Coverage Report

Created: 2025-06-13 06:58

/src/openssl32/crypto/ec/ecp_nistp384.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2023 IBM Corp.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * Designed for 56-bit limbs by Rohan McLure <rohan.mclure@linux.ibm.com>.
28
 * The layout is based on that of ecp_nistp{224,521}.c, allowing even for asm
29
 * acceleration of felem_{square,mul} as supported in these files.
30
 */
31
32
#include <openssl/e_os2.h>
33
34
#include <string.h>
35
#include <openssl/err.h>
36
#include "ec_local.h"
37
38
#include "internal/numbers.h"
39
40
#ifndef INT128_MAX
41
# error "Your compiler doesn't appear to support 128-bit integer types"
42
#endif
43
44
typedef uint8_t u8;
45
typedef uint64_t u64;
46
47
/*
48
 * The underlying field. P384 operates over GF(2^384-2^128-2^96+2^32-1). We
49
 * can serialize an element of this field into 48 bytes. We call this an
50
 * felem_bytearray.
51
 */
52
53
typedef u8 felem_bytearray[48];
54
55
/*
56
 * These are the parameters of P384, taken from FIPS 186-3, section D.1.2.4.
57
 * These values are big-endian.
58
 */
59
static const felem_bytearray nistp384_curve_params[5] = {
60
  {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
61
   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
62
   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
63
   0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF},
64
  {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a = -3 */
65
   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
66
   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
67
   0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFC},
68
  {0xB3, 0x31, 0x2F, 0xA7, 0xE2, 0x3E, 0xE7, 0xE4, 0x98, 0x8E, 0x05, 0x6B, /* b */
69
   0xE3, 0xF8, 0x2D, 0x19, 0x18, 0x1D, 0x9C, 0x6E, 0xFE, 0x81, 0x41, 0x12,
70
   0x03, 0x14, 0x08, 0x8F, 0x50, 0x13, 0x87, 0x5A, 0xC6, 0x56, 0x39, 0x8D,
71
   0x8A, 0x2E, 0xD1, 0x9D, 0x2A, 0x85, 0xC8, 0xED, 0xD3, 0xEC, 0x2A, 0xEF},
72
  {0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E, /* x */
73
   0xF3, 0x20, 0xAD, 0x74, 0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98,
74
   0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38, 0x55, 0x02, 0xF2, 0x5D,
75
   0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7},
76
  {0x36, 0x17, 0xDE, 0x4A, 0x96, 0x26, 0x2C, 0x6F, 0x5D, 0x9E, 0x98, 0xBF, /* y */
77
   0x92, 0x92, 0xDC, 0x29, 0xF8, 0xF4, 0x1D, 0xBD, 0x28, 0x9A, 0x14, 0x7C,
78
   0xE9, 0xDA, 0x31, 0x13, 0xB5, 0xF0, 0xB8, 0xC0, 0x0A, 0x60, 0xB1, 0xCE,
79
   0x1D, 0x7E, 0x81, 0x9D, 0x7A, 0x43, 0x1D, 0x7C, 0x90, 0xEA, 0x0E, 0x5F},
80
};
81
82
/*-
83
 * The representation of field elements.
84
 * ------------------------------------
85
 *
86
 * We represent field elements with seven values. These values are either 64 or
87
 * 128 bits and the field element represented is:
88
 *   v[0]*2^0 + v[1]*2^56 + v[2]*2^112 + ... + v[6]*2^336  (mod p)
89
 * Each of the seven values is called a 'limb'. Since the limbs are spaced only
90
 * 56 bits apart, but are greater than 56 bits in length, the most significant
91
 * bits of each limb overlap with the least significant bits of the next
92
 *
93
 * This representation is considered to be 'redundant' in the sense that
94
 * intermediate values can each contain more than a 56-bit value in each limb.
95
 * Reduction causes all but the final limb to be reduced to contain a value less
96
 * than 2^56, with the final value represented allowed to be larger than 2^384,
97
 * inasmuch as we can be sure that arithmetic overflow remains impossible. The
98
 * reduced value must of course be congruent to the unreduced value.
99
 *
100
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
101
 * 'widefelem', featuring enough bits to store the result of a multiplication
102
 * and even some further arithmetic without need for immediate reduction.
