/src/openssl32/crypto/bn/bn_gcd.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include "internal/cryptlib.h"  | 
11  |  | #include "bn_local.h"  | 
12  |  |  | 
13  |  | /*  | 
14  |  |  * bn_mod_inverse_no_branch is a special version of BN_mod_inverse. It does  | 
15  |  |  * not contain branches that may leak sensitive information.  | 
16  |  |  *  | 
17  |  |  * This is a static function, we ensure all callers in this file pass valid  | 
18  |  |  * arguments: all passed pointers here are non-NULL.  | 
19  |  |  */  | 
20  |  | static ossl_inline  | 
21  |  | BIGNUM *bn_mod_inverse_no_branch(BIGNUM *in,  | 
22  |  |                                  const BIGNUM *a, const BIGNUM *n,  | 
23  |  |                                  BN_CTX *ctx, int *pnoinv)  | 
24  | 27.4k  | { | 
25  | 27.4k  |     BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;  | 
26  | 27.4k  |     BIGNUM *ret = NULL;  | 
27  | 27.4k  |     int sign;  | 
28  |  |  | 
29  | 27.4k  |     bn_check_top(a);  | 
30  | 27.4k  |     bn_check_top(n);  | 
31  |  |  | 
32  | 27.4k  |     BN_CTX_start(ctx);  | 
33  | 27.4k  |     A = BN_CTX_get(ctx);  | 
34  | 27.4k  |     B = BN_CTX_get(ctx);  | 
35  | 27.4k  |     X = BN_CTX_get(ctx);  | 
36  | 27.4k  |     D = BN_CTX_get(ctx);  | 
37  | 27.4k  |     M = BN_CTX_get(ctx);  | 
38  | 27.4k  |     Y = BN_CTX_get(ctx);  | 
39  | 27.4k  |     T = BN_CTX_get(ctx);  | 
40  | 27.4k  |     if (T == NULL)  | 
41  | 0  |         goto err;  | 
42  |  |  | 
43  | 27.4k  |     if (in == NULL)  | 
44  | 0  |         R = BN_new();  | 
45  | 27.4k  |     else  | 
46  | 27.4k  |         R = in;  | 
47  | 27.4k  |     if (R == NULL)  | 
48  | 0  |         goto err;  | 
49  |  |  | 
50  | 27.4k  |     if (!BN_one(X))  | 
51  | 0  |         goto err;  | 
52  | 27.4k  |     BN_zero(Y);  | 
53  | 27.4k  |     if (BN_copy(B, a) == NULL)  | 
54  | 0  |         goto err;  | 
55  | 27.4k  |     if (BN_copy(A, n) == NULL)  | 
56  | 0  |         goto err;  | 
57  | 27.4k  |     A->neg = 0;  | 
58  |  |  | 
59  | 27.4k  |     if (B->neg || (BN_ucmp(B, A) >= 0)) { | 
60  |  |         /*  | 
61  |  |          * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,  | 
62  |  |          * BN_div_no_branch will be called eventually.  | 
63  |  |          */  | 
64  | 18.3k  |          { | 
65  | 18.3k  |             BIGNUM local_B;  | 
66  | 18.3k  |             bn_init(&local_B);  | 
67  | 18.3k  |             BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);  | 
68  | 18.3k  |             if (!BN_nnmod(B, &local_B, A, ctx))  | 
69  | 0  |                 goto err;  | 
70  |  |             /* Ensure local_B goes out of scope before any further use of B */  | 
71  | 18.3k  |         }  | 
72  | 18.3k  |     }  | 
73  | 27.4k  |     sign = -1;  | 
74  |  |     /*-  | 
75  |  |      * From  B = a mod |n|,  A = |n|  it follows that  | 
76  |  |      *  | 
77  |  |      *      0 <= B < A,  | 
78  |  |      *     -sign*X*a  ==  B   (mod |n|),  | 
79  |  |      *      sign*Y*a  ==  A   (mod |n|).  | 
80  |  |      */  | 
81  |  |  | 
82  | 10.9M  |     while (!BN_is_zero(B)) { | 
83  | 10.8M  |         BIGNUM *tmp;  | 
84  |  |  | 
85  |  |         /*-  | 
86  |  |          *      0 < B < A,  | 
87  |  |          * (*) -sign*X*a  ==  B   (mod |n|),  | 
88  |  |          *      sign*Y*a  ==  A   (mod |n|)  | 
89  |  |          */  | 
90  |  |  | 
91  |  |         /*  | 
92  |  |          * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,  | 
93  |  |          * BN_div_no_branch will be called eventually.  | 
94  |  |          */  | 
95  | 10.8M  |         { | 
96  | 10.8M  |             BIGNUM local_A;  | 
97  | 10.8M  |             bn_init(&local_A);  | 
98  | 10.8M  |             BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);  | 
99  |  |  | 
