/src/openssl32/crypto/bn/bn_gf2m.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
4 | | * |
5 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | #include <assert.h> |
12 | | #include <limits.h> |
13 | | #include <stdio.h> |
14 | | #include "internal/cryptlib.h" |
15 | | #include "bn_local.h" |
16 | | |
17 | | #ifndef OPENSSL_NO_EC2M |
18 | | # include <openssl/ec.h> |
19 | | |
20 | | /* |
21 | | * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should |
22 | | * fail. |
23 | | */ |
24 | 225k | # define MAX_ITERATIONS 50 |
25 | | |
26 | 17.7G | # define SQR_nibble(w) ((((w) & 8) << 3) \ |
27 | 17.7G | | (((w) & 4) << 2) \ |
28 | 17.7G | | (((w) & 2) << 1) \ |
29 | 17.7G | | ((w) & 1)) |
30 | | |
31 | | |
32 | | /* Platform-specific macros to accelerate squaring. */ |
33 | | # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
34 | | # define SQR1(w) \ |
35 | 1.11G | SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \ |
36 | 1.11G | SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \ |
37 | 1.11G | SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \ |
38 | 1.11G | SQR_nibble((w) >> 36) << 8 | SQR_nibble((w) >> 32) |
39 | | # define SQR0(w) \ |
40 | 1.11G | SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \ |
41 | 1.11G | SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \ |
42 | 1.11G | SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \ |
43 | 1.11G | SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) ) |
44 | | # endif |
45 | | # ifdef THIRTY_TWO_BIT |
46 | | # define SQR1(w) \ |
47 | | SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \ |
48 | | SQR_nibble((w) >> 20) << 8 | SQR_nibble((w) >> 16) |
49 | | # define SQR0(w) \ |
50 | | SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \ |
51 | | SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) ) |
52 | | # endif |
53 | | |
54 | | # if !defined(OPENSSL_BN_ASM_GF2m) |
55 | | /* |
56 | | * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is |
57 | | * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that |
58 | | * the variables have the right amount of space allocated. |
59 | | */ |
60 | | # ifdef THIRTY_TWO_BIT |
61 | | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, |
62 | | const BN_ULONG b) |
63 | | { |
64 | | register BN_ULONG h, l, s; |
65 | | BN_ULONG tab[8], top2b = a >> 30; |
66 | | register BN_ULONG a1, a2, a4; |
67 | | |
68 | | a1 = a & (0x3FFFFFFF); |
69 | | a2 = a1 << 1; |
70 | | a4 = a2 << 1; |
71 | | |
72 | | tab[0] = 0; |
73 | | tab[1] = a1; |
74 | | tab[2] = a2; |
75 | | tab[3] = a1 ^ a2; |
76 | | tab[4] = a4; |
77 | | tab[5] = a1 ^ a4; |
78 | | tab[6] = a2 ^ a4; |
79 | | tab[7] = a1 ^ a2 ^ a4; |
80 | | |
81 | | s = tab[b & 0x7]; |
82 | | l = s; |
83 | | s = tab[b >> 3 & 0x7]; |
84 | | l ^= s << 3; |
85 | | h = s >> 29; |
86 | | s = tab[b >> 6 & 0x7]; |
87 | | l ^= s << 6; |
88 | | h ^= s >> 26; |
89 | | s = tab[b >> 9 & 0x7]; |
90 | | l ^= s << 9; |
91 | | h ^= s >> 23; |
92 | | s = tab[b >> 12 & 0x7]; |
93 | | l ^= s << 12; |
94 | | h ^= s >> 20; |
95 | | s = tab[b >> 15 & 0x7]; |
96 | | l ^= s << 15; |
97 | | h ^= s >> 17; |
98 | | s = tab[b >> 18 & 0x7]; |
99 | | l ^= s << 18; |
100 | | h ^= s >> 14; |
101 | | s = tab[b >> 21 & 0x7]; |
102 | | l ^= s << 21; |
103 | | h ^= s >> 11; |
104 | | s = tab[b >> 24 & 0x7]; |
105 | | l ^= s << 24; |
106 | | h ^= s >> 8; |
107 | | s = tab[b >> 27 & 0x7]; |
108 | | l ^= s << 27; |
109 | | h ^= s >> 5; |
110 | | s = tab[b >> 30]; |
111 | | l ^= s << 30; |
112 | | h ^= s >> 2; |
113 | | |
114 | | /* compensate for the top two bits of a */ |
115 | | |
116 | | if (top2b & 01) { |
117 | | l ^= b << 30; |
118 | | h ^= b >> 2; |
119 | | } |
120 | | if (top2b & 02) { |
121 | | l ^= b << 31; |
122 | | h ^= b >> 1; |
123 | | } |
124 | | |
125 | | *r1 = h; |
126 | | *r0 = l; |
127 | | } |
128 | | # endif |
129 | | # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
130 | | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, |
131 | | const BN_ULONG b) |
132 | | { |
133 | | register BN_ULONG h, l, s; |
134 | | BN_ULONG tab[16], top3b = a >> 61; |
135 | | register BN_ULONG a1, a2, a4, a8; |
136 | | |
137 | | a1 = a & (0x1FFFFFFFFFFFFFFFULL); |
138 | | a2 = a1 << 1; |
139 | | a4 = a2 << 1; |
140 | | a8 = a4 << 1; |
141 | | |
142 | | tab[0] = 0; |
143 | | tab[1] = a1; |
144 | | tab[2] = a2; |
145 | | tab[3] = a1 ^ a2; |
146 | | tab[4] = a4; |
147 | | tab[5] = a1 ^ a4; |
148 | | tab[6] = a2 ^ a4; |
149 | | tab[7] = a1 ^ a2 ^ a4; |
150 | | tab[8] = a8; |
151 | | tab[9] = a1 ^ a8; |
152 | | tab[10] = a2 ^ a8; |
153 | | tab[11] = a1 ^ a2 ^ a8; |
154 | | tab[12] = a4 ^ a8; |
155 | | tab[13] = a1 ^ a4 ^ a8; |
156 | | tab[14] = a2 ^ a4 ^ a8; |
157 | | tab[15] = a1 ^ a2 ^ a4 ^ a8; |
158 | | |
159 | | s = tab[b & 0xF]; |
160 | | l = s; |
