Coverage Report

Created: 2025-06-13 06:58

/src/openssl32/crypto/ec/ecp_nistp256.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/opensslconf.h>
41
42
#include <stdint.h>
43
#include <string.h>
44
#include <openssl/err.h>
45
#include "ec_local.h"
46
47
#include "internal/numbers.h"
48
49
#ifndef INT128_MAX
50
# error "Your compiler doesn't appear to support 128-bit integer types"
51
#endif
52
53
typedef uint8_t u8;
54
typedef uint32_t u32;
55
typedef uint64_t u64;
56
57
/*
58
 * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
59
 * can serialize an element of this field into 32 bytes. We call this an
60
 * felem_bytearray.
61
 */
62
63
typedef u8 felem_bytearray[32];
64
65
/*
66
 * These are the parameters of P256, taken from FIPS 186-3, page 86. These
67
 * values are big-endian.
68
 */
69
static const felem_bytearray nistp256_curve_params[5] = {
70
    {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
71
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
72
     0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
74
    {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
75
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
76
     0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
77
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc},
78
    {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, /* b */
79
     0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
80
     0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
81
     0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
82
    {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
83
     0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
84
     0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
85
     0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
86
    {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
87
     0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
88
     0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
89
     0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
90
};
91
92
/*-
93
 * The representation of field elements.
94
 * ------------------------------------
95
 *
96
 * We represent field elements with either four 128-bit values, eight 128-bit
97
 * values, or four 64-bit values. The field element represented is:
98
 *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192  (mod p)
99
 * or:
100
 *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[7]*2^448  (mod p)
101
 *
102
 * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
103
 * apart, but are 128-bits wide, the most significant bits of each limb overlap
104
 * with the least significant bits of the next.
105
 *
106
 * A field element with four limbs is an 'felem'. One with eight limbs is a
107
 * 'longfelem'
108
 *
109
 * A field element with four, 64-bit values is called a 'smallfelem'. Small
110
 * values are used as intermediate values before multiplication.
111
 */
112
113
0
#define NLIMBS 4
114
115
typedef uint128_t limb;
116
typedef limb felem[NLIMBS];
117
typedef limb longfelem[NLIMBS * 2];
118
typedef u64 smallfelem[NLIMBS];
119
120
/* This is the value of the prime as four 64-bit words, little-endian. */
121
static const u64 kPrime[4] =
122
    { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul };
123
static const u64 bottom63bits = 0x7ffffffffffffffful;
124
125
/*
126
 * bin32_to_felem takes a little-endian byte array and converts it into felem
127
 * form. This assumes that the CPU is little-endian.
128
 */
129
static void bin32_to_felem(felem out, const u8 in[32])
130
0
{
131
0
    out[0] = *((u64 *)&in[0]);
132
0
    out[1] = *((u64 *)&in[8]);
133
0
    out[2] = *((u64 *)&in[16]);
134
0
    out[3] = *((u64 *)&in[24]);
135
0
}
136
137
/*
138
 * smallfelem_to_bin32 takes a smallfelem and serializes into a little
139
 * endian, 32 byte array. This assumes that the CPU is little-endian.
140
 */
141
static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
142
0
{
143
0
    *((u64 *)&out[0]) = in[0];
144
0
    *((u64 *)&out[8]) = in[1];
145
0
    *((u64 *)&out[16]) = in[2];
146
0
    *((u64 *)&out[24]) = in[3];
147
0
}
148
149
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
150
static int BN_to_felem(felem out, const BIGNUM *bn)
151
0
{
152
0
    felem_bytearray b_out;
153
0
    int num_bytes;
154
155
0
    if (BN_is_negative(bn)) {
156
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
157
0
        return 0;
158
0
    }
159
0
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
160
0
    if (num_bytes < 0) {
161
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
162
0
        return 0;
163
0
    }
164
0
    bin32_to_felem(out, b_out);
165
0
    return 1;
166
0
}
167
168
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
169
static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
170
0
{
171
0
    felem_bytearray b_out;
172
0
    smallfelem_to_bin32(b_out, in);
173
0
    return BN_lebin2bn(b_out, sizeof(b_out), out);
174
0
}
175
176
/*-
177
 * Field operations
178
 * ----------------
179
 */
180
181
static void smallfelem_one(smallfelem out)
182
0
{
183
0
    out[0] = 1;
184
0
    out[1] = 0;
185
0
    out[2] = 0;
186
0
    out[3] = 0;
187
0
}
188
189
static void smallfelem_assign(smallfelem out, const smallfelem in)
190
0
{
191
0
    out[0] = in[0];
192
0
    out[1] = in[1];
193
0
    out[2] = in[2];
194
0
    out[3] = in[3];
195
0
}
196
197
static void felem_assign(felem out, const felem in)
198
0
{
199
0
    out[0] = in[0];
200
0
    out[1] = in[1];
201
0
    out[2] = in[2];
202
0
    out[3] = in[3];
203
0
}
204
205
/* felem_sum sets out = out + in. */
206
static void felem_sum(felem out, const felem in)
207
0
{
208
0
    out[0] += in[0];
209
0
    out[1] += in[1];
210
0
    out[2] += in[2];
211
0
    out[3] += in[3];
212
0
}
213
214
/* felem_small_sum sets out = out + in. */
215
static void felem_small_sum(felem out, const smallfelem in)
216
0
{
217
0
    out[0] += in[0];
218
0
    out[1] += in[1];
219
0
    out[2] += in[2];
220
0
    out[3] += in[3];
221
0
}
222
223
/* felem_scalar sets out = out * scalar */
224
static void felem_scalar(felem out, const u64 scalar)
225
0
{
226
0
    out[0] *= scalar;
227
0
    out[1] *= scalar;
228
0
    out[2] *= scalar;
229
0
    out[3] *= scalar;
230
0
}
231
232
/* longfelem_scalar sets out = out * scalar */
233
static void longfelem_scalar(longfelem out, const u64 scalar)
234
0
{
235
0
    out[0] *= scalar;
236
0
    out[1] *= scalar;
237
0
    out[2] *= scalar;
238
0
    out[3] *= scalar;
239
0
    out[4] *= scalar;
240
0
    out[5] *= scalar;
241
0
    out[6] *= scalar;
242
0
    out[7] *= scalar;
243
0
}
244
245
#define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
246
#define two105 (((limb)1) << 105)
247
#define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
248
249
/* zero105 is 0 mod p */
250
static const felem zero105 =
251
    { two105m41m9, two105, two105m41p9, two105m41p9 };
252
253
/*-
254
 * smallfelem_neg sets |out| to |-small|
255
 * On exit:
256
 *   out[i] < out[i] + 2^105
257
 */
258
static void smallfelem_neg(felem out, const smallfelem small)
259
0
{
260
    /* In order to prevent underflow, we subtract from 0 mod p. */
261
0
    out[0] = zero105[0] - small[0];
262
0
    out[1] = zero105[1] - small[1];
263
0
    out[2] = zero105[2] - small[2];
264
0
    out[3] = zero105[3] - small[3];
265
0
}
266
267
/*-
268
 * felem_diff subtracts |in| from |out|
269
 * On entry:
270
 *   in[i] < 2^104
271
 * On exit:
272
 *   out[i] < out[i] + 2^105
273
 */
274
static void felem_diff(felem out, const felem in)
275
0
{
276
    /*
277
     * In order to prevent underflow, we add 0 mod p before subtracting.
278
     */
279
0
    out[0] += zero105[0];
280
0
    out[1] += zero105[1];
281
0
    out[2] += zero105[2];
282
0
    out[3] += zero105[3];
283
284
0
    out[0] -= in[0];
285
0
    out[1] -= in[1];
286
0
    out[2] -= in[2];
287
0
    out[3] -= in[3];
288
0
}
289
290
#define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
291
#define two107 (((limb)1) << 107)
292
#define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
293
294
/* zero107 is 0 mod p */
295
static const felem zero107 =
296
    { two107m43m11, two107, two107m43p11, two107m43p11 };
297
298
/*-
299
 * An alternative felem_diff for larger inputs |in|
300
 * felem_diff_zero107 subtracts |in| from |out|
301
 * On entry:
302
 *   in[i] < 2^106
303
 * On exit:
304
 *   out[i] < out[i] + 2^107
305
 */
306
static void felem_diff_zero107(felem out, const felem in)
307
0
{
308
    /*
309
     * In order to prevent underflow, we add 0 mod p before subtracting.
310
     */
311
0
    out[0] += zero107[0];
312
0
    out[1] += zero107[1];
313
0
    out[2] += zero107[2];
314
0
    out[3] += zero107[3];
315
316
0
    out[0] -= in[0];
317
0
    out[1] -= in[1];
318
0
    out[2] -= in[2];
319
0
    out[3] -= in[3];
320
0
}
321
322
/*-
323
 * longfelem_diff subtracts |in| from |out|
324
 * On entry:
325
 *   in[i] < 7*2^67
326
 * On exit:
327
 *   out[i] < out[i] + 2^70 + 2^40
328
 */
329
static void longfelem_diff(longfelem out, const longfelem in)
330
0
{
331
0
    static const limb two70m8p6 =
332
0
        (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6);
333
0
    static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40);
334
0
    static const limb two70 = (((limb) 1) << 70);
335
0
    static const limb two70m40m38p6 =
336
0
        (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) +
337
0
        (((limb) 1) << 6);
338
0
    static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6);
339
340
    /* add 0 mod p to avoid underflow */
341
0
    out[0] += two70m8p6;
342
0
    out[1] += two70p40;
343
0
    out[2] += two70;
344
0
    out[3] += two70m40m38p6;
345
0
    out[4] += two70m6;
346
0
    out[5] += two70m6;
347
0
    out[6] += two70m6;
348
0
    out[7] += two70m6;
349
350
    /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
351
0
    out[0] -= in[0];
352
0
    out[1] -= in[1];
353
0
    out[2] -= in[2];
354
0
    out[3] -= in[3];
355
0
    out[4] -= in[4];
356
0
    out[5] -= in[5];
357
0
    out[6] -= in[6];
358
0
    out[7] -= in[7];
359
0
}
360
361
#define two64m0 (((limb)1) << 64) - 1
362
#define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
363
#define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
364
#define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
365
366
/* zero110 is 0 mod p */
367
static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
368
369
/*-
370
 * felem_shrink converts an felem into a smallfelem. The result isn't quite
371
 * minimal as the value may be greater than p.
372
 *
373
 * On entry:
374
 *   in[i] < 2^109
375
 * On exit:
376
 *   out[i] < 2^64
377
 */
378
static void felem_shrink(smallfelem out, const felem in)
379
0
{
380
0
    felem tmp;
381
0
    u64 a, b, mask;
382
0
    u64 high, low;
383
0
    static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
384
385
    /* Carry 2->3 */
386
0
    tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
387
    /* tmp[3] < 2^110 */
388
389
0
    tmp[2] = zero110[2] + (u64)in[2];
390
0
    tmp[0] = zero110[0] + in[0];
391
0
    tmp[1] = zero110[1] + in[1];
392
    /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
393
394
    /*
395
     * We perform two partial reductions where we eliminate the high-word of
396
     * tmp[3]. We don't update the other words till the end.
