/src/openssl32/crypto/ec/ec2_smpl.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
4 | | * |
5 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | /* |
12 | | * ECDSA low-level APIs are deprecated for public use, but still ok for |
13 | | * internal use. |
14 | | */ |
15 | | #include "internal/deprecated.h" |
16 | | |
17 | | #include <openssl/err.h> |
18 | | |
19 | | #include "crypto/bn.h" |
20 | | #include "ec_local.h" |
21 | | |
22 | | #ifndef OPENSSL_NO_EC2M |
23 | | |
24 | | /* |
25 | | * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members |
26 | | * are handled by EC_GROUP_new. |
27 | | */ |
28 | | int ossl_ec_GF2m_simple_group_init(EC_GROUP *group) |
29 | 392k | { |
30 | 392k | group->field = BN_new(); |
31 | 392k | group->a = BN_new(); |
32 | 392k | group->b = BN_new(); |
33 | | |
34 | 392k | if (group->field == NULL || group->a == NULL || group->b == NULL) { |
35 | 0 | BN_free(group->field); |
36 | 0 | BN_free(group->a); |
37 | 0 | BN_free(group->b); |
38 | 0 | return 0; |
39 | 0 | } |
40 | 392k | return 1; |
41 | 392k | } |
42 | | |
43 | | /* |
44 | | * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are |
45 | | * handled by EC_GROUP_free. |
46 | | */ |
47 | | void ossl_ec_GF2m_simple_group_finish(EC_GROUP *group) |
48 | 392k | { |
49 | 392k | BN_free(group->field); |
50 | 392k | BN_free(group->a); |
51 | 392k | BN_free(group->b); |
52 | 392k | } |
53 | | |
54 | | /* |
55 | | * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other |
56 | | * members are handled by EC_GROUP_clear_free. |
57 | | */ |
58 | | void ossl_ec_GF2m_simple_group_clear_finish(EC_GROUP *group) |
59 | 0 | { |
60 | 0 | BN_clear_free(group->field); |
61 | 0 | BN_clear_free(group->a); |
62 | 0 | BN_clear_free(group->b); |
63 | 0 | group->poly[0] = 0; |
64 | 0 | group->poly[1] = 0; |
65 | 0 | group->poly[2] = 0; |
66 | 0 | group->poly[3] = 0; |
67 | 0 | group->poly[4] = 0; |
68 | 0 | group->poly[5] = -1; |
69 | 0 | } |
70 | | |
71 | | /* |
72 | | * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are |
73 | | * handled by EC_GROUP_copy. |
74 | | */ |
75 | | int ossl_ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) |
76 | 194k | { |
77 | 194k | if (!BN_copy(dest->field, src->field)) |
78 | 0 | return 0; |
79 | 194k | if (!BN_copy(dest->a, src->a)) |
80 | 0 | return 0; |
81 | 194k | if (!BN_copy(dest->b, src->b)) |
82 | 0 | return 0; |
83 | 194k | dest->poly[0] = src->poly[0]; |
84 | 194k | dest->poly[1] = src->poly[1]; |
85 | 194k | dest->poly[2] = src->poly[2]; |
86 | 194k | dest->poly[3] = src->poly[3]; |
87 | 194k | dest->poly[4] = src->poly[4]; |
88 | 194k | dest->poly[5] = src->poly[5]; |
89 | 194k | if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == |
90 | 194k | NULL) |
91 | 0 | return 0; |
92 | 194k | if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == |
93 | 194k | NULL) |
94 | 0 | return 0; |
95 | 194k | bn_set_all_zero(dest->a); |
96 | 194k | bn_set_all_zero(dest->b); |
97 | 194k | return 1; |
98 | 194k | } |
99 | | |
100 | | /* Set the curve parameters of an EC_GROUP structure. */ |
101 | | int ossl_ec_GF2m_simple_group_set_curve(EC_GROUP *group, |
102 | | const BIGNUM *p, const BIGNUM *a, |
103 | | const BIGNUM *b, BN_CTX *ctx) |
104 | 197k | { |
105 | 197k | int ret = 0, i; |
106 | | |
107 | | /* group->field */ |
108 | 197k | if (!BN_copy(group->field, p)) |
109 | 0 | goto err; |
110 | 197k | i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1; |
111 | 197k | if ((i != 5) && (i != 3)) { |
112 | 0 | ERR_raise(ERR_LIB_EC, EC_R_UNSUPPORTED_FIELD); |
113 | 0 | goto err; |
114 | 0 | } |
115 | | |
116 | | /* group->a */ |
117 | 197k | if (!BN_GF2m_mod_arr(group->a, a, group->poly)) |
118 | 0 | goto err; |
119 | 197k | if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) |
120 | 197k | == NULL) |
121 | 0 | goto err; |
122 | 197k | bn_set_all_zero(group->a); |
123 | | |
124 | | /* group->b */ |
125 | 197k | if (!BN_GF2m_mod_arr(group->b, b, group->poly)) |
126 | 0 | goto err; |
127 | 197k | if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) |
128 | 197k | == NULL) |
129 | 0 | goto err; |
130 | 197k | bn_set_all_zero(group->b); |
131 | | |
132 | 197k | ret = 1; |
133 | 197k | err: |
134 | 197k | return ret; |
135 | 197k | } |
136 | | |
137 | | /* |
138 | | * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL |
