Coverage Report

Created: 2025-06-13 06:58

/src/openssl31/ssl/t1_lib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <openssl/objects.h>
13
#include <openssl/evp.h>
14
#include <openssl/hmac.h>
15
#include <openssl/core_names.h>
16
#include <openssl/ocsp.h>
17
#include <openssl/conf.h>
18
#include <openssl/x509v3.h>
19
#include <openssl/dh.h>
20
#include <openssl/bn.h>
21
#include <openssl/provider.h>
22
#include <openssl/param_build.h>
23
#include "internal/nelem.h"
24
#include "internal/sizes.h"
25
#include "internal/tlsgroups.h"
26
#include "internal/cryptlib.h"
27
#include "ssl_local.h"
28
#include <openssl/ct.h>
29
30
static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
31
static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
32
33
SSL3_ENC_METHOD const TLSv1_enc_data = {
34
    tls1_enc,
35
    tls1_mac,
36
    tls1_setup_key_block,
37
    tls1_generate_master_secret,
38
    tls1_change_cipher_state,
39
    tls1_final_finish_mac,
40
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42
    tls1_alert_code,
43
    tls1_export_keying_material,
44
    0,
45
    ssl3_set_handshake_header,
46
    tls_close_construct_packet,
47
    ssl3_handshake_write
48
};
49
50
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51
    tls1_enc,
52
    tls1_mac,
53
    tls1_setup_key_block,
54
    tls1_generate_master_secret,
55
    tls1_change_cipher_state,
56
    tls1_final_finish_mac,
57
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
58
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
59
    tls1_alert_code,
60
    tls1_export_keying_material,
61
    SSL_ENC_FLAG_EXPLICIT_IV,
62
    ssl3_set_handshake_header,
63
    tls_close_construct_packet,
64
    ssl3_handshake_write
65
};
66
67
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
68
    tls1_enc,
69
    tls1_mac,
70
    tls1_setup_key_block,
71
    tls1_generate_master_secret,
72
    tls1_change_cipher_state,
73
    tls1_final_finish_mac,
74
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
75
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
76
    tls1_alert_code,
77
    tls1_export_keying_material,
78
    SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
79
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
80
    ssl3_set_handshake_header,
81
    tls_close_construct_packet,
82
    ssl3_handshake_write
83
};
84
85
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
86
    tls13_enc,
87
    tls1_mac,
88
    tls13_setup_key_block,
89
    tls13_generate_master_secret,
90
    tls13_change_cipher_state,
91
    tls13_final_finish_mac,
92
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
93
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
94
    tls13_alert_code,
95
    tls13_export_keying_material,
96
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
97
    ssl3_set_handshake_header,
98
    tls_close_construct_packet,
99
    ssl3_handshake_write
100
};
101
102
long tls1_default_timeout(void)
103
71.9k
{
104
    /*
105
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
106
     * http, the cache would over fill
107
     */
108
71.9k
    return (60 * 60 * 2);
109
71.9k
}
110
111
int tls1_new(SSL *s)
112
71.8k
{
113
71.8k
    if (!ssl3_new(s))
114
0
        return 0;
115
71.8k
    if (!s->method->ssl_clear(s))
116
0
        return 0;
117
118
71.8k
    return 1;
119
71.8k
}
120
121
void tls1_free(SSL *s)
122
20.0k
{
123
20.0k
    OPENSSL_free(s->ext.session_ticket);
124
20.0k
    ssl3_free(s);
125
20.0k
}
126
127
int tls1_clear(SSL *s)
128
97.8k
{
129
97.8k
    if (!ssl3_clear(s))
130
0
        return 0;
131
132
97.8k
    if (s->method->version == TLS_ANY_VERSION)
133
97.8k
        s->version = TLS_MAX_VERSION_INTERNAL;
134
0
    else
135
0
        s->version = s->method->version;
136
137
97.8k
    return 1;
138
97.8k
}
139
140
/* Legacy NID to group_id mapping. Only works for groups we know about */
141
static struct {
142
    int nid;
143
    uint16_t group_id;
144
} nid_to_group[] = {
145
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
146
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
147
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
148
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
149
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
150
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
151
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
152
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
153
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
154
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
155
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
156
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
157
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
158
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
159
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
160
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
161
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
162
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
163
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
164
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
165
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
166
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
167
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
168
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
169
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
170
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
171
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
172
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
173
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
174
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
175
    {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
176
    {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
177
    {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
178
    {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
179
    {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
180
    {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
181
    {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
182
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
183
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
184
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
185
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
186
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
187
};
188
189
static const unsigned char ecformats_default[] = {
190
    TLSEXT_ECPOINTFORMAT_uncompressed,
191
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
192
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
193
};
194
195
/* The default curves */
196
static const uint16_t supported_groups_default[] = {
197
    29,                      /* X25519 (29) */
198
    23,                      /* secp256r1 (23) */
199
    30,                      /* X448 (30) */
200
    25,                      /* secp521r1 (25) */
201
    24,                      /* secp384r1 (24) */
202
    34,                      /* GC256A (34) */
203
    35,                      /* GC256B (35) */
204
    36,                      /* GC256C (36) */
205
    37,                      /* GC256D (37) */
206
    38,                      /* GC512A (38) */
207
    39,                      /* GC512B (39) */
208
    40,                      /* GC512C (40) */
209
    0x100,                   /* ffdhe2048 (0x100) */
210
    0x101,                   /* ffdhe3072 (0x101) */
211
    0x102,                   /* ffdhe4096 (0x102) */
212
    0x103,                   /* ffdhe6144 (0x103) */
213
    0x104,                   /* ffdhe8192 (0x104) */
214
};
215
216
static const uint16_t suiteb_curves[] = {
217
    TLSEXT_curve_P_256,
218
    TLSEXT_curve_P_384
219
};
220
221
struct provider_group_data_st {
222
    SSL_CTX *ctx;
223
    OSSL_PROVIDER *provider;
224
};
225
226
530k
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
227
static OSSL_CALLBACK add_provider_groups;
228
static int add_provider_groups(const OSSL_PARAM params[], void *data)
229
2.48M
{
230
2.48M
    struct provider_group_data_st *pgd = data;
231
2.48M
    SSL_CTX *ctx = pgd->ctx;
232
2.48M
    OSSL_PROVIDER *provider = pgd->provider;
233
2.48M
    const OSSL_PARAM *p;
234
2.48M
    TLS_GROUP_INFO *ginf = NULL;
235
2.48M
    EVP_KEYMGMT *keymgmt;
236
2.48M
    unsigned int gid;
237
2.48M
    unsigned int is_kem = 0;
238
2.48M
    int ret = 0;
239
240
2.48M
    if (ctx->group_list_max_len == ctx->group_list_len) {
241
265k
        TLS_GROUP_INFO *tmp = NULL;
242
243
265k
        if (ctx->group_list_max_len == 0)
244
48.2k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
245
265k
                                 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
246
216k
        else
247
216k
            tmp = OPENSSL_realloc(ctx->group_list,
248
265k
                                  (ctx->group_list_max_len
249
265k
                                   + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
250
265k
                                  * sizeof(TLS_GROUP_INFO));
251
265k
        if (tmp == NULL) {
252
0
            ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
253
0
            return 0;
254
0
        }
255
265k
        ctx->group_list = tmp;
256
265k
        memset(tmp + ctx->group_list_max_len,
257
265k
               0,
258
265k
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
259
265k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
260
265k
    }
261
262
2.48M
    ginf = &ctx->group_list[ctx->group_list_len];
263
264
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
265
2.48M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
266
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
267
0
        goto err;
268
0
    }
269
2.48M
    ginf->tlsname = OPENSSL_strdup(p->data);
270
2.48M
    if (ginf->tlsname == NULL) {
271
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
272
0
        goto err;
273
0
    }
274
275
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
276
2.48M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
277
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
278
0
        goto err;
279
0
    }
280
2.48M
    ginf->realname = OPENSSL_strdup(p->data);
281
2.48M
    if (ginf->realname == NULL) {
282
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
283
0
        goto err;
284
0
    }
285
286
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
287
2.48M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
288
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
289
0
        goto err;
290
0
    }
291
2.48M
    ginf->group_id = (uint16_t)gid;
292
293
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
294
2.48M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
295
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
296
0
        goto err;
297
0
    }
298
2.48M
    ginf->algorithm = OPENSSL_strdup(p->data);
299
2.48M
    if (ginf->algorithm == NULL) {
300
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
301
0
        goto err;
302
0
    }
303
304
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
305
2.48M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
306
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
307
0
        goto err;
308
0
    }
309
310
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
311
2.48M
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
312
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
313
0
        goto err;
314
0
    }
315
2.48M
    ginf->is_kem = 1 & is_kem;
316
317
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
318
2.48M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
319
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
320
0
        goto err;
321
0
    }
322
323
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
324
2.48M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
325
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
326
0
        goto err;
327
0
    }
328
329
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
330
2.48M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
331
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
332
0
        goto err;
333
0
    }
334
335
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
336
2.48M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
337
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
338
0
        goto err;
339
0
    }
340
    /*
341
     * Now check that the algorithm is actually usable for our property query
342
     * string. Regardless of the result we still return success because we have
343
     * successfully processed this group, even though we may decide not to use
344
     * it.
345
     */
346
2.48M
    ret = 1;
347
2.48M
    ERR_set_mark();
348
2.48M
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
349
2.48M
    if (keymgmt != NULL) {
350
        /*
351
         * We have successfully fetched the algorithm - however if the provider
352
         * doesn't match this one then we ignore it.
353
         *
354
         * Note: We're cheating a little here. Technically if the same algorithm
355
         * is available from more than one provider then it is undefined which
356
         * implementation you will get back. Theoretically this could be
357
         * different every time...we assume here that you'll always get the
358
         * same one back if you repeat the exact same fetch. Is this a reasonable
359
         * assumption to make (in which case perhaps we should document this
360
         * behaviour)?
361
         */
362
2.48M
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
363
            /* We have a match - so we will use this group */
364
2.48M
            ctx->group_list_len++;
365
2.48M
            ginf = NULL;
366
2.48M
        }
367
2.48M
        EVP_KEYMGMT_free(keymgmt);
368
2.48M
    }
369
2.48M
    ERR_pop_to_mark();
370
2.48M
 err:
371
2.48M
    if (ginf != NULL) {
372
0
        OPENSSL_free(ginf->tlsname);
373
0
        OPENSSL_free(ginf->realname);
374
0
        OPENSSL_free(ginf->algorithm);
375
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
376
0
    }
377
2.48M
    return ret;
378
2.48M
}
379
380
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
381
158k
{
382
158k
    struct provider_group_data_st pgd;
383
384
158k
    pgd.ctx = vctx;
385
158k
    pgd.provider = provider;
386
158k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
387
158k
                                          add_provider_groups, &pgd);
388
158k
}
389
390
int ssl_load_groups(SSL_CTX *ctx)
391
48.2k
{
392
48.2k
    size_t i, j, num_deflt_grps = 0;
393
48.2k
    uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
394
395
48.2k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
396
0
        return 0;
397
398
868k
    for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
399
39.3M
        for (j = 0; j < ctx->group_list_len; j++) {
400
38.9M
            if (ctx->group_list[j].group_id == supported_groups_default[i]) {
401
482k
                tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
402
482k
                break;
403
482k
            }
404
38.9M
        }
405
820k
    }
406
407
48.2k
    if (num_deflt_grps == 0)
408
0
        return 1;
409
410
48.2k
    ctx->ext.supported_groups_default
411
48.2k
        = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
412
413
48.2k
    if (ctx->ext.supported_groups_default == NULL) {
414
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
415
0
        return 0;
416
0
    }
417
418
48.2k
    memcpy(ctx->ext.supported_groups_default,
419
48.2k
           tmp_supp_groups,
420
48.2k
           num_deflt_grps * sizeof(tmp_supp_groups[0]));
421
48.2k
    ctx->ext.supported_groups_default_len = num_deflt_grps;
422
423
48.2k
    return 1;
424
48.2k
}
425
426
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
427
248k
{
428
248k
    size_t i;
429
430
1.39M
    for (i = 0; i < ctx->group_list_len; i++) {
431
1.39M
        if (strcmp(ctx->group_list[i].tlsname, name) == 0
432
1.39M
                || strcmp(ctx->group_list[i].realname, name) == 0)
433
248k
            return ctx->group_list[i].group_id;
434
1.39M
    }
435
436
0
    return 0;
437
248k
}
438
439
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
440
1.57M
{
441
1.57M
    size_t i;
442
443
44.7M
    for (i = 0; i < ctx->group_list_len; i++) {
444
44.7M
        if (ctx->group_list[i].group_id == group_id)
445
1.57M
            return &ctx->group_list[i];
446
44.7M
    }
447
448
0
    return NULL;
449
1.57M
}
450
451
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
452
724k
{
453
724k
    size_t i;
454
455
724k
    if (group_id == 0)
456
0
        return NID_undef;
457
458
    /*
459
     * Return well known Group NIDs - for backwards compatibility. This won't
460
     * work for groups we don't know about.
461
     */
462
23.3M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
463
23.3M
    {
464
23.3M
        if (nid_to_group[i].group_id == group_id)
465
686k
            return nid_to_group[i].nid;
466
23.3M
    }
467
37.2k
    if (!include_unknown)
468
37.2k
        return NID_undef;
469
0
    return TLSEXT_nid_unknown | (int)group_id;
470
37.2k
}
471
472
uint16_t tls1_nid2group_id(int nid)
473
13.7k
{
474
13.7k
    size_t i;
475
476
    /*
477
     * Return well known Group ids - for backwards compatibility. This won't
478
     * work for groups we don't know about.
479
     */
480
317k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
481
317k
    {
482
317k
        if (nid_to_group[i].nid == nid)
483
13.7k
            return nid_to_group[i].group_id;
484
317k
    }
485
486
4
    return 0;
487
13.7k
}
488
489
/*
490
 * Set *pgroups to the supported groups list and *pgroupslen to
491
 * the number of groups supported.