103
 */
104
105
194M
#define NLIMBS 7
106
107
typedef uint64_t limb;
108
typedef uint128_t widelimb;
109
typedef limb limb_aX __attribute((__aligned__(1)));
110
typedef limb felem[NLIMBS];
111
typedef widelimb widefelem[2*NLIMBS-1];
112
113
static const limb bottom56bits = 0xffffffffffffff;
114
115
/* Helper functions (de)serialising reduced field elements in little endian */
116
static void bin48_to_felem(felem out, const u8 in[48])
117
8.75k
{
118
8.75k
    memset(out, 0, 56);
119
8.75k
    out[0] = (*((limb *) & in[0])) & bottom56bits;
120
8.75k
    out[1] = (*((limb_aX *) & in[7])) & bottom56bits;
121
8.75k
    out[2] = (*((limb_aX *) & in[14])) & bottom56bits;
122
8.75k
    out[3] = (*((limb_aX *) & in[21])) & bottom56bits;
123
8.75k
    out[4] = (*((limb_aX *) & in[28])) & bottom56bits;
124
8.75k
    out[5] = (*((limb_aX *) & in[35])) & bottom56bits;
125
8.75k
    memmove(&out[6], &in[42], 6);
126
8.75k
}
127
128
static void felem_to_bin48(u8 out[48], const felem in)
129
13.4k
{
130
13.4k
    memset(out, 0, 48);
131
13.4k
    (*((limb *) & out[0]))     |= (in[0] & bottom56bits);
132
13.4k
    (*((limb_aX *) & out[7]))  |= (in[1] & bottom56bits);
133
13.4k
    (*((limb_aX *) & out[14])) |= (in[2] & bottom56bits);
134
13.4k
    (*((limb_aX *) & out[21])) |= (in[3] & bottom56bits);
135
13.4k
    (*((limb_aX *) & out[28])) |= (in[4] & bottom56bits);
136
13.4k
    (*((limb_aX *) & out[35])) |= (in[5] & bottom56bits);
137
13.4k
    memmove(&out[42], &in[6], 6);
138
13.4k
}
139
140
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
141
static int BN_to_felem(felem out, const BIGNUM *bn)
142
8.75k
{
143
8.75k
    felem_bytearray b_out;
144
8.75k
    int num_bytes;
145
146
8.75k
    if (BN_is_negative(bn)) {
147
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
148
0
        return 0;
149
0
    }
150
8.75k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
151
8.75k
    if (num_bytes < 0) {
152
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
153
0
        return 0;
154
0
    }
155
8.75k
    bin48_to_felem(out, b_out);
156
8.75k
    return 1;
157
8.75k
}
158
159
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
160
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
161
13.4k
{
162
13.4k
    felem_bytearray b_out;
163
164
13.4k
    felem_to_bin48(b_out, in);
165
13.4k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
166
13.4k
}
167
168
/*-
169
 * Field operations
170
 * ----------------
171
 */
172
173
static void felem_one(felem out)
174
0
{
175
0
    out[0] = 1;
176
0
    memset(&out[1], 0, sizeof(limb) * (NLIMBS-1));
177
0
}
178
179
static void felem_assign(felem out, const felem in)
180
2.70M
{
181
2.70M
    memcpy(out, in, sizeof(felem));
182
2.70M
}
183
184
/* felem_sum64 sets out = out + in. */
185
static void felem_sum64(felem out, const felem in)
186
1.18M
{
187
1.18M
    unsigned int i;
188
189
9.49M
    for (i = 0; i < NLIMBS; i++)
190
8.31M
        out[i] += in[i];
191
1.18M
}
192
193
/* felem_scalar sets out = in * scalar */
194
static void felem_scalar(felem out, const felem in, limb scalar)
195
3.51M
{
196
3.51M
    unsigned int i;
197
198
28.0M
    for (i = 0; i < NLIMBS; i++)
199
24.5M
        out[i] = in[i] * scalar;
200
3.51M
}
201
202
/* felem_scalar64 sets out = out * scalar */
203
static void felem_scalar64(felem out, limb scalar)
204
1.65M
{
205
1.65M
    unsigned int i;
206
207
13.2M
    for (i = 0; i < NLIMBS; i++)
208
11.6M
        out[i] *= scalar;
209
1.65M
}
210
211
/* felem_scalar128 sets out = out * scalar */
212
static void felem_scalar128(widefelem out, limb scalar)
213
553k
{
214
553k
    unsigned int i;
215
216
7.74M
    for (i = 0; i < 2*NLIMBS-1; i++)
217
7.19M
        out[i] *= scalar;
218
553k
}
219
220
/*-
221
 * felem_neg sets |out| to |-in|
222
 * On entry:
223
 *   in[i] < 2^60 - 2^29
224
 * On exit:
225
 *   out[i] < 2^60
226
 */
227
static void felem_neg(felem out, const felem in)
228
51.1k
{
229
    /*
230
     * In order to prevent underflow, we add a multiple of p before subtracting.
231
     * Use telescopic sums to represent 2^12 * p redundantly with each limb
232
     * of the form 2^60 + ...
