/src/openssl32/crypto/asn1/a_int.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include "internal/cryptlib.h" |
12 | | #include "internal/numbers.h" |
13 | | #include <limits.h> |
14 | | #include <openssl/asn1.h> |
15 | | #include <openssl/bn.h> |
16 | | #include "asn1_local.h" |
17 | | |
18 | | ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x) |
19 | 266 | { |
20 | 266 | return ASN1_STRING_dup(x); |
21 | 266 | } |
22 | | |
23 | | int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y) |
24 | 1.35k | { |
25 | 1.35k | int neg, ret; |
26 | | /* Compare signs */ |
27 | 1.35k | neg = x->type & V_ASN1_NEG; |
28 | 1.35k | if (neg != (y->type & V_ASN1_NEG)) { |
29 | 401 | if (neg) |
30 | 191 | return -1; |
31 | 210 | else |
32 | 210 | return 1; |
33 | 401 | } |
34 | | |
35 | 949 | ret = ASN1_STRING_cmp(x, y); |
36 | | |
37 | 949 | if (neg) |
38 | 182 | return -ret; |
39 | 767 | else |
40 | 767 | return ret; |
41 | 949 | } |
42 | | |
43 | | /*- |
44 | | * This converts a big endian buffer and sign into its content encoding. |
45 | | * This is used for INTEGER and ENUMERATED types. |
46 | | * The internal representation is an ASN1_STRING whose data is a big endian |
47 | | * representation of the value, ignoring the sign. The sign is determined by |
48 | | * the type: if type & V_ASN1_NEG is true it is negative, otherwise positive. |
49 | | * |
50 | | * Positive integers are no problem: they are almost the same as the DER |
51 | | * encoding, except if the first byte is >= 0x80 we need to add a zero pad. |
52 | | * |
53 | | * Negative integers are a bit trickier... |
54 | | * The DER representation of negative integers is in 2s complement form. |
55 | | * The internal form is converted by complementing each octet and finally |
56 | | * adding one to the result. This can be done less messily with a little trick. |
57 | | * If the internal form has trailing zeroes then they will become FF by the |
58 | | * complement and 0 by the add one (due to carry) so just copy as many trailing |
59 | | * zeros to the destination as there are in the source. The carry will add one |
60 | | * to the last none zero octet: so complement this octet and add one and finally |
61 | | * complement any left over until you get to the start of the string. |
62 | | * |
63 | | * Padding is a little trickier too. If the first bytes is > 0x80 then we pad |
64 | | * with 0xff. However if the first byte is 0x80 and one of the following bytes |
65 | | * is non-zero we pad with 0xff. The reason for this distinction is that 0x80 |
66 | | * followed by optional zeros isn't padded. |
67 | | */ |
68 | | |
69 | | /* |
70 | | * If |pad| is zero, the operation is effectively reduced to memcpy, |
71 | | * and if |pad| is 0xff, then it performs two's complement, ~dst + 1. |
72 | | * Note that in latter case sequence of zeros yields itself, and so |
73 | | * does 0x80 followed by any number of zeros. These properties are |
74 | | * used elsewhere below... |
75 | | */ |
76 | | static void twos_complement(unsigned char *dst, const unsigned char *src, |
77 | | size_t len, unsigned char pad) |
78 | 3.94M | { |