492
 */
493
void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
494
                               size_t *pgroupslen)
495
230k
{
496
    /* For Suite B mode only include P-256, P-384 */
497
230k
    switch (tls1_suiteb(s)) {
498
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
499
0
        *pgroups = suiteb_curves;
500
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
501
0
        break;
502
503
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
504
0
        *pgroups = suiteb_curves;
505
0
        *pgroupslen = 1;
506
0
        break;
507
508
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
509
0
        *pgroups = suiteb_curves + 1;
510
0
        *pgroupslen = 1;
511
0
        break;
512
513
230k
    default:
514
230k
        if (s->ext.supportedgroups == NULL) {
515
154k
            *pgroups = s->ctx->ext.supported_groups_default;
516
154k
            *pgroupslen = s->ctx->ext.supported_groups_default_len;
517
154k
        } else {
518
75.8k
            *pgroups = s->ext.supportedgroups;
519
75.8k
            *pgroupslen = s->ext.supportedgroups_len;
520
75.8k
        }
521
230k
        break;
522
230k
    }
523
230k
}
524
525
int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
526
                    int isec, int *okfortls13)
527
435k
{
528
435k
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
529
435k
    int ret;
530
531
435k
    if (okfortls13 != NULL)
532
332k
        *okfortls13 = 0;
533
534
435k
    if (ginfo == NULL)
535
0
        return 0;
536
537
435k
    if (SSL_IS_DTLS(s)) {
538
0
        if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
539
0
            return 0;
540
0
        if (ginfo->maxdtls == 0)
541
0
            ret = 1;
542
0
        else
543
0
            ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
544
0
        if (ginfo->mindtls > 0)
545
0
            ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
546
435k
    } else {
547
435k
        if (ginfo->mintls < 0 || ginfo->maxtls < 0)
548
0
            return 0;
549
435k
        if (ginfo->maxtls == 0)
550
435k
            ret = 1;
551
0
        else
552
0
            ret = (minversion <= ginfo->maxtls);
553
435k
        if (ginfo->mintls > 0)
554
435k
            ret &= (maxversion >= ginfo->mintls);
555
435k
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
556
330k
            *okfortls13 = (ginfo->maxtls == 0)
557
330k
                          || (ginfo->maxtls >= TLS1_3_VERSION);
558
435k
    }
559
435k
    ret &= !isec
560
435k
           || strcmp(ginfo->algorithm, "EC") == 0
561
435k
           || strcmp(ginfo->algorithm, "X25519") == 0
562
435k
           || strcmp(ginfo->algorithm, "X448") == 0;
563
564
435k
    return ret;
565
435k
}
566
567
/* See if group is allowed by security callback */
568
int tls_group_allowed(SSL *s, uint16_t group, int op)
569
724k
{
570
724k
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
571
724k
    unsigned char gtmp[2];
572
573
724k
    if (ginfo == NULL)
574
0
        return 0;
575
576
724k
    gtmp[0] = group >> 8;
577
724k
    gtmp[1] = group & 0xff;
578
724k
    return ssl_security(s, op, ginfo->secbits,
579
724k
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
580
724k
}
581
582
/* Return 1 if "id" is in "list" */
583
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
584
47.7k
{
585
47.7k
    size_t i;
586
307k
    for (i = 0; i < listlen; i++)
587
284k
        if (list[i] == id)
588
23.8k
            return 1;
589
23.8k
    return 0;
590
47.7k
}
591
592
/*-
593
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
594
 * if there is no match.
595
 * For nmatch == -1, return number of matches
596
 * For nmatch == -2, return the id of the group to use for
597
 * a tmp key, or 0 if there is no match.
598
 */
599
uint16_t tls1_shared_group(SSL *s, int nmatch)
600
12.3k
{
601
12.3k
    const uint16_t *pref, *supp;
602
12.3k
    size_t num_pref, num_supp, i;
603
12.3k
    int k;
604
12.3k
    SSL_CTX *ctx = s->ctx;
605
606
    /* Can't do anything on client side */
607
12.3k
    if (s->server == 0)
608
0
        return 0;
609
12.3k
    if (nmatch == -2) {
610
2.87k
        if (tls1_suiteb(s)) {
611
            /*
612
             * For Suite B ciphersuite determines curve: we already know
613
             * these are acceptable due to previous checks.
614
             */
615
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
616
617
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
618
0
                return TLSEXT_curve_P_256;
619
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
620
0
                return TLSEXT_curve_P_384;
621
            /* Should never happen */
622
0
            return 0;
623
0
        }
624
        /* If not Suite B just return first preference shared curve */
625
2.87k
        nmatch = 0;
626
2.87k
    }
627
    /*
628
     * If server preference set, our groups are the preference order
629
     * otherwise peer decides.
630
     */
631
12.3k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
632
0
        tls1_get_supported_groups(s, &pref, &num_pref);
633
0
        tls1_get_peer_groups(s, &supp, &num_supp);
634
12.3k
    } else {
635
12.3k
        tls1_get_peer_groups(s, &pref, &num_pref);
636
12.3k
        tls1_get_supported_groups(s, &supp, &num_supp);
637
12.3k
    }
638
639
27.5k
    for (k = 0, i = 0; i < num_pref; i++) {
640
21.2k
        uint16_t id = pref[i];
641
21.2k
        const TLS_GROUP_INFO *inf;
642
643
21.2k
        if (!tls1_in_list(id, supp, num_supp)
644
21.2k
                || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
645
13.0k
            continue;
646
8.21k
        inf = tls1_group_id_lookup(ctx, id);
647
8.21k
        if (!ossl_assert(inf != NULL))
648
0
            return 0;
649
8.21k
        if (SSL_IS_DTLS(s)) {
650
0
            if (inf->maxdtls == -1)
651
0
                continue;
652
0
            if ((inf->mindtls != 0 && DTLS_VERSION_LT(s->version, inf->mindtls))
653
0
                    || (inf->maxdtls != 0
654
0
                        && DTLS_VERSION_GT(s->version, inf->maxdtls)))
655
0
                continue;
656
8.21k
        } else {
657
8.21k
            if (inf->maxtls == -1)
658
0
                continue;
659
8.21k
            if ((inf->mintls != 0 && s->version < inf->mintls)
660
8.21k
                    || (inf->maxtls != 0 && s->version > inf->maxtls))
661
2.23k
                continue;
662
8.21k
        }
663
664
5.98k
        if (nmatch == k)
665
5.98k
            return id;
666
0
         k++;
667
0
    }
668
6.32k
    if (nmatch == -1)
669
0
        return k;
670
    /* Out of range (nmatch > k). */
671
6.32k
    return 0;
672
6.32k
}
673
674
int tls1_set_groups(uint16_t **pext, size_t *pextlen,
675
                    int *groups, size_t ngroups)
676
0
{
677
0
    uint16_t *glist;
678
0
    size_t i;
679
    /*
680
     * Bitmap of groups included to detect duplicates: two variables are added
681
     * to detect duplicates as some values are more than 32.
682
     */
683
0
    unsigned long *dup_list = NULL;
684
0
    unsigned long dup_list_egrp = 0;
685
0
    unsigned long dup_list_dhgrp = 0;
686
687
0
    if (ngroups == 0) {
688
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
689
0
        return 0;
690
0
    }
691
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
692
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
693
0
        return 0;
694
0
    }
695
0
    for (i = 0; i < ngroups; i++) {
696
0
        unsigned long idmask;
697
0
        uint16_t id;
698
0
        id = tls1_nid2group_id(groups[i]);
699
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
700
0
            goto err;
701
0
        idmask = 1L << (id & 0x00FF);
702
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
703
0
        if (!id || ((*dup_list) & idmask))
704
0
            goto err;
705
0
        *dup_list |= idmask;
706
0
        glist[i] = id;
707
0
    }
708
0
    OPENSSL_free(*pext);
709
0
    *pext = glist;
710
0
    *pextlen = ngroups;
711
0
    return 1;
712
0
err:
713
0
    OPENSSL_free(glist);
714
0
    return 0;
715
0
}
716
717
# define GROUPLIST_INCREMENT   40
718
# define GROUP_NAME_BUFFER_LENGTH 64
719
typedef struct {
720
    SSL_CTX *ctx;
721
    size_t gidcnt;
722
    size_t gidmax;
723
    uint16_t *gid_arr;
724
} gid_cb_st;
725
726
static int gid_cb(const char *elem, int len, void *arg)
727
{
728
    gid_cb_st *garg = arg;
729
    size_t i;
730
    uint16_t gid = 0;
731
    char etmp[GROUP_NAME_BUFFER_LENGTH];
732
733
    if (elem == NULL)
734
        return 0;
735
    if (garg->gidcnt == garg->gidmax) {
736
        uint16_t *tmp =
737
            OPENSSL_realloc(garg->gid_arr,
738
                            (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
739
        if (tmp == NULL)
740
            return 0;
741
        garg->gidmax += GROUPLIST_INCREMENT;
742
        garg->gid_arr = tmp;
743
    }
744
    if (len > (int)(sizeof(etmp) - 1))
745
        return 0;
746
    memcpy(etmp, elem, len);
747
    etmp[len] = 0;
748
749
    gid = tls1_group_name2id(garg->ctx, etmp);
750
    if (gid == 0) {
751
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
752
                       "group '%s' cannot be set", etmp);
753
        return 0;
754
    }
755
    for (i = 0; i < garg->gidcnt; i++)
756
        if (garg->gid_arr[i] == gid)
757
            return 0;
758
    garg->gid_arr[garg->gidcnt++] = gid;
759
    return 1;
760
}
761
762
/* Set groups based on a colon separated list */
763
int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
764
                         const char *str)
765
{
766
    gid_cb_st gcb;
767
    uint16_t *tmparr;
768
    int ret = 0;
769
770
    gcb.gidcnt = 0;
771
    gcb.gidmax = GROUPLIST_INCREMENT;
772
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
773
    if (gcb.gid_arr == NULL)
774
        return 0;
775
    gcb.ctx = ctx;
776
    if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
777
        goto end;
778
    if (pext == NULL) {
779
        ret = 1;
780
        goto end;
781
    }
782
783
    /*
784
     * gid_cb ensurse there are no duplicates so we can just go ahead and set
785
     * the result
786
     */
787
    tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
788
    if (tmparr == NULL)
789
        goto end;
790
    OPENSSL_free(*pext);
791
    *pext = tmparr;
792
    *pextlen = gcb.gidcnt;
793
    ret = 1;
794
 end:
795
    OPENSSL_free(gcb.gid_arr);
796
    return ret;
797
}
798
799
/* Check a group id matches preferences */
800
int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
801
20.5k
    {
802
20.5k
    const uint16_t *groups;
803
20.5k
    size_t groups_len;
804
805
20.5k
    if (group_id == 0)
806
9
        return 0;
807
808
    /* Check for Suite B compliance */
809
20.5k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
810
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
811
812
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
813
0
            if (group_id != TLSEXT_curve_P_256)
814
0
                return 0;
815
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
816
0
            if (group_id != TLSEXT_curve_P_384)
817
0
                return 0;
818
0
        } else {
819
            /* Should never happen */
820
0
            return 0;
821
0
        }
822
0
    }
823
824
20.5k
    if (check_own_groups) {
825
        /* Check group is one of our preferences */
826
7.13k
        tls1_get_supported_groups(s, &groups, &groups_len);
827
7.13k
        if (!tls1_in_list(group_id, groups, groups_len))
828
62
            return 0;
829
7.13k
    }
830
831
20.5k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
832
0
        return 0;
833
834
    /* For clients, nothing more to check */
835
20.5k
    if (!s->server)
836
7.06k
        return 1;
837
838
    /* Check group is one of peers preferences */
839
13.4k
    tls1_get_peer_groups(s, &groups, &groups_len);
840
841
    /*
842
     * RFC 4492 does not require the supported elliptic curves extension
843
     * so if it is not sent we can just choose any curve.
844
     * It is invalid to send an empty list in the supported groups
845
     * extension, so groups_len == 0 always means no extension.
846
     */
847
13.4k
    if (groups_len == 0)
848
7.97k
            return 1;
849
5.47k
    return tls1_in_list(group_id, groups, groups_len);
850
13.4k
}
851
852
void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
853
                         size_t *num_formats)
854
33.8k
{
855
    /*
856
     * If we have a custom point format list use it otherwise use default
857
     */
858
33.8k
    if (s->ext.ecpointformats) {
859
0
        *pformats = s->ext.ecpointformats;
860
0
        *num_formats = s->ext.ecpointformats_len;
861
33.8k
    } else {
862
33.8k
        *pformats = ecformats_default;
863
        /* For Suite B we don't support char2 fields */
864
33.8k
        if (tls1_suiteb(s))
865
0
            *num_formats = sizeof(ecformats_default) - 1;
866
33.8k
        else
867
33.8k
            *num_formats = sizeof(ecformats_default);
868
33.8k
    }
869
33.8k
}
870
871
/* Check a key is compatible with compression extension */
872
static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
873
14.0k
{
874
14.0k
    unsigned char comp_id;
875
14.0k
    size_t i;
876
14.0k
    int point_conv;
877
878
    /* If not an EC key nothing to check */
879
14.0k
    if (!EVP_PKEY_is_a(pkey, "EC"))
880
0
        return 1;
881
882
883
    /* Get required compression id */
884
14.0k
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
885
14.0k
    if (point_conv == 0)
886
0
        return 0;
887
14.0k
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
888
14.0k
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
889
14.0k
    } else if (SSL_IS_TLS13(s)) {
890
        /*
891
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
892
         * this check.
893
         */
894
0
        return 1;
895
58
    } else {
896
58
        int field_type = EVP_PKEY_get_field_type(pkey);
897
898
58
        if (field_type == NID_X9_62_prime_field)
899
54
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
900
4
        else if (field_type == NID_X9_62_characteristic_two_field)
901
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
902
4
        else
903
4
            return 0;
904
58
    }
905
    /*
906
     * If point formats extension present check it, otherwise everything is
907
     * supported (see RFC4492).
908
     */
909
14.0k
    if (s->ext.peer_ecpointformats == NULL)
910
12.2k
        return 1;
911
912
3.50k
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
913
3.18k
        if (s->ext.peer_ecpointformats[i] == comp_id)
914
1.52k
            return 1;
915
3.18k
    }
916
321
    return 0;
917
1.84k
}
918
919
/* Return group id of a key */
920
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
921
13.7k
{
922
13.7k
    int curve_nid = ssl_get_EC_curve_nid(pkey);
923
924
13.7k
    if (curve_nid == NID_undef)
925
0
        return 0;
926
13.7k
    return tls1_nid2group_id(curve_nid);
927
13.7k
}
928
929
/*
930
 * Check cert parameters compatible with extensions: currently just checks EC
931
 * certificates have compatible curves and compression.
932
 */
933
static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
934
41.2k
{
935
41.2k
    uint16_t group_id;
936
41.2k
    EVP_PKEY *pkey;
937
41.2k
    pkey = X509_get0_pubkey(x);
938
41.2k
    if (pkey == NULL)
939
0
        return 0;
940
    /* If not EC nothing to do */
941
41.2k
    if (!EVP_PKEY_is_a(pkey, "EC"))
942
27.5k
        return 1;
943
    /* Check compression */
944
13.7k
    if (!tls1_check_pkey_comp(s, pkey))
945
305
        return 0;
946
13.4k
    group_id = tls1_get_group_id(pkey);
947
    /*
948
     * For a server we allow the certificate to not be in our list of supported
949
     * groups.