397
     */
398
0
    a = tmp[3] >> 64;           /* a < 2^46 */
399
0
    tmp[3] = (u64)tmp[3];
400
0
    tmp[3] -= a;
401
0
    tmp[3] += ((limb) a) << 32;
402
    /* tmp[3] < 2^79 */
403
404
0
    b = a;
405
0
    a = tmp[3] >> 64;           /* a < 2^15 */
406
0
    b += a;                     /* b < 2^46 + 2^15 < 2^47 */
407
0
    tmp[3] = (u64)tmp[3];
408
0
    tmp[3] -= a;
409
0
    tmp[3] += ((limb) a) << 32;
410
    /* tmp[3] < 2^64 + 2^47 */
411
412
    /*
413
     * This adjusts the other two words to complete the two partial
414
     * reductions.
415
     */
416
0
    tmp[0] += b;
417
0
    tmp[1] -= (((limb) b) << 32);
418
419
    /*
420
     * In order to make space in tmp[3] for the carry from 2 -> 3, we
421
     * conditionally subtract kPrime if tmp[3] is large enough.
422
     */
423
0
    high = (u64)(tmp[3] >> 64);
424
    /* As tmp[3] < 2^65, high is either 1 or 0 */
425
0
    high = 0 - high;
426
    /*-
427
     * high is:
428
     *   all ones   if the high word of tmp[3] is 1
429
     *   all zeros  if the high word of tmp[3] if 0
430
     */
431
0
    low = (u64)tmp[3];
432
0
    mask = 0 - (low >> 63);
433
    /*-
434
     * mask is:
435
     *   all ones   if the MSB of low is 1
436
     *   all zeros  if the MSB of low if 0
437
     */
438
0
    low &= bottom63bits;
439
0
    low -= kPrime3Test;
440
    /* if low was greater than kPrime3Test then the MSB is zero */
441
0
    low = ~low;
442
0
    low = 0 - (low >> 63);
443
    /*-
444
     * low is:
445
     *   all ones   if low was > kPrime3Test
446
     *   all zeros  if low was <= kPrime3Test
447
     */
448
0
    mask = (mask & low) | high;
449
0
    tmp[0] -= mask & kPrime[0];
450
0
    tmp[1] -= mask & kPrime[1];
451
    /* kPrime[2] is zero, so omitted */
452
0
    tmp[3] -= mask & kPrime[3];
453
    /* tmp[3] < 2**64 - 2**32 + 1 */
454
455
0
    tmp[1] += ((u64)(tmp[0] >> 64));
456
0
    tmp[0] = (u64)tmp[0];
457
0
    tmp[2] += ((u64)(tmp[1] >> 64));
458
0
    tmp[1] = (u64)tmp[1];
459
0
    tmp[3] += ((u64)(tmp[2] >> 64));
460
0
    tmp[2] = (u64)tmp[2];
461
    /* tmp[i] < 2^64 */
462
463
0
    out[0] = tmp[0];
464
0
    out[1] = tmp[1];
465
0
    out[2] = tmp[2];
466
0
    out[3] = tmp[3];
467
0
}
468
469
/* smallfelem_expand converts a smallfelem to an felem */
470
static void smallfelem_expand(felem out, const smallfelem in)
471
0
{
472
0
    out[0] = in[0];
473
0
    out[1] = in[1];
474
0
    out[2] = in[2];
475
0
    out[3] = in[3];
476
0
}
477
478
/*-
479
 * smallfelem_square sets |out| = |small|^2
480
 * On entry:
481
 *   small[i] < 2^64
482
 * On exit:
483
 *   out[i] < 7 * 2^64 < 2^67
484
 */
485
static void smallfelem_square(longfelem out, const smallfelem small)
486
0
{
487
0
    limb a;
488
0
    u64 high, low;
489
490
0
    a = ((uint128_t) small[0]) * small[0];
491
0
    low = a;
492
0
    high = a >> 64;
493
0
    out[0] = low;
494
0
    out[1] = high;
495
496
0
    a = ((uint128_t) small[0]) * small[1];
497
0
    low = a;
498
0
    high = a >> 64;
499
0
    out[1] += low;
500
0
    out[1] += low;
501
0
    out[2] = high;
502
503
0
    a = ((uint128_t) small[0]) * small[2];
504
0
    low = a;
505
0
    high = a >> 64;
506
0
    out[2] += low;
507
0
    out[2] *= 2;
508
0
    out[3] = high;
509
510
0
    a = ((uint128_t) small[0]) * small[3];
511
0
    low = a;
512
0
    high = a >> 64;
513
0
    out[3] += low;
514
0
    out[4] = high;
515
516
0
    a = ((uint128_t) small[1]) * small[2];
517
0
    low = a;
518
0
    high = a >> 64;
519
0
    out[3] += low;
520
0
    out[3] *= 2;
521
0
    out[4] += high;
522
523
0
    a = ((uint128_t) small[1]) * small[1];
524
0
    low = a;
525
0
    high = a >> 64;
526
0
    out[2] += low;
527
0
    out[3] += high;
528
529
0
    a = ((uint128_t) small[1]) * small[3];
530
0
    low = a;
531
0
    high = a >> 64;
532
0
    out[4] += low;
533
0
    out[4] *= 2;
534
0
    out[5] = high;
535
536
0
    a = ((uint128_t) small[2]) * small[3];
537
0
    low = a;
538
0
    high = a >> 64;
539
0
    out[5] += low;
540
0
    out[5] *= 2;
541
0
    out[6] = high;
542
0
    out[6] += high;
543
544
0
    a = ((uint128_t) small[2]) * small[2];
545
0
    low = a;
546
0
    high = a >> 64;
547
0
    out[4] += low;
548
0
    out[5] += high;
549
550
0
    a = ((uint128_t) small[3]) * small[3];
551
0
    low = a;
552
0
    high = a >> 64;
553
0
    out[6] += low;
554
0
    out[7] = high;
555
0
}
556
557
/*-
558
 * felem_square sets |out| = |in|^2
559
 * On entry:
560
 *   in[i] < 2^109
561
 * On exit:
562
 *   out[i] < 7 * 2^64 < 2^67
563
 */
564
static void felem_square(longfelem out, const felem in)
565
0
{
566
0
    u64 small[4];
567
0
    felem_shrink(small, in);
568
0
    smallfelem_square(out, small);
569
0
}
570
571
/*-
572
 * smallfelem_mul sets |out| = |small1| * |small2|
573
 * On entry:
574
 *   small1[i] < 2^64
575
 *   small2[i] < 2^64
576
 * On exit:
577
 *   out[i] < 7 * 2^64 < 2^67
578
 */
579
static void smallfelem_mul(longfelem out, const smallfelem small1,
580
                           const smallfelem small2)
581
0
{
582
0
    limb a;
583
0
    u64 high, low;
584
585
0
    a = ((uint128_t) small1[0]) * small2[0];
586
0
    low = a;
587
0
    high = a >> 64;
588
0
    out[0] = low;
589
0
    out[1] = high;
590
591
0
    a = ((uint128_t) small1[0]) * small2[1];
592
0
    low = a;
593
0
    high = a >> 64;
594
0
    out[1] += low;
595
0
    out[2] = high;
596
597
0
    a = ((uint128_t) small1[1]) * small2[0];
598
0
    low = a;
599
0
    high = a >> 64;
600
0
    out[1] += low;
601
0
    out[2] += high;
602
603
0
    a = ((uint128_t) small1[0]) * small2[2];
604
0
    low = a;
605
0
    high = a >> 64;
606
0
    out[2] += low;
607
0
    out[3] = high;
608
609
0
    a = ((uint128_t) small1[1]) * small2[1];
610
0
    low = a;
611
0
    high = a >> 64;
612
0
    out[2] += low;
613
0
    out[3] += high;
614
615
0
    a = ((uint128_t) small1[2]) * small2[0];
616
0
    low = a;
617
0
    high = a >> 64;
618
0
    out[2] += low;
619
0
    out[3] += high;
620
621
0
    a = ((uint128_t) small1[0]) * small2[3];
622
0
    low = a;
623
0
    high = a >> 64;
624
0
    out[3] += low;
625
0
    out[4] = high;
626
627
0
    a = ((uint128_t) small1[1]) * small2[2];
628
0
    low = a;
629
0
    high = a >> 64;
630
0
    out[3] += low;
631
0
    out[4] += high;
632
633
0
    a = ((uint128_t) small1[2]) * small2[1];
634
0
    low = a;
635
0
    high = a >> 64;
636
0
    out[3] += low;
637
0
    out[4] += high;
638
639
0
    a = ((uint128_t) small1[3]) * small2[0];
640
0
    low = a;
641
0
    high = a >> 64;
642
0
    out[3] += low;
643
0
    out[4] += high;
644
645
0
    a = ((uint128_t) small1[1]) * small2[3];
646
0
    low = a;
647
0
    high = a >> 64;
648
0
    out[4] += low;
649
0
    out[5] = high;
650
651
0
    a = ((uint128_t) small1[2]) * small2[2];
652
0
    low = a;
653
0
    high = a >> 64;
654
0
    out[4] += low;
655
0
    out[5] += high;
656
657
0
    a = ((uint128_t) small1[3]) * small2[1];
658
0
    low = a;
659
0
    high = a >> 64;
660
0
    out[4] += low;
661
0
    out[5] += high;
662
663
0
    a = ((uint128_t) small1[2]) * small2[3];
664
0
    low = a;
665
0
    high = a >> 64;
666
0
    out[5] += low;
667
0
    out[6] = high;
668
669
0
    a = ((uint128_t) small1[3]) * small2[2];
670
0
    low = a;
671
0
    high = a >> 64;
672
0
    out[5] += low;
673
0
    out[6] += high;
674
675
0
    a = ((uint128_t) small1[3]) * small2[3];
676
0
    low = a;
677
0
    high = a >> 64;
678
0
    out[6] += low;
679
0
    out[7] = high;
680
0
}
681
682
/*-
683
 * felem_mul sets |out| = |in1| * |in2|
684
 * On entry:
685
 *   in1[i] < 2^109
686
 *   in2[i] < 2^109
687
 * On exit:
688
 *   out[i] < 7 * 2^64 < 2^67
689
 */
690
static void felem_mul(longfelem out, const felem in1, const felem in2)
691
0
{
692
0
    smallfelem small1, small2;
693
0
    felem_shrink(small1, in1);
694
0
    felem_shrink(small2, in2);
695
0
    smallfelem_mul(out, small1, small2);
696
0
}
697
698
/*-
699
 * felem_small_mul sets |out| = |small1| * |in2|
700
 * On entry:
701
 *   small1[i] < 2^64
702
 *   in2[i] < 2^109
703
 * On exit:
704
 *   out[i] < 7 * 2^64 < 2^67
705
 */
706
static void felem_small_mul(longfelem out, const smallfelem small1,
707
                            const felem in2)
708
0
{
709
0
    smallfelem small2;
710
0
    felem_shrink(small2, in2);
711
0
    smallfelem_mul(out, small1, small2);
712
0
}
713
714
#define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
715
#define two100 (((limb)1) << 100)
716
#define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
717
/* zero100 is 0 mod p */
718
static const felem zero100 =
719
    { two100m36m4, two100, two100m36p4, two100m36p4 };
720
721
/*-
722
 * Internal function for the different flavours of felem_reduce.