79 | 3.94M | unsigned int carry = pad & 1; |
80 | | |
81 | | /* Begin at the end of the encoding */ |
82 | 3.94M | if (len != 0) { |
83 | | /* |
84 | | * if len == 0 then src/dst could be NULL, and this would be undefined |
85 | | * behaviour. |
86 | | */ |
87 | 3.94M | dst += len; |
88 | 3.94M | src += len; |
89 | 3.94M | } |
90 | | /* two's complement value: ~value + 1 */ |
91 | 513M | while (len-- != 0) { |
92 | 509M | *(--dst) = (unsigned char)(carry += *(--src) ^ pad); |
93 | 509M | carry >>= 8; |
94 | 509M | } |
95 | 3.94M | } |
96 | | |
97 | | static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg, |
98 | | unsigned char **pp) |
99 | 9.40M | { |
100 | 9.40M | unsigned int pad = 0; |
101 | 9.40M | size_t ret, i; |
102 | 9.40M | unsigned char *p, pb = 0; |
103 | | |
104 | 9.40M | if (b != NULL && blen) { |
105 | 9.40M | ret = blen; |
106 | 9.40M | i = b[0]; |
107 | 9.40M | if (!neg && (i > 127)) { |
108 | 77.3k | pad = 1; |
109 | 77.3k | pb = 0; |
110 | 9.33M | } else if (neg) { |
111 | 929k | pb = 0xFF; |
112 | 929k | if (i > 128) { |
113 | 81.4k | pad = 1; |
114 | 848k | } else if (i == 128) { |
115 | | /* |
116 | | * Special case [of minimal negative for given length]: |
117 | | * if any other bytes non zero we pad, otherwise we don't. |
118 | | */ |
119 | 1.87M | for (pad = 0, i = 1; i < blen; i++) |
120 | 1.57M | pad |= b[i]; |
121 | 307k | pb = pad != 0 ? 0xffU : 0; |
122 | 307k | pad = pb & 1; |
123 | 307k | } |
124 | 929k | } |
125 | 9.40M | ret += pad; |
126 | 9.40M | } else { |
127 | 224 | ret = 1; |
128 | 224 | blen = 0; /* reduce '(b == NULL || blen == 0)' to '(blen == 0)' */ |
129 | 224 | } |
130 | | |
131 | 9.40M | if (pp == NULL || (p = *pp) == NULL) |
132 | 8.11M | return ret; |
133 | | |
134 | | /* |
135 | | * This magically handles all corner cases, such as '(b == NULL || |
136 | | * blen == 0)', non-negative value, "negative" zero, 0x80 followed |
137 | | * by any number of zeros... |
138 | | */ |
139 | 1.29M | *p = pb; |
140 | 1.29M | p += pad; /* yes, p[0] can be written twice, but it's little |
141 | | * price to pay for eliminated branches */ |
142 | 1.29M | twos_complement(p, b, blen, pb); |
143 | | |
144 | 1.29M | *pp += ret; |
145 | 1.29M | return ret; |
146 | 9.40M | } |
147 | | |
148 | | /* |
149 | | * convert content octets into a big endian buffer. Returns the length |
150 | | * of buffer or 0 on error: for malformed INTEGER. If output buffer is |
151 | | * NULL just return length. |
152 | | */ |
153 | | |
154 | | static size_t c2i_ibuf(unsigned char *b, int *pneg, |
155 | | const unsigned char *p, size_t plen) |
156 | 10.0M | { |
157 | 10.0M | int neg, pad; |
158 | | /* Zero content length is illegal */ |
159 | 10.0M | if (plen == 0) { |
160 | 368k | ERR_raise(ERR_LIB_ASN1, ASN1_R_ILLEGAL_ZERO_CONTENT); |
161 | 368k | return 0; |
162 | 368k | } |
163 | 9.64M | neg = p[0] & 0x80; |
164 | 9.64M | if (pneg) |
165 | 4.78M | *pneg = neg; |
166 | | /* Handle common case where length is 1 octet separately */ |
167 | 9.64M | if (plen == 1) { |
168 | 4.26M | if (b != NULL) { |
169 | 2.13M | if (neg) |
170 | 445k | b[0] = (p[0] ^ 0xFF) + 1; |
171 | 1.68M | else |