139 | | * then there values will not be set but the method will return with success. |
140 | | */ |
141 | | int ossl_ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, |
142 | | BIGNUM *a, BIGNUM *b, BN_CTX *ctx) |
143 | 1.22k | { |
144 | 1.22k | int ret = 0; |
145 | | |
146 | 1.22k | if (p != NULL) { |
147 | 1.22k | if (!BN_copy(p, group->field)) |
148 | 0 | return 0; |
149 | 1.22k | } |
150 | | |
151 | 1.22k | if (a != NULL) { |
152 | 1.22k | if (!BN_copy(a, group->a)) |
153 | 0 | goto err; |
154 | 1.22k | } |
155 | | |
156 | 1.22k | if (b != NULL) { |
157 | 1.22k | if (!BN_copy(b, group->b)) |
158 | 0 | goto err; |
159 | 1.22k | } |
160 | | |
161 | 1.22k | ret = 1; |
162 | | |
163 | 1.22k | err: |
164 | 1.22k | return ret; |
165 | 1.22k | } |
166 | | |
167 | | /* |
168 | | * Gets the degree of the field. For a curve over GF(2^m) this is the value |
169 | | * m. |
170 | | */ |
171 | | int ossl_ec_GF2m_simple_group_get_degree(const EC_GROUP *group) |
172 | 252k | { |
173 | 252k | return BN_num_bits(group->field) - 1; |
174 | 252k | } |
175 | | |
176 | | /* |
177 | | * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an |
178 | | * elliptic curve <=> b != 0 (mod p) |
179 | | */ |
180 | | int ossl_ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, |
181 | | BN_CTX *ctx) |
182 | 614 | { |
183 | 614 | int ret = 0; |
184 | 614 | BIGNUM *b; |
185 | 614 | #ifndef FIPS_MODULE |
186 | 614 | BN_CTX *new_ctx = NULL; |
187 | | |
188 | 614 | if (ctx == NULL) { |
189 | 0 | ctx = new_ctx = BN_CTX_new(); |
190 | 0 | if (ctx == NULL) { |
191 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
192 | 0 | goto err; |
193 | 0 | } |
194 | 0 | } |
195 | 614 | #endif |
196 | 614 | BN_CTX_start(ctx); |
197 | 614 | b = BN_CTX_get(ctx); |
198 | 614 | if (b == NULL) |
199 | 0 | goto err; |
200 | | |
201 | 614 | if (!BN_GF2m_mod_arr(b, group->b, group->poly)) |
202 | 0 | goto err; |
203 | | |
204 | | /* |
205 | | * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic |
206 | | * curve <=> b != 0 (mod p) |
207 | | */ |
208 | 614 | if (BN_is_zero(b)) |
209 | 0 | goto err; |
210 | | |
211 | 614 | ret = 1; |
212 | | |
213 | 614 | err: |
214 | 614 | BN_CTX_end(ctx); |
215 | 614 | #ifndef FIPS_MODULE |
216 | 614 | BN_CTX_free(new_ctx); |
217 | 614 | #endif |
218 | 614 | return ret; |
219 | 614 | } |
220 | | |
221 | | /* Initializes an EC_POINT. */ |
222 | | int ossl_ec_GF2m_simple_point_init(EC_POINT *point) |
223 | 801k | { |
224 | 801k | point->X = BN_new(); |
225 | 801k | point->Y = BN_new(); |
226 | 801k | point->Z = BN_new(); |
227 | | |
228 | 801k | if (point->X == NULL || point->Y == NULL || point->Z == NULL) { |
229 | 0 | BN_free(point->X); |
230 | 0 | BN_free(point->Y); |
231 | 0 | BN_free(point->Z); |
232 | 0 | return 0; |
233 | 0 | } |
234 | 801k | return 1; |
235 | 801k | } |
236 | | |
237 | | /* Frees an EC_POINT. */ |
238 | | void ossl_ec_GF2m_simple_point_finish(EC_POINT *point) |
239 | 796k | { |
240 | 796k | BN_free(point->X); |
241 | 796k | BN_free(point->Y); |
242 | 796k | BN_free(point->Z); |
243 | 796k | } |
244 | | |
245 | | /* Clears and frees an EC_POINT. */ |
246 | | void ossl_ec_GF2m_simple_point_clear_finish(EC_POINT *point) |
247 | 5.74k | { |
248 | 5.74k | BN_clear_free(point->X); |
249 | 5.74k | BN_clear_free(point->Y); |
250 | 5.74k | BN_clear_free(point->Z); |
251 | 5.74k | point->Z_is_one = 0; |
252 | 5.74k | } |
253 | | |
254 | | /* |
255 | | * Copy the contents of one EC_POINT into another. Assumes dest is |
256 | | * initialized. |
257 | | */ |
258 | | int ossl_ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src) |
259 | 398k | { |
260 | 398k | if (!BN_copy(dest->X, src->X)) |
261 | 0 | return 0; |
262 | 398k | if (!BN_copy(dest->Y, src->Y)) |
263 | 0 | return 0; |
264 | 398k | if (!BN_copy(dest->Z, src->Z)) |
265 | 0 | return 0; |
266 | 398k | dest->Z_is_one = src->Z_is_one; |
267 | 398k | dest->curve_name = src->curve_name; |
268 | | |
269 | 398k | return 1; |
270 | 398k | } |
271 | | |
272 | | /* |
273 | | * Set an EC_POINT to the point at infinity. A point at infinity is |
274 | | * represented by having Z=0. |
275 | | */ |
276 | | int ossl_ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, |
277 | | EC_POINT *point) |
278 | 40.6k | { |
279 | 40.6k | point->Z_is_one = 0; |
280 | 40.6k | BN_zero(point->Z); |
