  * length field. (SHA-384/512 have 128-bit length.)  | 
70  |  |  */  | 
71  |  | #define MAX_HASH_BIT_COUNT_BYTES 16  | 
72  |  |  | 
73  |  | /*  | 
74  |  |  * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.  | 
75  |  |  * Currently SHA-384/512 has a 128-byte block size and that's the largest  | 
76  |  |  * supported by TLS.)  | 
77  |  |  */  | 
78  |  | #define MAX_HASH_BLOCK_SIZE 128  | 
79  |  |  | 
80  |  | #ifndef FIPS_MODULE  | 
81  |  | /*  | 
82  |  |  * u32toLE serializes an unsigned, 32-bit number (n) as four bytes at (p) in  | 
83  |  |  * little-endian order. The value of p is advanced by four.  | 
84  |  |  */  | 
85  |  | # define u32toLE(n, p) \  | 
86  | 0  |          (*((p)++)=(unsigned char)(n), \  | 
87  | 0  |           *((p)++)=(unsigned char)(n>>8), \  | 
88  | 0  |           *((p)++)=(unsigned char)(n>>16), \  | 
89  | 0  |           *((p)++)=(unsigned char)(n>>24))  | 
90  |  |  | 
91  |  | /*  | 
92  |  |  * These functions serialize the state of a hash and thus perform the  | 
93  |  |  * standard "final" operation without adding the padding and length that such  | 
94  |  |  * a function typically does.  | 
95  |  |  */  | 
96  |  | static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)  | 
97  | 0  | { | 
98  | 0  |     MD5_CTX *md5 = ctx;  | 
99  | 0  |     u32toLE(md5->A, md_out);  | 
100  | 0  |     u32toLE(md5->B, md_out);  | 
101  | 0  |     u32toLE(md5->C, md_out);  | 
102  | 0  |     u32toLE(md5->D, md_out);  | 
103  | 0  | }  | 
104  |  | #endif /* FIPS_MODULE */  | 
105  |  |  | 
106  |  | static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)  | 
107  | 2.19k  | { | 
108  | 2.19k  |     SHA_CTX *sha1 = ctx;  | 
109  | 2.19k  |     l2n(sha1->h0, md_out);  | 
110  | 2.19k  |     l2n(sha1->h1, md_out);  | 
111  | 2.19k  |     l2n(sha1->h2, md_out);  | 
112  | 2.19k  |     l2n(sha1->h3, md_out);  | 
113  | 2.19k  |     l2n(sha1->h4, md_out);  | 
114  | 2.19k  | }  | 
115  |  |  | 
116  |  | static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)  | 
117  | 378  | { | 
118  | 378  |     SHA256_CTX *sha256 = ctx;  | 
119  | 378  |     unsigned i;  | 
120  |  |  | 
121  | 3.40k  |     for (i = 0; i < 8; i++) { | 
122  | 3.02k  |         l2n(sha256->h[i], md_out);  | 
123  | 3.02k  |     }  | 
124  | 378  | }  | 
125  |  |  | 
126  |  | static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)  | 
127  | 125  | { | 
128  | 125  |     SHA512_CTX *sha512 = ctx;  | 
129  | 125  |     unsigned i;  | 
130  |  |  | 
131  | 1.12k  |     for (i = 0; i < 8; i++) { | 
132  | 1.00k  |         l2n8(sha512->h[i], md_out);  | 
133  | 1.00k  |     }  | 
134  | 125  | }  | 
135  |  |  | 
136  |  | #undef  LARGEST_DIGEST_CTX  | 
137  |  | #define LARGEST_DIGEST_CTX SHA512_CTX  | 
138  |  |  | 
139  |  | /*-  | 
140  |  |  * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS  | 
141  |  |  * record.  | 
142  |  |  *  | 
143  |  |  *   ctx: the EVP_MD_CTX from which we take the hash function.  | 
144  |  |  *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.  | 
145  |  |  *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.  | 
146  |  |  *   md_out_size: if non-NULL, the number of output bytes is written here.  | 
147  |  |  *   header: the 13-byte, TLS record header.  | 
148  |  |  *   data: the record data itself, less any preceding explicit IV.  | 
149  |  |  *   data_size: the secret, reported length of the data once the MAC and padding  | 
150  |  |  *              has been removed.  | 
151  |  |  *   data_plus_mac_plus_padding_size: the public length of the whole  | 
152  |  |  *     record, including MAC and padding.  | 
153  |  |  *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.  | 
154  |  |  *  | 
155  |  |  * On entry: we know that data is data_plus_mac_plus_padding_size in length  | 
156  |  |  * Returns 1 on success or 0 on error  | 
157  |  |  */  | 
158  |  | int ssl3_cbc_digest_record(const EVP_MD *md,  | 
159  |  |                            unsigned char *md_out,  | 