172 | 1.68M | b[0] = p[0]; |
173 | 2.13M | } |
174 | 4.26M | return 1; |
175 | 4.26M | } |
176 | | |
177 | 5.38M | pad = 0; |
178 | 5.38M | if (p[0] == 0) { |
179 | 538k | pad = 1; |
180 | 4.84M | } else if (p[0] == 0xFF) { |
181 | 203k | size_t i; |
182 | | |
183 | | /* |
184 | | * Special case [of "one less minimal negative" for given length]: |
185 | | * if any other bytes non zero it was padded, otherwise not. |
186 | | */ |
187 | 142M | for (pad = 0, i = 1; i < plen; i++) |
188 | 141M | pad |= p[i]; |
189 | 203k | pad = pad != 0 ? 1 : 0; |
190 | 203k | } |
191 | | /* reject illegal padding: first two octets MSB can't match */ |
192 | 5.38M | if (pad && (neg == (p[1] & 0x80))) { |
193 | 59.9k | ERR_raise(ERR_LIB_ASN1, ASN1_R_ILLEGAL_PADDING); |
194 | 59.9k | return 0; |
195 | 59.9k | } |
196 | | |
197 | | /* skip over pad */ |
198 | 5.32M | p += pad; |
199 | 5.32M | plen -= pad; |
200 | | |
201 | 5.32M | if (b != NULL) |
202 | 2.65M | twos_complement(b, p, plen, neg ? 0xffU : 0); |
203 | | |
204 | 5.32M | return plen; |
205 | 5.38M | } |
206 | | |
207 | | int ossl_i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp) |
208 | 9.04M | { |
209 | 9.04M | return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp); |
210 | 9.04M | } |
211 | | |
212 | | /* Convert big endian buffer into uint64_t, return 0 on error */ |
213 | | static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen) |
214 | 883k | { |
215 | 883k | size_t i; |
216 | 883k | uint64_t r; |
217 | | |
218 | 883k | if (blen > sizeof(*pr)) { |
219 | 4.72k | ERR_raise(ERR_LIB_ASN1, ASN1_R_TOO_LARGE); |
220 | 4.72k | return 0; |
221 | 4.72k | } |
222 | 878k | if (b == NULL) |
223 | 0 | return 0; |
224 | 2.46M | for (r = 0, i = 0; i < blen; i++) { |
225 | 1.58M | r <<= 8; |
226 | 1.58M | r |= b[i]; |
227 | 1.58M | } |
228 | 878k | *pr = r; |
229 | 878k | return 1; |
230 | 878k | } |
231 | | |
232 | | /* |
233 | | * Write uint64_t to big endian buffer and return offset to first |
234 | | * written octet. In other words it returns offset in range from 0 |
235 | | * to 7, with 0 denoting 8 written octets and 7 - one. |
236 | | */ |
237 | | static size_t asn1_put_uint64(unsigned char b[sizeof(uint64_t)], uint64_t r) |
238 | 455k | { |
239 | 455k | size_t off = sizeof(uint64_t); |
240 | | |
241 | 723k | do { |
242 | 723k | b[--off] = (unsigned char)r; |
243 | 723k | } while (r >>= 8); |
244 | | |
245 | 455k | return off; |
246 | 455k | } |
247 | | |
248 | | /* |
249 | | * Absolute value of INT64_MIN: we can't just use -INT64_MIN as gcc produces |
250 | | * overflow warnings. |
251 | | */ |
252 | 14.3k | #define ABS_INT64_MIN ((uint64_t)INT64_MAX + (-(INT64_MIN + INT64_MAX))) |
253 | | |
254 | | /* signed version of asn1_get_uint64 */ |
255 | | static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen, |
256 | | int neg) |
257 | 353k | { |
258 | 353k | uint64_t r; |
259 | 353k | if (asn1_get_uint64(&r, b, blen) == 0) |
260 | 4.72k | return 0; |
261 | 349k | if (neg) { |
262 | 82.1k | if (r <= INT64_MAX) { |
263 | | /* Most significant bit is guaranteed to be clear, negation |
264 | | * is guaranteed to be meaningful in platform-neutral sense. */ |