281 | 40.6k | return 1; |
282 | 40.6k | } |
283 | | |
284 | | /* |
285 | | * Set the coordinates of an EC_POINT using affine coordinates. Note that |
286 | | * the simple implementation only uses affine coordinates. |
287 | | */ |
288 | | int ossl_ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, |
289 | | EC_POINT *point, |
290 | | const BIGNUM *x, |
291 | | const BIGNUM *y, |
292 | | BN_CTX *ctx) |
293 | 281k | { |
294 | 281k | int ret = 0; |
295 | 281k | if (x == NULL || y == NULL) { |
296 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER); |
297 | 0 | return 0; |
298 | 0 | } |
299 | | |
300 | 281k | if (!BN_copy(point->X, x)) |
301 | 0 | goto err; |
302 | 281k | BN_set_negative(point->X, 0); |
303 | 281k | if (!BN_copy(point->Y, y)) |
304 | 0 | goto err; |
305 | 281k | BN_set_negative(point->Y, 0); |
306 | 281k | if (!BN_copy(point->Z, BN_value_one())) |
307 | 0 | goto err; |
308 | 281k | BN_set_negative(point->Z, 0); |
309 | 281k | point->Z_is_one = 1; |
310 | 281k | ret = 1; |
311 | | |
312 | 281k | err: |
313 | 281k | return ret; |
314 | 281k | } |
315 | | |
316 | | /* |
317 | | * Gets the affine coordinates of an EC_POINT. Note that the simple |
318 | | * implementation only uses affine coordinates. |
319 | | */ |
320 | | int ossl_ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, |
321 | | const EC_POINT *point, |
322 | | BIGNUM *x, BIGNUM *y, |
323 | | BN_CTX *ctx) |
324 | 3.75k | { |
325 | 3.75k | int ret = 0; |
326 | | |
327 | 3.75k | if (EC_POINT_is_at_infinity(group, point)) { |
328 | 0 | ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY); |
329 | 0 | return 0; |
330 | 0 | } |
331 | | |
332 | 3.75k | if (BN_cmp(point->Z, BN_value_one())) { |
333 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
334 | 0 | return 0; |
335 | 0 | } |
336 | 3.75k | if (x != NULL) { |
337 | 3.75k | if (!BN_copy(x, point->X)) |
338 | 0 | goto err; |
339 | 3.75k | BN_set_negative(x, 0); |
340 | 3.75k | } |
341 | 3.75k | if (y != NULL) { |
342 | 3.49k | if (!BN_copy(y, point->Y)) |
343 | 0 | goto err; |
344 | 3.49k | BN_set_negative(y, 0); |
345 | 3.49k | } |
346 | 3.75k | ret = 1; |
347 | | |
348 | 3.75k | err: |
349 | 3.75k | return ret; |
350 | 3.75k | } |
351 | | |
352 | | /* |
353 | | * Computes a + b and stores the result in r. r could be a or b, a could be |
354 | | * b. Uses algorithm A.10.2 of IEEE P1363. |
355 | | */ |
356 | | int ossl_ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, |
357 | | const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) |
358 | 264 | { |
359 | 264 | BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; |
360 | 264 | int ret = 0; |
361 | 264 | #ifndef FIPS_MODULE |
362 | 264 | BN_CTX *new_ctx = NULL; |
363 | 264 | #endif |
364 | | |
365 | 264 | if (EC_POINT_is_at_infinity(group, a)) { |
366 | 0 | if (!EC_POINT_copy(r, b)) |
367 | 0 | return 0; |
368 | 0 | return 1; |
369 | 0 | } |
370 | | |
371 | 264 | if (EC_POINT_is_at_infinity(group, b)) { |
372 | 0 | if (!EC_POINT_copy(r, a)) |
373 | 0 | return 0; |
374 | 0 | return 1; |
375 | 0 | } |
376 | | |
377 | 264 | #ifndef FIPS_MODULE |
378 | 264 | if (ctx == NULL) { |
379 | 0 | ctx = new_ctx = BN_CTX_new(); |
380 | 0 | if (ctx == NULL) |
381 | 0 | return 0; |
382 | 0 | } |
383 | 264 | #endif |
384 | | |
385 | 264 | BN_CTX_start(ctx); |
386 | 264 | x0 = BN_CTX_get(ctx); |
387 | 264 | y0 = BN_CTX_get(ctx); |
388 | 264 | x1 = BN_CTX_get(ctx); |
389 | 264 | y1 = BN_CTX_get(ctx); |
390 | 264 | x2 = BN_CTX_get(ctx); |
391 | 264 | y2 = BN_CTX_get(ctx); |
392 | 264 | s = BN_CTX_get(ctx); |
393 | 264 | t = BN_CTX_get(ctx); |
394 | 264 | if (t == NULL) |
395 | 0 | goto err; |
396 | | |
397 | 264 | if (a->Z_is_one) { |
398 | 264 | if (!BN_copy(x0, a->X)) |
399 | 0 | goto err; |
400 | 264 | if (!BN_copy(y0, a->Y)) |
401 | 0 | goto err; |
402 | 264 | } else { |
403 | 0 | if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx)) |
404 | 0 | goto err; |
405 | 0 | } |
406 | 264 | if (b->Z_is_one) { |
407 | 264 | if (!BN_copy(x1, b->X)) |
408 | 0 | goto err; |
409 | 264 | if (!BN_copy(y1, b->Y)) |
410 | 0 | goto err; |
411 | 264 | } else { |
412 | 0 | if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx)) |
413 | 0 | goto err; |
414 | 0 | } |
415 | | |
416 | 264 | if (BN_GF2m_cmp(x0, x1)) { |
417 | 264 | if (!BN_GF2m_add(t, x0, x1)) |
418 | 0 | goto err; |