950
     */
951
13.4k
    if (!tls1_check_group_id(s, group_id, !s->server))
952
2.75k
        return 0;
953
    /*
954
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
955
     * SHA384+P-384.
956
     */
957
10.6k
    if (check_ee_md && tls1_suiteb(s)) {
958
0
        int check_md;
959
0
        size_t i;
960
961
        /* Check to see we have necessary signing algorithm */
962
0
        if (group_id == TLSEXT_curve_P_256)
963
0
            check_md = NID_ecdsa_with_SHA256;
964
0
        else if (group_id == TLSEXT_curve_P_384)
965
0
            check_md = NID_ecdsa_with_SHA384;
966
0
        else
967
0
            return 0;           /* Should never happen */
968
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
969
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
970
0
                return 1;;
971
0
        }
972
0
        return 0;
973
0
    }
974
10.6k
    return 1;
975
10.6k
}
976
977
/*
978
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
979
 * @s: SSL connection
980
 * @cid: Cipher ID we're considering using
981
 *
982
 * Checks that the kECDHE cipher suite we're considering using
983
 * is compatible with the client extensions.
984
 *
985
 * Returns 0 when the cipher can't be used or 1 when it can.
986
 */
987
int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
988
13.4k
{
989
    /* If not Suite B just need a shared group */
990
13.4k
    if (!tls1_suiteb(s))
991
13.4k
        return tls1_shared_group(s, 0) != 0;
992
    /*
993
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
994
     * curves permitted.
995
     */
996
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
997
0
        return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
998
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
999
0
        return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
1000
1001
0
    return 0;
1002
0
}
1003
1004
/* Default sigalg schemes */
1005
static const uint16_t tls12_sigalgs[] = {
1006
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1007
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1008
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1009
    TLSEXT_SIGALG_ed25519,
1010
    TLSEXT_SIGALG_ed448,
1011
1012
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1013
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1014
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1015
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1016
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1017
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1018
1019
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1020
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1021
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1022
1023
    TLSEXT_SIGALG_ecdsa_sha224,
1024
    TLSEXT_SIGALG_ecdsa_sha1,
1025
1026
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1027
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1028
1029
    TLSEXT_SIGALG_dsa_sha224,
1030
    TLSEXT_SIGALG_dsa_sha1,
1031
1032
    TLSEXT_SIGALG_dsa_sha256,
1033
    TLSEXT_SIGALG_dsa_sha384,
1034
    TLSEXT_SIGALG_dsa_sha512,
1035
1036
#ifndef OPENSSL_NO_GOST
1037
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1038
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1039
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1040
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1041
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1042
#endif
1043
};
1044
1045
1046
static const uint16_t suiteb_sigalgs[] = {
1047
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1048
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1049
};
1050
1051
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1052
    {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1053
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1054
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1055
    {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1056
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1057
     NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1058
    {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1059
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1060
     NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1061
    {"ed25519", TLSEXT_SIGALG_ed25519,
1062
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1063
     NID_undef, NID_undef, 1},
1064
    {"ed448", TLSEXT_SIGALG_ed448,
1065
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1066
     NID_undef, NID_undef, 1},
1067
    {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1068
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1069
     NID_ecdsa_with_SHA224, NID_undef, 1},
1070
    {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1071
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1072
     NID_ecdsa_with_SHA1, NID_undef, 1},
1073
    {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1074
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1075
     NID_undef, NID_undef, 1},
1076
    {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1077
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1078
     NID_undef, NID_undef, 1},
1079
    {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1080
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1081
     NID_undef, NID_undef, 1},
1082
    {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1083
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1084
     NID_undef, NID_undef, 1},
1085
    {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1086
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1087
     NID_undef, NID_undef, 1},
1088
    {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1089
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1090
     NID_undef, NID_undef, 1},
1091
    {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1092
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1093
     NID_sha256WithRSAEncryption, NID_undef, 1},
1094
    {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1095
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1096
     NID_sha384WithRSAEncryption, NID_undef, 1},
1097
    {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1098
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1099
     NID_sha512WithRSAEncryption, NID_undef, 1},
1100
    {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1101
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1102
     NID_sha224WithRSAEncryption, NID_undef, 1},
1103
    {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1104
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1105
     NID_sha1WithRSAEncryption, NID_undef, 1},
1106
    {NULL, TLSEXT_SIGALG_dsa_sha256,
1107
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1108
     NID_dsa_with_SHA256, NID_undef, 1},
1109
    {NULL, TLSEXT_SIGALG_dsa_sha384,
1110
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1111
     NID_undef, NID_undef, 1},
1112
    {NULL, TLSEXT_SIGALG_dsa_sha512,
1113
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1114
     NID_undef, NID_undef, 1},
1115
    {NULL, TLSEXT_SIGALG_dsa_sha224,
1116
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1117
     NID_undef, NID_undef, 1},
1118
    {NULL, TLSEXT_SIGALG_dsa_sha1,
1119
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1120
     NID_dsaWithSHA1, NID_undef, 1},
1121
#ifndef OPENSSL_NO_GOST
1122
    {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1123
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1124
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1125
     NID_undef, NID_undef, 1},
1126
    {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1127
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1128
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1129
     NID_undef, NID_undef, 1},
1130
    {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1131
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1132
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1133
     NID_undef, NID_undef, 1},
1134
    {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1135
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1136
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1137
     NID_undef, NID_undef, 1},
1138
    {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1139
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1140
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1141
     NID_undef, NID_undef, 1}
1142
#endif
1143
};
1144
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1145
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1146
    "rsa_pkcs1_md5_sha1", 0,
1147
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1148
     EVP_PKEY_RSA, SSL_PKEY_RSA,
1149
     NID_undef, NID_undef, 1
1150
};
1151
1152
/*
1153
 * Default signature algorithm values used if signature algorithms not present.
1154
 * From RFC5246. Note: order must match certificate index order.
1155
 */
1156
static const uint16_t tls_default_sigalg[] = {
1157
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1158
    0, /* SSL_PKEY_RSA_PSS_SIGN */
1159
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1160
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1161
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1162
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1163
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1164
    0, /* SSL_PKEY_ED25519 */
1165
    0, /* SSL_PKEY_ED448 */
1166
};
1167
1168
int ssl_setup_sig_algs(SSL_CTX *ctx)
1169
24.4k
{
1170
24.4k
    size_t i;
1171
24.4k
    const SIGALG_LOOKUP *lu;
1172
24.4k
    SIGALG_LOOKUP *cache
1173
24.4k
        = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1174
24.4k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1175
24.4k
    int ret = 0;
1176
1177
24.4k
    if (cache == NULL || tmpkey == NULL)
1178
0
        goto err;
1179
1180
24.4k
    ERR_set_mark();
1181
24.4k
    for (i = 0, lu = sigalg_lookup_tbl;
1182
709k
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1183
684k
        EVP_PKEY_CTX *pctx;
1184
1185
684k
        cache[i] = *lu;
1186
1187
        /*
1188
         * Check hash is available.
1189
         * This test is not perfect. A provider could have support
1190
         * for a signature scheme, but not a particular hash. However the hash
1191
         * could be available from some other loaded provider. In that case it
1192
         * could be that the signature is available, and the hash is available
1193
         * independently - but not as a combination. We ignore this for now.
1194
         */
1195
684k
        if (lu->hash != NID_undef
1196
684k
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1197
122k
            cache[i].enabled = 0;
1198
122k
            continue;
1199
122k
        }
1200
1201
562k
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1202
0
            cache[i].enabled = 0;
1203
0
            continue;
1204
0
        }
1205
562k
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1206
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1207
562k
        if (pctx == NULL)
1208
0
            cache[i].enabled = 0;
1209
562k
        EVP_PKEY_CTX_free(pctx);
1210
562k
    }
1211
24.4k
    ERR_pop_to_mark();
1212
24.4k
    ctx->sigalg_lookup_cache = cache;
1213
24.4k
    cache = NULL;
1214
1215
24.4k
    ret = 1;
1216
24.4k
 err:
1217
24.4k
    OPENSSL_free(cache);
1218
24.4k
    EVP_PKEY_free(tmpkey);
1219
24.4k
    return ret;
1220
24.4k
}
1221
1222
/* Lookup TLS signature algorithm */
1223
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1224
6.97M
{
1225
6.97M
    size_t i;
1226
6.97M
    const SIGALG_LOOKUP *lu;
1227
1228
6.97M
    for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1229
         /* cache should have the same number of elements as sigalg_lookup_tbl */
1230
111M
         i < OSSL_NELEM(sigalg_lookup_tbl);
1231
110M
         lu++, i++) {
1232
110M
        if (lu->sigalg == sigalg) {
1233
6.73M
            if (!lu->enabled)
1234
712k
                return NULL;
1235
6.01M
            return lu;
1236
6.73M
        }
1237
110M
    }
1238
244k
    return NULL;
1239
6.97M
}
1240
/* Lookup hash: return 0 if invalid or not enabled */
1241
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1242
1.96M
{
1243
1.96M
    const EVP_MD *md;
1244
1.96M
    if (lu == NULL)
1245
0
        return 0;
1246
    /* lu->hash == NID_undef means no associated digest */
1247
1.96M
    if (lu->hash == NID_undef) {
1248
176k
        md = NULL;
1249
1.78M
    } else {
1250
1.78M
        md = ssl_md(ctx, lu->hash_idx);
1251
1.78M
        if (md == NULL)
1252
0
            return 0;
1253
1.78M
    }
1254
1.96M
    if (pmd)
1255
1.91M
        *pmd = md;
1256
1.96M
    return 1;
1257
1.96M
}
1258
1259
/*
1260
 * Check if key is large enough to generate RSA-PSS signature.
1261
 *
1262
 * The key must greater than or equal to 2 * hash length + 2.
1263
 * SHA512 has a hash length of 64 bytes, which is incompatible
1264
 * with a 128 byte (1024 bit) key.
1265
 */
1266
484
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1267
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1268
                                      const SIGALG_LOOKUP *lu)
1269
484
{
1270
484
    const EVP_MD *md;
1271
1272
484
    if (pkey == NULL)
1273
0
        return 0;
1274
484
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1275
0
        return 0;
1276
484
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1277
0
        return 0;
1278
484
    return 1;
1279
484
}
1280
1281
/*
1282
 * Returns a signature algorithm when the peer did not send a list of supported
1283
 * signature algorithms. The signature algorithm is fixed for the certificate
1284
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1285
 * certificate type from |s| will be used.
1286
 * Returns the signature algorithm to use, or NULL on error.
1287
 */
1288
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1289
129k
{
1290
129k
    if (idx == -1) {
1291
10.0k
        if (s->server) {
1292
10.0k
            size_t i;
1293
1294
            /* Work out index corresponding to ciphersuite */
1295
13.2k
            for (i = 0; i < SSL_PKEY_NUM; i++) {
1296
13.2k
                const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1297
1298
13.2k
                if (clu == NULL)
1299
0
                    continue;
1300
13.2k
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1301
10.0k
                    idx = i;
1302
10.0k
                    break;
1303
10.0k
                }
1304
13.2k
            }
1305
1306
            /*
1307
             * Some GOST ciphersuites allow more than one signature algorithms
1308
             * */
1309
10.0k
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1310
0
                int real_idx;
1311
1312
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1313
0
                     real_idx--) {
1314
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1315
0
                        idx = real_idx;
1316
0
                        break;
1317
0
                    }
1318
0
                }
1319
0
            }
1320
            /*
1321
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1322
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1323
             */
1324
10.0k
            else if (idx == SSL_PKEY_GOST12_256) {
1325
0
                int real_idx;
1326
1327
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1328
0
                     real_idx--) {
1329
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
1330
0
                         idx = real_idx;
1331
0
                         break;
1332
0
                     }
1333
0
                }
1334
0
            }
1335
10.0k
        } else {
1336
0
            idx = s->cert->key - s->cert->pkeys;
1337
0
        }
1338
10.0k
    }
1339
129k
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1340
14.0k
        return NULL;
1341
115k
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1342
106k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1343
1344
106k
        if (lu == NULL)
1345
69.3k
            return NULL;
1346
36.9k
        if (!tls1_lookup_md(s->ctx, lu, NULL))
1347
0
            return NULL;
1348
36.9k
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1349
0
            return NULL;
1350
36.9k
        return lu;
1351
36.9k
    }
1352
8.85k
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1353
0
        return NULL;
1354
8.85k
    return &legacy_rsa_sigalg;
1355
8.85k
}
1356
/* Set peer sigalg based key type */
1357
int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1358
1.14k
{
1359
1.14k
    size_t idx;
1360
1.14k
    const SIGALG_LOOKUP *lu;
1361
1362
1.14k
    if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1363
0
        return 0;
1364
1.14k
    lu = tls1_get_legacy_sigalg(s, idx);
1365
1.14k
    if (lu == NULL)
1366
7
        return 0;
1367
1.14k
    s->s3.tmp.peer_sigalg = lu;
1368
1.14k
    return 1;
1369
1.14k
}
1370
1371
size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1372
252k
{
1373
    /*
1374
     * If Suite B mode use Suite B sigalgs only, ignore any other
1375
     * preferences.
1376
     */
1377
252k
    switch (tls1_suiteb(s)) {
1378
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
1379
0
        *psigs = suiteb_sigalgs;
1380
0
        return OSSL_NELEM(suiteb_sigalgs);
1381
1382
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1383
0
        *psigs = suiteb_sigalgs;
1384
0
        return 1;
1385
1386
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
1387
0
        *psigs = suiteb_sigalgs + 1;
1388
0
        return 1;
1389
252k
    }
1390
    /*
1391
     *  We use client_sigalgs (if not NULL) if we're a server
1392
     *  and sending a certificate request or if we're a client and
1393
     *  determining which shared algorithm to use.
1394
     */
1395
252k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1396
0
        *psigs = s->cert->client_sigalgs;
1397
0
        return s->cert->client_sigalgslen;
1398
252k
    } else if (s->cert->conf_sigalgs) {
1399
0
        *psigs = s->cert->conf_sigalgs;
1400
0
        return s->cert->conf_sigalgslen;
1401
252k
    } else {
1402
252k
        *psigs = tls12_sigalgs;
1403
252k
        return OSSL_NELEM(tls12_sigalgs);
1404
252k
    }
1405
252k
}
1406
1407
/*
1408
 * Called by servers only. Checks that we have a sig alg that supports the
1409
 * specified EC curve.