265 | 67.7k | *pr = -(int64_t)r; |
266 | 67.7k | } else if (r == ABS_INT64_MIN) { |
267 | | /* This never happens if INT64_MAX == ABS_INT64_MIN, e.g. |
268 | | * on ones'-complement system. */ |
269 | 2.73k | *pr = (int64_t)(0 - r); |
270 | 11.6k | } else { |
271 | 11.6k | ERR_raise(ERR_LIB_ASN1, ASN1_R_TOO_SMALL); |
272 | 11.6k | return 0; |
273 | 11.6k | } |
274 | 266k | } else { |
275 | 266k | if (r <= INT64_MAX) { |
276 | 261k | *pr = (int64_t)r; |
277 | 261k | } else { |
278 | 5.30k | ERR_raise(ERR_LIB_ASN1, ASN1_R_TOO_LARGE); |
279 | 5.30k | return 0; |
280 | 5.30k | } |
281 | 266k | } |
282 | 332k | return 1; |
283 | 349k | } |
284 | | |
285 | | /* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */ |
286 | | ASN1_INTEGER *ossl_c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp, |
287 | | long len) |
288 | 4.67M | { |
289 | 4.67M | ASN1_INTEGER *ret = NULL; |
290 | 4.67M | size_t r; |
291 | 4.67M | int neg; |
292 | | |
293 | 4.67M | r = c2i_ibuf(NULL, NULL, *pp, len); |
294 | | |
295 | 4.67M | if (r == 0) |
296 | 417k | return NULL; |
297 | | |
298 | 4.25M | if ((a == NULL) || ((*a) == NULL)) { |
299 | 2.41M | ret = ASN1_INTEGER_new(); |
300 | 2.41M | if (ret == NULL) |
301 | 0 | return NULL; |
302 | 2.41M | ret->type = V_ASN1_INTEGER; |
303 | 2.41M | } else |
304 | 1.84M | ret = *a; |
305 | | |
306 | 4.25M | if (ASN1_STRING_set(ret, NULL, r) == 0) { |
307 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_ASN1_LIB); |
308 | 0 | goto err; |
309 | 0 | } |
310 | | |
311 | 4.25M | c2i_ibuf(ret->data, &neg, *pp, len); |
312 | | |
313 | 4.25M | if (neg != 0) |
314 | 754k | ret->type |= V_ASN1_NEG; |
315 | 3.50M | else |
316 | 3.50M | ret->type &= ~V_ASN1_NEG; |
317 | | |
318 | 4.25M | *pp += len; |
319 | 4.25M | if (a != NULL) |
320 | 4.25M | (*a) = ret; |
321 | 4.25M | return ret; |
322 | 0 | err: |
323 | 0 | if (a == NULL || *a != ret) |
324 | 0 | ASN1_INTEGER_free(ret); |
325 | 0 | return NULL; |
326 | 4.25M | } |
327 | | |
328 | | static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype) |
329 | 355k | { |
330 | 355k | if (a == NULL) { |
331 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_PASSED_NULL_PARAMETER); |
332 | 0 | return 0; |
333 | 0 | } |
334 | 355k | if ((a->type & ~V_ASN1_NEG) != itype) { |
335 | 1.46k | ERR_raise(ERR_LIB_ASN1, ASN1_R_WRONG_INTEGER_TYPE); |
336 | 1.46k | return 0; |
337 | 1.46k | } |
338 | 353k | return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG); |
339 | 355k | } |
340 | | |
341 | | static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype) |
342 | 88.9k | { |
343 | 88.9k | unsigned char tbuf[sizeof(r)]; |
344 | 88.9k | size_t off; |
345 | | |
346 | 88.9k | a->type = itype; |
347 | 88.9k | if (r < 0) { |
348 | | /* Most obvious '-r' triggers undefined behaviour for most |
349 | | * common INT64_MIN. Even though below '0 - (uint64_t)r' can |
350 | | * appear two's-complement centric, it does produce correct/ |
351 | | * expected result even on one's-complement. This is because |
352 | | * cast to unsigned has to change bit pattern... */ |
353 | 0 | off = asn1_put_uint64(tbuf, 0 - (uint64_t)r); |