161 | | s = tab[b >> 4 & 0xF]; |
162 | | l ^= s << 4; |
163 | | h = s >> 60; |
164 | | s = tab[b >> 8 & 0xF]; |
165 | | l ^= s << 8; |
166 | | h ^= s >> 56; |
167 | | s = tab[b >> 12 & 0xF]; |
168 | | l ^= s << 12; |
169 | | h ^= s >> 52; |
170 | | s = tab[b >> 16 & 0xF]; |
171 | | l ^= s << 16; |
172 | | h ^= s >> 48; |
173 | | s = tab[b >> 20 & 0xF]; |
174 | | l ^= s << 20; |
175 | | h ^= s >> 44; |
176 | | s = tab[b >> 24 & 0xF]; |
177 | | l ^= s << 24; |
178 | | h ^= s >> 40; |
179 | | s = tab[b >> 28 & 0xF]; |
180 | | l ^= s << 28; |
181 | | h ^= s >> 36; |
182 | | s = tab[b >> 32 & 0xF]; |
183 | | l ^= s << 32; |
184 | | h ^= s >> 32; |
185 | | s = tab[b >> 36 & 0xF]; |
186 | | l ^= s << 36; |
187 | | h ^= s >> 28; |
188 | | s = tab[b >> 40 & 0xF]; |
189 | | l ^= s << 40; |
190 | | h ^= s >> 24; |
191 | | s = tab[b >> 44 & 0xF]; |
192 | | l ^= s << 44; |
193 | | h ^= s >> 20; |
194 | | s = tab[b >> 48 & 0xF]; |
195 | | l ^= s << 48; |
196 | | h ^= s >> 16; |
197 | | s = tab[b >> 52 & 0xF]; |
198 | | l ^= s << 52; |
199 | | h ^= s >> 12; |
200 | | s = tab[b >> 56 & 0xF]; |
201 | | l ^= s << 56; |
202 | | h ^= s >> 8; |
203 | | s = tab[b >> 60]; |
204 | | l ^= s << 60; |
205 | | h ^= s >> 4; |
206 | | |
207 | | /* compensate for the top three bits of a */ |
208 | | |
209 | | if (top3b & 01) { |
210 | | l ^= b << 61; |
211 | | h ^= b >> 3; |
212 | | } |
213 | | if (top3b & 02) { |
214 | | l ^= b << 62; |
215 | | h ^= b >> 2; |
216 | | } |
217 | | if (top3b & 04) { |
218 | | l ^= b << 63; |
219 | | h ^= b >> 1; |
220 | | } |
221 | | |
222 | | *r1 = h; |
223 | | *r0 = l; |
224 | | } |
225 | | # endif |
226 | | |
227 | | /* |
228 | | * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, |
229 | | * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST |
230 | | * ensure that the variables have the right amount of space allocated. |
231 | | */ |
232 | | static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, |
233 | | const BN_ULONG b1, const BN_ULONG b0) |
234 | | { |
235 | | BN_ULONG m1, m0; |
236 | | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ |
237 | | bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1); |
238 | | bn_GF2m_mul_1x1(r + 1, r, a0, b0); |
239 | | bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); |
240 | | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ |
241 | | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ |
242 | | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ |
243 | | } |
244 | | # else |
245 | | void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, |
246 | | BN_ULONG b0); |
247 | | # endif |
248 | | |
249 | | /* |
250 | | * Add polynomials a and b and store result in r; r could be a or b, a and b |
251 | | * could be equal; r is the bitwise XOR of a and b. |
252 | | */ |
253 | | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) |
254 | 187M | { |
255 | 187M | int i; |
256 | 187M | const BIGNUM *at, *bt; |
257 | | |
258 | 187M | bn_check_top(a); |
259 | 187M | bn_check_top(b); |
260 | | |
261 | 187M | if (a->top < b->top) { |
262 | 706k | at = b; |
263 | 706k | bt = a; |
264 | 186M | } else { |
265 | 186M | at = a; |
266 | 186M | bt = b; |
267 | 186M | } |
268 | | |
269 | 187M | if (bn_wexpand(r, at->top) == NULL) |
270 | 0 | return 0; |
271 | | |
272 | 1.26G | for (i = 0; i < bt->top; i++) { |
273 | 1.07G | r->d[i] = at->d[i] ^ bt->d[i]; |
274 | 1.07G | } |
275 | 190M | for (; i < at->top; i++) { |
276 | 3.08M | r->d[i] = at->d[i]; |
277 | 3.08M | } |
278 | | |
279 | 187M | r->top = at->top; |
280 | 187M | bn_correct_top(r); |
281 | | |
282 | 187M | return 1; |
283 | 187M | } |
284 | | |
285 | | /*- |
286 | | * Some functions allow for representation of the irreducible polynomials |
287 | | * as an int[], say p. The irreducible f(t) is then of the form: |
288 | | * t^p[0] + t^p[1] + ... + t^p[k] |
289 | | * where m = p[0] > p[1] > ... > p[k] = 0. |
290 | | */ |
291 | | |
292 | | /* Performs modular reduction of a and store result in r. r could be a. */ |
293 | | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) |
294 | 294M | { |
295 | 294M | int j, k; |
296 | 294M | int n, dN, d0, d1; |
297 | 294M | BN_ULONG zz, *z; |
298 | | |
299 | 294M | bn_check_top(a); |
300 | | |
301 | 294M | if (p[0] == 0) { |
302 | | /* reduction mod 1 => return 0 */ |
303 | 0 | BN_zero(r); |
304 | 0 | return 1; |
305 | 0 | } |
306 | | |
307 | | /* |
308 | | * Since the algorithm does reduction in the r value, if a != r, copy the |
309 | | * contents of a into r so we can do reduction in r. |
310 | | */ |
311 | 294M | if (a != r) { |
312 | 294M | if (!bn_wexpand(r, a->top)) |
313 | 0 | return 0; |
314 | 3.62G | for (j = 0; j < a->top; j++) { |
315 | 3.33G | r->d[j] = a->d[j]; |
316 | 3.33G | } |
317 | 294M | r->top = a->top; |
318 | 294M | } |