723
 * felem_reduce_ reduces the higher coefficients in[4]-in[7].
724
 * On entry:
725
 *   out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
726
 *   out[1] >= in[7] + 2^32*in[4]
727
 *   out[2] >= in[5] + 2^32*in[5]
728
 *   out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
729
 * On exit:
730
 *   out[0] <= out[0] + in[4] + 2^32*in[5]
731
 *   out[1] <= out[1] + in[5] + 2^33*in[6]
732
 *   out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
733
 *   out[3] <= out[3] + 2^32*in[4] + 3*in[7]
734
 */
735
static void felem_reduce_(felem out, const longfelem in)
736
0
{
737
0
    int128_t c;
738
    /* combine common terms from below */
739
0
    c = in[4] + (in[5] << 32);
740
0
    out[0] += c;
741
0
    out[3] -= c;
742
743
0
    c = in[5] - in[7];
744
0
    out[1] += c;
745
0
    out[2] -= c;
746
747
    /* the remaining terms */
748
    /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
749
0
    out[1] -= (in[4] << 32);
750
0
    out[3] += (in[4] << 32);
751
752
    /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
753
0
    out[2] -= (in[5] << 32);
754
755
    /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
756
0
    out[0] -= in[6];
757
0
    out[0] -= (in[6] << 32);
758
0
    out[1] += (in[6] << 33);
759
0
    out[2] += (in[6] * 2);
760
0
    out[3] -= (in[6] << 32);
761
762
    /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
763
0
    out[0] -= in[7];
764
0
    out[0] -= (in[7] << 32);
765
0
    out[2] += (in[7] << 33);
766
0
    out[3] += (in[7] * 3);
767
0
}
768
769
/*-
770
 * felem_reduce converts a longfelem into an felem.
771
 * To be called directly after felem_square or felem_mul.
772
 * On entry:
773
 *   in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
774
 *   in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
775
 * On exit:
776
 *   out[i] < 2^101
777
 */
778
static void felem_reduce(felem out, const longfelem in)
779
0
{
780
0
    out[0] = zero100[0] + in[0];
781
0
    out[1] = zero100[1] + in[1];
782
0
    out[2] = zero100[2] + in[2];
783
0
    out[3] = zero100[3] + in[3];
784
785
0
    felem_reduce_(out, in);
786
787
    /*-
788
     * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
789
     * out[1] > 2^100 - 2^64 - 7*2^96 > 0
790
     * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
791
     * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
792
     *
793
     * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
794
     * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
795
     * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
796
     * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
797
     */
798
0
}
799
800
/*-
801
 * felem_reduce_zero105 converts a larger longfelem into an felem.
802
 * On entry:
803
 *   in[0] < 2^71
804
 * On exit:
805
 *   out[i] < 2^106
806
 */
807
static void felem_reduce_zero105(felem out, const longfelem in)
808
0
{
809
0
    out[0] = zero105[0] + in[0];
810
0
    out[1] = zero105[1] + in[1];
811
0
    out[2] = zero105[2] + in[2];
812
0
    out[3] = zero105[3] + in[3];
813
814
0
    felem_reduce_(out, in);
815
816
    /*-
817
     * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
818
     * out[1] > 2^105 - 2^71 - 2^103 > 0
819
     * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
820
     * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
821
     *
822
     * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
823
     * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
824
     * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
825
     * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
826
     */
827
0
}
828
829
/*
830
 * subtract_u64 sets *result = *result - v and *carry to one if the
831
 * subtraction underflowed.
832
 */
833
static void subtract_u64(u64 *result, u64 *carry, u64 v)
834
0
{
835
0
    uint128_t r = *result;
836
0
    r -= v;
837
0
    *carry = (r >> 64) & 1;
838
0
    *result = (u64)r;
839
0
}
840
841
/*
842
 * felem_contract converts |in| to its unique, minimal representation. On
843
 * entry: in[i] < 2^109
844
 */
845
static void felem_contract(smallfelem out, const felem in)
846
0
{
847
0
    unsigned i;
848
0
    u64 all_equal_so_far = 0, result = 0, carry;
849
850
0
    felem_shrink(out, in);
851
    /* small is minimal except that the value might be > p */
852
853
0
    all_equal_so_far--;
854
    /*
855
     * We are doing a constant time test if out >= kPrime. We need to compare
856
     * each u64, from most-significant to least significant. For each one, if
857
     * all words so far have been equal (m is all ones) then a non-equal
858
     * result is the answer. Otherwise we continue.
859
     */
860
0
    for (i = 3; i < 4; i--) {
861
0
        u64 equal;
862
0
        uint128_t a = ((uint128_t) kPrime[i]) - out[i];
863
        /*
864
         * if out[i] > kPrime[i] then a will underflow and the high 64-bits
865
         * will all be set.
866
         */
867
0
        result |= all_equal_so_far & ((u64)(a >> 64));
868
869
        /*
870
         * if kPrime[i] == out[i] then |equal| will be all zeros and the
871
         * decrement will make it all ones.
872
         */
873
0
        equal = kPrime[i] ^ out[i];
874
0
        equal--;
875
0
        equal &= equal << 32;
876
0
        equal &= equal << 16;
877
0
        equal &= equal << 8;
878
0
        equal &= equal << 4;
879
0
        equal &= equal << 2;
880
0
        equal &= equal << 1;
881
0
        equal = 0 - (equal >> 63);
882
883
0
        all_equal_so_far &= equal;
884
0
    }
885
886
    /*
887
     * if all_equal_so_far is still all ones then the two values are equal
888
     * and so out >= kPrime is true.
889
     */
890
0
    result |= all_equal_so_far;
891
892
    /* if out >= kPrime then we subtract kPrime. */
893
0
    subtract_u64(&out[0], &carry, result & kPrime[0]);
894
0
    subtract_u64(&out[1], &carry, carry);
895
0
    subtract_u64(&out[2], &carry, carry);
896
0
    subtract_u64(&out[3], &carry, carry);
897
898
0
    subtract_u64(&out[1], &carry, result & kPrime[1]);
899
0
    subtract_u64(&out[2], &carry, carry);
900
0
    subtract_u64(&out[3], &carry, carry);
901
902
0
    subtract_u64(&out[2], &carry, result & kPrime[2]);
903
0
    subtract_u64(&out[3], &carry, carry);
904
905
0
    subtract_u64(&out[3], &carry, result & kPrime[3]);
906
0
}
907
908
static void smallfelem_square_contract(smallfelem out, const smallfelem in)
909
0
{
910
0
    longfelem longtmp;
911
0
    felem tmp;
912
913
0
    smallfelem_square(longtmp, in);
914
0
    felem_reduce(tmp, longtmp);
915
0
    felem_contract(out, tmp);
916
0
}
917
918
static void smallfelem_mul_contract(smallfelem out, const smallfelem in1,
919
                                    const smallfelem in2)
920
0
{
921
0
    longfelem longtmp;
922
0
    felem tmp;
923
924
0
    smallfelem_mul(longtmp, in1, in2);
925
0
    felem_reduce(tmp, longtmp);
926
0
    felem_contract(out, tmp);
927
0
}
928
929
/*-
930
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
931
 * otherwise.
932
 * On entry:
933
 *   small[i] < 2^64
934
 */
935
static limb smallfelem_is_zero(const smallfelem small)
936
0
{
937
0
    limb result;
938
0
    u64 is_p;
939
940
0
    u64 is_zero = small[0] | small[1] | small[2] | small[3];
941
0
    is_zero--;
942
0
    is_zero &= is_zero << 32;
943
0
    is_zero &= is_zero << 16;
944
0
    is_zero &= is_zero << 8;
945
0
    is_zero &= is_zero << 4;
946
0
    is_zero &= is_zero << 2;
947
0
    is_zero &= is_zero << 1;
948
0
    is_zero = 0 - (is_zero >> 63);
949
950
0
    is_p = (small[0] ^ kPrime[0]) |
951
0
        (small[1] ^ kPrime[1]) |
952
0
        (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
953
0
    is_p--;
954
0
    is_p &= is_p << 32;
955
0
    is_p &= is_p << 16;
956
0
    is_p &= is_p << 8;
957
0
    is_p &= is_p << 4;
958
0
    is_p &= is_p << 2;
959
0
    is_p &= is_p << 1;
960
0
    is_p = 0 - (is_p >> 63);
961
962
0
    is_zero |= is_p;
963
964
0
    result = is_zero;
965
0
    result |= ((limb) is_zero) << 64;
966
0
    return result;
967
0
}
968
969
static int smallfelem_is_zero_int(const void *small)
970
0
{
971
0
    return (int)(smallfelem_is_zero(small) & ((limb) 1));
972
0
}
973
974
/*-
975
 * felem_inv calculates |out| = |in|^{-1}
976
 *
977
 * Based on Fermat's Little Theorem:
978
 *   a^p = a (mod p)
979
 *   a^{p-1} = 1 (mod p)
980
 *   a^{p-2} = a^{-1} (mod p)
981
 */
982
static void felem_inv(felem out, const felem in)
983
0
{
984
0
    felem ftmp, ftmp2;
985
    /* each e_I will hold |in|^{2^I - 1} */
986
0
    felem e2, e4, e8, e16, e32, e64;
987
0
    longfelem tmp;
988
0
    unsigned i;
989
990
0
    felem_square(tmp, in);
991
0
    felem_reduce(ftmp, tmp);    /* 2^1 */
992
0
    felem_mul(tmp, in, ftmp);
993
0
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
994
0
    felem_assign(e2, ftmp);
995
0
    felem_square(tmp, ftmp);
996
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
997
0
    felem_square(tmp, ftmp);
998
0