354 | 0 | a->type |= V_ASN1_NEG; |
355 | 88.9k | } else { |
356 | 88.9k | off = asn1_put_uint64(tbuf, r); |
357 | 88.9k | a->type &= ~V_ASN1_NEG; |
358 | 88.9k | } |
359 | 88.9k | return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off); |
360 | 88.9k | } |
361 | | |
362 | | static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a, |
363 | | int itype) |
364 | 0 | { |
365 | 0 | if (a == NULL) { |
366 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_PASSED_NULL_PARAMETER); |
367 | 0 | return 0; |
368 | 0 | } |
369 | 0 | if ((a->type & ~V_ASN1_NEG) != itype) { |
370 | 0 | ERR_raise(ERR_LIB_ASN1, ASN1_R_WRONG_INTEGER_TYPE); |
371 | 0 | return 0; |
372 | 0 | } |
373 | 0 | if (a->type & V_ASN1_NEG) { |
374 | 0 | ERR_raise(ERR_LIB_ASN1, ASN1_R_ILLEGAL_NEGATIVE_VALUE); |
375 | 0 | return 0; |
376 | 0 | } |
377 | 0 | return asn1_get_uint64(pr, a->data, a->length); |
378 | 0 | } |
379 | | |
380 | | static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype) |
381 | 0 | { |
382 | 0 | unsigned char tbuf[sizeof(r)]; |
383 | 0 | size_t off; |
384 | |
|
385 | 0 | a->type = itype; |
386 | 0 | off = asn1_put_uint64(tbuf, r); |
387 | 0 | return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off); |
388 | 0 | } |
389 | | |
390 | | /* |
391 | | * This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1 |
392 | | * integers: some broken software can encode a positive INTEGER with its MSB |
393 | | * set as negative (it doesn't add a padding zero). |
394 | | */ |
395 | | |
396 | | ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp, |
397 | | long length) |
398 | 0 | { |
399 | 0 | ASN1_INTEGER *ret = NULL; |
400 | 0 | const unsigned char *p; |
401 | 0 | unsigned char *s; |
402 | 0 | long len = 0; |
403 | 0 | int inf, tag, xclass; |
404 | 0 | int i = 0; |
405 | |
|
406 | 0 | if ((a == NULL) || ((*a) == NULL)) { |
407 | 0 | if ((ret = ASN1_INTEGER_new()) == NULL) |
408 | 0 | return NULL; |
409 | 0 | ret->type = V_ASN1_INTEGER; |
410 | 0 | } else |
411 | 0 | ret = (*a); |
412 | | |
413 | 0 | p = *pp; |
414 | 0 | inf = ASN1_get_object(&p, &len, &tag, &xclass, length); |
415 | 0 | if (inf & 0x80) { |
416 | 0 | i = ASN1_R_BAD_OBJECT_HEADER; |
417 | 0 | goto err; |
418 | 0 | } |
419 | | |
420 | 0 | if (tag != V_ASN1_INTEGER) { |
421 | 0 | i = ASN1_R_EXPECTING_AN_INTEGER; |
422 | 0 | goto err; |
423 | 0 | } |
424 | | |
425 | 0 | if (len < 0) { |
426 | 0 | i = ASN1_R_ILLEGAL_NEGATIVE_VALUE; |
427 | 0 | goto err; |
428 | 0 | } |
429 | | /* |
430 | | * We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies |
431 | | * a missing NULL parameter. |
432 | | */ |
433 | 0 | s = OPENSSL_malloc((int)len + 1); |
434 | 0 | if (s == NULL) |
435 | 0 | goto err; |
436 | 0 | ret->type = V_ASN1_INTEGER; |
437 | 0 | if (len) { |
438 | 0 | if ((*p == 0) && (len != 1)) { |
439 | 0 | p++; |
440 | 0 | len--; |
441 | 0 | } |
442 | 0 | memcpy(s, p, (int)len); |
443 | 0 | p += len; |
444 | 0 | } |
445 | |
|
446 | 0 | ASN1_STRING_set0(ret, s, (int)len); |
447 | 0 | if (a != NULL) |
448 | 0 | (*a) = ret; |
449 | 0 | *pp = p; |
450 | 0 | return ret; |
451 | 0 | err: |
452 | 0 | if (i != 0) |