100  |  |             /* (D, M) := (A/B, A%B) ... */  | 
101  | 10.8M  |             if (!BN_div(D, M, &local_A, B, ctx))  | 
102  | 0  |                 goto err;  | 
103  |  |             /* Ensure local_A goes out of scope before any further use of A */  | 
104  | 10.8M  |         }  | 
105  |  |  | 
106  |  |         /*-  | 
107  |  |          * Now  | 
108  |  |          *      A = D*B + M;  | 
109  |  |          * thus we have  | 
110  |  |          * (**)  sign*Y*a  ==  D*B + M   (mod |n|).  | 
111  |  |          */  | 
112  |  |  | 
113  | 10.8M  |         tmp = A;                /* keep the BIGNUM object, the value does not  | 
114  |  |                                  * matter */  | 
115  |  |  | 
116  |  |         /* (A, B) := (B, A mod B) ... */  | 
117  | 10.8M  |         A = B;  | 
118  | 10.8M  |         B = M;  | 
119  |  |         /* ... so we have  0 <= B < A  again */  | 
120  |  |  | 
121  |  |         /*-  | 
122  |  |          * Since the former  M  is now  B  and the former  B  is now  A,  | 
123  |  |          * (**) translates into  | 
124  |  |          *       sign*Y*a  ==  D*A + B    (mod |n|),  | 
125  |  |          * i.e.  | 
126  |  |          *       sign*Y*a - D*A  ==  B    (mod |n|).  | 
127  |  |          * Similarly, (*) translates into  | 
128  |  |          *      -sign*X*a  ==  A          (mod |n|).  | 
129  |  |          *  | 
130  |  |          * Thus,  | 
131  |  |          *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),  | 
132  |  |          * i.e.  | 
133  |  |          *        sign*(Y + D*X)*a  ==  B  (mod |n|).  | 
134  |  |          *  | 
135  |  |          * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at  | 
136  |  |          *      -sign*X*a  ==  B   (mod |n|),  | 
137  |  |          *       sign*Y*a  ==  A   (mod |n|).  | 
138  |  |          * Note that  X  and  Y  stay non-negative all the time.  | 
139  |  |          */  | 
140  |  |  | 
141  | 10.8M  |         if (!BN_mul(tmp, D, X, ctx))  | 
142  | 0  |             goto err;  | 
143  | 10.8M  |         if (!BN_add(tmp, tmp, Y))  | 
144  | 0  |             goto err;  | 
145  |  |  | 
146  | 10.8M  |         M = Y;                  /* keep the BIGNUM object, the value does not  | 
147  |  |                                  * matter */  | 
148  | 10.8M  |         Y = X;  | 
149  | 10.8M  |         X = tmp;  | 
150  | 10.8M  |         sign = -sign;  | 
151  | 10.8M  |     }  | 
152  |  |  | 
153  |  |     /*-  | 
154  |  |      * The while loop (Euclid's algorithm) ends when  | 
155  |  |      *      A == gcd(a,n);  | 
156  |  |      * we have  | 
157  |  |      *       sign*Y*a  ==  A  (mod |n|),  | 
158  |  |      * where  Y  is non-negative.  | 
159  |  |      */  | 
160  |  |  | 
161  | 27.4k  |     if (sign < 0) { | 
162  | 14.4k  |         if (!BN_sub(Y, n, Y))  | 
163  | 0  |             goto err;  | 
164  | 14.4k  |     }  | 
165  |  |     /* Now  Y*a  ==  A  (mod |n|).  */  | 
166  |  |  | 
167  | 27.4k  |     if (BN_is_one(A)) { | 
168  |  |         /* Y*a == 1  (mod |n|) */  | 
169  | 27.3k  |         if (!Y->neg && BN_ucmp(Y, n) < 0) { | 
170  | 27.3k  |             if (!BN_copy(R, Y))  | 
171  | 0  |                 goto err;  | 
172  | 27.3k  |         } else { | 
173  | 0  |             if (!BN_nnmod(R, Y, n, ctx))  | 
174  | 0  |                 goto err;  | 
175  | 0  |         }  | 
176  | 27.3k  |     } else { | 
177  | 191  |         *pnoinv = 1;  | 
178  |  |         /* caller sets the BN_R_NO_INVERSE error */  | 
179  | 191  |         goto err;  | 
180  | 191  |     }  | 
181  |  |  | 
182  | 27.3k  |     ret = R;  | 
183  | 27.3k  |     *pnoinv = 0;  | 
184  |  |  | 
185  | 27.4k  |  err:  | 
186  | 27.4k  |     if ((ret == NULL) && (in == NULL))  | 
187  | 0  |         BN_free(R);  | 
188  | 27.4k  |     BN_CTX_end(ctx);  | 