319 | 294M | z = r->d; |
320 | | |
321 | | /* start reduction */ |
322 | 294M | dN = p[0] / BN_BITS2; |
323 | 3.58G | for (j = r->top - 1; j > dN;) { |
324 | 3.29G | zz = z[j]; |
325 | 3.29G | if (z[j] == 0) { |
326 | 1.64G | j--; |
327 | 1.64G | continue; |
328 | 1.64G | } |
329 | 1.64G | z[j] = 0; |
330 | | |
331 | 6.46G | for (k = 1; p[k] != 0; k++) { |
332 | | /* reducing component t^p[k] */ |
333 | 4.82G | n = p[0] - p[k]; |
334 | 4.82G | d0 = n % BN_BITS2; |
335 | 4.82G | d1 = BN_BITS2 - d0; |
336 | 4.82G | n /= BN_BITS2; |
337 | 4.82G | z[j - n] ^= (zz >> d0); |
338 | 4.82G | if (d0) |
339 | 4.81G | z[j - n - 1] ^= (zz << d1); |
340 | 4.82G | } |
341 | | |
342 | | /* reducing component t^0 */ |
343 | 1.64G | n = dN; |
344 | 1.64G | d0 = p[0] % BN_BITS2; |
345 | 1.64G | d1 = BN_BITS2 - d0; |
346 | 1.64G | z[j - n] ^= (zz >> d0); |
347 | 1.64G | if (d0) |
348 | 1.64G | z[j - n - 1] ^= (zz << d1); |
349 | 1.64G | } |
350 | | |
351 | | /* final round of reduction */ |
352 | 585M | while (j == dN) { |
353 | | |
354 | 584M | d0 = p[0] % BN_BITS2; |
355 | 584M | zz = z[dN] >> d0; |
356 | 584M | if (zz == 0) |
357 | 293M | break; |
358 | 291M | d1 = BN_BITS2 - d0; |
359 | | |
360 | | /* clear up the top d1 bits */ |
361 | 291M | if (d0) |
362 | 291M | z[dN] = (z[dN] << d1) >> d1; |
363 | 0 | else |
364 | 0 | z[dN] = 0; |
365 | 291M | z[0] ^= zz; /* reduction t^0 component */ |
366 | | |
367 | 1.13G | for (k = 1; p[k] != 0; k++) { |
368 | 848M | BN_ULONG tmp_ulong; |
369 | | |
370 | | /* reducing component t^p[k] */ |
371 | 848M | n = p[k] / BN_BITS2; |
372 | 848M | d0 = p[k] % BN_BITS2; |
373 | 848M | d1 = BN_BITS2 - d0; |
374 | 848M | z[n] ^= (zz << d0); |
375 | 848M | if (d0 && (tmp_ulong = zz >> d1)) |
376 | 28.0M | z[n + 1] ^= tmp_ulong; |
377 | 848M | } |
378 | | |
379 | 291M | } |
380 | | |
381 | 294M | bn_correct_top(r); |
382 | 294M | return 1; |
383 | 294M | } |
384 | | |
385 | | /* |
386 | | * Performs modular reduction of a by p and store result in r. r could be a. |
387 | | * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper |
388 | | * function is only provided for convenience; for best performance, use the |
389 | | * BN_GF2m_mod_arr function. |
390 | | */ |
391 | | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) |
392 | 111k | { |
393 | 111k | int ret = 0; |
394 | 111k | int arr[6]; |
395 | 111k | bn_check_top(a); |
396 | 111k | bn_check_top(p); |
397 | 111k | ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr)); |
398 | 111k | if (!ret || ret > (int)OSSL_NELEM(arr)) { |
399 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
400 | 0 | return 0; |
401 | 0 | } |
402 | 111k | ret = BN_GF2m_mod_arr(r, a, arr); |
403 | 111k | bn_check_top(r); |
404 | 111k | return ret; |
405 | 111k | } |
406 | | |
407 | | /* |
408 | | * Compute the product of two polynomials a and b, reduce modulo p, and store |
409 | | * the result in r. r could be a or b; a could be b. |
410 | | */ |
411 | | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
412 | | const int p[], BN_CTX *ctx) |
413 | 98.2M | { |
414 | 98.2M | int zlen, i, j, k, ret = 0; |
415 | 98.2M | BIGNUM *s; |
416 | 98.2M | BN_ULONG x1, x0, y1, y0, zz[4]; |
417 | | |
418 | 98.2M | bn_check_top(a); |
419 | 98.2M | bn_check_top(b); |
420 | | |
421 | 98.2M | if (a == b) { |
422 | 0 | return BN_GF2m_mod_sqr_arr(r, a, p, ctx); |
423 | 0 | } |
424 | | |
425 | 98.2M | BN_CTX_start(ctx); |
426 | 98.2M | if ((s = BN_CTX_get(ctx)) == NULL) |
427 | 0 | goto err; |
428 | | |
429 | 98.2M | zlen = a->top + b->top + 4; |
430 | 98.2M | if (!bn_wexpand(s, zlen)) |
431 | 0 | goto err; |
432 | 98.2M | s->top = zlen; |
433 | | |
434 | 1.62G | for (i = 0; i < zlen; i++) |
435 | 1.52G | s->d[i] = 0; |
436 | | |
437 | 386M | for (j = 0; j < b->top; j += 2) { |
438 | 287M | y0 = b->d[j]; |
439 | 287M | y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1]; |
440 | 1.15G | for (i = 0; i < a->top; i += 2) { |
441 | 867M | x0 = a->d[i]; |
442 | 867M | x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1]; |
443 | 867M | bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); |
444 | 4.33G | for (k = 0; k < 4; k++) |
445 | 3.46G | s->d[i + j + k] ^= zz[k]; |
446 | 867M | } |
447 | 287M | } |
448 | | |
449 | 98.2M | bn_correct_top(s); |
450 | 98.2M | if (BN_GF2m_mod_arr(r, s, p)) |
451 | 98.2M | ret = 1; |
452 | 98.2M | bn_check_top(r); |
453 | | |
454 | 98.2M | err: |
455 | 98.2M | BN_CTX_end(ctx); |
456 | 98.2M | return ret; |
457 | 98.2M | } |
458 | | |
459 | | /* |
460 | | * Compute the product of two polynomials a and b, reduce modulo p, and store |
461 | | * the result in r. r could be a or b; a could equal b. This function calls |
462 | | * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is |
463 | | * only provided for convenience; for best performance, use the |