419 | 264 | if (!BN_GF2m_add(s, y0, y1)) |
420 | 0 | goto err; |
421 | 264 | if (!group->meth->field_div(group, s, s, t, ctx)) |
422 | 0 | goto err; |
423 | 264 | if (!group->meth->field_sqr(group, x2, s, ctx)) |
424 | 0 | goto err; |
425 | 264 | if (!BN_GF2m_add(x2, x2, group->a)) |
426 | 0 | goto err; |
427 | 264 | if (!BN_GF2m_add(x2, x2, s)) |
428 | 0 | goto err; |
429 | 264 | if (!BN_GF2m_add(x2, x2, t)) |
430 | 0 | goto err; |
431 | 264 | } else { |
432 | 0 | if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) { |
433 | 0 | if (!EC_POINT_set_to_infinity(group, r)) |
434 | 0 | goto err; |
435 | 0 | ret = 1; |
436 | 0 | goto err; |
437 | 0 | } |
438 | 0 | if (!group->meth->field_div(group, s, y1, x1, ctx)) |
439 | 0 | goto err; |
440 | 0 | if (!BN_GF2m_add(s, s, x1)) |
441 | 0 | goto err; |
442 | | |
443 | 0 | if (!group->meth->field_sqr(group, x2, s, ctx)) |
444 | 0 | goto err; |
445 | 0 | if (!BN_GF2m_add(x2, x2, s)) |
446 | 0 | goto err; |
447 | 0 | if (!BN_GF2m_add(x2, x2, group->a)) |
448 | 0 | goto err; |
449 | 0 | } |
450 | | |
451 | 264 | if (!BN_GF2m_add(y2, x1, x2)) |
452 | 0 | goto err; |
453 | 264 | if (!group->meth->field_mul(group, y2, y2, s, ctx)) |
454 | 0 | goto err; |
455 | 264 | if (!BN_GF2m_add(y2, y2, x2)) |
456 | 0 | goto err; |
457 | 264 | if (!BN_GF2m_add(y2, y2, y1)) |
458 | 0 | goto err; |
459 | | |
460 | 264 | if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx)) |
461 | 0 | goto err; |
462 | | |
463 | 264 | ret = 1; |
464 | | |
465 | 264 | err: |
466 | 264 | BN_CTX_end(ctx); |
467 | 264 | #ifndef FIPS_MODULE |
468 | 264 | BN_CTX_free(new_ctx); |
469 | 264 | #endif |
470 | 264 | return ret; |
471 | 264 | } |
472 | | |
473 | | /* |
474 | | * Computes 2 * a and stores the result in r. r could be a. Uses algorithm |
475 | | * A.10.2 of IEEE P1363. |
476 | | */ |
477 | | int ossl_ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, |
478 | | const EC_POINT *a, BN_CTX *ctx) |
479 | 0 | { |
480 | 0 | return ossl_ec_GF2m_simple_add(group, r, a, a, ctx); |
481 | 0 | } |
482 | | |
483 | | int ossl_ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, |
484 | | BN_CTX *ctx) |
485 | 28 | { |
486 | 28 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y)) |
487 | | /* point is its own inverse */ |
488 | 4 | return 1; |
489 | | |
490 | 24 | if (group->meth->make_affine == NULL |
491 | 24 | || !group->meth->make_affine(group, point, ctx)) |
492 | 0 | return 0; |
493 | 24 | return BN_GF2m_add(point->Y, point->X, point->Y); |
494 | 24 | } |
495 | | |
496 | | /* Indicates whether the given point is the point at infinity. */ |
497 | | int ossl_ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, |
498 | | const EC_POINT *point) |
499 | 304k | { |
500 | 304k | return BN_is_zero(point->Z); |
501 | 304k | } |
502 | | |
503 | | /*- |
504 | | * Determines whether the given EC_POINT is an actual point on the curve defined |
505 | | * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: |
506 | | * y^2 + x*y = x^3 + a*x^2 + b. |
507 | | */ |
508 | | int ossl_ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, |
509 | | BN_CTX *ctx) |
510 | 283k | { |
511 | 283k | int ret = -1; |
512 | 283k | BIGNUM *lh, *y2; |
513 | 283k | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
514 | 283k | const BIGNUM *, BN_CTX *); |
515 | 283k | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
516 | 283k | #ifndef FIPS_MODULE |
517 | 283k | BN_CTX *new_ctx = NULL; |
518 | 283k | #endif |
519 | | |
520 | 283k | if (EC_POINT_is_at_infinity(group, point)) |
521 | 0 | return 1; |
522 | | |
523 | 283k | field_mul = group->meth->field_mul; |
524 | 283k | field_sqr = group->meth->field_sqr; |
525 | | |
526 | | /* only support affine coordinates */ |
527 | 283k | if (!point->Z_is_one) |
528 | 0 | return -1; |
529 | | |
530 | 283k | #ifndef FIPS_MODULE |
531 | 283k | if (ctx == NULL) { |
532 | 0 | ctx = new_ctx = BN_CTX_new(); |
533 | 0 | if (ctx == NULL) |
534 | 0 | return -1; |
535 | 0 | } |
536 | 283k | #endif |
537 | | |
538 | 283k | BN_CTX_start(ctx); |
539 | 283k | y2 = BN_CTX_get(ctx); |
540 | 283k | lh = BN_CTX_get(ctx); |
541 | 283k | if (lh == NULL) |
542 | 0 | goto err; |
543 | | |
544 | | /*- |
545 | | * We have a curve defined by a Weierstrass equation |
546 | | * y^2 + x*y = x^3 + a*x^2 + b. |
547 | | * <=> x^3 + a*x^2 + x*y + b + y^2 = 0 |