189  | 27.4k  |     bn_check_top(ret);  | 
190  | 27.4k  |     return ret;  | 
191  | 27.3k  | }  | 
192  |  |  | 
193  |  | /*  | 
194  |  |  * This is an internal function, we assume all callers pass valid arguments:  | 
195  |  |  * all pointers passed here are assumed non-NULL.  | 
196  |  |  */  | 
197  |  | BIGNUM *int_bn_mod_inverse(BIGNUM *in,  | 
198  |  |                            const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,  | 
199  |  |                            int *pnoinv)  | 
200  | 757k  | { | 
201  | 757k  |     BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;  | 
202  | 757k  |     BIGNUM *ret = NULL;  | 
203  | 757k  |     int sign;  | 
204  |  |  | 
205  |  |     /* This is invalid input so we don't worry about constant time here */  | 
206  | 757k  |     if (BN_abs_is_word(n, 1) || BN_is_zero(n)) { | 
207  | 473  |         *pnoinv = 1;  | 
208  | 473  |         return NULL;  | 
209  | 473  |     }  | 
210  |  |  | 
211  | 757k  |     *pnoinv = 0;  | 
212  |  |  | 
213  | 757k  |     if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)  | 
214  | 757k  |         || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { | 
215  | 27.4k  |         return bn_mod_inverse_no_branch(in, a, n, ctx, pnoinv);  | 
216  | 27.4k  |     }  | 
217  |  |  | 
218  | 729k  |     bn_check_top(a);  | 
219  | 729k  |     bn_check_top(n);  | 
220  |  |  | 
221  | 729k  |     BN_CTX_start(ctx);  | 
222  | 729k  |     A = BN_CTX_get(ctx);  | 
223  | 729k  |     B = BN_CTX_get(ctx);  | 
224  | 729k  |     X = BN_CTX_get(ctx);  | 
225  | 729k  |     D = BN_CTX_get(ctx);  | 
226  | 729k  |     M = BN_CTX_get(ctx);  | 
227  | 729k  |     Y = BN_CTX_get(ctx);  | 
228  | 729k  |     T = BN_CTX_get(ctx);  | 
229  | 729k  |     if (T == NULL)  | 
230  | 0  |         goto err;  | 
231  |  |  | 
232  | 729k  |     if (in == NULL)  | 
233  | 0  |         R = BN_new();  | 
234  | 729k  |     else  | 
235  | 729k  |         R = in;  | 
236  | 729k  |     if (R == NULL)  | 
237  | 0  |         goto err;  | 
238  |  |  | 
239  | 729k  |     if (!BN_one(X))  | 
240  | 0  |         goto err;  | 
241  | 729k  |     BN_zero(Y);  | 
242  | 729k  |     if (BN_copy(B, a) == NULL)  | 
243  | 0  |         goto err;  | 
244  | 729k  |     if (BN_copy(A, n) == NULL)  | 
245  | 0  |         goto err;  | 
246  | 729k  |     A->neg = 0;  | 
247  | 729k  |     if (B->neg || (BN_ucmp(B, A) >= 0)) { | 
248  | 728k  |         if (!BN_nnmod(B, B, A, ctx))  | 
249  | 0  |             goto err;  | 
250  | 728k  |     }  | 
251  | 729k  |     sign = -1;  | 
252  |  |     /*-  | 
253  |  |      * From  B = a mod |n|,  A = |n|  it follows that  | 
254  |  |      *  | 
255  |  |      *      0 <= B < A,  | 
256  |  |      *     -sign*X*a  ==  B   (mod |n|),  | 
257  |  |      *      sign*Y*a  ==  A   (mod |n|).  | 
258  |  |      */  | 
259  |  |  | 
260  | 729k  |     if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) { | 
261  |  |         /*  | 
262  |  |          * Binary inversion algorithm; requires odd modulus. This is faster  | 
263  |  |          * than the general algorithm if the modulus is sufficiently small  | 
264  |  |          * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit  | 
265  |  |          * systems)  | 
266  |  |          */  | 
267  | 724k  |         int shift;  | 
268  |  |  | 
269  | 44.5M  |         while (!BN_is_zero(B)) { | 
270  |  |             /*-  | 
271  |  |              *      0 < B < |n|,  | 
272  |  |              *      0 < A <= |n|,  | 
273  |  |              * (1) -sign*X*a  ==  B   (mod |n|),  | 
274  |  |              * (2)  sign*Y*a  ==  A   (mod |n|)  | 
275  |  |              */  | 
276  |  |  | 
277  |  |             /*  | 
278  |  |              * Now divide B by the maximum possible power of two in the  | 