464 | | * BN_GF2m_mod_mul_arr function. |
465 | | */ |
466 | | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
467 | | const BIGNUM *p, BN_CTX *ctx) |
468 | 331k | { |
469 | 331k | int ret = 0; |
470 | 331k | const int max = BN_num_bits(p) + 1; |
471 | 331k | int *arr; |
472 | | |
473 | 331k | bn_check_top(a); |
474 | 331k | bn_check_top(b); |
475 | 331k | bn_check_top(p); |
476 | | |
477 | 331k | arr = OPENSSL_malloc(sizeof(*arr) * max); |
478 | 331k | if (arr == NULL) |
479 | 0 | return 0; |
480 | 331k | ret = BN_GF2m_poly2arr(p, arr, max); |
481 | 331k | if (!ret || ret > max) { |
482 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
483 | 0 | goto err; |
484 | 0 | } |
485 | 331k | ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); |
486 | 331k | bn_check_top(r); |
487 | 331k | err: |
488 | 331k | OPENSSL_free(arr); |
489 | 331k | return ret; |
490 | 331k | } |
491 | | |
492 | | /* Square a, reduce the result mod p, and store it in a. r could be a. */ |
493 | | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
494 | | BN_CTX *ctx) |
495 | 195M | { |
496 | 195M | int i, ret = 0; |
497 | 195M | BIGNUM *s; |
498 | | |
499 | 195M | bn_check_top(a); |
500 | 195M | BN_CTX_start(ctx); |
501 | 195M | if ((s = BN_CTX_get(ctx)) == NULL) |
502 | 0 | goto err; |
503 | 195M | if (!bn_wexpand(s, 2 * a->top)) |
504 | 0 | goto err; |
505 | | |
506 | 1.30G | for (i = a->top - 1; i >= 0; i--) { |
507 | 1.11G | s->d[2 * i + 1] = SQR1(a->d[i]); |
508 | 1.11G | s->d[2 * i] = SQR0(a->d[i]); |
509 | 1.11G | } |
510 | | |
511 | 195M | s->top = 2 * a->top; |
512 | 195M | bn_correct_top(s); |
513 | 195M | if (!BN_GF2m_mod_arr(r, s, p)) |
514 | 0 | goto err; |
515 | 195M | bn_check_top(r); |
516 | 195M | ret = 1; |
517 | 195M | err: |
518 | 195M | BN_CTX_end(ctx); |
519 | 195M | return ret; |
520 | 195M | } |
521 | | |
522 | | /* |
523 | | * Square a, reduce the result mod p, and store it in a. r could be a. This |
524 | | * function calls down to the BN_GF2m_mod_sqr_arr implementation; this |
525 | | * wrapper function is only provided for convenience; for best performance, |
526 | | * use the BN_GF2m_mod_sqr_arr function. |
527 | | */ |
528 | | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
529 | 0 | { |
530 | 0 | int ret = 0; |
531 | 0 | const int max = BN_num_bits(p) + 1; |
532 | 0 | int *arr; |
533 | |
|
534 | 0 | bn_check_top(a); |
535 | 0 | bn_check_top(p); |
536 | |
|
537 | 0 | arr = OPENSSL_malloc(sizeof(*arr) * max); |
538 | 0 | if (arr == NULL) |
539 | 0 | return 0; |
540 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
541 | 0 | if (!ret || ret > max) { |
542 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
543 | 0 | goto err; |
544 | 0 | } |
545 | 0 | ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); |
546 | 0 | bn_check_top(r); |
547 | 0 | err: |
548 | 0 | OPENSSL_free(arr); |
549 | 0 | return ret; |
550 | 0 | } |
551 | | |
552 | | /* |
553 | | * Invert a, reduce modulo p, and store the result in r. r could be a. Uses |
554 | | * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D., |
555 | | * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic |
556 | | * Curve Cryptography Over Binary Fields". |
557 | | */ |
558 | | static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a, |
559 | | const BIGNUM *p, BN_CTX *ctx) |
560 | 111k | { |
561 | 111k | BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; |
562 | 111k | int ret = 0; |
563 | | |
564 | 111k | bn_check_top(a); |
565 | 111k | bn_check_top(p); |
566 | | |
567 | 111k | BN_CTX_start(ctx); |
568 | | |
569 | 111k | b = BN_CTX_get(ctx); |
570 | 111k | c = BN_CTX_get(ctx); |
571 | 111k | u = BN_CTX_get(ctx); |
572 | 111k | v = BN_CTX_get(ctx); |
573 | 111k | if (v == NULL) |
574 | 0 | goto err; |
575 | | |
576 | 111k | if (!BN_GF2m_mod(u, a, p)) |
577 | 0 | goto err; |
578 | 111k | if (BN_is_zero(u)) |
579 | 0 | goto err; |
580 | | |
581 | 111k | if (!BN_copy(v, p)) |
582 | 0 | goto err; |
583 | | # if 0 |
584 | | if (!BN_one(b)) |
585 | | goto err; |
586 | | |
587 | | while (1) { |
588 | | while (!BN_is_odd(u)) { |
589 | | if (BN_is_zero(u)) |
590 | | goto err; |
591 | | if (!BN_rshift1(u, u)) |
592 | | goto err; |
593 | | if (BN_is_odd(b)) { |
594 | | if (!BN_GF2m_add(b, b, p)) |
595 | | goto err; |
596 | | } |
597 | | if (!BN_rshift1(b, b)) |
598 | | goto err; |
599 | | } |
600 | | |
601 | | if (BN_abs_is_word(u, 1)) |
602 | | break; |
603 | | |
604 | | if (BN_num_bits(u) < BN_num_bits(v)) { |
605 | | tmp = u; |
606 | | u = v; |
607 | | v = tmp; |
608 | | tmp = b; |
609 | | b = c; |
610 | | c = tmp; |
611 | | } |
612 | | |
613 | | if (!BN_GF2m_add(u, u, v)) |
614 | | goto err; |
615 | | if (!BN_GF2m_add(b, b, c)) |
616 | | goto err; |
617 | | } |
618 | | # else |
619 | 111k | { |