160  |  |                            size_t *md_out_size,  | 
161  |  |                            const unsigned char *header,  | 
162  |  |                            const unsigned char *data,  | 
163  |  |                            size_t data_size,  | 
164  |  |                            size_t data_plus_mac_plus_padding_size,  | 
165  |  |                            const unsigned char *mac_secret,  | 
166  |  |                            size_t mac_secret_length, char is_sslv3)  | 
167  | 45.4k  | { | 
168  | 45.4k  |     union { | 
169  | 45.4k  |         OSSL_UNION_ALIGN;  | 
170  | 45.4k  |         unsigned char c[sizeof(LARGEST_DIGEST_CTX)];  | 
171  | 45.4k  |     } md_state;  | 
172  | 45.4k  |     void (*md_final_raw) (void *ctx, unsigned char *md_out);  | 
173  | 45.4k  |     void (*md_transform) (void *ctx, const unsigned char *block);  | 
174  | 45.4k  |     size_t md_size, md_block_size = 64;  | 
175  | 45.4k  |     size_t sslv3_pad_length = 40, header_length, variance_blocks,  | 
176  | 45.4k  |         len, max_mac_bytes, num_blocks,  | 
177  | 45.4k  |         num_starting_blocks, k, mac_end_offset, c, index_a, index_b;  | 
178  | 45.4k  |     size_t bits;          /* at most 18 bits */  | 
179  | 45.4k  |     unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];  | 
180  |  |     /* hmac_pad is the masked HMAC key. */  | 
181  | 45.4k  |     unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];  | 
182  | 45.4k  |     unsigned char first_block[MAX_HASH_BLOCK_SIZE];  | 
183  | 45.4k  |     unsigned char mac_out[EVP_MAX_MD_SIZE];  | 
184  | 45.4k  |     size_t i, j;  | 
185  | 45.4k  |     unsigned md_out_size_u;  | 
186  | 45.4k  |     EVP_MD_CTX *md_ctx = NULL;  | 
187  |  |     /*  | 
188  |  |      * mdLengthSize is the number of bytes in the length field that  | 
189  |  |      * terminates * the hash.  | 
190  |  |      */  | 
191  | 45.4k  |     size_t md_length_size = 8;  | 
192  | 45.4k  |     char length_is_big_endian = 1;  | 
193  | 45.4k  |     int ret = 0;  | 
194  |  |  | 
195  |  |     /*  | 
196  |  |      * This is a, hopefully redundant, check that allows us to forget about  | 
197  |  |      * many possible overflows later in this function.  | 
198  |  |      */  | 
199  | 45.4k  |     if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))  | 
200  | 0  |         return 0;  | 
201  |  |  | 
202  | 45.4k  |     if (EVP_MD_is_a(md, "MD5")) { | 
203  |  | #ifdef FIPS_MODULE  | 
204  |  |         return 0;  | 
205  |  | #else  | 
206  | 0  |         if (MD5_Init((MD5_CTX *)md_state.c) <= 0)  | 
207  | 0  |             return 0;  | 
208  | 0  |         md_final_raw = tls1_md5_final_raw;  | 
209  | 0  |         md_transform =  | 
210  | 0  |             (void (*)(void *ctx, const unsigned char *block))MD5_Transform;  | 
211  | 0  |         md_size = 16;  | 
212  | 0  |         sslv3_pad_length = 48;  | 
213  | 0  |         length_is_big_endian = 0;  | 
214  | 0  | #endif  | 
215  | 45.4k  |     } else if (EVP_MD_is_a(md, "SHA1")) { | 
216  | 30.8k  |         if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)  | 
217  | 0  |             return 0;  | 
218  | 30.8k  |         md_final_raw = tls1_sha1_final_raw;  | 
219  | 30.8k  |         md_transform =  | 
220  | 30.8k  |             (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;  | 
221  | 30.8k  |         md_size = 20;  | 
222  | 30.8k  |     } else if (EVP_MD_is_a(md, "SHA2-224")) { | 
223  | 0  |         if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)  | 
224  | 0  |             return 0;  | 
225  | 0  |         md_final_raw = tls1_sha256_final_raw;  | 
226  | 0  |         md_transform =  | 
227  | 0  |             (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;  | 
228  | 0  |         md_size = 224 / 8;  | 
229  | 14.6k  |      } else if (EVP_MD_is_a(md, "SHA2-256")) { | 
230  | 10.0k  |         if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)  | 
231  | 0  |             return 0;  | 