548 | | * <=> ((x + a) * x + y) * x + b + y^2 = 0 |
549 | | */ |
550 | 283k | if (!BN_GF2m_add(lh, point->X, group->a)) |
551 | 0 | goto err; |
552 | 283k | if (!field_mul(group, lh, lh, point->X, ctx)) |
553 | 0 | goto err; |
554 | 283k | if (!BN_GF2m_add(lh, lh, point->Y)) |
555 | 0 | goto err; |
556 | 283k | if (!field_mul(group, lh, lh, point->X, ctx)) |
557 | 0 | goto err; |
558 | 283k | if (!BN_GF2m_add(lh, lh, group->b)) |
559 | 0 | goto err; |
560 | 283k | if (!field_sqr(group, y2, point->Y, ctx)) |
561 | 0 | goto err; |
562 | 283k | if (!BN_GF2m_add(lh, lh, y2)) |
563 | 0 | goto err; |
564 | 283k | ret = BN_is_zero(lh); |
565 | | |
566 | 283k | err: |
567 | 283k | BN_CTX_end(ctx); |
568 | 283k | #ifndef FIPS_MODULE |
569 | 283k | BN_CTX_free(new_ctx); |
570 | 283k | #endif |
571 | 283k | return ret; |
572 | 283k | } |
573 | | |
574 | | /*- |
575 | | * Indicates whether two points are equal. |
576 | | * Return values: |
577 | | * -1 error |
578 | | * 0 equal (in affine coordinates) |
579 | | * 1 not equal |
580 | | */ |
581 | | int ossl_ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, |
582 | | const EC_POINT *b, BN_CTX *ctx) |
583 | 1.44k | { |
584 | 1.44k | BIGNUM *aX, *aY, *bX, *bY; |
585 | 1.44k | int ret = -1; |
586 | 1.44k | #ifndef FIPS_MODULE |
587 | 1.44k | BN_CTX *new_ctx = NULL; |
588 | 1.44k | #endif |
589 | | |
590 | 1.44k | if (EC_POINT_is_at_infinity(group, a)) { |
591 | 57 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1; |
592 | 57 | } |
593 | | |
594 | 1.39k | if (EC_POINT_is_at_infinity(group, b)) |
595 | 0 | return 1; |
596 | | |
597 | 1.39k | if (a->Z_is_one && b->Z_is_one) { |
598 | 1.39k | return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1; |
599 | 1.39k | } |
600 | | |
601 | 0 | #ifndef FIPS_MODULE |
602 | 0 | if (ctx == NULL) { |
603 | 0 | ctx = new_ctx = BN_CTX_new(); |
604 | 0 | if (ctx == NULL) |
605 | 0 | return -1; |
606 | 0 | } |
607 | 0 | #endif |
608 | | |
609 | 0 | BN_CTX_start(ctx); |
610 | 0 | aX = BN_CTX_get(ctx); |
611 | 0 | aY = BN_CTX_get(ctx); |
612 | 0 | bX = BN_CTX_get(ctx); |
613 | 0 | bY = BN_CTX_get(ctx); |
614 | 0 | if (bY == NULL) |
615 | 0 | goto err; |
616 | | |
617 | 0 | if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx)) |
618 | 0 | goto err; |
619 | 0 | if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx)) |
620 | 0 | goto err; |
621 | 0 | ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; |
622 | |
|
623 | 0 | err: |
624 | 0 | BN_CTX_end(ctx); |
625 | 0 | #ifndef FIPS_MODULE |
626 | 0 | BN_CTX_free(new_ctx); |
627 | 0 | #endif |
628 | 0 | return ret; |
629 | 0 | } |
630 | | |
631 | | /* Forces the given EC_POINT to internally use affine coordinates. */ |
632 | | int ossl_ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, |
633 | | BN_CTX *ctx) |
634 | 24 | { |
635 | 24 | BIGNUM *x, *y; |
636 | 24 | int ret = 0; |
637 | 24 | #ifndef FIPS_MODULE |
638 | 24 | BN_CTX *new_ctx = NULL; |
639 | 24 | #endif |
640 | | |
641 | 24 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) |
642 | 24 | return 1; |
643 | | |
644 | 0 | #ifndef FIPS_MODULE |
645 | 0 | if (ctx == NULL) { |
646 | 0 | ctx = new_ctx = BN_CTX_new(); |
647 | 0 | if (ctx == NULL) |
648 | 0 | return 0; |
649 | 0 | } |
650 | 0 | #endif |
651 | | |
652 | 0 | BN_CTX_start(ctx); |
653 | 0 | x = BN_CTX_get(ctx); |
654 | 0 | y = BN_CTX_get(ctx); |
655 | 0 | if (y == NULL) |
656 | 0 | goto err; |
657 | | |
658 | 0 | if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) |
659 | 0 | goto err; |
660 | 0 | if (!BN_copy(point->X, x)) |
661 | 0 | goto err; |
662 | 0 | if (!BN_copy(point->Y, y)) |
663 | 0 | goto err; |
664 | 0 | if (!BN_one(point->Z)) |
665 | 0 | goto err; |
666 | 0 | point->Z_is_one = 1; |
667 | |
|
668 | 0 | ret = 1; |
669 | |
|
670 | 0 | err: |
671 | 0 | BN_CTX_end(ctx); |
672 | 0 | #ifndef FIPS_MODULE |
673 | 0 | BN_CTX_free(new_ctx); |
674 | 0 | #endif |
675 | 0 | return ret; |
676 | 0 | } |
677 | | |
678 | | /* |
679 | | * Forces each of the EC_POINTs in the given array to use affine coordinates. |
680 | | */ |
681 | | int ossl_ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, |
682 | | EC_POINT *points[], BN_CTX *ctx) |
683 | 0 | { |
684 | 0 | size_t i; |
685 | |
|
686 | 0 | for (i = 0; i < num; i++) { |
687 | 0 | if (!group->meth->make_affine(group, points[i], ctx)) |