620 | 111k | int i; |
621 | 111k | int ubits = BN_num_bits(u); |
622 | 111k | int vbits = BN_num_bits(v); /* v is copy of p */ |
623 | 111k | int top = p->top; |
624 | 111k | BN_ULONG *udp, *bdp, *vdp, *cdp; |
625 | | |
626 | 111k | if (!bn_wexpand(u, top)) |
627 | 0 | goto err; |
628 | 111k | udp = u->d; |
629 | 118k | for (i = u->top; i < top; i++) |
630 | 6.21k | udp[i] = 0; |
631 | 111k | u->top = top; |
632 | 111k | if (!bn_wexpand(b, top)) |
633 | 0 | goto err; |
634 | 111k | bdp = b->d; |
635 | 111k | bdp[0] = 1; |
636 | 408k | for (i = 1; i < top; i++) |
637 | 296k | bdp[i] = 0; |
638 | 111k | b->top = top; |
639 | 111k | if (!bn_wexpand(c, top)) |
640 | 0 | goto err; |
641 | 111k | cdp = c->d; |
642 | 520k | for (i = 0; i < top; i++) |
643 | 408k | cdp[i] = 0; |
644 | 111k | c->top = top; |
645 | 111k | vdp = v->d; /* It pays off to "cache" *->d pointers, |
646 | | * because it allows optimizer to be more |
647 | | * aggressive. But we don't have to "cache" |
648 | | * p->d, because *p is declared 'const'... */ |
649 | 18.5M | while (1) { |
650 | 55.4M | while (ubits && !(udp[0] & 1)) { |
651 | 36.8M | BN_ULONG u0, u1, b0, b1, mask; |
652 | | |
653 | 36.8M | u0 = udp[0]; |
654 | 36.8M | b0 = bdp[0]; |
655 | 36.8M | mask = (BN_ULONG)0 - (b0 & 1); |
656 | 36.8M | b0 ^= p->d[0] & mask; |
657 | 155M | for (i = 0; i < top - 1; i++) { |
658 | 118M | u1 = udp[i + 1]; |
659 | 118M | udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2; |
660 | 118M | u0 = u1; |
661 | 118M | b1 = bdp[i + 1] ^ (p->d[i + 1] & mask); |
662 | 118M | bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2; |
663 | 118M | b0 = b1; |
664 | 118M | } |
665 | 36.8M | udp[i] = u0 >> 1; |
666 | 36.8M | bdp[i] = b0 >> 1; |
667 | 36.8M | ubits--; |
668 | 36.8M | } |
669 | | |
670 | 18.5M | if (ubits <= BN_BITS2) { |
671 | 5.84M | if (udp[0] == 0) /* poly was reducible */ |
672 | 0 | goto err; |
673 | 5.84M | if (udp[0] == 1) |
674 | 111k | break; |
675 | 5.84M | } |
676 | | |
677 | 18.4M | if (ubits < vbits) { |
678 | 7.45M | i = ubits; |
679 | 7.45M | ubits = vbits; |
680 | 7.45M | vbits = i; |
681 | 7.45M | tmp = u; |
682 | 7.45M | u = v; |
683 | 7.45M | v = tmp; |
684 | 7.45M | tmp = b; |
685 | 7.45M | b = c; |
686 | 7.45M | c = tmp; |
687 | 7.45M | udp = vdp; |
688 | 7.45M | vdp = v->d; |
689 | 7.45M | bdp = cdp; |
690 | 7.45M | cdp = c->d; |
691 | 7.45M | } |
692 | 96.4M | for (i = 0; i < top; i++) { |
693 | 77.9M | udp[i] ^= vdp[i]; |
694 | 77.9M | bdp[i] ^= cdp[i]; |
695 | 77.9M | } |
696 | 18.4M | if (ubits == vbits) { |
697 | 3.70M | BN_ULONG ul; |
698 | 3.70M | int utop = (ubits - 1) / BN_BITS2; |
699 | | |
700 | 3.79M | while ((ul = udp[utop]) == 0 && utop) |
701 | 92.5k | utop--; |
702 | 3.70M | ubits = utop * BN_BITS2 + BN_num_bits_word(ul); |
703 | 3.70M | } |
704 | 18.4M | } |
705 | 111k | bn_correct_top(b); |
706 | 111k | } |
707 | 0 | # endif |
708 | | |
709 | 111k | if (!BN_copy(r, b)) |
710 | 0 | goto err; |
711 | 111k | bn_check_top(r); |
712 | 111k | ret = 1; |
713 | | |
714 | 111k | err: |
715 | | # ifdef BN_DEBUG |
716 | | /* BN_CTX_end would complain about the expanded form */ |
717 | | bn_correct_top(c); |
718 | | bn_correct_top(u); |
719 | | bn_correct_top(v); |
720 | | # endif |
721 | 111k | BN_CTX_end(ctx); |
722 | 111k | return ret; |
723 | 111k | } |
724 | | |
725 | | /*- |
726 | | * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling. |
727 | | * This is not constant time. |
728 | | * But it does eliminate first order deduction on the input. |
729 | | */ |
730 | | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
731 | 111k | { |
732 | 111k | BIGNUM *b = NULL; |
733 | 111k | int ret = 0; |
734 | 111k | int numbits; |
735 | | |
736 | 111k | BN_CTX_start(ctx); |
737 | 111k | if ((b = BN_CTX_get(ctx)) == NULL) |
738 | 0 | goto err; |
739 | | |
740 | | /* Fail on a non-sensical input p value */ |
741 | 111k | numbits = BN_num_bits(p); |
742 | 111k | if (numbits <= 1) |
743 | 0 | goto err; |
744 | | |
745 | | /* generate blinding value */ |
746 | 111k | do { |
747 | 111k | if (!BN_priv_rand_ex(b, numbits - 1, |
748 | 111k | BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx)) |
749 | 0 | goto err; |
750 | 111k | } while (BN_is_zero(b)); |
751 | | |
752 | | /* r := a * b */ |
753 | 111k | if (!BN_GF2m_mod_mul(r, a, b, p, ctx)) |
754 | 0 | goto err; |
755 | | |
756 | | /* r := 1/(a * b) */ |
757 | 111k | if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx)) |
758 | 0 | goto err; |
759 | | |
760 | | /* r := b/(a * b) = 1/a */ |
761 | 111k | if (!BN_GF2m_mod_mul(r, r, b, p, ctx)) |
762 | 0 | goto err; |
763 | | |
764 | 111k | ret = 1; |
765 | | |
766 | 111k | err: |
767 | 111k | BN_CTX_end(ctx); |
768 | 111k | return ret; |
769 | 111k | } |
770 | | |
771 | | /* |