1410
 */
1411
int tls_check_sigalg_curve(const SSL *s, int curve)
1412
0
{
1413
0
   const uint16_t *sigs;
1414
0
   size_t siglen, i;
1415
1416
0
    if (s->cert->conf_sigalgs) {
1417
0
        sigs = s->cert->conf_sigalgs;
1418
0
        siglen = s->cert->conf_sigalgslen;
1419
0
    } else {
1420
0
        sigs = tls12_sigalgs;
1421
0
        siglen = OSSL_NELEM(tls12_sigalgs);
1422
0
    }
1423
1424
0
    for (i = 0; i < siglen; i++) {
1425
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1426
1427
0
        if (lu == NULL)
1428
0
            continue;
1429
0
        if (lu->sig == EVP_PKEY_EC
1430
0
                && lu->curve != NID_undef
1431
0
                && curve == lu->curve)
1432
0
            return 1;
1433
0
    }
1434
1435
0
    return 0;
1436
0
}
1437
1438
/*
1439
 * Return the number of security bits for the signature algorithm, or 0 on
1440
 * error.
1441
 */
1442
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1443
549k
{
1444
549k
    const EVP_MD *md = NULL;
1445
549k
    int secbits = 0;
1446
1447
549k
    if (!tls1_lookup_md(ctx, lu, &md))
1448
0
        return 0;
1449
549k
    if (md != NULL)
1450
515k
    {
1451
515k
        int md_type = EVP_MD_get_type(md);
1452
1453
        /* Security bits: half digest bits */
1454
515k
        secbits = EVP_MD_get_size(md) * 4;
1455
        /*
1456
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
1457
         * they're no longer accepted at security level 1. The real values don't
1458
         * really matter as long as they're lower than 80, which is our
1459
         * security level 1.
1460
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1461
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1462
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1463
         * puts a chosen-prefix attack for MD5 at 2^39.
1464
         */
1465
515k
        if (md_type == NID_sha1)
1466
65.4k
            secbits = 64;
1467
449k
        else if (md_type == NID_md5_sha1)
1468
4.08k
            secbits = 67;
1469
445k
        else if (md_type == NID_md5)
1470
0
            secbits = 39;
1471
515k
    } else {
1472
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1473
34.6k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1474
15.4k
            secbits = 128;
1475
19.2k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1476
19.2k
            secbits = 224;
1477
34.6k
    }
1478
549k
    return secbits;
1479
549k
}
1480
1481
/*
1482
 * Check signature algorithm is consistent with sent supported signature
1483
 * algorithms and if so set relevant digest and signature scheme in
1484
 * s.
1485
 */
1486
int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1487
820
{
1488
820
    const uint16_t *sent_sigs;
1489
820
    const EVP_MD *md = NULL;
1490
820
    char sigalgstr[2];
1491
820
    size_t sent_sigslen, i, cidx;
1492
820
    int pkeyid = -1;
1493
820
    const SIGALG_LOOKUP *lu;
1494
820
    int secbits = 0;
1495
1496
820
    pkeyid = EVP_PKEY_get_id(pkey);
1497
    /* Should never happen */
1498
820
    if (pkeyid == -1)
1499
0
        return -1;
1500
820
    if (SSL_IS_TLS13(s)) {
1501
        /* Disallow DSA for TLS 1.3 */
1502
0
        if (pkeyid == EVP_PKEY_DSA) {
1503
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1504
0
            return 0;
1505
0
        }
1506
        /* Only allow PSS for TLS 1.3 */
1507
0
        if (pkeyid == EVP_PKEY_RSA)
1508
0
            pkeyid = EVP_PKEY_RSA_PSS;
1509
0
    }
1510
820
    lu = tls1_lookup_sigalg(s, sig);
1511
    /*
1512
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1513
     * is consistent with signature: RSA keys can be used for RSA-PSS
1514
     */
1515
820
    if (lu == NULL
1516
820
        || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1517
820
        || (pkeyid != lu->sig
1518
791
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1519
40
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1520
40
        return 0;
1521
40
    }
1522
    /* Check the sigalg is consistent with the key OID */
1523
780
    if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
1524
780
            || lu->sig_idx != (int)cidx) {
1525
2
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1526
2
        return 0;
1527
2
    }
1528
1529
778
    if (pkeyid == EVP_PKEY_EC) {
1530
1531
        /* Check point compression is permitted */
1532
275
        if (!tls1_check_pkey_comp(s, pkey)) {
1533
12
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1534
12
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
1535
12
            return 0;
1536
12
        }
1537
1538
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1539
263
        if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1540
0
            int curve = ssl_get_EC_curve_nid(pkey);
1541
1542
0
            if (lu->curve != NID_undef && curve != lu->curve) {
1543
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1544
0
                return 0;
1545
0
            }
1546
0
        }
1547
263
        if (!SSL_IS_TLS13(s)) {
1548
            /* Check curve matches extensions */
1549
263
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1550
2
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1551
2
                return 0;
1552
2
            }
1553
261
            if (tls1_suiteb(s)) {
1554
                /* Check sigalg matches a permissible Suite B value */
1555
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1556
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1557
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1558
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
1559
0
                    return 0;
1560
0
                }
1561
0
            }
1562
261
        }
1563
503
    } else if (tls1_suiteb(s)) {
1564
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1565
0
        return 0;
1566
0
    }
1567
1568
    /* Check signature matches a type we sent */
1569
764
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1570
9.99k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1571
9.99k
        if (sig == *sent_sigs)
1572
764
            break;
1573
9.99k
    }
1574
    /* Allow fallback to SHA1 if not strict mode */
1575
764
    if (i == sent_sigslen && (lu->hash != NID_sha1
1576
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1577
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1578
0
        return 0;
1579
0
    }
1580
764
    if (!tls1_lookup_md(s->ctx, lu, &md)) {
1581
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1582
0
        return 0;
1583
0
    }
1584
    /*
1585
     * Make sure security callback allows algorithm. For historical
1586
     * reasons we have to pass the sigalg as a two byte char array.
1587
     */
1588
764
    sigalgstr[0] = (sig >> 8) & 0xff;
1589
764
    sigalgstr[1] = sig & 0xff;
1590
764
    secbits = sigalg_security_bits(s->ctx, lu);
1591
764
    if (secbits == 0 ||
1592
764
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1593
764
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
1594
764
                      (void *)sigalgstr)) {
1595
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1596
0
        return 0;
1597
0
    }
1598
    /* Store the sigalg the peer uses */
1599
764
    s->s3.tmp.peer_sigalg = lu;
1600
764
    return 1;
1601
764
}
1602
1603
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1604
0
{
1605
0
    if (s->s3.tmp.peer_sigalg == NULL)
1606
0
        return 0;
1607
0
    *pnid = s->s3.tmp.peer_sigalg->sig;
1608
0
    return 1;
1609
0
}
1610
1611
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1612
0
{
1613
0
    if (s->s3.tmp.sigalg == NULL)
1614
0
        return 0;
1615
0
    *pnid = s->s3.tmp.sigalg->sig;
1616
0
    return 1;
1617
0
}
1618
1619
/*
1620
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1621
 * supported, doesn't appear in supported signature algorithms, isn't supported
1622
 * by the enabled protocol versions or by the security level.
1623
 *
1624
 * This function should only be used for checking which ciphers are supported
1625
 * by the client.
1626
 *
1627
 * Call ssl_cipher_disabled() to check that it's enabled or not.
1628
 */
1629
int ssl_set_client_disabled(SSL *s)
1630
166k
{
1631
166k
    s->s3.tmp.mask_a = 0;
1632
166k
    s->s3.tmp.mask_k = 0;
1633
166k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1634
166k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1635
166k
                                &s->s3.tmp.max_ver, NULL) != 0)
1636
0
        return 0;
1637
166k
#ifndef OPENSSL_NO_PSK
1638
    /* with PSK there must be client callback set */
1639
166k
    if (!s->psk_client_callback) {
1640
166k
        s->s3.tmp.mask_a |= SSL_aPSK;
1641
166k
        s->s3.tmp.mask_k |= SSL_PSK;
1642
166k
    }
1643
166k
#endif                          /* OPENSSL_NO_PSK */
1644
166k
#ifndef OPENSSL_NO_SRP
1645
166k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1646
166k
        s->s3.tmp.mask_a |= SSL_aSRP;
1647
166k
        s->s3.tmp.mask_k |= SSL_kSRP;
1648
166k
    }
1649
166k
#endif
1650
166k
    return 1;
1651
166k
}
1652
1653
/*
1654
 * ssl_cipher_disabled - check that a cipher is disabled or not
1655
 * @s: SSL connection that you want to use the cipher on
1656
 * @c: cipher to check
1657
 * @op: Security check that you want to do
1658
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1659
 *
1660
 * Returns 1 when it's disabled, 0 when enabled.
1661
 */
1662
int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1663
7.50M
{
1664
7.50M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
1665
7.50M
        || c->algorithm_auth & s->s3.tmp.mask_a)
1666
3.18M
        return 1;
1667
4.32M
    if (s->s3.tmp.max_ver == 0)
1668
0
        return 1;
1669
4.32M
    if (!SSL_IS_DTLS(s)) {
1670
4.32M
        int min_tls = c->min_tls;
1671
1672
        /*
1673
         * For historical reasons we will allow ECHDE to be selected by a server
1674
         * in SSLv3 if we are a client
1675
         */
1676
4.32M
        if (min_tls == TLS1_VERSION && ecdhe
1677
4.32M
                && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1678
3.20k
            min_tls = SSL3_VERSION;
1679
1680
4.32M
        if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1681
19
            return 1;
1682
4.32M
    }
1683
4.32M
    if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1684
0
                           || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1685
0
        return 1;
1686
1687
4.32M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1688
4.32M
}
1689
1690
int tls_use_ticket(SSL *s)
1691
74.5k
{
1692
74.5k
    if ((s->options & SSL_OP_NO_TICKET))
1693
0
        return 0;
1694
74.5k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1695
74.5k
}
1696
1697
int tls1_set_server_sigalgs(SSL *s)
1698
6.38k
{
1699
6.38k
    size_t i;
1700
1701
    /* Clear any shared signature algorithms */
1702
6.38k
    OPENSSL_free(s->shared_sigalgs);
1703
6.38k
    s->shared_sigalgs = NULL;
1704
6.38k
    s->shared_sigalgslen = 0;
1705
    /* Clear certificate validity flags */
1706
63.8k
    for (i = 0; i < SSL_PKEY_NUM; i++)
1707
57.4k
        s->s3.tmp.valid_flags[i] = 0;
1708
    /*
1709
     * If peer sent no signature algorithms check to see if we support
1710
     * the default algorithm for each certificate type
1711
     */
1712
6.38k
    if (s->s3.tmp.peer_cert_sigalgs == NULL
1713
6.38k
            && s->s3.tmp.peer_sigalgs == NULL) {
1714
4.27k
        const uint16_t *sent_sigs;
1715
4.27k
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1716
1717
42.7k
        for (i = 0; i < SSL_PKEY_NUM; i++) {
1718
38.5k
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1719
38.5k
            size_t j;
1720
1721
38.5k
            if (lu == NULL)
1722
25.6k
                continue;
1723
            /* Check default matches a type we sent */
1724
254k
            for (j = 0; j < sent_sigslen; j++) {
1725
252k
                if (lu->sigalg == sent_sigs[j]) {
1726
10.7k
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1727
10.7k
                        break;
1728
10.7k
                }
1729
252k
            }
1730
12.8k
        }
1731
4.27k
        return 1;
1732
4.27k
    }
1733
1734
2.10k
    if (!tls1_process_sigalgs(s)) {
1735
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
1736
0
        return 0;
1737
0
    }
1738
2.10k
    if (s->shared_sigalgs != NULL)
1739
2.07k
        return 1;
1740
1741
    /* Fatal error if no shared signature algorithms */
1742
2.10k
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1743
32
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1744
32
    return 0;
1745
2.10k
}
1746
1747
/*-
1748
 * Gets the ticket information supplied by the client if any.
1749
 *
1750
 *   hello: The parsed ClientHello data
1751
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
1752
 *       point to the resulting session.
1753
 */
1754
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1755
                                             SSL_SESSION **ret)
1756
12.0k
{
1757
12.0k
    size_t size;
1758
12.0k
    RAW_EXTENSION *ticketext;
1759
1760
12.0k
    *ret = NULL;
1761
12.0k
    s->ext.ticket_expected = 0;
1762
1763
    /*
1764
     * If tickets disabled or not supported by the protocol version
1765
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1766
     * resumption.
1767
     */
1768
12.0k
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1769
81
        return SSL_TICKET_NONE;
1770
1771
11.9k
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1772
11.9k
    if (!ticketext->present)
1773
10.3k
        return SSL_TICKET_NONE;
1774
1775
1.60k
    size = PACKET_remaining(&ticketext->data);
1776
1777
1.60k
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1778
1.60k
                              hello->session_id, hello->session_id_len, ret);
1779
11.9k
}
1780
1781
/*-
1782
 * tls_decrypt_ticket attempts to decrypt a session ticket.
1783
 *
1784
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1785
 * expecting a pre-shared key ciphersuite, in which case we have no use for
1786
 * session tickets and one will never be decrypted, nor will
1787
 * s->ext.ticket_expected be set to 1.
1788
 *
1789
 * Side effects:
1790
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
1791
 *   a new session ticket to the client because the client indicated support
1792
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1793
 *   a session ticket or we couldn't use the one it gave us, or if
1794
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1795
 *   Otherwise, s->ext.ticket_expected is set to 0.
1796
 *
1797
 *   etick: points to the body of the session ticket extension.
1798
 *   eticklen: the length of the session tickets extension.
1799
 *   sess_id: points at the session ID.
1800
 *   sesslen: the length of the session ID.
1801
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
1802
 *       point to the resulting session.
1803
 */
1804
SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1805
                                     size_t eticklen, const unsigned char *sess_id,
1806
                                     size_t sesslen, SSL_SESSION **psess)
1807
2.28k
{
1808
2.28k
    SSL_SESSION *sess = NULL;
1809
2.28k
    unsigned char *sdec;
1810
2.28k
    const unsigned char *p;
1811
2.28k
    int slen, ivlen, renew_ticket = 0, declen;
1812
2.28k
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1813
2.28k
    size_t mlen;
1814
2.28k
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1815
2.28k
    SSL_HMAC *hctx = NULL;
1816
2.28k
    EVP_CIPHER_CTX *ctx = NULL;
1817
2.28k
    SSL_CTX *tctx = s->session_ctx;
1818
1819
2.28k
    if (eticklen == 0) {
1820
        /*
1821
         * The client will accept a ticket but doesn't currently have
1822
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1823
         */
1824
682
        ret = SSL_TICKET_EMPTY;
1825
682
        goto end;
1826
682
    }
1827
1.59k
    if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1828
        /*
1829
         * Indicate that the ticket couldn't be decrypted rather than
1830
         * generating the session from ticket now, trigger
1831
         * abbreviated handshake based on external mechanism to
1832
         * calculate the master secret later.