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^2 */
999
0
    felem_mul(tmp, ftmp, e2);
1000
0
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^0 */
1001
0
    felem_assign(e4, ftmp);
1002
0
    felem_square(tmp, ftmp);
1003
0
    felem_reduce(ftmp, tmp);    /* 2^5 - 2^1 */
1004
0
    felem_square(tmp, ftmp);
1005
0
    felem_reduce(ftmp, tmp);    /* 2^6 - 2^2 */
1006
0
    felem_square(tmp, ftmp);
1007
0
    felem_reduce(ftmp, tmp);    /* 2^7 - 2^3 */
1008
0
    felem_square(tmp, ftmp);
1009
0
    felem_reduce(ftmp, tmp);    /* 2^8 - 2^4 */
1010
0
    felem_mul(tmp, ftmp, e4);
1011
0
    felem_reduce(ftmp, tmp);    /* 2^8 - 2^0 */
1012
0
    felem_assign(e8, ftmp);
1013
0
    for (i = 0; i < 8; i++) {
1014
0
        felem_square(tmp, ftmp);
1015
0
        felem_reduce(ftmp, tmp);
1016
0
    }                           /* 2^16 - 2^8 */
1017
0
    felem_mul(tmp, ftmp, e8);
1018
0
    felem_reduce(ftmp, tmp);    /* 2^16 - 2^0 */
1019
0
    felem_assign(e16, ftmp);
1020
0
    for (i = 0; i < 16; i++) {
1021
0
        felem_square(tmp, ftmp);
1022
0
        felem_reduce(ftmp, tmp);
1023
0
    }                           /* 2^32 - 2^16 */
1024
0
    felem_mul(tmp, ftmp, e16);
1025
0
    felem_reduce(ftmp, tmp);    /* 2^32 - 2^0 */
1026
0
    felem_assign(e32, ftmp);
1027
0
    for (i = 0; i < 32; i++) {
1028
0
        felem_square(tmp, ftmp);
1029
0
        felem_reduce(ftmp, tmp);
1030
0
    }                           /* 2^64 - 2^32 */
1031
0
    felem_assign(e64, ftmp);
1032
0
    felem_mul(tmp, ftmp, in);
1033
0
    felem_reduce(ftmp, tmp);    /* 2^64 - 2^32 + 2^0 */
1034
0
    for (i = 0; i < 192; i++) {
1035
0
        felem_square(tmp, ftmp);
1036
0
        felem_reduce(ftmp, tmp);
1037
0
    }                           /* 2^256 - 2^224 + 2^192 */
1038
1039
0
    felem_mul(tmp, e64, e32);
1040
0
    felem_reduce(ftmp2, tmp);   /* 2^64 - 2^0 */
1041
0
    for (i = 0; i < 16; i++) {
1042
0
        felem_square(tmp, ftmp2);
1043
0
        felem_reduce(ftmp2, tmp);
1044
0
    }                           /* 2^80 - 2^16 */
1045
0
    felem_mul(tmp, ftmp2, e16);
1046
0
    felem_reduce(ftmp2, tmp);   /* 2^80 - 2^0 */
1047
0
    for (i = 0; i < 8; i++) {
1048
0
        felem_square(tmp, ftmp2);
1049
0
        felem_reduce(ftmp2, tmp);
1050
0
    }                           /* 2^88 - 2^8 */
1051
0
    felem_mul(tmp, ftmp2, e8);
1052
0
    felem_reduce(ftmp2, tmp);   /* 2^88 - 2^0 */
1053
0
    for (i = 0; i < 4; i++) {
1054
0
        felem_square(tmp, ftmp2);
1055
0
        felem_reduce(ftmp2, tmp);
1056
0
    }                           /* 2^92 - 2^4 */
1057
0
    felem_mul(tmp, ftmp2, e4);
1058
0
    felem_reduce(ftmp2, tmp);   /* 2^92 - 2^0 */
1059
0
    felem_square(tmp, ftmp2);
1060
0
    felem_reduce(ftmp2, tmp);   /* 2^93 - 2^1 */
1061
0
    felem_square(tmp, ftmp2);
1062
0
    felem_reduce(ftmp2, tmp);   /* 2^94 - 2^2 */
1063
0
    felem_mul(tmp, ftmp2, e2);
1064
0
    felem_reduce(ftmp2, tmp);   /* 2^94 - 2^0 */
1065
0
    felem_square(tmp, ftmp2);
1066
0
    felem_reduce(ftmp2, tmp);   /* 2^95 - 2^1 */
1067
0
    felem_square(tmp, ftmp2);
1068
0
    felem_reduce(ftmp2, tmp);   /* 2^96 - 2^2 */
1069
0
    felem_mul(tmp, ftmp2, in);
1070
0
    felem_reduce(ftmp2, tmp);   /* 2^96 - 3 */
1071
1072
0
    felem_mul(tmp, ftmp2, ftmp);
1073
0
    felem_reduce(out, tmp);     /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
1074
0
}
1075
1076
static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
1077
0
{
1078
0
    felem tmp;
1079
1080
0
    smallfelem_expand(tmp, in);
1081
0
    felem_inv(tmp, tmp);
1082
0
    felem_contract(out, tmp);
1083
0
}
1084
1085
/*-
1086
 * Group operations
1087
 * ----------------
1088
 *
1089
 * Building on top of the field operations we have the operations on the
1090
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1091
 * coordinates
1092
 */
1093
1094
/*-
1095
 * point_double calculates 2*(x_in, y_in, z_in)
1096
 *
1097
 * The method is taken from:
1098
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1099
 *
1100
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1101
 * while x_out == y_in is not (maybe this works, but it's not tested).
1102
 */
1103
static void
1104
point_double(felem x_out, felem y_out, felem z_out,
1105
             const felem x_in, const felem y_in, const felem z_in)
1106
0
{
1107
0
    longfelem tmp, tmp2;
1108
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1109
0
    smallfelem small1, small2;
1110
1111
0
    felem_assign(ftmp, x_in);
1112
    /* ftmp[i] < 2^106 */
1113
0
    felem_assign(ftmp2, x_in);
1114
    /* ftmp2[i] < 2^106 */
1115
1116
    /* delta = z^2 */
1117
0
    felem_square(tmp, z_in);
1118
0
    felem_reduce(delta, tmp);
1119
    /* delta[i] < 2^101 */
1120
1121
    /* gamma = y^2 */
1122
0
    felem_square(tmp, y_in);
1123
0
    felem_reduce(gamma, tmp);
1124
    /* gamma[i] < 2^101 */
1125
0
    felem_shrink(small1, gamma);
1126
1127
    /* beta = x*gamma */
1128
0
    felem_small_mul(tmp, small1, x_in);
1129
0
    felem_reduce(beta, tmp);
1130
    /* beta[i] < 2^101 */
1131
1132
    /* alpha = 3*(x-delta)*(x+delta) */
1133
0
    felem_diff(ftmp, delta);
1134
    /* ftmp[i] < 2^105 + 2^106 < 2^107 */
1135
0
    felem_sum(ftmp2, delta);
1136
    /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
1137
0
    felem_scalar(ftmp2, 3);
1138
    /* ftmp2[i] < 3 * 2^107 < 2^109 */
1139
0
    felem_mul(tmp, ftmp, ftmp2);
1140
0
    felem_reduce(alpha, tmp);
1141
    /* alpha[i] < 2^101 */
1142
0
    felem_shrink(small2, alpha);
1143
1144
    /* x' = alpha^2 - 8*beta */
1145
0
    smallfelem_square(tmp, small2);
1146
0
    felem_reduce(x_out, tmp);
1147
0
    felem_assign(ftmp, beta);
1148
0
    felem_scalar(ftmp, 8);
1149
    /* ftmp[i] < 8 * 2^101 = 2^104 */
1150
0
    felem_diff(x_out, ftmp);
1151
    /* x_out[i] < 2^105 + 2^101 < 2^106 */
1152
1153
    /* z' = (y + z)^2 - gamma - delta */
1154
0
    felem_sum(delta, gamma);
1155
    /* delta[i] < 2^101 + 2^101 = 2^102 */
1156
0
    felem_assign(ftmp, y_in);
1157
0
    felem_sum(ftmp, z_in);
1158
    /* ftmp[i] < 2^106 + 2^106 = 2^107 */
1159
0
    felem_square(tmp, ftmp);
1160
0
    felem_reduce(z_out, tmp);
1161
0
    felem_diff(z_out, delta);
1162
    /* z_out[i] < 2^105 + 2^101 < 2^106 */
1163
1164
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1165
0
    felem_scalar(beta, 4);
1166
    /* beta[i] < 4 * 2^101 = 2^103 */
1167
0
    felem_diff_zero107(beta, x_out);
1168
    /* beta[i] < 2^107 + 2^103 < 2^108 */
1169
0
    felem_small_mul(tmp, small2, beta);
1170
    /* tmp[i] < 7 * 2^64 < 2^67 */
1171
0
    smallfelem_square(tmp2, small1);
1172
    /* tmp2[i] < 7 * 2^64 */
1173
0
    longfelem_scalar(tmp2, 8);
1174
    /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
1175
0
    longfelem_diff(tmp, tmp2);
1176
    /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1177
0
    felem_reduce_zero105(y_out, tmp);
1178
    /* y_out[i] < 2^106 */
1179
0
}
1180
1181
/*
1182
 * point_double_small is the same as point_double, except that it operates on
1183
 * smallfelems
1184
 */
1185
static void
1186
point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
1187
                   const smallfelem x_in, const smallfelem y_in,
1188
                   const smallfelem z_in)
1189
0
{
1190
0
    felem felem_x_out, felem_y_out, felem_z_out;
1191
0
    felem felem_x_in, felem_y_in, felem_z_in;
1192
1193
0
    smallfelem_expand(felem_x_in, x_in);
1194
0
    smallfelem_expand(felem_y_in, y_in);
1195
0
    smallfelem_expand(felem_z_in, z_in);
1196
0
    point_double(felem_x_out, felem_y_out, felem_z_out,
1197
0
                 felem_x_in, felem_y_in, felem_z_in);
1198
0
    felem_shrink(x_out, felem_x_out);
1199
0
    felem_shrink(y_out, felem_y_out);
1200
0
    felem_shrink(z_out, felem_z_out);
1201
0
}
1202
1203
/* copy_conditional copies in to out iff mask is all ones. */
1204
static void copy_conditional(felem out, const felem in, limb mask)
1205
0
{
1206
0
    unsigned i;
1207
0
    for (i = 0; i < NLIMBS; ++i) {
1208
0
        const limb tmp = mask & (in[i] ^ out[i]);
1209
0
        out[i] ^= tmp;
1210
0
    }
1211
0
}
1212
1213
/* copy_small_conditional copies in to out iff mask is all ones. */
1214
static void copy_small_conditional(felem out, const smallfelem in, limb mask)
1215
0
{
1216
0
    unsigned i;
1217
0
    const u64 mask64 = mask;
1218
0
    for (i = 0; i < NLIMBS; ++i) {
1219
0
        out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask);
1220
0
    }
1221
0
}
1222
1223
/*-
1224
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1225
 *
1226
 * The method is taken from:
1227
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1228
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1229
 *
1230
 * This function includes a branch for checking whether the two input points
1231
 * are equal, (while not equal to the point at infinity). This case never
1232
 * happens during single point multiplication, so there is no timing leak for
1233
 * ECDH or ECDSA signing.