453 | 0 | ERR_raise(ERR_LIB_ASN1, i); |
454 | 0 | if ((a == NULL) || (*a != ret)) |
455 | 0 | ASN1_INTEGER_free(ret); |
456 | 0 | return NULL; |
457 | 0 | } |
458 | | |
459 | | static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai, |
460 | | int atype) |
461 | 2.89k | { |
462 | 2.89k | ASN1_INTEGER *ret; |
463 | 2.89k | int len; |
464 | | |
465 | 2.89k | if (ai == NULL) { |
466 | 1.95k | ret = ASN1_STRING_type_new(atype); |
467 | 1.95k | } else { |
468 | 940 | ret = ai; |
469 | 940 | ret->type = atype; |
470 | 940 | } |
471 | | |
472 | 2.89k | if (ret == NULL) { |
473 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_NESTED_ASN1_ERROR); |
474 | 0 | goto err; |
475 | 0 | } |
476 | | |
477 | 2.89k | if (BN_is_negative(bn) && !BN_is_zero(bn)) |
478 | 48 | ret->type |= V_ASN1_NEG_INTEGER; |
479 | | |
480 | 2.89k | len = BN_num_bytes(bn); |
481 | | |
482 | 2.89k | if (len == 0) |
483 | 556 | len = 1; |
484 | | |
485 | 2.89k | if (ASN1_STRING_set(ret, NULL, len) == 0) { |
486 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_ASN1_LIB); |
487 | 0 | goto err; |
488 | 0 | } |
489 | | |
490 | | /* Correct zero case */ |
491 | 2.89k | if (BN_is_zero(bn)) |
492 | 556 | ret->data[0] = 0; |
493 | 2.33k | else |
494 | 2.33k | len = BN_bn2bin(bn, ret->data); |
495 | 2.89k | ret->length = len; |
496 | 2.89k | return ret; |
497 | 0 | err: |
498 | 0 | if (ret != ai) |
499 | 0 | ASN1_INTEGER_free(ret); |
500 | 0 | return NULL; |
501 | 2.89k | } |
502 | | |
503 | | static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn, |
504 | | int itype) |
505 | 846k | { |
506 | 846k | BIGNUM *ret; |
507 | | |
508 | 846k | if ((ai->type & ~V_ASN1_NEG) != itype) { |
509 | 301 | ERR_raise(ERR_LIB_ASN1, ASN1_R_WRONG_INTEGER_TYPE); |
510 | 301 | return NULL; |
511 | 301 | } |
512 | | |
513 | 846k | ret = BN_bin2bn(ai->data, ai->length, bn); |
514 | 846k | if (ret == NULL) { |
515 | 0 | ERR_raise(ERR_LIB_ASN1, ASN1_R_BN_LIB); |
516 | 0 | return NULL; |
517 | 0 | } |
518 | 846k | if (ai->type & V_ASN1_NEG) |
519 | 121k | BN_set_negative(ret, 1); |
520 | 846k | return ret; |
521 | 846k | } |
522 | | |
523 | | int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a) |
524 | 281k | { |
525 | 281k | return asn1_string_get_int64(pr, a, V_ASN1_INTEGER); |
526 | 281k | } |
527 | | |
528 | | int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r) |
529 | 88.9k | { |
530 | 88.9k | return asn1_string_set_int64(a, r, V_ASN1_INTEGER); |
531 | 88.9k | } |
532 | | |
533 | | int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a) |
534 | 0 | { |
535 | 0 | return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER); |
536 | 0 | } |
537 | | |
538 | | int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r) |
539 | 0 | { |
540 | 0 | return asn1_string_set_uint64(a, r, V_ASN1_INTEGER); |
541 | 0 | } |
542 | | |
543 | | int ASN1_INTEGER_set(ASN1_INTEGER *a, long v) |
544 | 60.5k | { |
545 | 60.5k | return ASN1_INTEGER_set_int64(a, v); |
546 | 60.5k | } |
547 | | |
548 | | long ASN1_INTEGER_get(const ASN1_INTEGER *a) |
549 | 284k | { |
550 | 284k | int i; |
551 | 284k | int64_t r; |
552 | 284k | if (a == NULL) |
553 | 55.6k | return 0; |
