/src/openssl32/crypto/bn/bn_div.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <assert.h> |
11 | | #include <openssl/bn.h> |
12 | | #include "internal/cryptlib.h" |
13 | | #include "bn_local.h" |
14 | | |
15 | | /* The old slow way */ |
16 | | #if 0 |
17 | | int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, |
18 | | BN_CTX *ctx) |
19 | | { |
20 | | int i, nm, nd; |
21 | | int ret = 0; |
22 | | BIGNUM *D; |
23 | | |
24 | | bn_check_top(m); |
25 | | bn_check_top(d); |
26 | | if (BN_is_zero(d)) { |
27 | | ERR_raise(ERR_LIB_BN, BN_R_DIV_BY_ZERO); |
28 | | return 0; |
29 | | } |
30 | | |
31 | | if (BN_ucmp(m, d) < 0) { |
32 | | if (rem != NULL) { |
33 | | if (BN_copy(rem, m) == NULL) |
34 | | return 0; |
35 | | } |
36 | | if (dv != NULL) |
37 | | BN_zero(dv); |
38 | | return 1; |
39 | | } |
40 | | |
41 | | BN_CTX_start(ctx); |
42 | | D = BN_CTX_get(ctx); |
43 | | if (dv == NULL) |
44 | | dv = BN_CTX_get(ctx); |
45 | | if (rem == NULL) |
46 | | rem = BN_CTX_get(ctx); |
47 | | if (D == NULL || dv == NULL || rem == NULL) |
48 | | goto end; |
49 | | |
50 | | nd = BN_num_bits(d); |
51 | | nm = BN_num_bits(m); |
52 | | if (BN_copy(D, d) == NULL) |
53 | | goto end; |
54 | | if (BN_copy(rem, m) == NULL) |
55 | | goto end; |
56 | | |
57 | | /* |
58 | | * The next 2 are needed so we can do a dv->d[0]|=1 later since |
59 | | * BN_lshift1 will only work once there is a value :-) |
60 | | */ |
61 | | BN_zero(dv); |
62 | | if (bn_wexpand(dv, 1) == NULL) |
63 | | goto end; |
64 | | dv->top = 1; |
65 | | |
66 | | if (!BN_lshift(D, D, nm - nd)) |
67 | | goto end; |
68 | | for (i = nm - nd; i >= 0; i--) { |
69 | | if (!BN_lshift1(dv, dv)) |
70 | | goto end; |
71 | | if (BN_ucmp(rem, D) >= 0) { |
72 | | dv->d[0] |= 1; |
73 | | if (!BN_usub(rem, rem, D)) |
74 | | goto end; |
75 | | } |
76 | | /* CAN IMPROVE (and have now :=) */ |
77 | | if (!BN_rshift1(D, D)) |
78 | | goto end; |
79 | | } |
80 | | rem->neg = BN_is_zero(rem) ? 0 : m->neg; |
81 | | dv->neg = m->neg ^ d->neg; |
82 | | ret = 1; |
83 | | end: |
84 | | BN_CTX_end(ctx); |
85 | | return ret; |
86 | | } |
87 | | |
88 | | #else |
89 | | |
90 | | # if defined(BN_DIV3W) |
91 | | BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0); |
92 | | # elif 0 |
93 | | /* |
94 | | * This is #if-ed away, because it's a reference for assembly implementations, |
95 | | * where it can and should be made constant-time. But if you want to test it, |
96 | | * just replace 0 with 1. |
97 | | */ |
98 | | # if BN_BITS2 == 64 && defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 |
99 | | # undef BN_ULLONG |
100 | | # define BN_ULLONG uint128_t |
101 | | # define BN_LLONG |
102 | | # endif |
103 | | |
104 | | # ifdef BN_LLONG |
105 | | # define BN_DIV3W |
106 | | /* |
107 | | * Interface is somewhat quirky, |m| is pointer to most significant limb, |
108 | | * and less significant limb is referred at |m[-1]|. This means that caller |
109 | | * is responsible for ensuring that |m[-1]| is valid. Second condition that |
110 | | * has to be met is that |d0|'s most significant bit has to be set. Or in |
111 | | * other words divisor has to be "bit-aligned to the left." bn_div_fixed_top |