1234
 */
1235
static void point_add(felem x3, felem y3, felem z3,
1236
                      const felem x1, const felem y1, const felem z1,
1237
                      const int mixed, const smallfelem x2,
1238
                      const smallfelem y2, const smallfelem z2)
1239
0
{
1240
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1241
0
    longfelem tmp, tmp2;
1242
0
    smallfelem small1, small2, small3, small4, small5;
1243
0
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1244
0
    limb points_equal;
1245
1246
0
    felem_shrink(small3, z1);
1247
1248
0
    z1_is_zero = smallfelem_is_zero(small3);
1249
0
    z2_is_zero = smallfelem_is_zero(z2);
1250
1251
    /* ftmp = z1z1 = z1**2 */
1252
0
    smallfelem_square(tmp, small3);
1253
0
    felem_reduce(ftmp, tmp);
1254
    /* ftmp[i] < 2^101 */
1255
0
    felem_shrink(small1, ftmp);
1256
1257
0
    if (!mixed) {
1258
        /* ftmp2 = z2z2 = z2**2 */
1259
0
        smallfelem_square(tmp, z2);
1260
0
        felem_reduce(ftmp2, tmp);
1261
        /* ftmp2[i] < 2^101 */
1262
0
        felem_shrink(small2, ftmp2);
1263
1264
0
        felem_shrink(small5, x1);
1265
1266
        /* u1 = ftmp3 = x1*z2z2 */
1267
0
        smallfelem_mul(tmp, small5, small2);
1268
0
        felem_reduce(ftmp3, tmp);
1269
        /* ftmp3[i] < 2^101 */
1270
1271
        /* ftmp5 = z1 + z2 */
1272
0
        felem_assign(ftmp5, z1);
1273
0
        felem_small_sum(ftmp5, z2);
1274
        /* ftmp5[i] < 2^107 */
1275
1276
        /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
1277
0
        felem_square(tmp, ftmp5);
1278
0
        felem_reduce(ftmp5, tmp);
1279
        /* ftmp2 = z2z2 + z1z1 */
1280
0
        felem_sum(ftmp2, ftmp);
1281
        /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
1282
0
        felem_diff(ftmp5, ftmp2);
1283
        /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
1284
1285
        /* ftmp2 = z2 * z2z2 */
1286
0
        smallfelem_mul(tmp, small2, z2);
1287
0
        felem_reduce(ftmp2, tmp);
1288
1289
        /* s1 = ftmp2 = y1 * z2**3 */
1290
0
        felem_mul(tmp, y1, ftmp2);
1291
0
        felem_reduce(ftmp6, tmp);
1292
        /* ftmp6[i] < 2^101 */
1293
0
    } else {
1294
        /*
1295
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1296
         */
1297
1298
        /* u1 = ftmp3 = x1*z2z2 */
1299
0
        felem_assign(ftmp3, x1);
1300
        /* ftmp3[i] < 2^106 */
1301
1302
        /* ftmp5 = 2z1z2 */
1303
0
        felem_assign(ftmp5, z1);
1304
0
        felem_scalar(ftmp5, 2);
1305
        /* ftmp5[i] < 2*2^106 = 2^107 */
1306
1307
        /* s1 = ftmp2 = y1 * z2**3 */
1308
0
        felem_assign(ftmp6, y1);
1309
        /* ftmp6[i] < 2^106 */
1310
0
    }
1311
1312
    /* u2 = x2*z1z1 */
1313
0
    smallfelem_mul(tmp, x2, small1);
1314
0
    felem_reduce(ftmp4, tmp);
1315
1316
    /* h = ftmp4 = u2 - u1 */
1317
0
    felem_diff_zero107(ftmp4, ftmp3);
1318
    /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
1319
0
    felem_shrink(small4, ftmp4);
1320
1321
0
    x_equal = smallfelem_is_zero(small4);
1322
1323
    /* z_out = ftmp5 * h */
1324
0
    felem_small_mul(tmp, small4, ftmp5);
1325
0
    felem_reduce(z_out, tmp);
1326
    /* z_out[i] < 2^101 */
1327
1328
    /* ftmp = z1 * z1z1 */
1329
0
    smallfelem_mul(tmp, small1, small3);
1330
0
    felem_reduce(ftmp, tmp);
1331
1332
    /* s2 = tmp = y2 * z1**3 */
1333
0
    felem_small_mul(tmp, y2, ftmp);
1334
0
    felem_reduce(ftmp5, tmp);
1335
1336
    /* r = ftmp5 = (s2 - s1)*2 */
1337
0
    felem_diff_zero107(ftmp5, ftmp6);
1338
    /* ftmp5[i] < 2^107 + 2^107 = 2^108 */
1339
0
    felem_scalar(ftmp5, 2);
1340
    /* ftmp5[i] < 2^109 */
1341
0
    felem_shrink(small1, ftmp5);
1342
0
    y_equal = smallfelem_is_zero(small1);
1343
1344
    /*
1345
     * The formulae are incorrect if the points are equal, in affine coordinates
1346
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1347
     * happens.
1348
     *
1349
     * We use bitwise operations to avoid potential side-channels introduced by
1350
     * the short-circuiting behaviour of boolean operators.
1351
     *
1352
     * The special case of either point being the point at infinity (z1 and/or
1353
     * z2 are zero), is handled separately later on in this function, so we
1354
     * avoid jumping to point_double here in those special cases.
1355
     */
1356
0
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1357
1358
0
    if (points_equal) {
1359
        /*
1360
         * This is obviously not constant-time but, as mentioned before, this
1361
         * case never happens during single point multiplication, so there is no
1362
         * timing leak for ECDH or ECDSA signing.
1363
         */
1364
0
        point_double(x3, y3, z3, x1, y1, z1);
1365
0
        return;
1366
0
    }
1367
1368
    /* I = ftmp = (2h)**2 */
1369
0
    felem_assign(ftmp, ftmp4);
1370
0
    felem_scalar(ftmp, 2);
1371
    /* ftmp[i] < 2*2^108 = 2^109 */
1372
0
    felem_square(tmp, ftmp);
1373
0
    felem_reduce(ftmp, tmp);
1374
1375
    /* J = ftmp2 = h * I */
1376
0
    felem_mul(tmp, ftmp4, ftmp);
1377
0
    felem_reduce(ftmp2, tmp);
1378
1379
    /* V = ftmp4 = U1 * I */
1380
0
    felem_mul(tmp, ftmp3, ftmp);
1381
0
    felem_reduce(ftmp4, tmp);
1382
1383
    /* x_out = r**2 - J - 2V */
1384
0
    smallfelem_square(tmp, small1);
1385
0
    felem_reduce(x_out, tmp);
1386
0
    felem_assign(ftmp3, ftmp4);
1387
0
    felem_scalar(ftmp4, 2);
1388
0
    felem_sum(ftmp4, ftmp2);
1389
    /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
1390
0
    felem_diff(x_out, ftmp4);
1391
    /* x_out[i] < 2^105 + 2^101 */
1392
1393
    /* y_out = r(V-x_out) - 2 * s1 * J */
1394
0
    felem_diff_zero107(ftmp3, x_out);
1395
    /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
1396
0
    felem_small_mul(tmp, small1, ftmp3);
1397
0
    felem_mul(tmp2, ftmp6, ftmp2);
1398
0
    longfelem_scalar(tmp2, 2);
1399
    /* tmp2[i] < 2*2^67 = 2^68 */
1400
0
    longfelem_diff(tmp, tmp2);
1401
    /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1402
0
    felem_reduce_zero105(y_out, tmp);
1403
    /* y_out[i] < 2^106 */
1404
1405
0
    copy_small_conditional(x_out, x2, z1_is_zero);
1406
0
    copy_conditional(x_out, x1, z2_is_zero);
1407
0
    copy_small_conditional(y_out, y2, z1_is_zero);
1408
0
    copy_conditional(y_out, y1, z2_is_zero);
1409
0
    copy_small_conditional(z_out, z2, z1_is_zero);
1410
0
    copy_conditional(z_out, z1, z2_is_zero);
1411
0
    felem_assign(x3, x_out);
1412
0
    felem_assign(y3, y_out);
1413
0
    felem_assign(z3, z_out);
1414
0
}
1415
1416
/*
1417
 * point_add_small is the same as point_add, except that it operates on
1418
 * smallfelems
1419
 */
1420
static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
1421
                            smallfelem x1, smallfelem y1, smallfelem z1,
1422
                            smallfelem x2, smallfelem y2, smallfelem z2)
1423
0
{
1424
0
    felem felem_x3, felem_y3, felem_z3;
1425
0
    felem felem_x1, felem_y1, felem_z1;
1426
0
    smallfelem_expand(felem_x1, x1);
1427
0
    smallfelem_expand(felem_y1, y1);
1428
0
    smallfelem_expand(felem_z1, z1);
1429
0
    point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0,
1430
0
              x2, y2, z2);
1431
0
    felem_shrink(x3, felem_x3);
1432
0
    felem_shrink(y3, felem_y3);
1433
0
    felem_shrink(z3, felem_z3);
1434
0
}
1435
1436
/*-
1437
 * Base point pre computation
1438
 * --------------------------
1439
 *
1440
 * Two different sorts of precomputed tables are used in the following code.
1441
 * Each contain various points on the curve, where each point is three field
1442
 * elements (x, y, z).
1443
 *
1444
 * For the base point table, z is usually 1 (0 for the point at infinity).
1445
 * This table has 2 * 16 elements, starting with the following:
1446
 * index | bits    | point
1447
 * ------+---------+------------------------------
1448
 *     0 | 0 0 0 0 | 0G
1449
 *     1 | 0 0 0 1 | 1G
1450
 *     2 | 0 0 1 0 | 2^64G
1451
 *     3 | 0 0 1 1 | (2^64 + 1)G
1452
 *     4 | 0 1 0 0 | 2^128G
1453
 *     5 | 0 1 0 1 | (2^128 + 1)G
1454
 *     6 | 0 1 1 0 | (2^128 + 2^64)G
1455
 *     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
1456
 *     8 | 1 0 0 0 | 2^192G
1457
 *     9 | 1 0 0 1 | (2^192 + 1)G
1458
 *    10 | 1 0 1 0 | (2^192 + 2^64)G
1459
 *    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
1460
 *    12 | 1 1 0 0 | (2^192 + 2^128)G
1461
 *    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
1462
 *    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
1463
 *    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
1464
 * followed by a copy of this with each element multiplied by 2^32.
1465
 *
1466
 * The reason for this is so that we can clock bits into four different
1467
 * locations when doing simple scalar multiplies against the base point,
1468
 * and then another four locations using the second 16 elements.