1833
         */
1834
0
        ret = SSL_TICKET_NO_DECRYPT;
1835
0
        goto end;
1836
0
    }
1837
1838
    /* Need at least keyname + iv */
1839
1.59k
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1840
487
        ret = SSL_TICKET_NO_DECRYPT;
1841
487
        goto end;
1842
487
    }
1843
1844
    /* Initialize session ticket encryption and HMAC contexts */
1845
1.11k
    hctx = ssl_hmac_new(tctx);
1846
1.11k
    if (hctx == NULL) {
1847
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
1848
0
        goto end;
1849
0
    }
1850
1.11k
    ctx = EVP_CIPHER_CTX_new();
1851
1.11k
    if (ctx == NULL) {
1852
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
1853
0
        goto end;
1854
0
    }
1855
1.11k
#ifndef OPENSSL_NO_DEPRECATED_3_0
1856
1.11k
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1857
#else
1858
    if (tctx->ext.ticket_key_evp_cb != NULL)
1859
#endif
1860
0
    {
1861
0
        unsigned char *nctick = (unsigned char *)etick;
1862
0
        int rv = 0;
1863
1864
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
1865
0
            rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1866
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
1867
0
                                             ctx,
1868
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
1869
0
                                             0);
1870
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
1871
0
        else if (tctx->ext.ticket_key_cb != NULL)
1872
            /* if 0 is returned, write an empty ticket */
1873
0
            rv = tctx->ext.ticket_key_cb(s, nctick,
1874
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
1875
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1876
0
#endif
1877
0
        if (rv < 0) {
1878
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
1879
0
            goto end;
1880
0
        }
1881
0
        if (rv == 0) {
1882
0
            ret = SSL_TICKET_NO_DECRYPT;
1883
0
            goto end;
1884
0
        }
1885
0
        if (rv == 2)
1886
0
            renew_ticket = 1;
1887
1.11k
    } else {
1888
1.11k
        EVP_CIPHER *aes256cbc = NULL;
1889
1890
        /* Check key name matches */
1891
1.11k
        if (memcmp(etick, tctx->ext.tick_key_name,
1892
1.11k
                   TLSEXT_KEYNAME_LENGTH) != 0) {
1893
225
            ret = SSL_TICKET_NO_DECRYPT;
1894
225
            goto end;
1895
225
        }
1896
1897
887
        aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1898
887
                                     s->ctx->propq);
1899
887
        if (aes256cbc == NULL
1900
887
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1901
887
                             sizeof(tctx->ext.secure->tick_hmac_key),
1902
887
                             "SHA256") <= 0
1903
887
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1904
887
                                  tctx->ext.secure->tick_aes_key,
1905
887
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1906
0
            EVP_CIPHER_free(aes256cbc);
1907
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
1908
0
            goto end;
1909
0
        }
1910
887
        EVP_CIPHER_free(aes256cbc);
1911
887
        if (SSL_IS_TLS13(s))
1912
432
            renew_ticket = 1;
1913
887
    }
1914
    /*
1915
     * Attempt to process session ticket, first conduct sanity and integrity
1916
     * checks on ticket.
1917
     */
1918
887
    mlen = ssl_hmac_size(hctx);
1919
887
    if (mlen == 0) {
1920
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1921
0
        goto end;
1922
0
    }
1923
1924
887
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
1925
887
    if (ivlen < 0) {
1926
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1927
0
        goto end;
1928
0
    }
1929
1930
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1931
887
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
1932
74
        ret = SSL_TICKET_NO_DECRYPT;
1933
74
        goto end;
1934
74
    }
1935
813
    eticklen -= mlen;
1936
    /* Check HMAC of encrypted ticket */
1937
813
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1938
813
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1939
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1940
0
        goto end;
1941
0
    }
1942
1943
813
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1944
99
        ret = SSL_TICKET_NO_DECRYPT;
1945
99
        goto end;
1946
99
    }
1947
    /* Attempt to decrypt session data */
1948
    /* Move p after IV to start of encrypted ticket, update length */
1949
714
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
1950
714
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
1951
714
    sdec = OPENSSL_malloc(eticklen);
1952
714
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1953
714
                                          (int)eticklen) <= 0) {
1954
0
        OPENSSL_free(sdec);
1955
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1956
0
        goto end;
1957
0
    }
1958
714
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1959
54
        OPENSSL_free(sdec);
1960
54
        ret = SSL_TICKET_NO_DECRYPT;
1961
54
        goto end;
1962
54
    }
1963
660
    slen += declen;
1964
660
    p = sdec;
1965
1966
660
    sess = d2i_SSL_SESSION(NULL, &p, slen);
1967
660
    slen -= p - sdec;
1968
660
    OPENSSL_free(sdec);
1969
660
    if (sess) {
1970
        /* Some additional consistency checks */
1971
526
        if (slen != 0) {
1972
8
            SSL_SESSION_free(sess);
1973
8
            sess = NULL;
1974
8
            ret = SSL_TICKET_NO_DECRYPT;
1975
8
            goto end;
1976
8
        }
1977
        /*
1978
         * The session ID, if non-empty, is used by some clients to detect
1979
         * that the ticket has been accepted. So we copy it to the session
1980
         * structure. If it is empty set length to zero as required by
1981
         * standard.
1982
         */
1983
518
        if (sesslen) {
1984
206
            memcpy(sess->session_id, sess_id, sesslen);
1985
206
            sess->session_id_length = sesslen;
1986
206
        }
1987
518
        if (renew_ticket)
1988
299
            ret = SSL_TICKET_SUCCESS_RENEW;
1989
219
        else
1990
219
            ret = SSL_TICKET_SUCCESS;
1991
518
        goto end;
1992
526
    }
1993
134
    ERR_clear_error();
1994
    /*
1995
     * For session parse failure, indicate that we need to send a new ticket.
1996
     */
1997
134
    ret = SSL_TICKET_NO_DECRYPT;
1998
1999
2.28k
 end:
2000
2.28k
    EVP_CIPHER_CTX_free(ctx);
2001
2.28k
    ssl_hmac_free(hctx);
2002
2003
    /*
2004
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
2005
     * detected above. The callback is responsible for checking |ret| before it
2006
     * performs any action
2007
     */
2008
2.28k
    if (s->session_ctx->decrypt_ticket_cb != NULL
2009
2.28k
            && (ret == SSL_TICKET_EMPTY
2010
0
                || ret == SSL_TICKET_NO_DECRYPT
2011
0
                || ret == SSL_TICKET_SUCCESS
2012
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
2013
0
        size_t keyname_len = eticklen;
2014
0
        int retcb;
2015
2016
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2017
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
2018
0
        retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
2019
0
                                                  ret,
2020
0
                                                  s->session_ctx->ticket_cb_data);
2021
0
        switch (retcb) {
2022
0
        case SSL_TICKET_RETURN_ABORT:
2023
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2024
0
            break;
2025
2026
0
        case SSL_TICKET_RETURN_IGNORE:
2027
0
            ret = SSL_TICKET_NONE;
2028
0
            SSL_SESSION_free(sess);
2029
0
            sess = NULL;
2030
0
            break;
2031
2032
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
2033
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2034
0
                ret = SSL_TICKET_NO_DECRYPT;
2035
            /* else the value of |ret| will already do the right thing */
2036
0
            SSL_SESSION_free(sess);
2037
0
            sess = NULL;
2038
0
            break;
2039
2040
0
        case SSL_TICKET_RETURN_USE:
2041
0
        case SSL_TICKET_RETURN_USE_RENEW:
2042
0
            if (ret != SSL_TICKET_SUCCESS
2043
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
2044
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
2045
0
            else if (retcb == SSL_TICKET_RETURN_USE)
2046
0
                ret = SSL_TICKET_SUCCESS;
2047
0
            else
2048
0
                ret = SSL_TICKET_SUCCESS_RENEW;
2049
0
            break;
2050
2051
0
        default:
2052
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2053
0
        }
2054
0
    }
2055
2056
2.28k
    if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2057
2.28k
        switch (ret) {
2058
1.08k
        case SSL_TICKET_NO_DECRYPT:
2059
1.38k
        case SSL_TICKET_SUCCESS_RENEW:
2060
2.06k
        case SSL_TICKET_EMPTY:
2061
2.06k
            s->ext.ticket_expected = 1;
2062
2.28k
        }
2063
2.28k
    }
2064
2065
2.28k
    *psess = sess;
2066
2067
2.28k
    return ret;
2068
2.28k
}
2069
2070
/* Check to see if a signature algorithm is allowed */
2071
static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2072
2.20M
{
2073
2.20M
    unsigned char sigalgstr[2];
2074
2.20M
    int secbits;
2075
2076
2.20M
    if (lu == NULL || !lu->enabled)
2077
0
        return 0;
2078
    /* DSA is not allowed in TLS 1.3 */
2079
2.20M
    if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2080
2.71k
        return 0;
2081
    /*
2082
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2083
     * spec
2084
     */
2085
2.20M
    if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2086
2.20M
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2087
823k
            || lu->hash_idx == SSL_MD_MD5_IDX
2088
823k
            || lu->hash_idx == SSL_MD_SHA224_IDX))
2089
322k
        return 0;
2090
2091
    /* See if public key algorithm allowed */
2092
1.88M
    if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
2093
0
        return 0;
2094
2095
1.88M
    if (lu->sig == NID_id_GostR3410_2012_256
2096
1.88M
            || lu->sig == NID_id_GostR3410_2012_512
2097
1.88M
            || lu->sig == NID_id_GostR3410_2001) {
2098
        /* We never allow GOST sig algs on the server with TLSv1.3 */
2099
0
        if (s->server && SSL_IS_TLS13(s))
2100
0
            return 0;
2101
0
        if (!s->server
2102
0
                && s->method->version == TLS_ANY_VERSION
2103
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2104
0
            int i, num;
2105
0
            STACK_OF(SSL_CIPHER) *sk;
2106
2107
            /*
2108
             * We're a client that could negotiate TLSv1.3. We only allow GOST
2109
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2110
             * ciphersuites enabled.
2111
             */
2112
2113
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2114
0
                return 0;
2115
2116
0
            sk = SSL_get_ciphers(s);
2117
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2118
0
            for (i = 0; i < num; i++) {
2119
0
                const SSL_CIPHER *c;
2120
2121
0
                c = sk_SSL_CIPHER_value(sk, i);
2122
                /* Skip disabled ciphers */
2123
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2124
0
                    continue;
2125
2126
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2127
0
                    break;
2128
0
            }
2129
0
            if (i == num)
2130
0
                return 0;
2131
0
        }
2132
0
    }
2133
2134
    /* Finally see if security callback allows it */
2135
1.88M
    secbits = sigalg_security_bits(s->ctx, lu);
2136
1.88M
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2137
1.88M
    sigalgstr[1] = lu->sigalg & 0xff;
2138
1.88M
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2139
1.88M
}
2140
2141
/*
2142
 * Get a mask of disabled public key algorithms based on supported signature
2143
 * algorithms. For example if no signature algorithm supports RSA then RSA is
2144
 * disabled.
2145
 */
2146
2147
void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2148
166k
{
2149
166k
    const uint16_t *sigalgs;
2150
166k
    size_t i, sigalgslen;
2151
166k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2152
    /*
2153
     * Go through all signature algorithms seeing if we support any
2154
     * in disabled_mask.