112 | | * does all this. The subroutine considers four limbs, two of which are |
113 | | * "overlapping," hence the name... |
114 | | */ |
115 | | static BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0) |
116 | | { |
117 | | BN_ULLONG R = ((BN_ULLONG)m[0] << BN_BITS2) | m[-1]; |
118 | | BN_ULLONG D = ((BN_ULLONG)d0 << BN_BITS2) | d1; |
119 | | BN_ULONG Q = 0, mask; |
120 | | int i; |
121 | | |
122 | | for (i = 0; i < BN_BITS2; i++) { |
123 | | Q <<= 1; |
124 | | if (R >= D) { |
125 | | Q |= 1; |
126 | | R -= D; |
127 | | } |
128 | | D >>= 1; |
129 | | } |
130 | | |
131 | | mask = 0 - (Q >> (BN_BITS2 - 1)); /* does it overflow? */ |
132 | | |
133 | | Q <<= 1; |
134 | | Q |= (R >= D); |
135 | | |
136 | | return (Q | mask) & BN_MASK2; |
137 | | } |
138 | | # endif |
139 | | # endif |
140 | | |
141 | | static int bn_left_align(BIGNUM *num) |
142 | 88.3M | { |
143 | 88.3M | BN_ULONG *d = num->d, n, m, rmask; |
144 | 88.3M | int top = num->top; |
145 | 88.3M | int rshift = BN_num_bits_word(d[top - 1]), lshift, i; |
146 | | |
147 | 88.3M | lshift = BN_BITS2 - rshift; |
148 | 88.3M | rshift %= BN_BITS2; /* say no to undefined behaviour */ |
149 | 88.3M | rmask = (BN_ULONG)0 - rshift; /* rmask = 0 - (rshift != 0) */ |
150 | 88.3M | rmask |= rmask >> 8; |
151 | | |
152 | 746M | for (i = 0, m = 0; i < top; i++) { |
153 | 657M | n = d[i]; |
154 | 657M | d[i] = ((n << lshift) | m) & BN_MASK2; |
155 | 657M | m = (n >> rshift) & rmask; |
156 | 657M | } |
157 | | |
158 | 88.3M | return lshift; |
159 | 88.3M | } |
160 | | |
161 | | # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \ |
162 | | && !defined(PEDANTIC) && !defined(BN_DIV3W) |
163 | | # if defined(__GNUC__) && __GNUC__>=2 |
164 | | # if defined(__i386) || defined (__i386__) |
165 | | /*- |
166 | | * There were two reasons for implementing this template: |
167 | | * - GNU C generates a call to a function (__udivdi3 to be exact) |
168 | | * in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to |
169 | | * understand why...); |
170 | | * - divl doesn't only calculate quotient, but also leaves |
171 | | * remainder in %edx which we can definitely use here:-) |
172 | | */ |
173 | | # undef bn_div_words |
174 | | # define bn_div_words(n0,n1,d0) \ |
175 | | ({ asm volatile ( \ |
176 | | "divl %4" \ |
177 | | : "=a"(q), "=d"(rem) \ |
178 | | : "a"(n1), "d"(n0), "r"(d0) \ |
179 | | : "cc"); \ |
180 | | q; \ |
181 | | }) |
182 | | # define REMAINDER_IS_ALREADY_CALCULATED |
183 | | # elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG) |
184 | | /* |
185 | | * Same story here, but it's 128-bit by 64-bit division. Wow! |
186 | | */ |
187 | | # undef bn_div_words |
188 | | # define bn_div_words(n0,n1,d0) \ |
189 | | ({ asm volatile ( \ |
190 | | "divq %4" \ |
191 | | : "=a"(q), "=d"(rem) \ |
192 | | : "a"(n1), "d"(n0), "r"(d0) \ |
193 | | : "cc"); \ |
194 | | q; \ |
195 | | }) |
196 | | # define REMAINDER_IS_ALREADY_CALCULATED |
197 | | # endif /* __<cpu> */ |
198 | | # endif /* __GNUC__ */ |
199 | | # endif /* OPENSSL_NO_ASM */ |
200 | | |
201 | | /*- |
202 | | * BN_div computes dv := num / divisor, rounding towards |
203 | | * zero, and sets up rm such that dv*divisor + rm = num holds. |
204 | | * Thus: |