232  | 10.0k  |         md_final_raw = tls1_sha256_final_raw;  | 
233  | 10.0k  |         md_transform =  | 
234  | 10.0k  |             (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;  | 
235  | 10.0k  |         md_size = 32;  | 
236  | 10.0k  |      } else if (EVP_MD_is_a(md, "SHA2-384")) { | 
237  | 4.59k  |         if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)  | 
238  | 0  |             return 0;  | 
239  | 4.59k  |         md_final_raw = tls1_sha512_final_raw;  | 
240  | 4.59k  |         md_transform =  | 
241  | 4.59k  |             (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;  | 
242  | 4.59k  |         md_size = 384 / 8;  | 
243  | 4.59k  |         md_block_size = 128;  | 
244  | 4.59k  |         md_length_size = 16;  | 
245  | 4.59k  |     } else if (EVP_MD_is_a(md, "SHA2-512")) { | 
246  | 0  |         if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)  | 
247  | 0  |             return 0;  | 
248  | 0  |         md_final_raw = tls1_sha512_final_raw;  | 
249  | 0  |         md_transform =  | 
250  | 0  |             (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;  | 
251  | 0  |         md_size = 64;  | 
252  | 0  |         md_block_size = 128;  | 
253  | 0  |         md_length_size = 16;  | 
254  | 0  |     } else { | 
255  |  |         /*  | 
256  |  |          * ssl3_cbc_record_digest_supported should have been called first to  | 
257  |  |          * check that the hash function is supported.  | 
258  |  |          */  | 
259  | 0  |         if (md_out_size != NULL)  | 
260  | 0  |             *md_out_size = 0;  | 
261  | 0  |         return ossl_assert(0);  | 
262  | 0  |     }  | 
263  |  |  | 
264  | 45.4k  |     if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)  | 
265  | 45.4k  |             || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)  | 
266  | 45.4k  |             || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))  | 
267  | 0  |         return 0;  | 
268  |  |  | 
269  | 45.4k  |     header_length = 13;  | 
270  | 45.4k  |     if (is_sslv3) { | 
271  | 7.94k  |         header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence  | 
272  | 7.94k  |                                                                   * number */  +  | 
273  | 7.94k  |             1 /* record type */  +  | 
274  | 7.94k  |             2 /* record length */ ;  | 
275  | 7.94k  |     }  | 
276  |  |  | 
277  |  |     /*  | 
278  |  |      * variance_blocks is the number of blocks of the hash that we have to  | 
279  |  |      * calculate in constant time because they could be altered by the  | 
280  |  |      * padding value. In SSLv3, the padding must be minimal so the end of  | 
281  |  |      * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively  | 
282  |  |      * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes  | 
283  |  |      * of hash termination (0x80 + 64-bit length) don't fit in the final  | 
284  |  |      * block, we say that the final two blocks can vary based on the padding.  | 
285  |  |      * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not  | 
286  |  |      * required to be minimal. Therefore we say that the final |variance_blocks|  | 
287  |  |      * blocks can  | 
288  |  |      * vary based on the padding. Later in the function, if the message is  | 
289  |  |      * short and there obviously cannot be this many blocks then  | 
290  |  |      * variance_blocks can be reduced.  | 
291  |  |      */  | 
292  | 45.4k  |     variance_blocks = is_sslv3 ? 2 : ( ((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1);  | 
293  |  |     /*  | 
294  |  |      * From now on we're dealing with the MAC, which conceptually has 13  | 
295  |  |      * bytes of `header' before the start of the data (TLS) or 71/75 bytes  | 
296  |  |      * (SSLv3)  | 
297  |  |      */  | 
298  | 45.4k  |     len = data_plus_mac_plus_padding_size + header_length;  | 
299  |  |     /*  | 