772 | | * Invert xx, reduce modulo p, and store the result in r. r could be xx. |
773 | | * This function calls down to the BN_GF2m_mod_inv implementation; this |
774 | | * wrapper function is only provided for convenience; for best performance, |
775 | | * use the BN_GF2m_mod_inv function. |
776 | | */ |
777 | | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], |
778 | | BN_CTX *ctx) |
779 | 0 | { |
780 | 0 | BIGNUM *field; |
781 | 0 | int ret = 0; |
782 | |
|
783 | 0 | bn_check_top(xx); |
784 | 0 | BN_CTX_start(ctx); |
785 | 0 | if ((field = BN_CTX_get(ctx)) == NULL) |
786 | 0 | goto err; |
787 | 0 | if (!BN_GF2m_arr2poly(p, field)) |
788 | 0 | goto err; |
789 | | |
790 | 0 | ret = BN_GF2m_mod_inv(r, xx, field, ctx); |
791 | 0 | bn_check_top(r); |
792 | |
|
793 | 0 | err: |
794 | 0 | BN_CTX_end(ctx); |
795 | 0 | return ret; |
796 | 0 | } |
797 | | |
798 | | /* |
799 | | * Divide y by x, reduce modulo p, and store the result in r. r could be x |
800 | | * or y, x could equal y. |
801 | | */ |
802 | | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, |
803 | | const BIGNUM *p, BN_CTX *ctx) |
804 | 107k | { |
805 | 107k | BIGNUM *xinv = NULL; |
806 | 107k | int ret = 0; |
807 | | |
808 | 107k | bn_check_top(y); |
809 | 107k | bn_check_top(x); |
810 | 107k | bn_check_top(p); |
811 | | |
812 | 107k | BN_CTX_start(ctx); |
813 | 107k | xinv = BN_CTX_get(ctx); |
814 | 107k | if (xinv == NULL) |
815 | 0 | goto err; |
816 | | |
817 | 107k | if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) |
818 | 0 | goto err; |
819 | 107k | if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) |
820 | 0 | goto err; |
821 | 107k | bn_check_top(r); |
822 | 107k | ret = 1; |
823 | | |
824 | 107k | err: |
825 | 107k | BN_CTX_end(ctx); |
826 | 107k | return ret; |
827 | 107k | } |
828 | | |
829 | | /* |
830 | | * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx |
831 | | * * or yy, xx could equal yy. This function calls down to the |
832 | | * BN_GF2m_mod_div implementation; this wrapper function is only provided for |
833 | | * convenience; for best performance, use the BN_GF2m_mod_div function. |
834 | | */ |
835 | | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, |
836 | | const int p[], BN_CTX *ctx) |
837 | 0 | { |
838 | 0 | BIGNUM *field; |
839 | 0 | int ret = 0; |
840 | |
|
841 | 0 | bn_check_top(yy); |
842 | 0 | bn_check_top(xx); |
843 | |
|
844 | 0 | BN_CTX_start(ctx); |
845 | 0 | if ((field = BN_CTX_get(ctx)) == NULL) |
846 | 0 | goto err; |
847 | 0 | if (!BN_GF2m_arr2poly(p, field)) |
848 | 0 | goto err; |
849 | | |
850 | 0 | ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); |
851 | 0 | bn_check_top(r); |
852 | |
|
853 | 0 | err: |
854 | 0 | BN_CTX_end(ctx); |
855 | 0 | return ret; |
856 | 0 | } |
857 | | |
858 | | /* |
859 | | * Compute the bth power of a, reduce modulo p, and store the result in r. r |
860 | | * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE |
861 | | * P1363. |
862 | | */ |
863 | | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
864 | | const int p[], BN_CTX *ctx) |
865 | 13.8k | { |
866 | 13.8k | int ret = 0, i, n; |
867 | 13.8k | BIGNUM *u; |
868 | | |
869 | 13.8k | bn_check_top(a); |
870 | 13.8k | bn_check_top(b); |
871 | | |
872 | 13.8k | if (BN_is_zero(b)) |
873 | 0 | return BN_one(r); |
874 | | |
875 | 13.8k | if (BN_abs_is_word(b, 1)) |
876 | 0 | return (BN_copy(r, a) != NULL); |
877 | | |
878 | 13.8k | BN_CTX_start(ctx); |
879 | 13.8k | if ((u = BN_CTX_get(ctx)) == NULL) |
880 | 0 | goto err; |
881 | | |
882 | 13.8k | if (!BN_GF2m_mod_arr(u, a, p)) |
883 | 0 | goto err; |
884 | | |
885 | 13.8k | n = BN_num_bits(b) - 1; |
886 | 2.06M | for (i = n - 1; i >= 0; i--) { |
887 | 2.05M | if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) |
888 | 0 | goto err; |
889 | 2.05M | if (BN_is_bit_set(b, i)) { |
890 | 0 | if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) |
891 | 0 | goto err; |
892 | 0 | } |
893 | 2.05M | } |
894 | 13.8k | if (!BN_copy(r, u)) |
895 | 0 | goto err; |
896 | 13.8k | bn_check_top(r); |
897 | 13.8k | ret = 1; |
898 | 13.8k | err: |
899 | 13.8k | BN_CTX_end(ctx); |
900 | 13.8k | return ret; |
901 | 13.8k | } |
902 | | |
903 | | /* |
904 | | * Compute the bth power of a, reduce modulo p, and store the result in r. r |
905 | | * could be a. This function calls down to the BN_GF2m_mod_exp_arr |
906 | | * implementation; this wrapper function is only provided for convenience; |
907 | | * for best performance, use the BN_GF2m_mod_exp_arr function. |
908 | | */ |
909 | | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
910 | | const BIGNUM *p, BN_CTX *ctx) |
911 | 0 | { |
912 | 0 | int ret = 0; |
913 | 0 | const int max = BN_num_bits(p) + 1; |
914 | 0 | int *arr; |
915 | |
|
916 | 0 | bn_check_top(a); |
917 | 0 | bn_check_top(b); |