205 | | * dv->neg == num->neg ^ divisor->neg (unless the result is zero) |
206 | | * rm->neg == num->neg (unless the remainder is zero) |
207 | | * If 'dv' or 'rm' is NULL, the respective value is not returned. |
208 | | */ |
209 | | int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, |
210 | | BN_CTX *ctx) |
211 | 88.3M | { |
212 | 88.3M | int ret; |
213 | | |
214 | 88.3M | if (BN_is_zero(divisor)) { |
215 | 73 | ERR_raise(ERR_LIB_BN, BN_R_DIV_BY_ZERO); |
216 | 73 | return 0; |
217 | 73 | } |
218 | | |
219 | | /* |
220 | | * Invalid zero-padding would have particularly bad consequences so don't |
221 | | * just rely on bn_check_top() here (bn_check_top() works only for |
222 | | * BN_DEBUG builds) |
223 | | */ |
224 | 88.3M | if (divisor->d[divisor->top - 1] == 0) { |
225 | 0 | ERR_raise(ERR_LIB_BN, BN_R_NOT_INITIALIZED); |
226 | 0 | return 0; |
227 | 0 | } |
228 | | |
229 | 88.3M | ret = bn_div_fixed_top(dv, rm, num, divisor, ctx); |
230 | | |
231 | 88.3M | if (ret) { |
232 | 88.3M | if (dv != NULL) |
233 | 11.8M | bn_correct_top(dv); |
234 | 88.3M | if (rm != NULL) |
235 | 87.4M | bn_correct_top(rm); |
236 | 88.3M | } |
237 | | |
238 | 88.3M | return ret; |
239 | 88.3M | } |
240 | | |
241 | | /* |
242 | | * It's argued that *length* of *significant* part of divisor is public. |
243 | | * Even if it's private modulus that is. Again, *length* is assumed |
244 | | * public, but not *value*. Former is likely to be pre-defined by |
245 | | * algorithm with bit granularity, though below subroutine is invariant |
246 | | * of limb length. Thanks to this assumption we can require that |divisor| |
247 | | * may not be zero-padded, yet claim this subroutine "constant-time"(*). |
248 | | * This is because zero-padded dividend, |num|, is tolerated, so that |
249 | | * caller can pass dividend of public length(*), but with smaller amount |
250 | | * of significant limbs. This naturally means that quotient, |dv|, would |
251 | | * contain correspongly less significant limbs as well, and will be zero- |
252 | | * padded accordingly. Returned remainder, |rm|, will have same bit length |
253 | | * as divisor, also zero-padded if needed. These actually leave sign bits |
254 | | * in ambiguous state. In sense that we try to avoid negative zeros, while |
255 | | * zero-padded zeros would retain sign. |
256 | | * |
257 | | * (*) "Constant-time-ness" has two pre-conditions: |
258 | | * |
259 | | * - availability of constant-time bn_div_3_words; |
260 | | * - dividend is at least as "wide" as divisor, limb-wise, zero-padded |
261 | | * if so required, which shouldn't be a privacy problem, because |
262 | | * divisor's length is considered public; |
263 | | */ |
264 | | int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, |
265 | | const BIGNUM *divisor, BN_CTX *ctx) |
266 | 88.3M | { |
267 | 88.3M | int norm_shift, i, j, loop; |
268 | 88.3M | BIGNUM *tmp, *snum, *sdiv, *res; |
269 | 88.3M | BN_ULONG *resp, *wnum, *wnumtop; |
270 | 88.3M | BN_ULONG d0, d1; |
271 | 88.3M | int num_n, div_n, num_neg; |
272 | | |
273 | 88.3M | assert(divisor->top > 0 && divisor->d[divisor->top - 1] != 0); |
274 | | |
275 | 88.3M | bn_check_top(num); |
276 | 88.3M | bn_check_top(divisor); |