1469
 *
1470
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1471
1472
/* gmul is the table of precomputed base points */
1473
static const smallfelem gmul[2][16][3] = {
1474
    {{{0, 0, 0, 0},
1475
      {0, 0, 0, 0},
1476
      {0, 0, 0, 0}},
1477
     {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
1478
       0x6b17d1f2e12c4247},
1479
      {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
1480
       0x4fe342e2fe1a7f9b},
1481
      {1, 0, 0, 0}},
1482
     {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
1483
       0x0fa822bc2811aaa5},
1484
      {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
1485
       0xbff44ae8f5dba80d},
1486
      {1, 0, 0, 0}},
1487
     {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
1488
       0x300a4bbc89d6726f},
1489
      {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
1490
       0x72aac7e0d09b4644},
1491
      {1, 0, 0, 0}},
1492
     {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
1493
       0x447d739beedb5e67},
1494
      {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
1495
       0x2d4825ab834131ee},
1496
      {1, 0, 0, 0}},
1497
     {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
1498
       0xef9519328a9c72ff},
1499
      {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
1500
       0x611e9fc37dbb2c9b},
1501
      {1, 0, 0, 0}},
1502
     {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
1503
       0x550663797b51f5d8},
1504
      {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
1505
       0x157164848aecb851},
1506
      {1, 0, 0, 0}},
1507
     {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
1508
       0xeb5d7745b21141ea},
1509
      {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
1510
       0xeafd72ebdbecc17b},
1511
      {1, 0, 0, 0}},
1512
     {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
1513
       0xa6d39677a7849276},
1514
      {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
1515
       0x674f84749b0b8816},
1516
      {1, 0, 0, 0}},
1517
     {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
1518
       0x4e769e7672c9ddad},
1519
      {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
1520
       0x42b99082de830663},
1521
      {1, 0, 0, 0}},
1522
     {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
1523
       0x78878ef61c6ce04d},
1524
      {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
1525
       0xb6cb3f5d7b72c321},
1526
      {1, 0, 0, 0}},
1527
     {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
1528
       0x0c88bc4d716b1287},
1529
      {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
1530
       0xdd5ddea3f3901dc6},
1531
      {1, 0, 0, 0}},
1532
     {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
1533
       0x68f344af6b317466},
1534
      {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
1535
       0x31b9c405f8540a20},
1536
      {1, 0, 0, 0}},
1537
     {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
1538
       0x4052bf4b6f461db9},
1539
      {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
1540
       0xfecf4d5190b0fc61},
1541
      {1, 0, 0, 0}},
1542
     {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
1543
       0x1eddbae2c802e41a},
1544
      {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
1545
       0x43104d86560ebcfc},
1546
      {1, 0, 0, 0}},
1547
     {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
1548
       0xb48e26b484f7a21c},
1549
      {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
1550
       0xfac015404d4d3dab},
1551
      {1, 0, 0, 0}}},
1552
    {{{0, 0, 0, 0},
1553
      {0, 0, 0, 0},
1554
      {0, 0, 0, 0}},
1555
     {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
1556
       0x7fe36b40af22af89},
1557
      {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
1558
       0xe697d45825b63624},
1559
      {1, 0, 0, 0}},
1560
     {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
1561
       0x4a5b506612a677a6},
1562
      {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
1563
       0xeb13461ceac089f1},
1564
      {1, 0, 0, 0}},
1565
     {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
1566
       0x0781b8291c6a220a},
1567
      {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
1568
       0x690cde8df0151593},
1569
      {1, 0, 0, 0}},
1570
     {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
1571
       0x8a535f566ec73617},
1572
      {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
1573
       0x0455c08468b08bd7},
1574
      {1, 0, 0, 0}},
1575
     {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
1576
       0x06bada7ab77f8276},
1577
      {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
1578
       0x5b476dfd0e6cb18a},
1579
      {1, 0, 0, 0}},
1580
     {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
1581
       0x3e29864e8a2ec908},
1582
      {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
1583
       0x239b90ea3dc31e7e},
1584
      {1, 0, 0, 0}},
1585
     {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
1586
       0x820f4dd949f72ff7},
1587
      {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
1588
       0x140406ec783a05ec},
1589
      {1, 0, 0, 0}},
1590
     {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
1591
       0x68f6b8542783dfee},
1592
      {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
1593
       0xcbe1feba92e40ce6},
1594
      {1, 0, 0, 0}},
1595
     {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
1596
       0xd0b2f94d2f420109},
1597
      {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
1598
       0x971459828b0719e5},
1599
      {1, 0, 0, 0}},
1600
     {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
1601
       0x961610004a866aba},
1602
      {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
1603
       0x7acb9fadcee75e44},
1604
      {1, 0, 0, 0}},
1605
     {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
1606
       0x24eb9acca333bf5b},
1607
      {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
1608
       0x69f891c5acd079cc},
1609
      {1, 0, 0, 0}},
1610
     {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
1611
       0xe51f547c5972a107},
1612
      {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
1613
       0x1c309a2b25bb1387},
1614
      {1, 0, 0, 0}},
1615
     {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
1616
       0x20b87b8aa2c4e503},
1617
      {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
1618
       0xf5c6fa49919776be},
1619
      {1, 0, 0, 0}},
1620
     {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
1621
       0x1ed7d1b9332010b9},
1622
      {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
1623
       0x3a2b03f03217257a},
1624
      {1, 0, 0, 0}},
1625
     {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
1626
       0x15fee545c78dd9f6},
1627
      {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
1628
       0x4ab5b6b2b8753f81},
1629
      {1, 0, 0, 0}}}
1630
};
1631
1632
/*
1633
 * select_point selects the |idx|th point from a precomputation table and
1634
 * copies it to out.
1635
 */
1636
static void select_point(const u64 idx, unsigned int size,
1637
                         const smallfelem pre_comp[16][3], smallfelem out[3])
1638
0
{
1639
0
    unsigned i, j;
1640
0
    u64 *outlimbs = &out[0][0];
1641
1642
0
    memset(out, 0, sizeof(*out) * 3);
1643
1644
0
    for (i = 0; i < size; i++) {
1645
0
        const u64 *inlimbs = (u64 *)&pre_comp[i][0][0];
1646
0
        u64 mask = i ^ idx;
1647
0
        mask |= mask >> 4;
1648
0
        mask |= mask >> 2;
1649
0
        mask |= mask >> 1;
1650
0
        mask &= 1;
1651
0
        mask--;
1652
0
        for (j = 0; j < NLIMBS * 3; j++)
1653
0
            outlimbs[j] |= inlimbs[j] & mask;
1654
0
    }
1655
0
}
1656
1657
/* get_bit returns the |i|th bit in |in| */
1658
static char get_bit(const felem_bytearray in, int i)
1659
0
{
1660
0
    if ((i < 0) || (i >= 256))
1661
0
        return 0;
1662
0
    return (in[i >> 3] >> (i & 7)) & 1;
1663
0
}
1664
1665
/*
1666
 * Interleaved point multiplication using precomputed point multiples: The
1667
 * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars
1668
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1669
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1670
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1671
 */
1672
static void batch_mul(felem x_out, felem y_out, felem z_out,
1673
                      const felem_bytearray scalars[],
1674
                      const unsigned num_points, const u8 *g_scalar,
1675
                      const int mixed, const smallfelem pre_comp[][17][3],
1676
                      const smallfelem g_pre_comp[2][16][3])
1677
0
{
1678
0
    int i, skip;
1679
0
    unsigned num, gen_mul = (g_scalar != NULL);
1680
0
    felem nq[3], ftmp;
1681
0
    smallfelem tmp[3];
1682
0
    u64 bits;
1683
0
    u8 sign, digit;
1684
1685
    /* set nq to the point at infinity */
1686
0
    memset(nq, 0, sizeof(nq));
1687
1688
    /*
1689
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1690
     * of the generator (two in each of the last 32 rounds) and additions of
1691
     * other points multiples (every 5th round).
1692
     */
1693
0
    skip = 1;                   /* save two point operations in the first
1694
                                 * round */
1695
0
    for (i = (num_points ? 255 : 31); i >= 0; --i) {
1696
        /* double */
1697
0
        if (!skip)
1698
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1699
1700
        /* add multiples of the generator */
1701
0
        if (gen_mul && (i <= 31)) {
1702
            /* first, look 32 bits upwards */
1703
0
            bits = get_bit(g_scalar, i + 224) << 3;
1704
0
            bits |= get_bit(g_scalar, i + 160) << 2;
1705
0
            bits |= get_bit(g_scalar, i + 96) << 1;
1706
0
            bits |= get_bit(g_scalar, i + 32);
1707
            /* select the point to add, in constant time */
1708
0
            select_point(bits, 16, g_pre_comp[1], tmp);
1709
1710
0
            if (!skip) {
1711
                /* Arg 1 below is for "mixed" */
1712
0
                point_add(nq[0], nq[1], nq[2],
1713
0
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1714
0
            } else {
1715
0
                smallfelem_expand(nq[0], tmp[0]);
1716
0
                smallfelem_expand(nq[1], tmp[1]);
1717
0
                smallfelem_expand(nq[2], tmp[2]);
1718
0
                skip = 0;
1719
0
            }
1720
1721
            /* second, look at the current position */
1722
0
            bits = get_bit(g_scalar, i + 192) << 3;
1723
0
            bits |= get_bit(g_scalar, i + 128) << 2;
1724
0
            bits |= get_bit(g_scalar, i + 64) << 1;
1725
0
            bits |= get_bit(g_scalar, i);
1726
            /* select the point to add, in constant time */
1727
0
            select_point(bits, 16, g_pre_comp[0], tmp);
1728
            /* Arg 1 below is for "mixed" */
1729
0
            point_add(nq[0], nq[1], nq[2],
1730
0
                      nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1731
0
        }
1732
1733