279  |  |              * integers, and divide X by the same value mod |n|. When we're  | 
280  |  |              * done, (1) still holds.  | 
281  |  |              */  | 
282  | 43.8M  |             shift = 0;  | 
283  | 60.0M  |             while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */ | 
284  | 16.1M  |                 shift++;  | 
285  |  |  | 
286  | 16.1M  |                 if (BN_is_odd(X)) { | 
287  | 8.16M  |                     if (!BN_uadd(X, X, n))  | 
288  | 0  |                         goto err;  | 
289  | 8.16M  |                 }  | 
290  |  |                 /*  | 
291  |  |                  * now X is even, so we can easily divide it by two  | 
292  |  |                  */  | 
293  | 16.1M  |                 if (!BN_rshift1(X, X))  | 
294  | 0  |                     goto err;  | 
295  | 16.1M  |             }  | 
296  | 43.8M  |             if (shift > 0) { | 
297  | 15.1M  |                 if (!BN_rshift(B, B, shift))  | 
298  | 0  |                     goto err;  | 
299  | 15.1M  |             }  | 
300  |  |  | 
301  |  |             /*  | 
302  |  |              * Same for A and Y.  Afterwards, (2) still holds.  | 
303  |  |              */  | 
304  | 43.8M  |             shift = 0;  | 
305  | 72.5M  |             while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */ | 
306  | 28.7M  |                 shift++;  | 
307  |  |  | 
308  | 28.7M  |                 if (BN_is_odd(Y)) { | 
309  | 18.8M  |                     if (!BN_uadd(Y, Y, n))  | 
310  | 0  |                         goto err;  | 
311  | 18.8M  |                 }  | 
312  |  |                 /* now Y is even */  | 
313  | 28.7M  |                 if (!BN_rshift1(Y, Y))  | 
314  | 0  |                     goto err;  | 
315  | 28.7M  |             }  | 
316  | 43.8M  |             if (shift > 0) { | 
317  | 28.1M  |                 if (!BN_rshift(A, A, shift))  | 
318  | 0  |                     goto err;  | 
319  | 28.1M  |             }  | 
320  |  |  | 
321  |  |             /*-  | 
322  |  |              * We still have (1) and (2).  | 
323  |  |              * Both  A  and  B  are odd.  | 
324  |  |              * The following computations ensure that  | 
325  |  |              *  | 
326  |  |              *     0 <= B < |n|,  | 
327  |  |              *      0 < A < |n|,  | 
328  |  |              * (1) -sign*X*a  ==  B   (mod |n|),  | 
329  |  |              * (2)  sign*Y*a  ==  A   (mod |n|),  | 
330  |  |              *  | 
331  |  |              * and that either  A  or  B  is even in the next iteration.  | 
332  |  |              */  | 
333  | 43.8M  |             if (BN_ucmp(B, A) >= 0) { | 
334  |  |                 /* -sign*(X + Y)*a == B - A  (mod |n|) */  | 
335  | 15.6M  |                 if (!BN_uadd(X, X, Y))  | 
336  | 0  |                     goto err;  | 
337  |  |                 /*  | 
338  |  |                  * NB: we could use BN_mod_add_quick(X, X, Y, n), but that  | 
339  |  |                  * actually makes the algorithm slower  | 
340  |  |                  */  | 
341  | 15.6M  |                 if (!BN_usub(B, B, A))  | 
342  | 0  |                     goto err;  | 
343  | 28.1M  |             } else { | 
344  |  |                 /*  sign*(X + Y)*a == A - B  (mod |n|) */  | 
345  | 28.1M  |                 if (!BN_uadd(Y, Y, X))  | 
346  | 0  |                     goto err;  | 
347  |  |                 /*  | 
348  |  |                  * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down  | 
349  |  |                  */  | 
350  | 28.1M  |                 if (!BN_usub(A, A, B))  | 
351  | 0  |                     goto err;  | 
352  | 28.1M  |             }  | 
353  | 43.8M  |         }  | 
354  | 724k  |     } else { | 
355  |  |         /* general inversion algorithm */  | 