277 | 88.3M | bn_check_top(dv); |
278 | 88.3M | bn_check_top(rm); |
279 | | |
280 | 88.3M | BN_CTX_start(ctx); |
281 | 88.3M | res = (dv == NULL) ? BN_CTX_get(ctx) : dv; |
282 | 88.3M | tmp = BN_CTX_get(ctx); |
283 | 88.3M | snum = BN_CTX_get(ctx); |
284 | 88.3M | sdiv = BN_CTX_get(ctx); |
285 | 88.3M | if (sdiv == NULL) |
286 | 0 | goto err; |
287 | | |
288 | | /* First we normalise the numbers */ |
289 | 88.3M | if (!BN_copy(sdiv, divisor)) |
290 | 0 | goto err; |
291 | 88.3M | norm_shift = bn_left_align(sdiv); |
292 | 88.3M | sdiv->neg = 0; |
293 | | /* |
294 | | * Note that bn_lshift_fixed_top's output is always one limb longer |
295 | | * than input, even when norm_shift is zero. This means that amount of |
296 | | * inner loop iterations is invariant of dividend value, and that one |
297 | | * doesn't need to compare dividend and divisor if they were originally |
298 | | * of the same bit length. |
299 | | */ |
300 | 88.3M | if (!(bn_lshift_fixed_top(snum, num, norm_shift))) |
301 | 0 | goto err; |
302 | | |
303 | 88.3M | div_n = sdiv->top; |
304 | 88.3M | num_n = snum->top; |
305 | | |
306 | 88.3M | if (num_n <= div_n) { |
307 | | /* caller didn't pad dividend -> no constant-time guarantee... */ |
308 | 833k | if (bn_wexpand(snum, div_n + 1) == NULL) |
309 | 0 | goto err; |
310 | 833k | memset(&(snum->d[num_n]), 0, (div_n - num_n + 1) * sizeof(BN_ULONG)); |
311 | 833k | snum->top = num_n = div_n + 1; |
312 | 833k | } |
313 | | |
314 | 88.3M | loop = num_n - div_n; |
315 | | /* |
316 | | * Lets setup a 'window' into snum This is the part that corresponds to |
317 | | * the current 'area' being divided |
318 | | */ |
319 | 88.3M | wnum = &(snum->d[loop]); |
320 | 88.3M | wnumtop = &(snum->d[num_n - 1]); |
321 | | |
322 | | /* Get the top 2 words of sdiv */ |
323 | 88.3M | d0 = sdiv->d[div_n - 1]; |
324 | 88.3M | d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2]; |
325 | | |
326 | | /* Setup quotient */ |
327 | 88.3M | if (!bn_wexpand(res, loop)) |
328 | 0 | goto err; |
329 | 88.3M | num_neg = num->neg; |
330 | 88.3M | res->neg = (num_neg ^ divisor->neg); |
331 | 88.3M | res->top = loop; |
332 | 88.3M | res->flags |= BN_FLG_FIXED_TOP; |
333 | 88.3M | resp = &(res->d[loop]); |
334 | | |
335 | | /* space for temp */ |
336 | 88.3M | if (!bn_wexpand(tmp, (div_n + 1))) |
337 | 0 | goto err; |
338 | | |
339 | 394M | for (i = 0; i < loop; i++, wnumtop--) { |
340 | 306M | BN_ULONG q, l0; |
341 | | /* |
342 | | * the first part of the loop uses the top two words of snum and sdiv |
343 | | * to calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv |
344 | | */ |
345 | | # if defined(BN_DIV3W) |
346 | | q = bn_div_3_words(wnumtop, d1, d0); |
347 | | # else |
348 | 306M | BN_ULONG n0, n1, rem = 0; |
349 | | |
350 | 306M | n0 = wnumtop[0]; |
351 | 306M | n1 = wnumtop[-1]; |
352 | 306M | if (n0 == d0) |
353 | 1.49M | q = BN_MASK2; |
354 | 304M | else { /* n0 < d0 */ |
355 | 304M | BN_ULONG n2 = (wnumtop == wnum) ? 0 : wnumtop[-2]; |
356 | | # ifdef BN_LLONG |
357 | | BN_ULLONG t2; |
358 | | |
359 | | # if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words) |
360 | | q = (BN_ULONG)(((((BN_ULLONG) n0) << BN_BITS2) | n1) / d0); |
361 | | # else |