        /* do other additions every 5 doublings */
1734
0
        if (num_points && (i % 5 == 0)) {
1735
            /* loop over all scalars */
1736
0
            for (num = 0; num < num_points; ++num) {
1737
0
                bits = get_bit(scalars[num], i + 4) << 5;
1738
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1739
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1740
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1741
0
                bits |= get_bit(scalars[num], i) << 1;
1742
0
                bits |= get_bit(scalars[num], i - 1);
1743
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1744
1745
                /*
1746
                 * select the point to add or subtract, in constant time
1747
                 */
1748
0
                select_point(digit, 17, pre_comp[num], tmp);
1749
0
                smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative
1750
                                               * point */
1751
0
                copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1));
1752
0
                felem_contract(tmp[1], ftmp);
1753
1754
0
                if (!skip) {
1755
0
                    point_add(nq[0], nq[1], nq[2],
1756
0
                              nq[0], nq[1], nq[2],
1757
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1758
0
                } else {
1759
0
                    smallfelem_expand(nq[0], tmp[0]);
1760
0
                    smallfelem_expand(nq[1], tmp[1]);
1761
0
                    smallfelem_expand(nq[2], tmp[2]);
1762
0
                    skip = 0;
1763
0
                }
1764
0
            }
1765
0
        }
1766
0
    }
1767
0
    felem_assign(x_out, nq[0]);
1768
0
    felem_assign(y_out, nq[1]);
1769
0
    felem_assign(z_out, nq[2]);
1770
0
}
1771
1772
/* Precomputation for the group generator. */
1773
struct nistp256_pre_comp_st {
1774
    smallfelem g_pre_comp[2][16][3];
1775
    CRYPTO_REF_COUNT references;
1776
};
1777
1778
const EC_METHOD *EC_GFp_nistp256_method(void)
1779
0
{
1780
0
    static const EC_METHOD ret = {
1781
0
        EC_FLAGS_DEFAULT_OCT,
1782
0
        NID_X9_62_prime_field,
1783
0
        ossl_ec_GFp_nistp256_group_init,
1784
0
        ossl_ec_GFp_simple_group_finish,
1785
0
        ossl_ec_GFp_simple_group_clear_finish,
1786
0
        ossl_ec_GFp_nist_group_copy,
1787
0
        ossl_ec_GFp_nistp256_group_set_curve,
1788
0
        ossl_ec_GFp_simple_group_get_curve,
1789
0
        ossl_ec_GFp_simple_group_get_degree,
1790
0
        ossl_ec_group_simple_order_bits,
1791
0
        ossl_ec_GFp_simple_group_check_discriminant,
1792
0
        ossl_ec_GFp_simple_point_init,
1793
0
        ossl_ec_GFp_simple_point_finish,
1794
0
        ossl_ec_GFp_simple_point_clear_finish,
1795
0
        ossl_ec_GFp_simple_point_copy,
1796
0
        ossl_ec_GFp_simple_point_set_to_infinity,
1797
0
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1798
0
        ossl_ec_GFp_nistp256_point_get_affine_coordinates,
1799
0
        0 /* point_set_compressed_coordinates */ ,
1800
0
        0 /* point2oct */ ,
1801
0
        0 /* oct2point */ ,
1802
0
        ossl_ec_GFp_simple_add,
1803
0
        ossl_ec_GFp_simple_dbl,
1804
0
        ossl_ec_GFp_simple_invert,
1805
0
        ossl_ec_GFp_simple_is_at_infinity,
1806
0
        ossl_ec_GFp_simple_is_on_curve,
1807
0
        ossl_ec_GFp_simple_cmp,
1808
0
        ossl_ec_GFp_simple_make_affine,
1809
0
        ossl_ec_GFp_simple_points_make_affine,
1810
0
        ossl_ec_GFp_nistp256_points_mul,
1811
0
        ossl_ec_GFp_nistp256_precompute_mult,
1812
0
        ossl_ec_GFp_nistp256_have_precompute_mult,
1813
0
        ossl_ec_GFp_nist_field_mul,
1814
0
        ossl_ec_GFp_nist_field_sqr,
1815
0
        0 /* field_div */ ,
1816
0
        ossl_ec_GFp_simple_field_inv,
1817
0
        0 /* field_encode */ ,
1818
0
        0 /* field_decode */ ,
1819
0
        0,                      /* field_set_to_one */
1820
0
        ossl_ec_key_simple_priv2oct,
1821
0
        ossl_ec_key_simple_oct2priv,
1822
0
        0, /* set private */
1823
0
        ossl_ec_key_simple_generate_key,
1824
0
        ossl_ec_key_simple_check_key,
1825
0
        ossl_ec_key_simple_generate_public_key,
1826
0
        0, /* keycopy */
1827
0
        0, /* keyfinish */
1828
0
        ossl_ecdh_simple_compute_key,
1829
0
        ossl_ecdsa_simple_sign_setup,
1830
0
        ossl_ecdsa_simple_sign_sig,
1831
0
        ossl_ecdsa_simple_verify_sig,
1832
0
        0, /* field_inverse_mod_ord */
1833
0
        0, /* blind_coordinates */
1834
0
        0, /* ladder_pre */
1835
0
        0, /* ladder_step */
1836
0
        0  /* ladder_post */
1837
0
    };
1838
1839
0
    return &ret;
1840
0
}
1841
1842
/******************************************************************************/
1843
/*
1844
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1845
 */
1846
1847
static NISTP256_PRE_COMP *nistp256_pre_comp_new(void)
1848
0
{
1849
0
    NISTP256_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1850
1851
0
    if (ret == NULL)
1852
0
        return ret;
1853
1854
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1855
0
        OPENSSL_free(ret);
1856
0
        return NULL;
1857
0
    }
1858
0
    return ret;
1859
0
}
1860
1861
NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p)
1862
0
{
1863
0
    int i;
1864
0
    if (p != NULL)
1865
0
        CRYPTO_UP_REF(&p->references, &i);
1866
0
    return p;
1867
0
}
1868
1869
void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre)
1870
0
{
1871
0
    int i;
1872
1873
0
    if (pre == NULL)
1874
0
        return;
1875
1876
0
    CRYPTO_DOWN_REF(&pre->references, &i);
1877
0
    REF_PRINT_COUNT("EC_nistp256", i, pre);
1878
0
    if (i > 0)
1879
0
        return;
1880
0
    REF_ASSERT_ISNT(i < 0);
1881
1882
0
    CRYPTO_FREE_REF(&pre->references);
1883
0
    OPENSSL_free(pre);
1884
0
}
1885
1886
/******************************************************************************/
1887
/*
1888
 * OPENSSL EC_METHOD FUNCTIONS
1889
 */
1890
1891
int ossl_ec_GFp_nistp256_group_init(EC_GROUP *group)
1892
0
{
1893
0
    int ret;
1894
0
    ret = ossl_ec_GFp_simple_group_init(group);
1895
0
    group->a_is_minus3 = 1;
1896
0
    return ret;
1897
0
}
1898
1899
int ossl_ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1900
                                         const BIGNUM *a, const BIGNUM *b,
1901
                                         BN_CTX *ctx)
1902
0
{
1903
0
    int ret = 0;
1904
0
    BIGNUM *curve_p, *curve_a, *curve_b;
1905
0
#ifndef FIPS_MODULE
1906
0
    BN_CTX *new_ctx = NULL;
1907
1908
0
    if (ctx == NULL)
1909
0
        ctx = new_ctx = BN_CTX_new();
1910
0
#endif
1911
0
    if (ctx == NULL)
1912
0
        return 0;
1913
1914
0
    BN_CTX_start(ctx);
1915
0
    curve_p = BN_CTX_get(ctx);
1916
0
    curve_a = BN_CTX_get(ctx);
1917
0
    curve_b = BN_CTX_get(ctx);
1918
0
    if (curve_b == NULL)
1919
0
        goto err;
1920
0
    BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
1921
0
    BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
1922
0
    BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
1923
0
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1924
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1925
0
        goto err;
1926
0
    }
1927
0
    group->field_mod_func = BN_nist_mod_256;
1928
0
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1929
0
 err:
1930
0
    BN_CTX_end(ctx);
1931
0
#ifndef FIPS_MODULE
1932
0
    BN_CTX_free(new_ctx);
1933
0
#endif
1934
0
    return ret;
1935
0
}
1936
1937
/*
1938
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1939
 * (X/Z^2, Y/Z^3)
1940
 */
1941
int ossl_ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
1942
                                                      const EC_POINT *point,
1943
                                                      BIGNUM *x, BIGNUM *y,
1944
                                                      BN_CTX *ctx)
1945
0
{
1946
0
    felem z1, z2, x_in, y_in;
1947
0
    smallfelem x_out, y_out;
1948
0
    longfelem tmp;
1949
1950
0
    if (EC_POINT_is_at_infinity(group, point)) {
1951
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1952
0
        return 0;
1953
0
    }
1954
0
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1955
0
        (!BN_to_felem(z1, point->Z)))
1956
0
        return 0;
1957
0
    felem_inv(z2, z1);
1958
0
    felem_square(tmp, z2);
1959
0
    felem_reduce(z1, tmp);
1960
0
    felem_mul(tmp, x_in, z1);
1961
0
    felem_reduce(x_in, tmp);
1962
0
    felem_contract(x_out, x_in);
1963
0
    if (x != NULL) {
1964
0
        if (!smallfelem_to_BN(x, x_out)) {
1965
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1966
0
            return 0;
1967
0
        }
1968
0
    }
1969
0
    felem_mul(tmp, z1, z2);
1970
0
    felem_reduce(z1, tmp);
1971
0
    felem_mul(tmp, y_in, z1);
1972
0
    felem_reduce(y_in, tmp);
1973
0
    felem_contract(y_out, y_in);
1974
0
    if (y != NULL) {
1975
0
        if (!smallfelem_to_BN(y, y_out)) {
1976
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1977
0
            return 0;
1978
0
        }
1979
0
    }
1980
0
    return 1;
1981
0
}
1982
1983
/* points below is of size |num|, and tmp_smallfelems is of size |num+1| */
1984
static void make_points_affine(size_t num, smallfelem points[][3],
1985
                               smallfelem tmp_smallfelems[])
1986
0
{
1987
    /*
1988
     * Runs in constant time, unless an input is the point at infinity (which
1989
     * normally shouldn't happen).
1990
     */
1991
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1992
0
                                                  points,
1993
0
                                                  sizeof(smallfelem),
1994
0
                                                  tmp_smallfelems,
1995
0
                                                  (void (*)(void *))smallfelem_one,
1996
0
                                                  smallfelem_is_zero_int,
1997
0
                                                  (void (*)(void *, const void *))
1998
0
                                                  smallfelem_assign,
1999
0
                                                  (void (*)(void *, const void *))
2000
0
                                                  smallfelem_square_contract,
2001
0
                                                  (void (*)
2002
0
                                                   (void *, const void *,
2003
0
                                                    const void *))
2004
0
                                                  smallfelem_mul_contract,
2005
0
                                                  (void (*)(void *, const void *))
2006
0
                                                  smallfelem_inv_contract,
2007
                                                  /* nothing to contract */
2008
0
                                                  (void (*)(void *, const void *))
2009
0
                                                  smallfelem_assign);
2010
0
}
2011
2012
/*
2013
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
2014
 * values Result is stored in r (r can equal one of the inputs).