356  |  |  | 
357  | 174k  |         while (!BN_is_zero(B)) { | 
358  | 169k  |             BIGNUM *tmp;  | 
359  |  |  | 
360  |  |             /*-  | 
361  |  |              *      0 < B < A,  | 
362  |  |              * (*) -sign*X*a  ==  B   (mod |n|),  | 
363  |  |              *      sign*Y*a  ==  A   (mod |n|)  | 
364  |  |              */  | 
365  |  |  | 
366  |  |             /* (D, M) := (A/B, A%B) ... */  | 
367  | 169k  |             if (BN_num_bits(A) == BN_num_bits(B)) { | 
368  | 35.0k  |                 if (!BN_one(D))  | 
369  | 0  |                     goto err;  | 
370  | 35.0k  |                 if (!BN_sub(M, A, B))  | 
371  | 0  |                     goto err;  | 
372  | 134k  |             } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { | 
373  |  |                 /* A/B is 1, 2, or 3 */  | 
374  | 63.2k  |                 if (!BN_lshift1(T, B))  | 
375  | 0  |                     goto err;  | 
376  | 63.2k  |                 if (BN_ucmp(A, T) < 0) { | 
377  |  |                     /* A < 2*B, so D=1 */  | 
378  | 35.9k  |                     if (!BN_one(D))  | 
379  | 0  |                         goto err;  | 
380  | 35.9k  |                     if (!BN_sub(M, A, B))  | 
381  | 0  |                         goto err;  | 
382  | 35.9k  |                 } else { | 
383  |  |                     /* A >= 2*B, so D=2 or D=3 */  | 
384  | 27.2k  |                     if (!BN_sub(M, A, T))  | 
385  | 0  |                         goto err;  | 
386  | 27.2k  |                     if (!BN_add(D, T, B))  | 
387  | 0  |                         goto err; /* use D (:= 3*B) as temp */  | 
388  | 27.2k  |                     if (BN_ucmp(A, D) < 0) { | 
389  |  |                         /* A < 3*B, so D=2 */  | 
390  | 21.7k  |                         if (!BN_set_word(D, 2))  | 
391  | 0  |                             goto err;  | 
392  |  |                         /*  | 
393  |  |                          * M (= A - 2*B) already has the correct value  | 
394  |  |                          */  | 
395  | 21.7k  |                     } else { | 
396  |  |                         /* only D=3 remains */  | 
397  | 5.52k  |                         if (!BN_set_word(D, 3))  | 
398  | 0  |                             goto err;  | 
399  |  |                         /*  | 
400  |  |                          * currently M = A - 2*B, but we need M = A - 3*B  | 
401  |  |                          */  | 
402  | 5.52k  |                         if (!BN_sub(M, M, B))  | 
403  | 0  |                             goto err;  | 
404  | 5.52k  |                     }  | 
405  | 27.2k  |                 }  | 
406  | 70.9k  |             } else { | 
407  | 70.9k  |                 if (!BN_div(D, M, A, B, ctx))  | 
408  | 0  |                     goto err;  | 
409  | 70.9k  |             }  | 
410  |  |  | 
411  |  |             /*-  | 
412  |  |              * Now  | 
413  |  |              *      A = D*B + M;  | 
414  |  |              * thus we have  | 
415  |  |              * (**)  sign*Y*a  ==  D*B + M   (mod |n|).  | 
416  |  |              */  | 
417  |  |  | 
418  | 169k  |             tmp = A;    /* keep the BIGNUM object, the value does not matter */  | 
419  |  |  | 
420  |  |             /* (A, B) := (B, A mod B) ... */  | 
421  | 169k  |             A = B;  | 
422  | 169k  |             B = M;  | 
423  |  |             /* ... so we have  0 <= B < A  again */  | 
424  |  |  | 
425  |  |             /*-  | 
426  |  |              * Since the former  M  is now  B  and the former  B  is now  A,  | 
427  |  |              * (**) translates into  | 
428  |  |              *       sign*Y*a  ==  D*A + B    (mod |n|),  | 
429  |  |              * i.e.  | 
430  |  |              *       sign*Y*a - D*A  ==  B    (mod |n|).  | 