688 | 0 | return 0; |
689 | 0 | } |
690 | | |
691 | 0 | return 1; |
692 | 0 | } |
693 | | |
694 | | /* Wrapper to simple binary polynomial field multiplication implementation. */ |
695 | | int ossl_ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, |
696 | | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
697 | 9.10M | { |
698 | 9.10M | return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); |
699 | 9.10M | } |
700 | | |
701 | | /* Wrapper to simple binary polynomial field squaring implementation. */ |
702 | | int ossl_ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, |
703 | | const BIGNUM *a, BN_CTX *ctx) |
704 | 7.40M | { |
705 | 7.40M | return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); |
706 | 7.40M | } |
707 | | |
708 | | /* Wrapper to simple binary polynomial field division implementation. */ |
709 | | int ossl_ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, |
710 | | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
711 | 107k | { |
712 | 107k | return BN_GF2m_mod_div(r, a, b, group->field, ctx); |
713 | 107k | } |
714 | | |
715 | | /*- |
716 | | * Lopez-Dahab ladder, pre step. |
717 | | * See e.g. "Guide to ECC" Alg 3.40. |
718 | | * Modified to blind s and r independently. |
719 | | * s:= p, r := 2p |
720 | | */ |
721 | | static |
722 | | int ec_GF2m_simple_ladder_pre(const EC_GROUP *group, |
723 | | EC_POINT *r, EC_POINT *s, |
724 | | EC_POINT *p, BN_CTX *ctx) |
725 | 5.74k | { |
726 | | /* if p is not affine, something is wrong */ |
727 | 5.74k | if (p->Z_is_one == 0) |
728 | 0 | return 0; |
729 | | |
730 | | /* s blinding: make sure lambda (s->Z here) is not zero */ |
731 | 5.74k | do { |
732 | 5.74k | if (!BN_priv_rand_ex(s->Z, BN_num_bits(group->field) - 1, |
733 | 5.74k | BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx)) { |
734 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
735 | 0 | return 0; |
736 | 0 | } |
737 | 5.74k | } while (BN_is_zero(s->Z)); |
738 | | |
739 | | /* if field_encode defined convert between representations */ |
740 | 5.74k | if ((group->meth->field_encode != NULL |
741 | 5.74k | && !group->meth->field_encode(group, s->Z, s->Z, ctx)) |
742 | 5.74k | || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) |
743 | 0 | return 0; |
744 | | |
745 | | /* r blinding: make sure lambda (r->Y here for storage) is not zero */ |
746 | 5.74k | do { |
747 | 5.74k | if (!BN_priv_rand_ex(r->Y, BN_num_bits(group->field) - 1, |
748 | 5.74k | BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx)) { |
749 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
750 | 0 | return 0; |
751 | 0 | } |
752 | 5.74k | } while (BN_is_zero(r->Y)); |
753 | | |
754 | 5.74k | if ((group->meth->field_encode != NULL |
755 | 5.74k | && !group->meth->field_encode(group, r->Y, r->Y, ctx)) |
756 | 5.74k | || !group->meth->field_sqr(group, r->Z, p->X, ctx) |
757 | 5.74k | || !group->meth->field_sqr(group, r->X, r->Z, ctx) |
758 | 5.74k | || !BN_GF2m_add(r->X, r->X, group->b) |
759 | 5.74k | || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx) |
760 | 5.74k | || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)) |
761 | 0 | return 0; |
762 | | |
763 | 5.74k | s->Z_is_one = 0; |
764 | 5.74k | r->Z_is_one = 0; |
765 | | |
766 | 5.74k | return 1; |
767 | 5.74k | } |
768 | | |
769 | | /*- |
770 | | * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords. |
771 | | * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3 |
772 | | * s := r + s, r := 2r |
773 | | */ |
774 | | static |
775 | | int ec_GF2m_simple_ladder_step(const EC_GROUP *group, |
776 | | EC_POINT *r, EC_POINT *s, |
777 | | EC_POINT *p, BN_CTX *ctx) |
778 | 1.40M | { |
779 | 1.40M | if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx) |
780 | 1.40M | || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx) |
781 | 1.40M | || !group->meth->field_sqr(group, s->Y, r->Z, ctx) |
782 | 1.40M | || !group->meth->field_sqr(group, r->Z, r->X, ctx) |
783 | 1.40M | || !BN_GF2m_add(s->Z, r->Y, s->X) |
784 | 1.40M | || !group->meth->field_sqr(group, s->Z, s->Z, ctx) |
785 | 1.40M | || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx) |
786 | 1.40M | || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx) |
787 | 1.40M | || !BN_GF2m_add(s->X, s->X, r->Y) |
788 | 1.40M | || !group->meth->field_sqr(group, r->Y, r->Z, ctx) |