300  |  |      * max_mac_bytes contains the maximum bytes of bytes in the MAC,  | 
301  |  |      * including * |header|, assuming that there's no padding.  | 
302  |  |      */  | 
303  | 45.4k  |     max_mac_bytes = len - md_size - 1;  | 
304  |  |     /* num_blocks is the maximum number of hash blocks. */  | 
305  | 45.4k  |     num_blocks =  | 
306  | 45.4k  |         (max_mac_bytes + 1 + md_length_size + md_block_size -  | 
307  | 45.4k  |          1) / md_block_size;  | 
308  |  |     /*  | 
309  |  |      * In order to calculate the MAC in constant time we have to handle the  | 
310  |  |      * final blocks specially because the padding value could cause the end  | 
311  |  |      * to appear somewhere in the final |variance_blocks| blocks and we can't  | 
312  |  |      * leak where. However, |num_starting_blocks| worth of data can be hashed  | 
313  |  |      * right away because no padding value can affect whether they are  | 
314  |  |      * plaintext.  | 
315  |  |      */  | 
316  | 45.4k  |     num_starting_blocks = 0;  | 
317  |  |     /*  | 
318  |  |      * k is the starting byte offset into the conceptual header||data where  | 
319  |  |      * we start processing.  | 
320  |  |      */  | 
321  | 45.4k  |     k = 0;  | 
322  |  |     /*  | 
323  |  |      * mac_end_offset is the index just past the end of the data to be MACed.  | 
324  |  |      */  | 
325  | 45.4k  |     mac_end_offset = data_size + header_length;  | 
326  |  |     /*  | 
327  |  |      * c is the index of the 0x80 byte in the final hash block that contains  | 
328  |  |      * application data.  | 
329  |  |      */  | 
330  | 45.4k  |     c = mac_end_offset % md_block_size;  | 
331  |  |     /*  | 
332  |  |      * index_a is the hash block number that contains the 0x80 terminating  | 
333  |  |      * value.  | 
334  |  |      */  | 
335  | 45.4k  |     index_a = mac_end_offset / md_block_size;  | 
336  |  |     /*  | 
337  |  |      * index_b is the hash block number that contains the 64-bit hash length,  | 
338  |  |      * in bits.  | 
339  |  |      */  | 
340  | 45.4k  |     index_b = (mac_end_offset + md_length_size) / md_block_size;  | 
341  |  |     /*  | 
342  |  |      * bits is the hash-length in bits. It includes the additional hash block  | 
343  |  |      * for the masked HMAC key, or whole of |header| in the case of SSLv3.  | 
344  |  |      */  | 
345  |  |  | 
346  |  |     /*  | 
347  |  |      * For SSLv3, if we're going to have any starting blocks then we need at  | 
348  |  |      * least two because the header is larger than a single block.  | 
349  |  |      */  | 
350  | 45.4k  |     if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) { | 
351  | 1.48k  |         num_starting_blocks = num_blocks - variance_blocks;  | 
352  | 1.48k  |         k = md_block_size * num_starting_blocks;  | 
353  | 1.48k  |     }  | 
354  |  |  | 
355  | 45.4k  |     bits = 8 * mac_end_offset;  | 
356  | 45.4k  |     if (!is_sslv3) { | 
357  |  |         /*  | 
358  |  |          * Compute the initial HMAC block. For SSLv3, the padding and secret  | 
359  |  |          * bytes are included in |header| because they take more than a  | 
360  |  |          * single block.  | 
361  |  |          */  | 
362  | 37.5k  |         bits += 8 * md_block_size;  | 
363  | 37.5k  |         memset(hmac_pad, 0, md_block_size);  | 
364  | 37.5k  |         if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))  | 
365  | 0  |             return 0;  | 
366  | 37.5k  |         memcpy(hmac_pad, mac_secret, mac_secret_length);  | 
367  | 2.73M  |         for (i = 0; i < md_block_size; i++)  | 
368  | 2.69M  |             hmac_pad[i] ^= 0x36;  | 
369  |  |  | 
370  | 37.5k  |         md_transform(md_state.c, hmac_pad);  | 
371  | 37.5k  |     }  | 
372  |  |  | 
373  | 45.4k  |     if (length_is_big_endian) { | 
374  | 45.4k  |         memset(length_bytes, 0, md_length_size - 4);  | 
375  | 45.4k  |         length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);  | 
