/src/openssl32/crypto/ec/ec_cvt.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
4 | | * |
5 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | /* |
12 | | * ECDSA low level APIs are deprecated for public use, but still ok for |
13 | | * internal use. |
14 | | */ |
15 | | #include "internal/deprecated.h" |
16 | | |
17 | | #include <openssl/err.h> |
18 | | #include "crypto/bn.h" |
19 | | #include "ec_local.h" |
20 | | |
21 | | EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, |
22 | | const BIGNUM *b, BN_CTX *ctx) |
23 | 123k | { |
24 | 123k | const EC_METHOD *meth; |
25 | 123k | EC_GROUP *ret; |
26 | | |
27 | 123k | #if defined(OPENSSL_BN_ASM_MONT) |
28 | | /* |
29 | | * This might appear controversial, but the fact is that generic |
30 | | * prime method was observed to deliver better performance even |
31 | | * for NIST primes on a range of platforms, e.g.: 60%-15% |
32 | | * improvement on IA-64, ~25% on ARM, 30%-90% on P4, 20%-25% |
33 | | * in 32-bit build and 35%--12% in 64-bit build on Core2... |
34 | | * Coefficients are relative to optimized bn_nist.c for most |
35 | | * intensive ECDSA verify and ECDH operations for 192- and 521- |
36 | | * bit keys respectively. Choice of these boundary values is |
37 | | * arguable, because the dependency of improvement coefficient |
38 | | * from key length is not a "monotone" curve. For example while |
39 | | * 571-bit result is 23% on ARM, 384-bit one is -1%. But it's |
40 | | * generally faster, sometimes "respectfully" faster, sometimes |
41 | | * "tolerably" slower... What effectively happens is that loop |
42 | | * with bn_mul_add_words is put against bn_mul_mont, and the |
43 | | * latter "wins" on short vectors. Correct solution should be |
44 | | * implementing dedicated NxN multiplication subroutines for |
45 | | * small N. But till it materializes, let's stick to generic |
46 | | * prime method... |
47 | | * <appro> |
48 | | */ |
49 | 123k | meth = EC_GFp_mont_method(); |
50 | | #else |
51 | | if (BN_nist_mod_func(p)) |
52 | | meth = EC_GFp_nist_method(); |
53 | | else |
54 | | meth = EC_GFp_mont_method(); |
55 | | #endif |
56 | | |
57 | 123k | ret = ossl_ec_group_new_ex(ossl_bn_get_libctx(ctx), NULL, meth); |
58 | 123k | if (ret == NULL) |
59 | 0 | return NULL; |
60 | | |
61 | 123k | if (!EC_GROUP_set_curve(ret, p, a, b, ctx)) { |
62 | 3.31k | EC_GROUP_free(ret); |
63 | 3.31k | return NULL; |
64 | 3.31k | } |
65 | | |
66 | 120k | return ret; |
67 | 123k | } |
68 | | |
69 | | #ifndef OPENSSL_NO_EC2M |
70 | | EC_GROUP *EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, |
71 | | const BIGNUM *b, BN_CTX *ctx) |
72 | 197k | { |
73 | 197k | const EC_METHOD *meth; |
74 | 197k | EC_GROUP *ret; |
75 | | |
76 | 197k | meth = EC_GF2m_simple_method(); |
77 | | |
78 | 197k | ret = ossl_ec_group_new_ex(ossl_bn_get_libctx(ctx), NULL, meth); |
79 | 197k | if (ret == NULL) |
80 | 0 | return NULL; |
81 | | |
82 | 197k | if (!EC_GROUP_set_curve(ret, p, a, b, ctx)) { |
83 | 0 | EC_GROUP_free(ret); |
84 | 0 | return NULL; |
85 | 0 | } |
86 | | |
87 | 197k | return ret; |
88 | 197k | } |
89 | | #endif |