431  |  |              * Similarly, (*) translates into  | 
432  |  |              *      -sign*X*a  ==  A          (mod |n|).  | 
433  |  |              *  | 
434  |  |              * Thus,  | 
435  |  |              *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),  | 
436  |  |              * i.e.  | 
437  |  |              *        sign*(Y + D*X)*a  ==  B  (mod |n|).  | 
438  |  |              *  | 
439  |  |              * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at  | 
440  |  |              *      -sign*X*a  ==  B   (mod |n|),  | 
441  |  |              *       sign*Y*a  ==  A   (mod |n|).  | 
442  |  |              * Note that  X  and  Y  stay non-negative all the time.  | 
443  |  |              */  | 
444  |  |  | 
445  |  |             /*  | 
446  |  |              * most of the time D is very small, so we can optimize tmp := D*X+Y  | 
447  |  |              */  | 
448  | 169k  |             if (BN_is_one(D)) { | 
449  | 70.9k  |                 if (!BN_add(tmp, X, Y))  | 
450  | 0  |                     goto err;  | 
451  | 98.2k  |             } else { | 
452  | 98.2k  |                 if (BN_is_word(D, 2)) { | 
453  | 30.5k  |                     if (!BN_lshift1(tmp, X))  | 
454  | 0  |                         goto err;  | 
455  | 67.7k  |                 } else if (BN_is_word(D, 4)) { | 
456  | 10.0k  |                     if (!BN_lshift(tmp, X, 2))  | 
457  | 0  |                         goto err;  | 
458  | 57.6k  |                 } else if (D->top == 1) { | 
459  | 57.6k  |                     if (!BN_copy(tmp, X))  | 
460  | 0  |                         goto err;  | 
461  | 57.6k  |                     if (!BN_mul_word(tmp, D->d[0]))  | 
462  | 0  |                         goto err;  | 
463  | 57.6k  |                 } else { | 
464  | 71  |                     if (!BN_mul(tmp, D, X, ctx))  | 
465  | 0  |                         goto err;  | 
466  | 71  |                 }  | 
467  | 98.2k  |                 if (!BN_add(tmp, tmp, Y))  | 
468  | 0  |                     goto err;  | 
469  | 98.2k  |             }  | 
470  |  |  | 
471  | 169k  |             M = Y;      /* keep the BIGNUM object, the value does not matter */  | 
472  | 169k  |             Y = X;  | 
473  | 169k  |             X = tmp;  | 
474  | 169k  |             sign = -sign;  | 
475  | 169k  |         }  | 
476  | 5.26k  |     }  | 
477  |  |  | 
478  |  |     /*-  | 
479  |  |      * The while loop (Euclid's algorithm) ends when  | 
480  |  |      *      A == gcd(a,n);  | 
481  |  |      * we have  | 
482  |  |      *       sign*Y*a  ==  A  (mod |n|),  | 
483  |  |      * where  Y  is non-negative.  | 
484  |  |      */  | 
485  |  |  | 
486  | 729k  |     if (sign < 0) { | 
487  | 726k  |         if (!BN_sub(Y, n, Y))  | 
488  | 0  |             goto err;  | 
489  | 726k  |     }  | 
490  |  |     /* Now  Y*a  ==  A  (mod |n|).  */  | 
491  |  |  | 
492  | 729k  |     if (BN_is_one(A)) { | 
493  |  |         /* Y*a == 1  (mod |n|) */  | 
494  | 724k  |         if (!Y->neg && BN_ucmp(Y, n) < 0) { | 
495  | 193k  |             if (!BN_copy(R, Y))  | 
496  | 0  |                 goto err;  | 
497  | 531k  |         } else { | 
498  | 531k  |             if (!BN_nnmod(R, Y, n, ctx))  | 
499  | 0  |                 goto err;  | 
500  | 531k  |         }  | 
501  | 724k  |     } else { | 
502  | 4.66k  |         *pnoinv = 1;  | 
503  | 4.66k  |         goto err;  | 
504  | 4.66k  |     }  | 
505  | 724k  |     ret = R;  | 
506  | 729k  |  err:  | 
507  | 729k  |     if ((ret == NULL) && (in == NULL))  | 
508  | 0  |         BN_free(R);  | 
509  | 729k  |     BN_CTX_end(ctx);  | 
510  | 729k  |     bn_check_top(ret);  | 
511  | 729k  |     return ret;  | 
512  | 724k  | }  | 
513  |  |  | 
514  |  | /* solves ax == 1 (mod n) */  | 
515  |  | BIGNUM *BN_mod_inverse(BIGNUM *in,  | 