376  | 45.4k  |         length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);  | 
377  | 45.4k  |         length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);  | 
378  | 45.4k  |         length_bytes[md_length_size - 1] = (unsigned char)bits;  | 
379  | 45.4k  |     } else { | 
380  | 0  |         memset(length_bytes, 0, md_length_size);  | 
381  | 0  |         length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);  | 
382  | 0  |         length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);  | 
383  | 0  |         length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);  | 
384  | 0  |         length_bytes[md_length_size - 8] = (unsigned char)bits;  | 
385  | 0  |     }  | 
386  |  |  | 
387  | 45.4k  |     if (k > 0) { | 
388  | 1.48k  |         if (is_sslv3) { | 
389  | 261  |             size_t overhang;  | 
390  |  |  | 
391  |  |             /*  | 
392  |  |              * The SSLv3 header is larger than a single block. overhang is  | 
393  |  |              * the number of bytes beyond a single block that the header  | 
394  |  |              * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no  | 
395  |  |              * ciphersuites in SSLv3 that are not SHA1 or MD5 based and  | 
396  |  |              * therefore we can be confident that the header_length will be  | 
397  |  |              * greater than |md_block_size|. However we add a sanity check just  | 
398  |  |              * in case  | 
399  |  |              */  | 
400  | 261  |             if (header_length <= md_block_size) { | 
401  |  |                 /* Should never happen */  | 
402  | 0  |                 return 0;  | 
403  | 0  |             }  | 
404  | 261  |             overhang = header_length - md_block_size;  | 
405  | 261  |             md_transform(md_state.c, header);  | 
406  | 261  |             memcpy(first_block, header + md_block_size, overhang);  | 
407  | 261  |             memcpy(first_block + overhang, data, md_block_size - overhang);  | 
408  | 261  |             md_transform(md_state.c, first_block);  | 
409  | 10.7k  |             for (i = 1; i < k / md_block_size - 1; i++)  | 
410  | 10.4k  |                 md_transform(md_state.c, data + md_block_size * i - overhang);  | 
411  | 1.22k  |         } else { | 
412  |  |             /* k is a multiple of md_block_size. */  | 
413  | 1.22k  |             memcpy(first_block, header, 13);  | 
414  | 1.22k  |             memcpy(first_block + 13, data, md_block_size - 13);  | 
415  | 1.22k  |             md_transform(md_state.c, first_block);  | 
416  | 29.1k  |             for (i = 1; i < k / md_block_size; i++)  | 
417  | 27.9k  |                 md_transform(md_state.c, data + md_block_size * i - 13);  | 
418  | 1.22k  |         }  | 
419  | 1.48k  |     }  | 
420  |  |  | 
421  | 45.4k  |     memset(mac_out, 0, sizeof(mac_out));  | 
422  |  |  | 
423  |  |     /*  | 
424  |  |      * We now process the final hash blocks. For each block, we construct it  | 
425  |  |      * in constant time. If the |i==index_a| then we'll include the 0x80  | 
426  |  |      * bytes and zero pad etc. For each block we selectively copy it, in  | 
427  |  |      * constant time, to |mac_out|.  | 
428  |  |      */  | 
429  | 322k  |     for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;  | 
430  | 277k  |          i++) { | 
431  | 277k  |         unsigned char block[MAX_HASH_BLOCK_SIZE];  | 
432  | 277k  |         unsigned char is_block_a = constant_time_eq_8_s(i, index_a);  | 
433  | 277k  |         unsigned char is_block_b = constant_time_eq_8_s(i, index_b);  | 
434  | 19.4M  |         for (j = 0; j < md_block_size; j++) { | 
435  | 19.2M  |             unsigned char b = 0, is_past_c, is_past_cp1;  | 
436  | 19.2M  |             if (k < header_length)  | 
437  | 1.01M  |                 b = header[k];  | 
438  | 18.2M  |             else if (k < data_plus_mac_plus_padding_size + header_length)  | 
439  | 3.00M  |                 b = data[k - header_length];  | 