789 | 1.40M | || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx) |
790 | 1.40M | || !group->meth->field_sqr(group, s->Y, s->Y, ctx) |
791 | 1.40M | || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx) |
792 | 1.40M | || !BN_GF2m_add(r->X, r->Y, s->Y)) |
793 | 0 | return 0; |
794 | | |
795 | 1.40M | return 1; |
796 | 1.40M | } |
797 | | |
798 | | /*- |
799 | | * Recover affine (x,y) result from Lopez-Dahab r and s, affine p. |
800 | | * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m) |
801 | | * without Precomputation" (Lopez and Dahab, CHES 1999), |
802 | | * Appendix Alg Mxy. |
803 | | */ |
804 | | static |
805 | | int ec_GF2m_simple_ladder_post(const EC_GROUP *group, |
806 | | EC_POINT *r, EC_POINT *s, |
807 | | EC_POINT *p, BN_CTX *ctx) |
808 | 5.74k | { |
809 | 5.74k | int ret = 0; |
810 | 5.74k | BIGNUM *t0, *t1, *t2 = NULL; |
811 | | |
812 | 5.74k | if (BN_is_zero(r->Z)) |
813 | 1.71k | return EC_POINT_set_to_infinity(group, r); |
814 | | |
815 | 4.02k | if (BN_is_zero(s->Z)) { |
816 | 28 | if (!EC_POINT_copy(r, p) |
817 | 28 | || !EC_POINT_invert(group, r, ctx)) { |
818 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB); |
819 | 0 | return 0; |
820 | 0 | } |
821 | 28 | return 1; |
822 | 28 | } |
823 | | |
824 | 3.99k | BN_CTX_start(ctx); |
825 | 3.99k | t0 = BN_CTX_get(ctx); |
826 | 3.99k | t1 = BN_CTX_get(ctx); |
827 | 3.99k | t2 = BN_CTX_get(ctx); |
828 | 3.99k | if (t2 == NULL) { |
829 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); |
830 | 0 | goto err; |
831 | 0 | } |
832 | | |
833 | 3.99k | if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx) |
834 | 3.99k | || !group->meth->field_mul(group, t1, p->X, r->Z, ctx) |
835 | 3.99k | || !BN_GF2m_add(t1, r->X, t1) |
836 | 3.99k | || !group->meth->field_mul(group, t2, p->X, s->Z, ctx) |
837 | 3.99k | || !group->meth->field_mul(group, r->Z, r->X, t2, ctx) |
838 | 3.99k | || !BN_GF2m_add(t2, t2, s->X) |
839 | 3.99k | || !group->meth->field_mul(group, t1, t1, t2, ctx) |
840 | 3.99k | || !group->meth->field_sqr(group, t2, p->X, ctx) |
841 | 3.99k | || !BN_GF2m_add(t2, p->Y, t2) |
842 | 3.99k | || !group->meth->field_mul(group, t2, t2, t0, ctx) |
843 | 3.99k | || !BN_GF2m_add(t1, t2, t1) |
844 | 3.99k | || !group->meth->field_mul(group, t2, p->X, t0, ctx) |
845 | 3.99k | || !group->meth->field_inv(group, t2, t2, ctx) |
846 | 3.99k | || !group->meth->field_mul(group, t1, t1, t2, ctx) |
847 | 3.99k | || !group->meth->field_mul(group, r->X, r->Z, t2, ctx) |
848 | 3.99k | || !BN_GF2m_add(t2, p->X, r->X) |
849 | 3.99k | || !group->meth->field_mul(group, t2, t2, t1, ctx) |
850 | 3.99k | || !BN_GF2m_add(r->Y, p->Y, t2) |
851 | 3.99k | || !BN_one(r->Z)) |
852 | 0 | goto err; |
853 | | |
854 | 3.99k | r->Z_is_one = 1; |
855 | | |
856 | | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ |
857 | 3.99k | BN_set_negative(r->X, 0); |
858 | 3.99k | BN_set_negative(r->Y, 0); |
859 | | |
860 | 3.99k | ret = 1; |
861 | | |
862 | 3.99k | err: |
863 | 3.99k | BN_CTX_end(ctx); |
864 | 3.99k | return ret; |
865 | 3.99k | } |
866 | | |
867 | | static |
868 | | int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r, |
869 | | const BIGNUM *scalar, size_t num, |
870 | | const EC_POINT *points[], |
871 | | const BIGNUM *scalars[], |
872 | | BN_CTX *ctx) |
873 | 5.47k | { |
874 | 5.47k | int ret = 0; |
875 | 5.47k | EC_POINT *t = NULL; |
876 | | |
877 | | /*- |
878 | | * We limit use of the ladder only to the following cases: |
879 | | * - r := scalar * G |
880 | | * Fixed point mul: scalar != NULL && num == 0; |
881 | | * - r := scalars[0] * points[0] |
882 | | * Variable point mul: scalar == NULL && num == 1; |
883 | | * - r := scalar * G + scalars[0] * points[0] |
884 | | * used, e.g., in ECDSA verification: scalar != NULL && num == 1 |
885 | | * |
886 | | * In any other case (num > 1) we use the default wNAF implementation. |
887 | | * |
888 | | * We also let the default implementation handle degenerate cases like group |
889 | | * order or cofactor set to 0. |
890 | | */ |
891 | 5.47k | if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor)) |
892 | 0 | return ossl_ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); |
893 | | |
894 | 5.47k | if (scalar != NULL && num == 0) |
895 | | /* Fixed point multiplication */ |
896 | 4.23k | return ossl_ec_scalar_mul_ladder(group, r, scalar, NULL, ctx); |