2155
     */
2156
166k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2157
5.02M
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
2158
4.85M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2159
4.85M
        const SSL_CERT_LOOKUP *clu;
2160
2161
4.85M
        if (lu == NULL)
2162
499k
            continue;
2163
2164
4.36M
        clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2165
4.36M
        if (clu == NULL)
2166
0
                continue;
2167
2168
        /* If algorithm is disabled see if we can enable it */
2169
4.36M
        if ((clu->amask & disabled_mask) != 0
2170
4.36M
                && tls12_sigalg_allowed(s, op, lu))
2171
454k
            disabled_mask &= ~clu->amask;
2172
4.36M
    }
2173
166k
    *pmask_a |= disabled_mask;
2174
166k
}
2175
2176
int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2177
                       const uint16_t *psig, size_t psiglen)
2178
55.0k
{
2179
55.0k
    size_t i;
2180
55.0k
    int rv = 0;
2181
2182
1.66M
    for (i = 0; i < psiglen; i++, psig++) {
2183
1.60M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2184
2185
1.60M
        if (lu == NULL
2186
1.60M
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2187
376k
            continue;
2188
1.23M
        if (!WPACKET_put_bytes_u16(pkt, *psig))
2189
0
            return 0;
2190
        /*
2191
         * If TLS 1.3 must have at least one valid TLS 1.3 message
2192
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2193
         */
2194
1.23M
        if (rv == 0 && (!SSL_IS_TLS13(s)
2195
55.0k
            || (lu->sig != EVP_PKEY_RSA
2196
0
                && lu->hash != NID_sha1
2197
0
                && lu->hash != NID_sha224)))
2198
55.0k
            rv = 1;
2199
1.23M
    }
2200
55.0k
    if (rv == 0)
2201
55.0k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2202
55.0k
    return rv;
2203
55.0k
}
2204
2205
/* Given preference and allowed sigalgs set shared sigalgs */
2206
static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2207
                                   const uint16_t *pref, size_t preflen,
2208
                                   const uint16_t *allow, size_t allowlen)
2209
10.3k
{
2210
10.3k
    const uint16_t *ptmp, *atmp;
2211
10.3k
    size_t i, j, nmatch = 0;
2212
298k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2213
288k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2214
2215
        /* Skip disabled hashes or signature algorithms */
2216
288k
        if (lu == NULL
2217
288k
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2218
152k
            continue;
2219
1.91M
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2220
1.91M
            if (*ptmp == *atmp) {
2221
135k
                nmatch++;
2222
135k
                if (shsig)
2223
67.8k
                    *shsig++ = lu;
2224
135k
                break;
2225
135k
            }
2226
1.91M
        }
2227
135k
    }
2228
10.3k
    return nmatch;
2229
10.3k
}
2230
2231
/* Set shared signature algorithms for SSL structures */
2232
static int tls1_set_shared_sigalgs(SSL *s)
2233
5.21k
{
2234
5.21k
    const uint16_t *pref, *allow, *conf;
2235
5.21k
    size_t preflen, allowlen, conflen;
2236
5.21k
    size_t nmatch;
2237
5.21k
    const SIGALG_LOOKUP **salgs = NULL;
2238
5.21k
    CERT *c = s->cert;
2239
5.21k
    unsigned int is_suiteb = tls1_suiteb(s);
2240
2241
5.21k
    OPENSSL_free(s->shared_sigalgs);
2242
5.21k
    s->shared_sigalgs = NULL;
2243
5.21k
    s->shared_sigalgslen = 0;
2244
    /* If client use client signature algorithms if not NULL */
2245
5.21k
    if (!s->server && c->client_sigalgs && !is_suiteb) {
2246
0
        conf = c->client_sigalgs;
2247
0
        conflen = c->client_sigalgslen;
2248
5.21k
    } else if (c->conf_sigalgs && !is_suiteb) {
2249
0
        conf = c->conf_sigalgs;
2250
0
        conflen = c->conf_sigalgslen;
2251
0
    } else
2252
5.21k
        conflen = tls12_get_psigalgs(s, 0, &conf);
2253
5.21k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2254
0
        pref = conf;
2255
0
        preflen = conflen;
2256
0
        allow = s->s3.tmp.peer_sigalgs;
2257
0
        allowlen = s->s3.tmp.peer_sigalgslen;
2258
5.21k
    } else {
2259
5.21k
        allow = conf;
2260
5.21k
        allowlen = conflen;
2261
5.21k
        pref = s->s3.tmp.peer_sigalgs;
2262
5.21k
        preflen = s->s3.tmp.peer_sigalgslen;
2263
5.21k
    }
2264
5.21k
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2265
5.21k
    if (nmatch) {
2266
5.10k
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2267
0
            ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2268
0
            return 0;
2269
0
        }
2270
5.10k
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2271
5.10k
    } else {
2272
114
        salgs = NULL;
2273
114
    }
2274
5.21k
    s->shared_sigalgs = salgs;
2275
5.21k
    s->shared_sigalgslen = nmatch;
2276
5.21k
    return 1;
2277
5.21k
}
2278
2279
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2280
15.2k
{
2281
15.2k
    unsigned int stmp;
2282
15.2k
    size_t size, i;
2283
15.2k
    uint16_t *buf;
2284
2285
15.2k
    size = PACKET_remaining(pkt);
2286
2287
    /* Invalid data length */
2288
15.2k
    if (size == 0 || (size & 1) != 0)
2289
28
        return 0;
2290
2291
15.2k
    size >>= 1;
2292
2293
15.2k
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)  {
2294
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2295
0
        return 0;
2296
0
    }
2297
191k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2298
175k
        buf[i] = stmp;
2299
2300
15.2k
    if (i != size) {
2301
0
        OPENSSL_free(buf);
2302
0
        return 0;
2303
0
    }
2304
2305
15.2k
    OPENSSL_free(*pdest);
2306
15.2k
    *pdest = buf;
2307
15.2k
    *pdestlen = size;
2308
2309
15.2k
    return 1;
2310
15.2k
}
2311
2312
int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2313
6.54k
{
2314
    /* Extension ignored for inappropriate versions */
2315
6.54k
    if (!SSL_USE_SIGALGS(s))
2316
131
        return 1;
2317
    /* Should never happen */
2318
6.41k
    if (s->cert == NULL)
2319
0
        return 0;
2320
2321
6.41k
    if (cert)
2322
763
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2323
763
                             &s->s3.tmp.peer_cert_sigalgslen);
2324
5.65k
    else
2325
5.65k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2326
5.65k
                             &s->s3.tmp.peer_sigalgslen);
2327
2328
6.41k
}
2329
2330
/* Set preferred digest for each key type */
2331
2332
int tls1_process_sigalgs(SSL *s)
2333
5.21k
{
2334
5.21k
    size_t i;
2335
5.21k
    uint32_t *pvalid = s->s3.tmp.valid_flags;
2336
2337
5.21k
    if (!tls1_set_shared_sigalgs(s))
2338
0
        return 0;
2339
2340
57.8k
    for (i = 0; i < SSL_PKEY_NUM; i++)
2341
52.6k
        pvalid[i] = 0;
2342
2343
73.0k
    for (i = 0; i < s->shared_sigalgslen; i++) {
2344
67.8k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2345
67.8k
        int idx = sigptr->sig_idx;
2346
2347
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
2348
67.8k
        if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2349
1.12k
            continue;
2350
        /* If not disabled indicate we can explicitly sign */
2351
66.7k
        if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
2352
8.86k
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2353
66.7k
    }
2354
5.21k
    return 1;
2355
5.21k
}
2356
2357
int SSL_get_sigalgs(SSL *s, int idx,
2358
                    int *psign, int *phash, int *psignhash,
2359
                    unsigned char *rsig, unsigned char *rhash)
2360
0
{
2361
0
    uint16_t *psig = s->s3.tmp.peer_sigalgs;
2362
0
    size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2363
0
    if (psig == NULL || numsigalgs > INT_MAX)
2364
0
        return 0;
2365
0
    if (idx >= 0) {
2366
0
        const SIGALG_LOOKUP *lu;
2367
2368
0
        if (idx >= (int)numsigalgs)
2369
0
            return 0;
2370
0
        psig += idx;
2371
0
        if (rhash != NULL)
2372
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
2373
0
        if (rsig != NULL)
2374
0
            *rsig = (unsigned char)(*psig & 0xff);
2375
0
        lu = tls1_lookup_sigalg(s, *psig);
2376
0
        if (psign != NULL)
2377
0
            *psign = lu != NULL ? lu->sig : NID_undef;
2378
0
        if (phash != NULL)
2379
0
            *phash = lu != NULL ? lu->hash : NID_undef;
2380
0
        if (psignhash != NULL)
2381
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2382
0
    }
2383
0
    return (int)numsigalgs;
2384
0
}
2385
2386
int SSL_get_shared_sigalgs(SSL *s, int idx,
2387
                           int *psign, int *phash, int *psignhash,
2388
                           unsigned char *rsig, unsigned char *rhash)
2389
0
{
2390
0
    const SIGALG_LOOKUP *shsigalgs;
2391
0
    if (s->shared_sigalgs == NULL
2392
0
        || idx < 0
2393
0
        || idx >= (int)s->shared_sigalgslen
2394
0
        || s->shared_sigalgslen > INT_MAX)
2395
0
        return 0;
2396
0
    shsigalgs = s->shared_sigalgs[idx];
2397
0
    if (phash != NULL)
2398
0
        *phash = shsigalgs->hash;
2399
0
    if (psign != NULL)
2400
0
        *psign = shsigalgs->sig;
2401
0
    if (psignhash != NULL)
2402
0
        *psignhash = shsigalgs->sigandhash;
2403
0
    if (rsig != NULL)
2404
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2405
0
    if (rhash != NULL)
2406
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2407
0
    return (int)s->shared_sigalgslen;
2408
0
}
2409
2410
/* Maximum possible number of unique entries in sigalgs array */
2411
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2412
2413
typedef struct {
2414
    size_t sigalgcnt;
2415
    /* TLSEXT_SIGALG_XXX values */
2416
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2417
} sig_cb_st;
2418
2419
static void get_sigorhash(int *psig, int *phash, const char *str)
2420
0
{
2421
0
    if (strcmp(str, "RSA") == 0) {
2422
0
        *psig = EVP_PKEY_RSA;
2423
0
    } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2424
0
        *psig = EVP_PKEY_RSA_PSS;
2425
0
    } else if (strcmp(str, "DSA") == 0) {
2426
0
        *psig = EVP_PKEY_DSA;
2427
0
    } else if (strcmp(str, "ECDSA") == 0) {
2428
0
        *psig = EVP_PKEY_EC;
2429
0
    } else {
2430
0
        *phash = OBJ_sn2nid(str);
2431
0
        if (*phash == NID_undef)
2432
0
            *phash = OBJ_ln2nid(str);
2433
0
    }
2434
0
}
2435
/* Maximum length of a signature algorithm string component */
2436
#define TLS_MAX_SIGSTRING_LEN   40
2437
2438
static int sig_cb(const char *elem, int len, void *arg)
2439
0
{
2440
0
    sig_cb_st *sarg = arg;
2441
0
    size_t i;
2442
0
    const SIGALG_LOOKUP *s;
2443
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2444
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
2445
0
    if (elem == NULL)
2446
0
        return 0;
2447
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2448
0
        return 0;
2449
0
    if (len > (int)(sizeof(etmp) - 1))
2450
0
        return 0;
2451
0
    memcpy(etmp, elem, len);
2452
0
    etmp[len] = 0;
2453
0
    p = strchr(etmp, '+');
2454
    /*
2455
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2456
     * if there's no '+' in the provided name, look for the new-style combined
2457
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2458
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2459
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
2460
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
2461
     * in the table.
2462
     */
2463
0
    if (p == NULL) {
2464
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2465
0
             i++, s++) {
2466
0
            if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2467
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2468
0
                break;
2469
0
            }
2470
0
        }
2471
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl))
2472
0
            return 0;
2473
0
    } else {
2474
0
        *p = 0;
2475
0
        p++;
2476
0
        if (*p == 0)
2477
0
            return 0;
2478
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
2479
0
        get_sigorhash(&sig_alg, &hash_alg, p);
2480
0
        if (sig_alg == NID_undef || hash_alg == NID_undef)
2481
0
            return 0;
2482
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2483
0
             i++, s++) {
2484
0
            if (s->hash == hash_alg && s->sig == sig_alg) {
2485
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2486
0
                break;
2487
0
            }
2488
0
        }
2489
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl))
2490
0
            return 0;
2491
0
    }
2492
2493
    /* Reject duplicates */
2494
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2495
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2496
0
            sarg->sigalgcnt--;
2497
0
            return 0;
2498
0
        }
2499
0
    }
2500
0
    return 1;
2501
0
}
2502
2503
/*
2504
 * Set supported signature algorithms based on a colon separated list of the
2505
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2506
 */
2507
int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2508
0
{
2509
0
    sig_cb_st sig;
2510
0
    sig.sigalgcnt = 0;
2511
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2512
0
        return 0;
2513
0
    if (c == NULL)
2514
0
        return 1;
2515
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2516
0
}
2517
2518
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2519
                     int client)
2520
0
{
2521
0
    uint16_t *sigalgs;
2522
2523
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2524
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2525
0
        return 0;
2526
0
    }
2527
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2528
2529
0
    if (client) {
2530
0
        OPENSSL_free(c->client_sigalgs);
2531
0
        c->client_sigalgs = sigalgs;
2532
0
        c->client_sigalgslen = salglen;
2533
0
    } else {
2534
0
        OPENSSL_free(c->conf_sigalgs);
2535
0
        c->conf_sigalgs = sigalgs;
2536
0
        c->conf_sigalgslen = salglen;
2537
0
    }
2538
2539
0
    return 1;
2540
0
}
2541
2542
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2543
0
{
2544
0
    uint16_t *sigalgs, *sptr;
2545
0
    size_t i;
2546
2547
0
    if (salglen & 1)
2548
0
        return 0;
2549
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2550
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2551
0
        return 0;
2552
0
    }
2553
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2554
0
        size_t j;
2555
0
        const SIGALG_LOOKUP *curr;
2556
0
        int md_id = *psig_nids++;
2557
0
        int sig_id = *psig_nids++;
2558
2559
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2560
0
             j++, curr++) {
2561
0
            if (curr->hash == md_id && curr->sig == sig_id) {
2562
0
                *sptr++ = curr->sigalg;
2563
0
                break;
2564
0
            }
2565
0
        }
2566
2567
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
2568
0
            goto err;
2569
0
    }
2570
2571
0
    if (client) {
2572
0
        OPENSSL_free(c->client_sigalgs);
2573
0
        c->client_sigalgs = sigalgs;
2574
0
        c->client_sigalgslen = salglen / 2;
2575
0
    } else {
2576
0
        OPENSSL_free(c->conf_sigalgs);
2577
0
        c->conf_sigalgs = sigalgs;
2578
0
        c->conf_sigalgslen = salglen / 2;
2579
0
    }
2580
2581
0
    return 1;
2582
2583
0
 err:
2584
0
    OPENSSL_free(sigalgs);
2585
0
    return 0;
2586
0
}
2587
2588
static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2589
0
{
2590
0
    int sig_nid, use_pc_sigalgs = 0;
2591
0
    size_t i;
2592
0
    const SIGALG_LOOKUP *sigalg;
2593
0
    size_t sigalgslen;
2594
0
    if (default_nid == -1)
2595
0
        return 1;
2596
0
    sig_nid = X509_get_signature_nid(x);
2597
0
    if (default_nid)
2598
0
        return sig_nid == default_nid ? 1 : 0;
2599
2600
0
    if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2601
        /*
2602
         * If we're in TLSv1.3 then we only get here if we're checking the
2603
         * chain. If the peer has specified peer_cert_sigalgs then we use them
2604
         * otherwise we default to normal sigalgs.
2605
         */
2606
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2607
0
        use_pc_sigalgs = 1;
2608
0
    } else {
2609
0
        sigalgslen = s->shared_sigalgslen;
2610
0
    }
2611
0
    for (i = 0; i < sigalgslen; i++) {
2612
0
        sigalg = use_pc_sigalgs
2613
0
                 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2614
0
                 : s->shared_sigalgs[i];
2615
0
        if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2616
0
            return 1;
2617
0
    }
2618
0
    return 0;
2619
0
}
2620
2621
/* Check to see if a certificate issuer name matches list of CA names */
2622
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2623
0
{
2624
0
    const X509_NAME *nm;
2625
0
    int i;
2626
0
    nm = X509_get_issuer_name(x);
2627
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
2628
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2629
0
            return 1;
2630
0
    }
2631
0
    return 0;
2632
0
}
2633
2634
/*
2635
 * Check certificate chain is consistent with TLS extensions and is usable by
2636
 * server. This servers two purposes: it allows users to check chains before
2637
 * passing them to the server and it allows the server to check chains before
2638
 * attempting to use them.
2639
 */
2640
2641
/* Flags which need to be set for a certificate when strict mode not set */
2642
2643
#define CERT_PKEY_VALID_FLAGS \
2644
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2645
/* Strict mode flags */
2646
#define CERT_PKEY_STRICT_FLAGS \
2647
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2648
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2649
2650
int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2651
                     int idx)
2652
46.0k
{
2653
46.0k
    int i;
2654
46.0k
    int rv = 0;
2655
46.0k
    int check_flags = 0, strict_mode;
2656
46.0k
    CERT_PKEY *cpk = NULL;
2657
46.0k
    CERT *c = s->cert;
2658
46.0k
    uint32_t *pvalid;
2659
46.0k
    unsigned int suiteb_flags = tls1_suiteb(s);
2660
    /* idx == -1 means checking server chains */
2661
46.0k
    if (idx != -1) {
2662
        /* idx == -2 means checking client certificate chains */
2663
46.0k
        if (idx == -2) {
2664
0
            cpk = c->key;
2665
0
            idx = (int)(cpk - c->pkeys);
2666
0
        } else
2667
46.0k
            cpk = c->pkeys + idx;
2668
46.0k
        pvalid = s->s3.tmp.valid_flags + idx;
2669
46.0k
        x = cpk->x509;
2670
46.0k
        pk = cpk->privatekey;
2671
46.0k
        chain = cpk->chain;
2672
46.0k
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2673
        /* If no cert or key, forget it */
2674
46.0k
        if (!x || !pk)
2675
30.6k
            goto end;
2676
46.0k
    } else {
2677
0
        size_t certidx;
2678
2679
0
        if (!x || !pk)
2680
0
            return 0;
2681
2682
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2683
0
            return 0;
2684
0
        idx = certidx;
2685
0
        pvalid = s->s3.tmp.valid_flags + idx;
2686
2687
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2688
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
2689
0
        else
2690
0
            check_flags = CERT_PKEY_VALID_FLAGS;
2691
0
        strict_mode = 1;
2692
0
    }
2693
2694
15.3k
    if (suiteb_flags) {
2695
0
        int ok;
2696
0
        if (check_flags)
2697
0
            check_flags |= CERT_PKEY_SUITEB;
2698
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2699
0
        if (ok == X509_V_OK)
2700
0
            rv |= CERT_PKEY_SUITEB;
2701
0
        else if (!check_flags)
2702
0
            goto end;
2703
0
    }
2704
2705
    /*
2706
     * Check all signature algorithms are consistent with signature
2707
     * algorithms extension if TLS 1.2 or later and strict mode.