554 | 228k | i = ASN1_INTEGER_get_int64(&r, a); |
555 | 228k | if (i == 0) |
556 | 11.6k | return -1; |
557 | 216k | if (r > LONG_MAX || r < LONG_MIN) |
558 | 0 | return -1; |
559 | 216k | return (long)r; |
560 | 216k | } |
561 | | |
562 | | ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai) |
563 | 2.89k | { |
564 | 2.89k | return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER); |
565 | 2.89k | } |
566 | | |
567 | | BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn) |
568 | 833k | { |
569 | 833k | return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER); |
570 | 833k | } |
571 | | |
572 | | int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a) |
573 | 73.5k | { |
574 | 73.5k | return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED); |
575 | 73.5k | } |
576 | | |
577 | | int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r) |
578 | 0 | { |
579 | 0 | return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED); |
580 | 0 | } |
581 | | |
582 | | int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v) |
583 | 0 | { |
584 | 0 | return ASN1_ENUMERATED_set_int64(a, v); |
585 | 0 | } |
586 | | |
587 | | long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a) |
588 | 75.4k | { |
589 | 75.4k | int i; |
590 | 75.4k | int64_t r; |
591 | 75.4k | if (a == NULL) |
592 | 0 | return 0; |
593 | 75.4k | if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED) |
594 | 0 | return -1; |
595 | 75.4k | if (a->length > (int)sizeof(long)) |
596 | 7.44k | return 0xffffffffL; |
597 | 68.0k | i = ASN1_ENUMERATED_get_int64(&r, a); |
598 | 68.0k | if (i == 0) |
599 | 6.38k | return -1; |
600 | 61.6k | if (r > LONG_MAX || r < LONG_MIN) |
601 | 0 | return -1; |
602 | 61.6k | return (long)r; |
603 | 61.6k | } |
604 | | |
605 | | ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai) |
606 | 0 | { |
607 | 0 | return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED); |
608 | 0 | } |
609 | | |
610 | | BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn) |
611 | 13.2k | { |
612 | 13.2k | return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED); |
613 | 13.2k | } |
614 | | |
615 | | /* Internal functions used by x_int64.c */ |
616 | | int ossl_c2i_uint64_int(uint64_t *ret, int *neg, |
617 | | const unsigned char **pp, long len) |
618 | 555k | { |
619 | 555k | unsigned char buf[sizeof(uint64_t)]; |
620 | 555k | size_t buflen; |
621 | | |
622 | 555k | buflen = c2i_ibuf(NULL, NULL, *pp, len); |
623 | 555k | if (buflen == 0) |
624 | 10.6k | return 0; |
625 | 545k | if (buflen > sizeof(uint64_t)) { |
626 | 15.4k | ERR_raise(ERR_LIB_ASN1, ASN1_R_TOO_LARGE); |
627 | 15.4k | return 0; |
628 | 15.4k | } |
629 | 529k | (void)c2i_ibuf(buf, neg, *pp, len); |
630 | 529k | return asn1_get_uint64(ret, buf, buflen); |
631 | 545k | } |
632 | | |
633 | | int ossl_i2c_uint64_int(unsigned char *p, uint64_t r, int neg) |
634 | 366k | { |
635 | 366k | unsigned char buf[sizeof(uint64_t)]; |
636 | 366k | size_t off; |
637 | | |
638 | 366k | off = asn1_put_uint64(buf, r); |
639 | 366k | return i2c_ibuf(buf + off, sizeof(buf) - off, neg, &p); |
640 | 366k | } |
641 | | |