918 | 0 | bn_check_top(p); |
919 | |
|
920 | 0 | arr = OPENSSL_malloc(sizeof(*arr) * max); |
921 | 0 | if (arr == NULL) |
922 | 0 | return 0; |
923 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
924 | 0 | if (!ret || ret > max) { |
925 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
926 | 0 | goto err; |
927 | 0 | } |
928 | 0 | ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); |
929 | 0 | bn_check_top(r); |
930 | 0 | err: |
931 | 0 | OPENSSL_free(arr); |
932 | 0 | return ret; |
933 | 0 | } |
934 | | |
935 | | /* |
936 | | * Compute the square root of a, reduce modulo p, and store the result in r. |
937 | | * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363. |
938 | | */ |
939 | | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
940 | | BN_CTX *ctx) |
941 | 13.8k | { |
942 | 13.8k | int ret = 0; |
943 | 13.8k | BIGNUM *u; |
944 | | |
945 | 13.8k | bn_check_top(a); |
946 | | |
947 | 13.8k | if (p[0] == 0) { |
948 | | /* reduction mod 1 => return 0 */ |
949 | 0 | BN_zero(r); |
950 | 0 | return 1; |
951 | 0 | } |
952 | | |
953 | 13.8k | BN_CTX_start(ctx); |
954 | 13.8k | if ((u = BN_CTX_get(ctx)) == NULL) |
955 | 0 | goto err; |
956 | | |
957 | 13.8k | if (!BN_set_bit(u, p[0] - 1)) |
958 | 0 | goto err; |
959 | 13.8k | ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); |
960 | 13.8k | bn_check_top(r); |
961 | | |
962 | 13.8k | err: |
963 | 13.8k | BN_CTX_end(ctx); |
964 | 13.8k | return ret; |
965 | 13.8k | } |
966 | | |
967 | | /* |
968 | | * Compute the square root of a, reduce modulo p, and store the result in r. |
969 | | * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr |
970 | | * implementation; this wrapper function is only provided for convenience; |
971 | | * for best performance, use the BN_GF2m_mod_sqrt_arr function. |
972 | | */ |
973 | | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
974 | 0 | { |
975 | 0 | int ret = 0; |
976 | 0 | const int max = BN_num_bits(p) + 1; |
977 | 0 | int *arr; |
978 | |
|
979 | 0 | bn_check_top(a); |
980 | 0 | bn_check_top(p); |
981 | |
|
982 | 0 | arr = OPENSSL_malloc(sizeof(*arr) * max); |
983 | 0 | if (arr == NULL) |
984 | 0 | return 0; |
985 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
986 | 0 | if (!ret || ret > max) { |
987 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
988 | 0 | goto err; |
989 | 0 | } |
990 | 0 | ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); |
991 | 0 | bn_check_top(r); |
992 | 0 | err: |
993 | 0 | OPENSSL_free(arr); |
994 | 0 | return ret; |
995 | 0 | } |
996 | | |
997 | | /* |
998 | | * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns |
999 | | * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363. |
1000 | | */ |
1001 | | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], |
1002 | | BN_CTX *ctx) |
1003 | 83.5k | { |
1004 | 83.5k | int ret = 0, count = 0, j; |
1005 | 83.5k | BIGNUM *a, *z, *rho, *w, *w2, *tmp; |
1006 | | |
1007 | 83.5k | bn_check_top(a_); |
1008 | | |
1009 | 83.5k | if (p[0] == 0) { |
1010 | | /* reduction mod 1 => return 0 */ |
1011 | 0 | BN_zero(r); |
1012 | 0 | return 1; |
1013 | 0 | } |
1014 | | |
1015 | 83.5k | BN_CTX_start(ctx); |
1016 | 83.5k | a = BN_CTX_get(ctx); |
1017 | 83.5k | z = BN_CTX_get(ctx); |
1018 | 83.5k | w = BN_CTX_get(ctx); |
1019 | 83.5k | if (w == NULL) |
1020 | 0 | goto err; |
1021 | | |
1022 | 83.5k | if (!BN_GF2m_mod_arr(a, a_, p)) |
1023 | 0 | goto err; |
1024 | | |
1025 | 83.5k | if (BN_is_zero(a)) { |
1026 | 1.01k | BN_zero(r); |
1027 | 1.01k | ret = 1; |
1028 | 1.01k | goto err; |
1029 | 1.01k | } |
1030 | | |
1031 | 82.5k | if (p[0] & 0x1) { /* m is odd */ |
1032 | | /* compute half-trace of a */ |
1033 | 47.9k | if (!BN_copy(z, a)) |
1034 | 0 | goto err; |
1035 | 3.99M | for (j = 1; j <= (p[0] - 1) / 2; j++) { |
1036 | 3.94M | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1037 | 0 | goto err; |
1038 | 3.94M | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1039 | 0 | goto err; |
1040 | 3.94M | if (!BN_GF2m_add(z, z, a)) |
1041 | 0 | goto err; |
1042 | 3.94M | } |
1043 | | |
1044 | 47.9k | } else { /* m is even */ |
1045 | | |
1046 | 34.5k | rho = BN_CTX_get(ctx); |
1047 | 34.5k | w2 = BN_CTX_get(ctx); |
1048 | 34.5k | tmp = BN_CTX_get(ctx); |
1049 | 34.5k | if (tmp == NULL) |
1050 | 0 | goto err; |
1051 | 256k | do { |
1052 | 256k | if (!BN_priv_rand_ex(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, |
1053 | 256k | 0, ctx)) |
1054 | 0 | goto err; |
1055 | 256k | if (!BN_GF2m_mod_arr(rho, rho, p)) |
1056 | 0 | goto err; |
1057 | 256k | BN_zero(z); |
1058 | 256k | if (!BN_copy(w, rho)) |
1059 | 0 | goto err; |
1060 | 89.0M | for (j = 1; j <= p[0] - 1; j++) { |
1061 | 88.8M | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1062 | 0 | goto err; |
1063 | 88.8M | if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) |