2708
     */
2709
15.3k
    if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2710
0
        int default_nid;
2711
0
        int rsign = 0;
2712
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
2713
0
                || s->s3.tmp.peer_sigalgs != NULL) {
2714
0
            default_nid = 0;
2715
        /* If no sigalgs extension use defaults from RFC5246 */
2716
0
        } else {
2717
0
            switch (idx) {
2718
0
            case SSL_PKEY_RSA:
2719
0
                rsign = EVP_PKEY_RSA;
2720
0
                default_nid = NID_sha1WithRSAEncryption;
2721
0
                break;
2722
2723
0
            case SSL_PKEY_DSA_SIGN:
2724
0
                rsign = EVP_PKEY_DSA;
2725
0
                default_nid = NID_dsaWithSHA1;
2726
0
                break;
2727
2728
0
            case SSL_PKEY_ECC:
2729
0
                rsign = EVP_PKEY_EC;
2730
0
                default_nid = NID_ecdsa_with_SHA1;
2731
0
                break;
2732
2733
0
            case SSL_PKEY_GOST01:
2734
0
                rsign = NID_id_GostR3410_2001;
2735
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2736
0
                break;
2737
2738
0
            case SSL_PKEY_GOST12_256:
2739
0
                rsign = NID_id_GostR3410_2012_256;
2740
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2741
0
                break;
2742
2743
0
            case SSL_PKEY_GOST12_512:
2744
0
                rsign = NID_id_GostR3410_2012_512;
2745
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2746
0
                break;
2747
2748
0
            default:
2749
0
                default_nid = -1;
2750
0
                break;
2751
0
            }
2752
0
        }
2753
        /*
2754
         * If peer sent no signature algorithms extension and we have set
2755
         * preferred signature algorithms check we support sha1.
2756
         */
2757
0
        if (default_nid > 0 && c->conf_sigalgs) {
2758
0
            size_t j;
2759
0
            const uint16_t *p = c->conf_sigalgs;
2760
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2761
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2762
2763
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2764
0
                    break;
2765
0
            }
2766
0
            if (j == c->conf_sigalgslen) {
2767
0
                if (check_flags)
2768
0
                    goto skip_sigs;
2769
0
                else
2770
0
                    goto end;
2771
0
            }
2772
0
        }
2773
        /* Check signature algorithm of each cert in chain */
2774
0
        if (SSL_IS_TLS13(s)) {
2775
            /*
2776
             * We only get here if the application has called SSL_check_chain(),
2777
             * so check_flags is always set.
2778
             */
2779
0
            if (find_sig_alg(s, x, pk) != NULL)
2780
0
                rv |= CERT_PKEY_EE_SIGNATURE;
2781
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2782
0
            if (!check_flags)
2783
0
                goto end;
2784
0
        } else
2785
0
            rv |= CERT_PKEY_EE_SIGNATURE;
2786
0
        rv |= CERT_PKEY_CA_SIGNATURE;
2787
0
        for (i = 0; i < sk_X509_num(chain); i++) {
2788
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2789
0
                if (check_flags) {
2790
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
2791
0
                    break;
2792
0
                } else
2793
0
                    goto end;
2794
0
            }
2795
0
        }
2796
0
    }
2797
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2798
15.3k
    else if (check_flags)
2799
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2800
15.3k
 skip_sigs:
2801
    /* Check cert parameters are consistent */
2802
15.3k
    if (tls1_check_cert_param(s, x, 1))
2803
14.1k
        rv |= CERT_PKEY_EE_PARAM;
2804
1.14k
    else if (!check_flags)
2805
1.14k
        goto end;
2806
14.1k
    if (!s->server)
2807
0
        rv |= CERT_PKEY_CA_PARAM;
2808
    /* In strict mode check rest of chain too */
2809
14.1k
    else if (strict_mode) {
2810
0
        rv |= CERT_PKEY_CA_PARAM;
2811
0
        for (i = 0; i < sk_X509_num(chain); i++) {
2812
0
            X509 *ca = sk_X509_value(chain, i);
2813
0
            if (!tls1_check_cert_param(s, ca, 0)) {
2814
0
                if (check_flags) {
2815
0
                    rv &= ~CERT_PKEY_CA_PARAM;
2816
0
                    break;
2817
0
                } else
2818
0
                    goto end;
2819
0
            }
2820
0
        }
2821
0
    }
2822
14.1k
    if (!s->server && strict_mode) {
2823
0
        STACK_OF(X509_NAME) *ca_dn;
2824
0
        int check_type = 0;
2825
2826
0
        if (EVP_PKEY_is_a(pk, "RSA"))
2827
0
            check_type = TLS_CT_RSA_SIGN;
2828
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
2829
0
            check_type = TLS_CT_DSS_SIGN;
2830
0
        else if (EVP_PKEY_is_a(pk, "EC"))
2831
0
            check_type = TLS_CT_ECDSA_SIGN;
2832
2833
0
        if (check_type) {
2834
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
2835
0
            size_t j;
2836
2837
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2838
0
                if (*ctypes == check_type) {
2839
0
                    rv |= CERT_PKEY_CERT_TYPE;
2840
0
                    break;
2841
0
                }
2842
0
            }
2843
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2844
0
                goto end;
2845
0
        } else {
2846
0
            rv |= CERT_PKEY_CERT_TYPE;
2847
0
        }
2848
2849
0
        ca_dn = s->s3.tmp.peer_ca_names;
2850
2851
0
        if (ca_dn == NULL
2852
0
            || sk_X509_NAME_num(ca_dn) == 0
2853
0
            || ssl_check_ca_name(ca_dn, x))
2854
0
            rv |= CERT_PKEY_ISSUER_NAME;
2855
0
        else
2856
0
            for (i = 0; i < sk_X509_num(chain); i++) {
2857
0
                X509 *xtmp = sk_X509_value(chain, i);
2858
2859
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
2860
0
                    rv |= CERT_PKEY_ISSUER_NAME;
2861
0
                    break;
2862
0
                }
2863
0
            }
2864
2865
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2866
0
            goto end;
2867
0
    } else
2868
14.1k
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2869
2870
14.1k
    if (!check_flags || (rv & check_flags) == check_flags)
2871
14.1k
        rv |= CERT_PKEY_VALID;
2872
2873
46.0k
 end:
2874
2875
46.0k
    if (TLS1_get_version(s) >= TLS1_2_VERSION)
2876
27.1k
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2877
18.9k
    else
2878
18.9k
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2879
2880
    /*
2881
     * When checking a CERT_PKEY structure all flags are irrelevant if the
2882
     * chain is invalid.
2883
     */
2884
46.0k
    if (!check_flags) {
2885
46.0k
        if (rv & CERT_PKEY_VALID) {
2886
14.1k
            *pvalid = rv;
2887
31.8k
        } else {
2888
            /* Preserve sign and explicit sign flag, clear rest */
2889
31.8k
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2890
31.8k
            return 0;
2891
31.8k
        }
2892
46.0k
    }
2893
14.1k
    return rv;
2894
46.0k
}
2895
2896
/* Set validity of certificates in an SSL structure */
2897
void tls1_set_cert_validity(SSL *s)
2898
13.7k
{
2899
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2900
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2901
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2902
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2903
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2904
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2905
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2906
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2907
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2908
13.7k
}
2909
2910
/* User level utility function to check a chain is suitable */
2911
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2912
0
{
2913
0
    return tls1_check_chain(s, x, pk, chain, -1);
2914
0
}
2915
2916
EVP_PKEY *ssl_get_auto_dh(SSL *s)
2917
0
{
2918
0
    EVP_PKEY *dhp = NULL;
2919
0
    BIGNUM *p;
2920
0
    int dh_secbits = 80, sec_level_bits;
2921
0
    EVP_PKEY_CTX *pctx = NULL;
2922
0
    OSSL_PARAM_BLD *tmpl = NULL;
2923
0
    OSSL_PARAM *params = NULL;
2924
2925
0
    if (s->cert->dh_tmp_auto != 2) {
2926
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2927
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
2928
0
                dh_secbits = 128;
2929
0
            else
2930
0
                dh_secbits = 80;
2931
0
        } else {
2932
0
            if (s->s3.tmp.cert == NULL)
2933
0
                return NULL;
2934
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
2935
0
        }
2936
0
    }
2937
2938
    /* Do not pick a prime that is too weak for the current security level */
2939
0
    sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
2940
0
    if (dh_secbits < sec_level_bits)
2941
0
        dh_secbits = sec_level_bits;
2942
2943
0
    if (dh_secbits >= 192)
2944
0
        p = BN_get_rfc3526_prime_8192(NULL);
2945
0
    else if (dh_secbits >= 152)
2946
0
        p = BN_get_rfc3526_prime_4096(NULL);
2947
0
    else if (dh_secbits >= 128)
2948
0
        p = BN_get_rfc3526_prime_3072(NULL);
2949
0
    else if (dh_secbits >= 112)
2950
0
        p = BN_get_rfc3526_prime_2048(NULL);
2951
0
    else
2952
0
        p = BN_get_rfc2409_prime_1024(NULL);
2953
0
    if (p == NULL)
2954
0
        goto err;
2955
2956
0
    pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
2957
0
    if (pctx == NULL
2958
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
2959
0
        goto err;
2960
2961
0
    tmpl = OSSL_PARAM_BLD_new();
2962
0
    if (tmpl == NULL
2963
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
2964
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
2965
0
        goto err;
2966
2967
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
2968
0
    if (params == NULL
2969
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
2970
0
        goto err;
2971
2972
0
err:
2973
0
    OSSL_PARAM_free(params);
2974
0
    OSSL_PARAM_BLD_free(tmpl);
2975
0
    EVP_PKEY_CTX_free(pctx);
2976
0
    BN_free(p);
2977
0
    return dhp;
2978
0
}
2979
2980
static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2981
35.1k
{
2982
35.1k
    int secbits = -1;
2983
35.1k
    EVP_PKEY *pkey = X509_get0_pubkey(x);
2984
35.1k
    if (pkey) {
2985
        /*
2986
         * If no parameters this will return -1 and fail using the default
2987
         * security callback for any non-zero security level. This will
2988
         * reject keys which omit parameters but this only affects DSA and
2989
         * omission of parameters is never (?) done in practice.
2990
         */
2991
35.1k
        secbits = EVP_PKEY_get_security_bits(pkey);
2992
35.1k
    }
2993
35.1k
    if (s)
2994
4.84k
        return ssl_security(s, op, secbits, 0, x);
2995
30.2k
    else
2996
30.2k
        return ssl_ctx_security(ctx, op, secbits, 0, x);
2997
35.1k
}
2998
2999
static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
3000
35.1k
{
3001
    /* Lookup signature algorithm digest */
3002
35.1k
    int secbits, nid, pknid;
3003
    /* Don't check signature if self signed */
3004
35.1k
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3005
35.1k
        return 1;
3006
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3007
0
        secbits = -1;
3008
    /* If digest NID not defined use signature NID */
3009
0
    if (nid == NID_undef)
3010
0
        nid = pknid;
3011
0
    if (s)
3012
0
        return ssl_security(s, op, secbits, nid, x);
3013
0
    else
3014
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
3015
0
}
3016
3017
int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
3018
89.5k
{
3019
89.5k
    if (vfy)
3020
0
        vfy = SSL_SECOP_PEER;
3021
89.5k
    if (is_ee) {
3022
89.5k
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3023
0
            return SSL_R_EE_KEY_TOO_SMALL;
3024
89.5k
    } else {
3025
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3026
0
            return SSL_R_CA_KEY_TOO_SMALL;
3027
0
    }
3028
89.5k
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3029
0
        return SSL_R_CA_MD_TOO_WEAK;
3030
89.5k
    return 1;
3031
89.5k
}
3032
3033
/*
3034
 * Check security of a chain, if |sk| includes the end entity certificate then
3035
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3036
 * one to the peer. Return values: 1 if ok otherwise error code to use
3037
 */
3038
3039
int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
3040
13.2k
{
3041
13.2k
    int rv, start_idx, i;
3042
13.2k
    if (x == NULL) {
3043
13.2k
        x = sk_X509_value(sk, 0);
3044
13.2k
        if (x == NULL)
3045
0
            return ERR_R_INTERNAL_ERROR;
3046
13.2k
        start_idx = 1;
3047
13.2k
    } else
3048
0
        start_idx = 0;
3049
3050
13.2k
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
3051
13.2k
    if (rv != 1)
3052
0
        return rv;
3053
3054
13.2k
    for (i = start_idx; i < sk_X509_num(sk); i++) {
3055
0
        x = sk_X509_value(sk, i);
3056
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
3057
0
        if (rv != 1)
3058
0
            return rv;
3059
0
    }
3060
13.2k
    return 1;
3061
13.2k
}
3062
3063
/*
3064
 * For TLS 1.2 servers check if we have a certificate which can be used
3065
 * with the signature algorithm "lu" and return index of certificate.
3066
 */
3067
3068
static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3069
19.2k
{
3070
19.2k
    int sig_idx = lu->sig_idx;
3071
19.2k
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3072
3073
    /* If not recognised or not supported by cipher mask it is not suitable */
3074
19.2k
    if (clu == NULL
3075
19.2k
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3076
19.2k
            || (clu->nid == EVP_PKEY_RSA_PSS
3077
17.2k
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3078
2.43k
        return -1;
3079
3080
16.8k
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3081
19.2k
}
3082
3083
/*
3084
 * Checks the given cert against signature_algorithm_cert restrictions sent by
3085
 * the peer (if any) as well as whether the hash from the sigalg is usable with
3086
 * the key.