897 | | |
898 | 1.24k | if (scalar == NULL && num == 1) |
899 | | /* Variable point multiplication */ |
900 | 976 | return ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx); |
901 | | |
902 | | /*- |
903 | | * Double point multiplication: |
904 | | * r := scalar * G + scalars[0] * points[0] |
905 | | */ |
906 | | |
907 | 264 | if ((t = EC_POINT_new(group)) == NULL) { |
908 | 0 | ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB); |
909 | 0 | return 0; |
910 | 0 | } |
911 | | |
912 | 264 | if (!ossl_ec_scalar_mul_ladder(group, t, scalar, NULL, ctx) |
913 | 264 | || !ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx) |
914 | 264 | || !EC_POINT_add(group, r, t, r, ctx)) |
915 | 0 | goto err; |
916 | | |
917 | 264 | ret = 1; |
918 | | |
919 | 264 | err: |
920 | 264 | EC_POINT_free(t); |
921 | 264 | return ret; |
922 | 264 | } |
923 | | |
924 | | /*- |
925 | | * Computes the multiplicative inverse of a in GF(2^m), storing the result in r. |
926 | | * If a is zero (or equivalent), you'll get an EC_R_CANNOT_INVERT error. |
927 | | * SCA hardening is with blinding: BN_GF2m_mod_inv does that. |
928 | | */ |
929 | | static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r, |
930 | | const BIGNUM *a, BN_CTX *ctx) |
931 | 3.99k | { |
932 | 3.99k | int ret; |
933 | | |
934 | 3.99k | if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx))) |
935 | 3.99k | ERR_raise(ERR_LIB_EC, EC_R_CANNOT_INVERT); |
936 | 3.99k | return ret; |
937 | 3.99k | } |
938 | | |
939 | | const EC_METHOD *EC_GF2m_simple_method(void) |
940 | 197k | { |
941 | 197k | static const EC_METHOD ret = { |
942 | 197k | EC_FLAGS_DEFAULT_OCT, |
943 | 197k | NID_X9_62_characteristic_two_field, |
944 | 197k | ossl_ec_GF2m_simple_group_init, |
945 | 197k | ossl_ec_GF2m_simple_group_finish, |
946 | 197k | ossl_ec_GF2m_simple_group_clear_finish, |
947 | 197k | ossl_ec_GF2m_simple_group_copy, |
948 | 197k | ossl_ec_GF2m_simple_group_set_curve, |
949 | 197k | ossl_ec_GF2m_simple_group_get_curve, |
950 | 197k | ossl_ec_GF2m_simple_group_get_degree, |
951 | 197k | ossl_ec_group_simple_order_bits, |
952 | 197k | ossl_ec_GF2m_simple_group_check_discriminant, |
953 | 197k | ossl_ec_GF2m_simple_point_init, |
954 | 197k | ossl_ec_GF2m_simple_point_finish, |
955 | 197k | ossl_ec_GF2m_simple_point_clear_finish, |
956 | 197k | ossl_ec_GF2m_simple_point_copy, |
957 | 197k | ossl_ec_GF2m_simple_point_set_to_infinity, |
958 | 197k | ossl_ec_GF2m_simple_point_set_affine_coordinates, |
959 | 197k | ossl_ec_GF2m_simple_point_get_affine_coordinates, |
960 | 197k | 0, /* point_set_compressed_coordinates */ |
961 | 197k | 0, /* point2oct */ |
962 | 197k | 0, /* oct2point */ |
963 | 197k | ossl_ec_GF2m_simple_add, |
964 | 197k | ossl_ec_GF2m_simple_dbl, |
965 | 197k | ossl_ec_GF2m_simple_invert, |
966 | 197k | ossl_ec_GF2m_simple_is_at_infinity, |
967 | 197k | ossl_ec_GF2m_simple_is_on_curve, |
968 | 197k | ossl_ec_GF2m_simple_cmp, |
969 | 197k | ossl_ec_GF2m_simple_make_affine, |
970 | 197k | ossl_ec_GF2m_simple_points_make_affine, |
971 | 197k | ec_GF2m_simple_points_mul, |
972 | 197k | 0, /* precompute_mult */ |
973 | 197k | 0, /* have_precompute_mult */ |
974 | 197k | ossl_ec_GF2m_simple_field_mul, |
975 | 197k | ossl_ec_GF2m_simple_field_sqr, |
976 | 197k | ossl_ec_GF2m_simple_field_div, |
977 | 197k | ec_GF2m_simple_field_inv, |
978 | 197k | 0, /* field_encode */ |
979 | 197k | 0, /* field_decode */ |
980 | 197k | 0, /* field_set_to_one */ |
981 | 197k | ossl_ec_key_simple_priv2oct, |
982 | 197k | ossl_ec_key_simple_oct2priv, |
983 | 197k | 0, /* set private */ |
984 | 197k | ossl_ec_key_simple_generate_key, |
985 | 197k | ossl_ec_key_simple_check_key, |
986 | 197k | ossl_ec_key_simple_generate_public_key, |
987 | 197k | 0, /* keycopy */ |
988 | 197k | 0, /* keyfinish */ |
989 | 197k | ossl_ecdh_simple_compute_key, |
990 | 197k | ossl_ecdsa_simple_sign_setup, |
991 | 197k | ossl_ecdsa_simple_sign_sig, |
992 | 197k | ossl_ecdsa_simple_verify_sig, |
993 | 197k | 0, /* field_inverse_mod_ord */ |
994 | 197k | 0, /* blind_coordinates */ |
995 | 197k | ec_GF2m_simple_ladder_pre, |
996 | 197k | ec_GF2m_simple_ladder_step, |
997 | 197k | ec_GF2m_simple_ladder_post |
998 | 197k | }; |
999 | | |
1000 | 197k | return &ret; |
1001 | 197k | } |
1002 | | |
1003 | | #endif |