1064 | 0 | goto err; |
1065 | 88.8M | if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) |
1066 | 0 | goto err; |
1067 | 88.8M | if (!BN_GF2m_add(z, z, tmp)) |
1068 | 0 | goto err; |
1069 | 88.8M | if (!BN_GF2m_add(w, w2, rho)) |
1070 | 0 | goto err; |
1071 | 88.8M | } |
1072 | 256k | count++; |
1073 | 256k | } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); |
1074 | 34.5k | if (BN_is_zero(w)) { |
1075 | 4.17k | ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS); |
1076 | 4.17k | goto err; |
1077 | 4.17k | } |
1078 | 34.5k | } |
1079 | | |
1080 | 78.3k | if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) |
1081 | 0 | goto err; |
1082 | 78.3k | if (!BN_GF2m_add(w, z, w)) |
1083 | 0 | goto err; |
1084 | 78.3k | if (BN_GF2m_cmp(w, a)) { |
1085 | 26.9k | ERR_raise(ERR_LIB_BN, BN_R_NO_SOLUTION); |
1086 | 26.9k | goto err; |
1087 | 26.9k | } |
1088 | | |
1089 | 51.3k | if (!BN_copy(r, z)) |
1090 | 0 | goto err; |
1091 | 51.3k | bn_check_top(r); |
1092 | | |
1093 | 51.3k | ret = 1; |
1094 | | |
1095 | 83.5k | err: |
1096 | 83.5k | BN_CTX_end(ctx); |
1097 | 83.5k | return ret; |
1098 | 51.3k | } |
1099 | | |
1100 | | /* |
1101 | | * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns |
1102 | | * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr |
1103 | | * implementation; this wrapper function is only provided for convenience; |
1104 | | * for best performance, use the BN_GF2m_mod_solve_quad_arr function. |
1105 | | */ |
1106 | | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
1107 | | BN_CTX *ctx) |
1108 | 0 | { |
1109 | 0 | int ret = 0; |
1110 | 0 | const int max = BN_num_bits(p) + 1; |
1111 | 0 | int *arr; |
1112 | |
|
1113 | 0 | bn_check_top(a); |
1114 | 0 | bn_check_top(p); |
1115 | |
|
1116 | 0 | arr = OPENSSL_malloc(sizeof(*arr) * max); |
1117 | 0 | if (arr == NULL) |
1118 | 0 | goto err; |
1119 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
1120 | 0 | if (!ret || ret > max) { |
1121 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
1122 | 0 | goto err; |
1123 | 0 | } |
1124 | 0 | ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); |
1125 | 0 | bn_check_top(r); |
1126 | 0 | err: |
1127 | 0 | OPENSSL_free(arr); |
1128 | 0 | return ret; |
1129 | 0 | } |
1130 | | |
1131 | | /* |
1132 | | * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i * |
1133 | | * x^i) into an array of integers corresponding to the bits with non-zero |
1134 | | * coefficient. The array is intended to be suitable for use with |
1135 | | * `BN_GF2m_mod_arr()`, and so the constant term of the polynomial must not be |
1136 | | * zero. This translates to a requirement that the input BIGNUM `a` is odd. |
1137 | | * |
1138 | | * Given sufficient room, the array is terminated with -1. Up to max elements |
1139 | | * of the array will be filled. |
1140 | | * |
1141 | | * The return value is total number of array elements that would be filled if |
1142 | | * array was large enough, including the terminating `-1`. It is `0` when `a` |
1143 | | * is not odd or the constant term is zero contrary to requirement. |
1144 | | * |
1145 | | * The return value is also `0` when the leading exponent exceeds |
1146 | | * `OPENSSL_ECC_MAX_FIELD_BITS`, this guards against CPU exhaustion attacks, |
1147 | | */ |
1148 | | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) |
1149 | 641k | { |
1150 | 641k | int i, j, k = 0; |
1151 | 641k | BN_ULONG mask; |
1152 | | |
1153 | 641k | if (!BN_is_odd(a)) |
1154 | 0 | return 0; |
1155 | | |
1156 | 3.07M | for (i = a->top - 1; i >= 0; i--) { |
1157 | 2.43M | if (!a->d[i]) |
1158 | | /* skip word if a->d[i] == 0 */ |
1159 | 920k | continue; |
1160 | 1.51M | mask = BN_TBIT; |
1161 | 98.5M | for (j = BN_BITS2 - 1; j >= 0; j--) { |
1162 | 97.0M | if (a->d[i] & mask) { |
1163 | 2.82M | if (k < max) |
1164 | 2.82M | p[k] = BN_BITS2 * i + j; |
1165 | 2.82M | k++; |
1166 | 2.82M | } |
1167 | 97.0M | mask >>= 1; |
1168 | 97.0M | } |
1169 | 1.51M | } |
1170 | | |
1171 | 641k | if (k > 0 && p[0] > OPENSSL_ECC_MAX_FIELD_BITS) |
1172 | 0 | return 0; |
1173 | | |
1174 | 641k | if (k < max) |
1175 | 641k | p[k] = -1; |
1176 | | |
1177 | 641k | return k + 1; |
1178 | 641k | } |
1179 | | |
1180 | | /* |
1181 | | * Convert the coefficient array representation of a polynomial to a |
1182 | | * bit-string. The array must be terminated by -1. |
1183 | | */ |
1184 | | int BN_GF2m_arr2poly(const int p[], BIGNUM *a) |
1185 | 0 | { |
1186 | 0 | int i; |
1187 | |
|
1188 | 0 | bn_check_top(a); |
1189 | 0 | BN_zero(a); |
1190 | 0 | for (i = 0; p[i] != -1; i++) { |
1191 | 0 | if (BN_set_bit(a, p[i]) == 0) |
1192 | 0 | return 0; |
1193 | 0 | } |
1194 | 0 | bn_check_top(a); |
1195 | |
|
1196 | 0 | return 1; |
1197 | 0 | } |
1198 | | |
1199 | | #endif |