2015
 */
2016
int ossl_ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
2017
                                    const BIGNUM *scalar, size_t num,
2018
                                    const EC_POINT *points[],
2019
                                    const BIGNUM *scalars[], BN_CTX *ctx)
2020
0
{
2021
0
    int ret = 0;
2022
0
    int j;
2023
0
    int mixed = 0;
2024
0
    BIGNUM *x, *y, *z, *tmp_scalar;
2025
0
    felem_bytearray g_secret;
2026
0
    felem_bytearray *secrets = NULL;
2027
0
    smallfelem (*pre_comp)[17][3] = NULL;
2028
0
    smallfelem *tmp_smallfelems = NULL;
2029
0
    unsigned i;
2030
0
    int num_bytes;
2031
0
    int have_pre_comp = 0;
2032
0
    size_t num_points = num;
2033
0
    smallfelem x_in, y_in, z_in;
2034
0
    felem x_out, y_out, z_out;
2035
0
    NISTP256_PRE_COMP *pre = NULL;
2036
0
    const smallfelem(*g_pre_comp)[16][3] = NULL;
2037
0
    EC_POINT *generator = NULL;
2038
0
    const EC_POINT *p = NULL;
2039
0
    const BIGNUM *p_scalar = NULL;
2040
2041
0
    BN_CTX_start(ctx);
2042
0
    x = BN_CTX_get(ctx);
2043
0
    y = BN_CTX_get(ctx);
2044
0
    z = BN_CTX_get(ctx);
2045
0
    tmp_scalar = BN_CTX_get(ctx);
2046
0
    if (tmp_scalar == NULL)
2047
0
        goto err;
2048
2049
0
    if (scalar != NULL) {
2050
0
        pre = group->pre_comp.nistp256;
2051
0
        if (pre)
2052
            /* we have precomputation, try to use it */
2053
0
            g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp;
2054
0
        else
2055
            /* try to use the standard precomputation */
2056
0
            g_pre_comp = &gmul[0];
2057
0
        generator = EC_POINT_new(group);
2058
0
        if (generator == NULL)
2059
0
            goto err;
2060
        /* get the generator from precomputation */
2061
0
        if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) ||
2062
0
            !smallfelem_to_BN(y, g_pre_comp[0][1][1]) ||
2063
0
            !smallfelem_to_BN(z, g_pre_comp[0][1][2])) {
2064
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2065
0
            goto err;
2066
0
        }
2067
0
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
2068
0
                                                                generator,
2069
0
                                                                x, y, z, ctx))
2070
0
            goto err;
2071
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
2072
            /* precomputation matches generator */
2073
0
            have_pre_comp = 1;
2074
0
        else
2075
            /*
2076
             * we don't have valid precomputation: treat the generator as a
2077
             * random point
2078
             */
2079
0
            num_points++;
2080
0
    }
2081
0
    if (num_points > 0) {
2082
0
        if (num_points >= 3) {
2083
            /*
2084
             * unless we precompute multiples for just one or two points,
2085
             * converting those into affine form is time well spent
2086
             */
2087
0
            mixed = 1;
2088
0
        }
2089
0
        secrets = OPENSSL_malloc(sizeof(*secrets) * num_points);
2090
0
        pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points);
2091
0
        if (mixed)
2092
0
            tmp_smallfelems =
2093
0
              OPENSSL_malloc(sizeof(*tmp_smallfelems) * (num_points * 17 + 1));
2094
0
        if ((secrets == NULL) || (pre_comp == NULL)
2095
0
            || (mixed && (tmp_smallfelems == NULL)))
2096
0
            goto err;
2097
2098
        /*
2099
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2100
         * i.e., they contribute nothing to the linear combination
2101
         */
2102
0
        memset(secrets, 0, sizeof(*secrets) * num_points);
2103
0
        memset(pre_comp, 0, sizeof(*pre_comp) * num_points);
2104
0
        for (i = 0; i < num_points; ++i) {
2105
0
            if (i == num) {
2106
                /*
2107
                 * we didn't have a valid precomputation, so we pick the
2108
                 * generator
2109
                 */
2110
0
                p = EC_GROUP_get0_generator(group);
2111
0
                p_scalar = scalar;
2112
0
            } else {
2113
                /* the i^th point */
2114
0
                p = points[i];
2115
0
                p_scalar = scalars[i];
2116
0
            }
2117
0
            if ((p_scalar != NULL) && (p != NULL)) {
2118
                /* reduce scalar to 0 <= scalar < 2^256 */
2119
0
                if ((BN_num_bits(p_scalar) > 256)
2120
0
                    || (BN_is_negative(p_scalar))) {
2121
                    /*
2122
                     * this is an unusual input, and we don't guarantee
2123
                     * constant-timeness
2124
                     */
2125
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2126
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2127
0
                        goto err;
2128
0
                    }
2129
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2130
0
                                               secrets[i], sizeof(secrets[i]));
2131
0
                } else {
2132
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
2133
0
                                               secrets[i], sizeof(secrets[i]));
2134
0
                }
2135
0
                if (num_bytes < 0) {
2136
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2137
0
                    goto err;
2138
0
                }
2139
                /* precompute multiples */
2140
0
                if ((!BN_to_felem(x_out, p->X)) ||
2141
0
                    (!BN_to_felem(y_out, p->Y)) ||
2142
0
                    (!BN_to_felem(z_out, p->Z)))
2143
0
                    goto err;
2144
0
                felem_shrink(pre_comp[i][1][0], x_out);
2145
0
                felem_shrink(pre_comp[i][1][1], y_out);
2146
0
                felem_shrink(pre_comp[i][1][2], z_out);
2147
0
                for (j = 2; j <= 16; ++j) {
2148
0
                    if (j & 1) {
2149
0
                        point_add_small(pre_comp[i][j][0], pre_comp[i][j][1],
2150
0
                                        pre_comp[i][j][2], pre_comp[i][1][0],
2151
0
                                        pre_comp[i][1][1], pre_comp[i][1][2],
2152
0
                                        pre_comp[i][j - 1][0],
2153
0
                                        pre_comp[i][j - 1][1],
2154
0
                                        pre_comp[i][j - 1][2]);
2155
0
                    } else {
2156
0
                        point_double_small(pre_comp[i][j][0],
2157
0
                                           pre_comp[i][j][1],
2158
0
                                           pre_comp[i][j][2],
2159
0
                                           pre_comp[i][j / 2][0],
2160
0
                                           pre_comp[i][j / 2][1],
2161
0
                                           pre_comp[i][j / 2][2]);
2162
0
                    }
2163
0
                }
2164
0
            }
2165
0
        }
2166
0
        if (mixed)
2167
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
2168
0
    }
2169
2170
    /* the scalar for the generator */
2171
0
    if ((scalar != NULL) && (have_pre_comp)) {
2172
0
        memset(g_secret, 0, sizeof(g_secret));
2173
        /* reduce scalar to 0 <= scalar < 2^256 */
2174
0
        if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) {
2175
            /*
2176
             * this is an unusual input, and we don't guarantee
2177
             * constant-timeness
2178
             */
2179
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2180
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2181
0
                goto err;
2182
0
            }
2183
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2184
0
        } else {
2185
0
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2186
0
        }
2187
        /* do the multiplication with generator precomputation */
2188
0
        batch_mul(x_out, y_out, z_out,
2189
0
                  (const felem_bytearray(*))secrets, num_points,
2190
0
                  g_secret,
2191
0
                  mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp);
2192
0
    } else {
2193
        /* do the multiplication without generator precomputation */
2194
0
        batch_mul(x_out, y_out, z_out,
2195
0
                  (const felem_bytearray(*))secrets, num_points,
2196
0
                  NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL);
2197
0
    }
2198
    /* reduce the output to its unique minimal representation */
2199
0
    felem_contract(x_in, x_out);
2200
0
    felem_contract(y_in, y_out);
2201
0
    felem_contract(z_in, z_out);
2202
0
    if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) ||
2203
0
        (!smallfelem_to_BN(z, z_in))) {
2204
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2205
0
        goto err;
2206
0
    }
2207
0
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2208
0
                                                             ctx);
2209
2210
0
 err:
2211
0
    BN_CTX_end(ctx);
2212
0
    EC_POINT_free(generator);
2213
0
    OPENSSL_free(secrets);
2214
0
    OPENSSL_free(pre_comp);
2215
0
    OPENSSL_free(tmp_smallfelems);
2216
0
    return ret;
2217
0
}
2218
2219
int ossl_ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2220
0
{
2221
0
    int ret = 0;
2222
0
    NISTP256_PRE_COMP *pre = NULL;
2223
0
    int i, j;
2224
0
    BIGNUM *x, *y;
2225
0
    EC_POINT *generator = NULL;
2226
0
    smallfelem tmp_smallfelems[32];
2227
0
    felem x_tmp, y_tmp, z_tmp;
2228
0
#ifndef FIPS_MODULE
2229
0
    BN_CTX *new_ctx = NULL;
2230
0
#endif
2231
2232
    /* throw away old precomputation */
2233
0
    EC_pre_comp_free(group);
2234
2235
0
#ifndef FIPS_MODULE
2236
0
    if (ctx == NULL)
2237
0
        ctx = new_ctx = BN_CTX_new();
2238
0
#endif
2239
0
    if (ctx == NULL)
2240
0
        return 0;
2241
2242
0
    BN_CTX_start(ctx);
2243
0
    x = BN_CTX_get(ctx);
2244
0
    y = BN_CTX_get(ctx);
2245
0
    if (y == NULL)
2246
0
        goto err;
2247
    /* get the generator */
2248
0
    if (group->generator == NULL)
2249
0
        goto err;
2250
0
    generator = EC_POINT_new(group);
2251
0
    if (generator == NULL)
2252
0
        goto err;
2253
0
    BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x);
2254
0
    BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y);
2255
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2256
0
        goto err;
2257
0
    if ((pre = nistp256_pre_comp_new()) == NULL)
2258
0
        goto err;
2259
    /*
2260
     * if the generator is the standard one, use built-in precomputation
2261
     */
2262
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2263
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2264
0
        goto done;
2265
0
    }
2266
0
    if ((!BN_to_felem(x_tmp, group->generator->X)) ||
2267
0
        (!BN_to_felem(y_tmp, group->generator->Y)) ||
2268
0
        (!BN_to_felem(z_tmp, group->generator->Z)))
2269
0
        goto err;
2270
0
    felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
2271
0
    felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
2272
0
    felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
2273
    /*
2274
     * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, 2^96*G,
2275
     * 2^160*G, 2^224*G for the second one
2276
     */
2277
0
    for (i = 1; i <= 8; i <<= 1) {
2278
0
        point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
2279
0
                           pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
2280
0
                           pre->g_pre_comp[0][i][1],
2281
0
                           pre->g_pre_comp[0][i][2]);
2282
0
        for (j = 0; j < 31; ++j) {
2283
0
            point_double_small(pre->g_pre_comp[1][i][0],
2284
0
                               pre->g_pre_comp[1][i][1],
2285
0
                               pre->g_pre_comp[1][i][2],
2286
0
                               pre->g_pre_comp[1][i][0],
2287
0
                               pre->g_pre_comp[1][i][1],
2288
0
                               pre->g_pre_comp[1][i][2]);
2289
0
        }
2290
0
        if (i == 8)
2291
0
            break;
2292
0
        point_double_small(pre->g_pre_comp[0][2 * i][0],
2293
0
                           pre->g_pre_comp[0][2 * i][1],
2294
0
                           pre->g_pre_comp[0][2 * i][2],
2295
0
                           pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
2296
0
                           pre->g_pre_comp[1][i][2]);
2297
0
        for (j = 0; j < 31; ++j) {
2298
0
            point_double_small(pre->g_pre_comp[0][2 * i][0],
2299
0
                               pre->g_pre_comp[0][2 * i][1],
2300
0
                               pre->g_pre_comp[0][2 * i][2],
2301
0
                               pre->g_pre_comp[0][2 * i][0],
2302
0
                               pre->g_pre_comp[0][2 * i][1],
2303
0
                               pre->g_pre_comp[0][2 * i][2]);
2304
0
        }
2305
0
    }
2306
0
    for (i = 0; i < 2; i++) {
2307
        /* g_pre_comp[i][0] is the point at infinity */
2308
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
2309
        /* the remaining multiples */
2310
        /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
2311
0
        point_add_small(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
2312
0
                        pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
2313
0
                        pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
2314
0
                        pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2315
0
                        pre->g_pre_comp[i][2][2]);
2316
        /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
2317
0
        point_add_small(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
2318
0
                        pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
2319
0
                        pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2320
0
                        pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2321
0
                        pre->g_pre_comp[i][2][2]);
2322
        /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
2323
0
        point_add_small(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
2324
0
                        pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
2325
0
                        pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2326
0
                        pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
2327
0
                        pre->g_pre_comp[i][4][2]);
2328
        /*
2329
         * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G
2330
         */
2331
0
        point_add_small(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
2332
0
                        pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
2333
0
                        pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2334
0
                        pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2335
0
                        pre->g_pre_comp[i][2][2]);
2336
0
        for (j = 1; j < 8; ++j) {
2337
            /* odd multiples: add G resp. 2^32*G */
2338
0
            point_add_small(pre->g_pre_comp[i][2 * j + 1][0],
2339
0
                            pre->g_pre_comp[i][2 * j + 1][1],
2340
0
                            pre->g_pre_comp[i][2 * j + 1][2],
2341
0
                            pre->g_pre_comp[i][2 * j][0],
2342
0
                            pre->g_pre_comp[i][2 * j][1],
2343
0
                            pre->g_pre_comp[i][2 * j][2],
2344
0
                            pre->g_pre_comp[i][1][0],
2345
0
                            pre->g_pre_comp[i][1][1],
2346
0
                            pre->g_pre_comp[i][1][2]);
2347
0
        }
2348
0
    }
2349
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);
2350
2351
0
 done:
2352
0
    SETPRECOMP(group, nistp256, pre);
2353
0
    pre = NULL;
2354
0
    ret = 1;
2355
2356
0
 err:
2357
0
    BN_CTX_end(ctx);
2358
0
    EC_POINT_free(generator);
2359
0
#ifndef FIPS_MODULE
2360
0
    BN_CTX_free(new_ctx);
2361
0
#endif
2362
0
    EC_nistp256_pre_comp_free(pre);
2363
0
    return ret;
2364
0
}
2365
2366
int ossl_ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group)
2367
0
{
2368
0
    return HAVEPRECOMP(group, nistp256);
2369
0
}