440  | 19.2M  |             k++;  | 
441  |  |  | 
442  | 19.2M  |             is_past_c = is_block_a & constant_time_ge_8_s(j, c);  | 
443  | 19.2M  |             is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);  | 
444  |  |             /*  | 
445  |  |              * If this is the block containing the end of the application  | 
446  |  |              * data, and we are at the offset for the 0x80 value, then  | 
447  |  |              * overwrite b with 0x80.  | 
448  |  |              */  | 
449  | 19.2M  |             b = constant_time_select_8(is_past_c, 0x80, b);  | 
450  |  |             /*  | 
451  |  |              * If this block contains the end of the application data  | 
452  |  |              * and we're past the 0x80 value then just write zero.  | 
453  |  |              */  | 
454  | 19.2M  |             b = b & ~is_past_cp1;  | 
455  |  |             /*  | 
456  |  |              * If this is index_b (the final block), but not index_a (the end  | 
457  |  |              * of the data), then the 64-bit length didn't fit into index_a  | 
458  |  |              * and we're having to add an extra block of zeros.  | 
459  |  |              */  | 
460  | 19.2M  |             b &= ~is_block_b | is_block_a;  | 
461  |  |  | 
462  |  |             /*  | 
463  |  |              * The final bytes of one of the blocks contains the length.  | 
464  |  |              */  | 
465  | 19.2M  |             if (j >= md_block_size - md_length_size) { | 
466  |  |                 /* If this is index_b, write a length byte. */  | 
467  | 2.40M  |                 b = constant_time_select_8(is_block_b,  | 
468  | 2.40M  |                                            length_bytes[j -  | 
469  | 2.40M  |                                                         (md_block_size -  | 
470  | 2.40M  |                                                          md_length_size)], b);  | 
471  | 2.40M  |             }  | 
472  | 19.2M  |             block[j] = b;  | 
473  | 19.2M  |         }  | 
474  |  |  | 
475  | 277k  |         md_transform(md_state.c, block);  | 
476  | 277k  |         md_final_raw(md_state.c, block);  | 
477  |  |         /* If this is index_b, copy the hash value to |mac_out|. */  | 
478  | 7.31M  |         for (j = 0; j < md_size; j++)  | 
479  | 7.03M  |             mac_out[j] |= block[j] & is_block_b;  | 
480  | 277k  |     }  | 
481  |  |  | 
482  | 45.4k  |     md_ctx = EVP_MD_CTX_new();  | 
483  | 45.4k  |     if (md_ctx == NULL)  | 
484  | 0  |         goto err;  | 
485  |  |  | 
486  | 45.4k  |     if (EVP_DigestInit_ex(md_ctx, md, NULL /* engine */ ) <= 0)  | 
487  | 0  |         goto err;  | 
488  | 45.4k  |     if (is_sslv3) { | 
489  |  |         /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */  | 
490  | 7.94k  |         memset(hmac_pad, 0x5c, sslv3_pad_length);  | 
491  |  |  | 
492  | 7.94k  |         if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0  | 
493  | 7.94k  |             || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0  | 
494  | 7.94k  |             || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)  | 
495  | 0  |             goto err;  | 
496  | 37.5k  |     } else { | 
497  |  |         /* Complete the HMAC in the standard manner. */  | 
498  | 2.73M  |         for (i = 0; i < md_block_size; i++)  | 
499  | 2.69M  |             hmac_pad[i] ^= 0x6a;  | 
500  |  |  | 
501  | 37.5k  |         if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0  | 
502  | 37.5k  |             || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)  | 
503  | 0  |             goto err;  | 
504  | 37.5k  |     }  | 
505  | 45.4k  |     ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);  | 
506  | 45.4k  |     if (ret && md_out_size)  | 
507  | 45.4k  |         *md_out_size = md_out_size_u;  | 
508  |  |  | 
509  | 45.4k  |     ret = 1;  | 
510  | 45.4k  |  err:  | 
511  | 45.4k  |     EVP_MD_CTX_free(md_ctx);  | 
512  | 45.4k  |     return ret;  | 
513  | 45.4k  | }  |