516  |  |                        const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)  | 
517  | 748k  | { | 
518  | 748k  |     BN_CTX *new_ctx = NULL;  | 
519  | 748k  |     BIGNUM *rv;  | 
520  | 748k  |     int noinv = 0;  | 
521  |  |  | 
522  | 748k  |     if (ctx == NULL) { | 
523  | 0  |         ctx = new_ctx = BN_CTX_new_ex(NULL);  | 
524  | 0  |         if (ctx == NULL) { | 
525  | 0  |             ERR_raise(ERR_LIB_BN, ERR_R_BN_LIB);  | 
526  | 0  |             return NULL;  | 
527  | 0  |         }  | 
528  | 0  |     }  | 
529  |  |  | 
530  | 748k  |     rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);  | 
531  | 748k  |     if (noinv)  | 
532  | 748k  |         ERR_raise(ERR_LIB_BN, BN_R_NO_INVERSE);  | 
533  | 748k  |     BN_CTX_free(new_ctx);  | 
534  | 748k  |     return rv;  | 
535  | 748k  | }  | 
536  |  |  | 
537  |  | /*  | 
538  |  |  * The numbers a and b are coprime if the only positive integer that is a  | 
539  |  |  * divisor of both of them is 1.  | 
540  |  |  * i.e. gcd(a,b) = 1.  | 
541  |  |  *  | 
542  |  |  * Coprimes have the property: b has a multiplicative inverse modulo a  | 
543  |  |  * i.e there is some value x such that bx = 1 (mod a).  | 
544  |  |  *  | 
545  |  |  * Testing the modulo inverse is currently much faster than the constant  | 
546  |  |  * time version of BN_gcd().  | 
547  |  |  */  | 
548  |  | int BN_are_coprime(BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)  | 
549  | 0  | { | 
550  | 0  |     int ret = 0;  | 
551  | 0  |     BIGNUM *tmp;  | 
552  |  | 
  | 
553  | 0  |     BN_CTX_start(ctx);  | 
554  | 0  |     tmp = BN_CTX_get(ctx);  | 
555  | 0  |     if (tmp == NULL)  | 
556  | 0  |         goto end;  | 
557  |  |  | 
558  | 0  |     ERR_set_mark();  | 
559  | 0  |     BN_set_flags(a, BN_FLG_CONSTTIME);  | 
560  | 0  |     ret = (BN_mod_inverse(tmp, a, b, ctx) != NULL);  | 
561  |  |     /* Clear any errors (an error is returned if there is no inverse) */  | 
562  | 0  |     ERR_pop_to_mark();  | 
563  | 0  | end:  | 
564  | 0  |     BN_CTX_end(ctx);  | 
565  | 0  |     return ret;  | 
566  | 0  | }  | 
567  |  |  | 
568  |  | /*-  | 
569  |  |  * This function is based on the constant-time GCD work by Bernstein and Yang:  | 
570  |  |  * https://eprint.iacr.org/2019/266  | 
571  |  |  * Generalized fast GCD function to allow even inputs.  | 
572  |  |  * The algorithm first finds the shared powers of 2 between  | 
573  |  |  * the inputs, and removes them, reducing at least one of the  | 
574  |  |  * inputs to an odd value. Then it proceeds to calculate the GCD.  | 
575  |  |  * Before returning the resulting GCD, we take care of adding  | 
576  |  |  * back the powers of two removed at the beginning.  | 
577  |  |  * Note 1: we assume the bit length of both inputs is public information,  | 
578  |  |  * since access to top potentially leaks this information.  | 
579  |  |  */  | 
580  |  | int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)  | 
581  | 1.04k  | { | 
582  | 1.04k  |     BIGNUM *g, *temp = NULL;  | 
583  | 1.04k  |     BN_ULONG mask = 0;  | 
584  | 1.04k  |     int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0;  | 
585  |  |  | 
586  |  |     /* Note 2: zero input corner cases are not constant-time since they are  | 
587  |  |      * handled immediately. An attacker can run an attack under this  | 
588  |  |      * assumption without the need of side-channel information. */  | 
589  | 1.04k  |     if (BN_is_zero(in_b)) { | 
590  | 4  |         ret = BN_copy(r, in_a) != NULL;  | 
591  | 4  |         r->neg = 0;  | 
592  | 4  |         return ret;  | 
593  | 4  |     }  | 
594  | 1.03k  |     if (BN_is_zero(in_a)) { | 
595  | 7  |         ret = BN_copy(r, in_b) != NULL;  | 
596  | 7  |         r->neg = 0;  | 