362 | | q = bn_div_words(n0, n1, d0); |
363 | | # endif |
364 | | |
365 | | # ifndef REMAINDER_IS_ALREADY_CALCULATED |
366 | | /* |
367 | | * rem doesn't have to be BN_ULLONG. The least we |
368 | | * know it's less that d0, isn't it? |
369 | | */ |
370 | | rem = (n1 - q * d0) & BN_MASK2; |
371 | | # endif |
372 | | t2 = (BN_ULLONG) d1 *q; |
373 | | |
374 | | for (;;) { |
375 | | if (t2 <= ((((BN_ULLONG) rem) << BN_BITS2) | n2)) |
376 | | break; |
377 | | q--; |
378 | | rem += d0; |
379 | | if (rem < d0) |
380 | | break; /* don't let rem overflow */ |
381 | | t2 -= d1; |
382 | | } |
383 | | # else /* !BN_LLONG */ |
384 | 304M | BN_ULONG t2l, t2h; |
385 | | |
386 | 304M | q = bn_div_words(n0, n1, d0); |
387 | 304M | # ifndef REMAINDER_IS_ALREADY_CALCULATED |
388 | 304M | rem = (n1 - q * d0) & BN_MASK2; |
389 | 304M | # endif |
390 | | |
391 | | # if defined(BN_UMULT_LOHI) |
392 | | BN_UMULT_LOHI(t2l, t2h, d1, q); |
393 | | # elif defined(BN_UMULT_HIGH) |
394 | | t2l = d1 * q; |
395 | | t2h = BN_UMULT_HIGH(d1, q); |
396 | | # else |
397 | 304M | { |
398 | 304M | BN_ULONG ql, qh; |
399 | 304M | t2l = LBITS(d1); |
400 | 304M | t2h = HBITS(d1); |
401 | 304M | ql = LBITS(q); |
402 | 304M | qh = HBITS(q); |
403 | 304M | mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */ |
404 | 304M | } |
405 | 304M | # endif |
406 | | |
407 | 306M | for (;;) { |
408 | 306M | if ((t2h < rem) || ((t2h == rem) && (t2l <= n2))) |
409 | 204M | break; |
410 | 101M | q--; |
411 | 101M | rem += d0; |
412 | 101M | if (rem < d0) |
413 | 99.9M | break; /* don't let rem overflow */ |
414 | 1.79M | if (t2l < d1) |
415 | 1.16M | t2h--; |
416 | 1.79M | t2l -= d1; |
417 | 1.79M | } |
418 | 304M | # endif /* !BN_LLONG */ |
419 | 304M | } |
420 | 306M | # endif /* !BN_DIV3W */ |
421 | | |
422 | 306M | l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q); |
423 | 306M | tmp->d[div_n] = l0; |
424 | 306M | wnum--; |
425 | | /* |
426 | | * ignore top values of the bignums just sub the two BN_ULONG arrays |
427 | | * with bn_sub_words |
428 | | */ |
429 | 306M | l0 = bn_sub_words(wnum, wnum, tmp->d, div_n + 1); |
430 | 306M | q -= l0; |
431 | | /* |
432 | | * Note: As we have considered only the leading two BN_ULONGs in |
433 | | * the calculation of q, sdiv * q might be greater than wnum (but |
434 | | * then (q-1) * sdiv is less or equal than wnum) |
435 | | */ |
436 | 16.6G | for (l0 = 0 - l0, j = 0; j < div_n; j++) |
437 | 16.3G | tmp->d[j] = sdiv->d[j] & l0; |
438 | 306M | l0 = bn_add_words(wnum, wnum, tmp->d, div_n); |
439 | 306M | (*wnumtop) += l0; |
440 | 306M | assert((*wnumtop) == 0); |
441 | | |
442 | | /* store part of the result */ |
443 | 306M | *--resp = q; |
444 | 306M | } |
445 | | /* snum holds remainder, it's as wide as divisor */ |
446 | 88.3M | snum->neg = num_neg; |
447 | 88.3M | snum->top = div_n; |
448 | 88.3M | snum->flags |= BN_FLG_FIXED_TOP; |
449 | | |
450 | 88.3M | if (rm != NULL && bn_rshift_fixed_top(rm, snum, norm_shift) == 0) |
451 | 0 | goto err; |
452 | | |
453 | 88.3M | BN_CTX_end(ctx); |
454 | 88.3M | return 1; |
455 | 0 | err: |
456 | 0 | bn_check_top(rm); |
457 | 0 | BN_CTX_end(ctx); |
458 | 0 | return 0; |
459 | 88.3M | } |
460 | | #endif |