3087
 * Returns true if the cert is usable and false otherwise.
3088
 */
3089
static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3090
                             EVP_PKEY *pkey)
3091
39.8k
{
3092
39.8k
    const SIGALG_LOOKUP *lu;
3093
39.8k
    int mdnid, pknid, supported;
3094
39.8k
    size_t i;
3095
39.8k
    const char *mdname = NULL;
3096
3097
    /*
3098
     * If the given EVP_PKEY cannot support signing with this digest,
3099
     * the answer is simply 'no'.
3100
     */
3101
39.8k
    if (sig->hash != NID_undef)
3102
39.8k
        mdname = OBJ_nid2sn(sig->hash);
3103
39.8k
    supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,
3104
39.8k
                                                    mdname,
3105
39.8k
                                                    s->ctx->propq);
3106
39.8k
    if (supported <= 0)
3107
0
        return 0;
3108
3109
    /*
3110
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
3111
     * on the sigalg with which the certificate was signed (by its issuer).
3112
     */
3113
39.8k
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3114
27.1k
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3115
0
            return 0;
3116
131k
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3117
104k
            lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3118
104k
            if (lu == NULL)
3119
71.8k
                continue;
3120
3121
            /*
3122
             * This does not differentiate between the
3123
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3124
             * have a chain here that lets us look at the key OID in the
3125
             * signing certificate.
3126
             */
3127
32.7k
            if (mdnid == lu->hash && pknid == lu->sig)
3128
27
                return 1;
3129
32.7k
        }
3130
27.0k
        return 0;
3131
27.1k
    }
3132
3133
    /*
3134
     * Without signat_algorithms_cert, any certificate for which we have
3135
     * a viable public key is permitted.
3136
     */
3137
12.7k
    return 1;
3138
39.8k
}
3139
3140
/*
3141
 * Returns true if |s| has a usable certificate configured for use
3142
 * with signature scheme |sig|.
3143
 * "Usable" includes a check for presence as well as applying
3144
 * the signature_algorithm_cert restrictions sent by the peer (if any).
3145
 * Returns false if no usable certificate is found.
3146
 */
3147
static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3148
40.0k
{
3149
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3150
40.0k
    if (idx == -1)
3151
6.02k
        idx = sig->sig_idx;
3152
40.0k
    if (!ssl_has_cert(s, idx))
3153
186
        return 0;
3154
3155
39.8k
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3156
39.8k
                             s->cert->pkeys[idx].privatekey);
3157
40.0k
}
3158
3159
/*
3160
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3161
 * specified signature scheme |sig|, or false otherwise.
3162
 */
3163
static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3164
                          EVP_PKEY *pkey)
3165
0
{
3166
0
    size_t idx;
3167
3168
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3169
0
        return 0;
3170
3171
    /* Check the key is consistent with the sig alg */
3172
0
    if ((int)idx != sig->sig_idx)
3173
0
        return 0;
3174
3175
0
    return check_cert_usable(s, sig, x, pkey);
3176
0
}
3177
3178
/*
3179
 * Find a signature scheme that works with the supplied certificate |x| and key
3180
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3181
 * available certs/keys to find one that works.
3182
 */
3183
static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3184
1.84k
{
3185
1.84k
    const SIGALG_LOOKUP *lu = NULL;
3186
1.84k
    size_t i;
3187
1.84k
    int curve = -1;
3188
1.84k
    EVP_PKEY *tmppkey;
3189
3190
    /* Look for a shared sigalgs matching possible certificates */
3191
5.61k
    for (i = 0; i < s->shared_sigalgslen; i++) {
3192
5.51k
        lu = s->shared_sigalgs[i];
3193
3194
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3195
5.51k
        if (lu->hash == NID_sha1
3196
5.51k
            || lu->hash == NID_sha224
3197
5.51k
            || lu->sig == EVP_PKEY_DSA
3198
5.51k
            || lu->sig == EVP_PKEY_RSA)
3199
1.23k
            continue;
3200
        /* Check that we have a cert, and signature_algorithms_cert */
3201
4.27k
        if (!tls1_lookup_md(s->ctx, lu, NULL))
3202
0
            continue;
3203
4.27k
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3204
4.27k
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3205
177
            continue;
3206
3207
4.10k
        tmppkey = (pkey != NULL) ? pkey
3208
4.10k
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
3209
3210
4.10k
        if (lu->sig == EVP_PKEY_EC) {
3211
3.77k
            if (curve == -1)
3212
1.56k
                curve = ssl_get_EC_curve_nid(tmppkey);
3213
3.77k
            if (lu->curve != NID_undef && curve != lu->curve)
3214
2.36k
                continue;
3215
3.77k
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3216
            /* validate that key is large enough for the signature algorithm */
3217
327
            if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3218
0
                continue;
3219
327
        }
3220
1.73k
        break;
3221
4.10k
    }
3222
3223
1.84k
    if (i == s->shared_sigalgslen)
3224
103
        return NULL;
3225
3226
1.73k
    return lu;
3227
1.84k
}
3228
3229
/*
3230
 * Choose an appropriate signature algorithm based on available certificates
3231
 * Sets chosen certificate and signature algorithm.
3232
 *
3233
 * For servers if we fail to find a required certificate it is a fatal error,
3234
 * an appropriate error code is set and a TLS alert is sent.
3235
 *
3236
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3237
 * a fatal error: we will either try another certificate or not present one
3238
 * to the server. In this case no error is set.
3239
 */
3240
int tls_choose_sigalg(SSL *s, int fatalerrs)
3241
6.00k
{
3242
6.00k
    const SIGALG_LOOKUP *lu = NULL;
3243
6.00k
    int sig_idx = -1;
3244
3245
6.00k
    s->s3.tmp.cert = NULL;
3246
6.00k
    s->s3.tmp.sigalg = NULL;
3247
3248
6.00k
    if (SSL_IS_TLS13(s)) {
3249
1.24k
        lu = find_sig_alg(s, NULL, NULL);
3250
1.24k
        if (lu == NULL) {
3251
62
            if (!fatalerrs)
3252
0
                return 1;
3253
62
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3254
62
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3255
62
            return 0;
3256
62
        }
3257
4.76k
    } else {
3258
        /* If ciphersuite doesn't require a cert nothing to do */
3259
4.76k
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3260
373
            return 1;
3261
4.39k
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3262
16
                return 1;
3263
3264
4.37k
        if (SSL_USE_SIGALGS(s)) {
3265
2.42k
            size_t i;
3266
2.42k
            if (s->s3.tmp.peer_sigalgs != NULL) {
3267
783
                int curve = -1;
3268
3269
                /* For Suite B need to match signature algorithm to curve */
3270
783
                if (tls1_suiteb(s))
3271
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3272
0
                                                 .privatekey);
3273
3274
                /*
3275
                 * Find highest preference signature algorithm matching
3276
                 * cert type
3277
                 */
3278
19.6k
                for (i = 0; i < s->shared_sigalgslen; i++) {
3279
19.2k
                    lu = s->shared_sigalgs[i];
3280
3281
19.2k
                    if (s->server) {
3282
19.2k
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3283
2.98k
                            continue;
3284
19.2k
                    } else {
3285
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
3286
3287
0
                        sig_idx = lu->sig_idx;
3288
0
                        if (cc_idx != sig_idx)
3289
0
                            continue;
3290
0
                    }
3291
                    /* Check that we have a cert, and sig_algs_cert */
3292
16.2k
                    if (!has_usable_cert(s, lu, sig_idx))
3293
15.9k
                        continue;
3294
357
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
3295
                        /* validate that key is large enough for the signature algorithm */
3296
112
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3297
3298
112
                        if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3299
0
                            continue;
3300
112
                    }
3301
357
                    if (curve == -1 || lu->curve == curve)
3302
357
                        break;
3303
357
                }
3304
783
#ifndef OPENSSL_NO_GOST
3305
                /*
3306
                 * Some Windows-based implementations do not send GOST algorithms indication
3307
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3308
                 * we have to assume GOST support.
3309
                 */
3310
783
                if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3311
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3312
0
                    if (!fatalerrs)
3313
0
                      return 1;
3314
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3315
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3316
0
                    return 0;
3317
0
                  } else {
3318
0
                    i = 0;
3319
0
                    sig_idx = lu->sig_idx;
3320
0
                  }
3321
0
                }
3322
783
#endif
3323
783
                if (i == s->shared_sigalgslen) {
3324
426
                    if (!fatalerrs)
3325
0
                        return 1;
3326
426
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3327
426
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3328
426
                    return 0;
3329
426
                }
3330
1.64k
            } else {
3331
                /*
3332
                 * If we have no sigalg use defaults
3333
                 */
3334
1.64k
                const uint16_t *sent_sigs;
3335
1.64k
                size_t sent_sigslen;
3336
3337
1.64k
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3338
0
                    if (!fatalerrs)
3339
0
                        return 1;
3340
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3341
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3342
0
                    return 0;
3343
0
                }
3344
3345
                /* Check signature matches a type we sent */
3346
1.64k
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3347
28.9k
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3348
28.9k
                    if (lu->sigalg == *sent_sigs
3349
28.9k
                            && has_usable_cert(s, lu, lu->sig_idx))
3350
1.64k
                        break;
3351
28.9k
                }
3352
1.64k
                if (i == sent_sigslen) {
3353
0
                    if (!fatalerrs)
3354
0
                        return 1;
3355
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3356
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
3357
0
                    return 0;
3358
0
                }
3359
1.64k
            }
3360
2.42k
        } else {
3361
1.94k
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3362
0
                if (!fatalerrs)
3363
0
                    return 1;
3364
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3365
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3366
0
                return 0;
3367
0
            }
3368
1.94k
        }
3369
4.37k
    }
3370
5.12k
    if (sig_idx == -1)
3371
4.77k
        sig_idx = lu->sig_idx;
3372
5.12k
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3373
5.12k
    s->cert->key = s->s3.tmp.cert;
3374
5.12k
    s->s3.tmp.sigalg = lu;
3375
5.12k
    return 1;
3376
6.00k
}
3377
3378
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3379
0
{
3380
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3381
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3382
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3383
0
        return 0;
3384
0
    }
3385
3386
0
    ctx->ext.max_fragment_len_mode = mode;
3387
0
    return 1;
3388
0
}
3389
3390
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3391
0
{
3392
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3393
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3394
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3395
0
        return 0;
3396
0
    }
3397
3398
0
    ssl->ext.max_fragment_len_mode = mode;
3399
0
    return 1;
3400
0
}
3401
3402
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3403
0
{
3404
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
3405
0
        return TLSEXT_max_fragment_length_DISABLED;
3406
0
    return session->ext.max_fragment_len_mode;
3407
0
}
3408
3409
/*
3410
 * Helper functions for HMAC access with legacy support included.
3411
 */
3412
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3413
1.20k
{
3414
1.20k
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3415
1.20k
    EVP_MAC *mac = NULL;
3416
3417
1.20k
    if (ret == NULL)
3418
0
        return NULL;
3419
1.20k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3420
1.20k
    if (ctx->ext.ticket_key_evp_cb == NULL
3421
1.20k
            && ctx->ext.ticket_key_cb != NULL) {
3422
0
        if (!ssl_hmac_old_new(ret))
3423
0
            goto err;
3424
0
        return ret;
3425
0
    }
3426
1.20k
#endif
3427
1.20k
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3428
1.20k
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3429
0
        goto err;
3430
1.20k
    EVP_MAC_free(mac);
3431
1.20k
    return ret;
3432
0
 err:
3433
0
    EVP_MAC_CTX_free(ret->ctx);
3434
0
    EVP_MAC_free(mac);
3435
0
    OPENSSL_free(ret);
3436
0
    return NULL;
3437
1.20k
}
3438
3439
void ssl_hmac_free(SSL_HMAC *ctx)
3440
2.37k
{
3441
2.37k
    if (ctx != NULL) {
3442
1.20k
        EVP_MAC_CTX_free(ctx->ctx);
3443
1.20k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3444
1.20k
        ssl_hmac_old_free(ctx);
3445
1.20k
#endif
3446
1.20k
        OPENSSL_free(ctx);
3447
1.20k
    }
3448
2.37k
}
3449
3450
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3451
0
{
3452
0
    return ctx->ctx;
3453
0
}
3454
3455
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3456
983
{
3457
983
    OSSL_PARAM params[2], *p = params;
3458
3459
983
    if (ctx->ctx != NULL) {
3460
983
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3461
983
        *p = OSSL_PARAM_construct_end();
3462
983
        if (EVP_MAC_init(ctx->ctx, key, len, params))
3463
983
            return 1;
3464
983
    }
3465
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3466
0
    if (ctx->old_ctx != NULL)
3467
0
        return ssl_hmac_old_init(ctx, key, len, md);
3468
0
#endif
3469
0
    return 0;
3470
0
}
3471
3472
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3473
909
{
3474
909
    if (ctx->ctx != NULL)
3475
909
        return EVP_MAC_update(ctx->ctx, data, len);
3476
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3477
0
    if (ctx->old_ctx != NULL)
3478
0
        return ssl_hmac_old_update(ctx, data, len);
3479
0
#endif
3480
0
    return 0;
3481
0
}
3482
3483
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3484
                   size_t max_size)
3485
909
{
3486
909
    if (ctx->ctx != NULL)
3487
909
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
3488
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3489
0
    if (ctx->old_ctx != NULL)
3490
0
        return ssl_hmac_old_final(ctx, md, len);
3491
0
#endif
3492
0
    return 0;
3493
0
}
3494
3495
size_t ssl_hmac_size(const SSL_HMAC *ctx)
3496
887
{
3497
887
    if (ctx->ctx != NULL)
3498
887
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3499
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3500
0
    if (ctx->old_ctx != NULL)
3501
0
        return ssl_hmac_old_size(ctx);
3502
0
#endif
3503
0
    return 0;
3504
0
}
3505
3506
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3507
15.7k
{
3508
15.7k
    char gname[OSSL_MAX_NAME_SIZE];
3509
3510
15.7k
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3511
15.7k
        return OBJ_txt2nid(gname);
3512
3513
0
    return NID_undef;
3514
15.7k
}
3515
3516
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
3517
                                     const unsigned char *enckey,
3518
                                     size_t enckeylen)
3519
13.5k
{
3520
13.5k
    if (EVP_PKEY_is_a(pkey, "DH")) {
3521
188
        int bits = EVP_PKEY_get_bits(pkey);
3522
3523
188
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
3524
            /* the encoded key must be padded to the length of the p */
3525
9
            return 0;
3526
13.3k
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
3527
128
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
3528
128
            || enckey[0] != 0x04)
3529
28
            return 0;
3530
128
    }
3531
3532
13.5k
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
3533
13.5k
}