597  | 7  |         return ret;  | 
598  | 7  |     }  | 
599  |  |  | 
600  | 1.03k  |     bn_check_top(in_a);  | 
601  | 1.03k  |     bn_check_top(in_b);  | 
602  |  |  | 
603  | 1.03k  |     BN_CTX_start(ctx);  | 
604  | 1.03k  |     temp = BN_CTX_get(ctx);  | 
605  | 1.03k  |     g = BN_CTX_get(ctx);  | 
606  |  |  | 
607  |  |     /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */  | 
608  | 1.03k  |     if (g == NULL  | 
609  | 1.03k  |         || !BN_lshift1(g, in_b)  | 
610  | 1.03k  |         || !BN_lshift1(r, in_a))  | 
611  | 0  |         goto err;  | 
612  |  |  | 
613  |  |     /* find shared powers of two, i.e. "shifts" >= 1 */  | 
614  | 35.5k  |     for (i = 0; i < r->dmax && i < g->dmax; i++) { | 
615  | 34.5k  |         mask = ~(r->d[i] | g->d[i]);  | 
616  | 2.24M  |         for (j = 0; j < BN_BITS2; j++) { | 
617  | 2.21M  |             bit &= mask;  | 
618  | 2.21M  |             shifts += bit;  | 
619  | 2.21M  |             mask >>= 1;  | 
620  | 2.21M  |         }  | 
621  | 34.5k  |     }  | 
622  |  |  | 
623  |  |     /* subtract shared powers of two; shifts >= 1 */  | 
624  | 1.03k  |     if (!BN_rshift(r, r, shifts)  | 
625  | 1.03k  |         || !BN_rshift(g, g, shifts))  | 
626  | 0  |         goto err;  | 
627  |  |  | 
628  |  |     /* expand to biggest nword, with room for a possible extra word */  | 
629  | 1.03k  |     top = 1 + ((r->top >= g->top) ? r->top : g->top);  | 
630  | 1.03k  |     if (bn_wexpand(r, top) == NULL  | 
631  | 1.03k  |         || bn_wexpand(g, top) == NULL  | 
632  | 1.03k  |         || bn_wexpand(temp, top) == NULL)  | 
633  | 0  |         goto err;  | 
634  |  |  | 
635  |  |     /* re arrange inputs s.t. r is odd */  | 
636  | 1.03k  |     BN_consttime_swap((~r->d[0]) & 1, r, g, top);  | 
637  |  |  | 
638  |  |     /* compute the number of iterations */  | 
639  | 1.03k  |     rlen = BN_num_bits(r);  | 
640  | 1.03k  |     glen = BN_num_bits(g);  | 
641  | 1.03k  |     m = 4 + 3 * ((rlen >= glen) ? rlen : glen);  | 
642  |  |  | 
643  | 10.7M  |     for (i = 0; i < m; i++) { | 
644  |  |         /* conditionally flip signs if delta is positive and g is odd */  | 
645  | 10.7M  |         cond = ((unsigned int)-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1  | 
646  |  |             /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */  | 
647  | 10.7M  |             & (~((unsigned int)(g->top - 1) >> (sizeof(g->top) * 8 - 1)));  | 
648  | 10.7M  |         delta = (-cond & -delta) | ((cond - 1) & delta);  | 
649  | 10.7M  |         r->neg ^= cond;  | 
650  |  |         /* swap */  | 
651  | 10.7M  |         BN_consttime_swap(cond, r, g, top);  | 
652  |  |  | 
653  |  |         /* elimination step */  | 
654  | 10.7M  |         delta++;  | 
655  | 10.7M  |         if (!BN_add(temp, g, r))  | 
656  | 0  |             goto err;  | 
657  | 10.7M  |         BN_consttime_swap(g->d[0] & 1 /* g is odd */  | 
658  |  |                 /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */  | 
659  | 10.7M  |                 & (~((unsigned int)(g->top - 1) >> (sizeof(g->top) * 8 - 1))),  | 
660  | 10.7M  |                 g, temp, top);  | 
661  | 10.7M  |         if (!BN_rshift1(g, g))  | 
662  | 0  |             goto err;  | 
663  | 10.7M  |     }  | 
664  |  |  | 
665  |  |     /* remove possible negative sign */  | 
666  | 1.03k  |     r->neg = 0;  | 
667  |  |     /* add powers of 2 removed, then correct the artificial shift */  | 
668  | 1.03k  |     if (!BN_lshift(r, r, shifts)  | 
669  | 1.03k  |         || !BN_rshift1(r, r))  | 
670  | 0  |         goto err;  | 
671  |  |  | 
672  | 1.03k  |     ret = 1;  | 
673  |  |  | 
674  | 1.03k  |  err:  | 
675  | 1.03k  |     BN_CTX_end(ctx);  | 
676  | 1.03k  |     bn_check_top(r);  | 
677  | 1.03k  |     return ret;  | 
678  | 1.03k  | }  |