233
     */
234
51.1k
    static const limb two60m52m4 = (((limb) 1) << 60)
235
51.1k
                                 - (((limb) 1) << 52)
236
51.1k
                                 - (((limb) 1) << 4);
237
51.1k
    static const limb two60p44m12 = (((limb) 1) << 60)
238
51.1k
                                  + (((limb) 1) << 44)
239
51.1k
                                  - (((limb) 1) << 12);
240
51.1k
    static const limb two60m28m4 = (((limb) 1) << 60)
241
51.1k
                                 - (((limb) 1) << 28)
242
51.1k
                                 - (((limb) 1) << 4);
243
51.1k
    static const limb two60m4 = (((limb) 1) << 60)
244
51.1k
                              - (((limb) 1) << 4);
245
246
51.1k
    out[0] = two60p44m12 - in[0];
247
51.1k
    out[1] = two60m52m4 - in[1];
248
51.1k
    out[2] = two60m28m4 - in[2];
249
51.1k
    out[3] = two60m4 - in[3];
250
51.1k
    out[4] = two60m4 - in[4];
251
51.1k
    out[5] = two60m4 - in[5];
252
51.1k
    out[6] = two60m4 - in[6];
253
51.1k
}
254
255
#if defined(ECP_NISTP384_ASM)
256
void p384_felem_diff64(felem out, const felem in);
257
void p384_felem_diff128(widefelem out, const widefelem in);
258
void p384_felem_diff_128_64(widefelem out, const felem in);
259
260
# define felem_diff64           p384_felem_diff64
261
# define felem_diff128          p384_felem_diff128
262
# define felem_diff_128_64      p384_felem_diff_128_64
263
264
#else
265
/*-
266
 * felem_diff64 subtracts |in| from |out|
267
 * On entry:
268
 *   in[i] < 2^60 - 2^52 - 2^4
269
 * On exit:
270
 *   out[i] < out_orig[i] + 2^60 + 2^44
271
 */
272
static void felem_diff64(felem out, const felem in)
273
930k
{
274
    /*
275
     * In order to prevent underflow, we add a multiple of p before subtracting.
276
     * Use telescopic sums to represent 2^12 * p redundantly with each limb
277
     * of the form 2^60 + ...
278
     */
279
280
930k
    static const limb two60m52m4 = (((limb) 1) << 60)
281
930k
                                 - (((limb) 1) << 52)
282
930k
                                 - (((limb) 1) << 4);
283
930k
    static const limb two60p44m12 = (((limb) 1) << 60)
284
930k
                                  + (((limb) 1) << 44)
285
930k
                                  - (((limb) 1) << 12);
286
930k
    static const limb two60m28m4 = (((limb) 1) << 60)
287
930k
                                 - (((limb) 1) << 28)
288
930k
                                 - (((limb) 1) << 4);
289
930k
    static const limb two60m4 = (((limb) 1) << 60)
290
930k
                              - (((limb) 1) << 4);
291
292
930k
    out[0] += two60p44m12 - in[0];
293
930k
    out[1] += two60m52m4 - in[1];
294
930k
    out[2] += two60m28m4 - in[2];
295
930k
    out[3] += two60m4 - in[3];
296
930k
    out[4] += two60m4 - in[4];
297
930k
    out[5] += two60m4 - in[5];
298
930k
    out[6] += two60m4 - in[6];
299
930k
}
300
301
/*
302
 * in[i] < 2^63
303
 * out[i] < out_orig[i] + 2^64 + 2^48
304
 */
305
static void felem_diff_128_64(widefelem out, const felem in)
306
1.56M
{
307
    /*
308
     * In order to prevent underflow, we add a multiple of p before subtracting.
309
     * Use telescopic sums to represent 2^16 * p redundantly with each limb
310
     * of the form 2^64 + ...
311
     */
312
313
1.56M
    static const widelimb two64m56m8 = (((widelimb) 1) << 64)
314
1.56M
                                     - (((widelimb) 1) << 56)
315
1.56M
                                     - (((widelimb) 1) << 8);
316
1.56M
    static const widelimb two64m32m8 = (((widelimb) 1) << 64)
317
1.56M
                                     - (((widelimb) 1) << 32)
318
1.56M
                                     - (((widelimb) 1) << 8);
319
1.56M
    static const widelimb two64m8 = (((widelimb) 1) << 64)
320
1.56M
                                  - (((widelimb) 1) << 8);
321
1.56M
    static const widelimb two64p48m16 = (((widelimb) 1) << 64)
322
1.56M
                                      + (((widelimb) 1) << 48)
323
1.56M
                                      - (((widelimb) 1) << 16);
324
1.56M
    unsigned int i;
325
326
1.56M
    out[0] += two64p48m16;
327
1.56M
    out[1] += two64m56m8;
328
1.56M
    out[2] += two64m32m8;
329
1.56M
    out[3] += two64m8;
330
1.56M
    out[4] += two64m8;
331
1.56M
    out[5] += two64m8;
332
1.56M
    out[6] += two64m8;
333
334
12.5M
    for (i = 0; i < NLIMBS; i++)
335
10.9M
        out[i] -= in[i];
336
1.56M
}
337
338
/*
339
 * in[i] < 2^127 - 2^119 - 2^71
340
 * out[i] < out_orig[i] + 2^127 + 2^111
341
 */
342
static void felem_diff128(widefelem out, const widefelem in)
343
553k
{
344
    /*
345
     * In order to prevent underflow, we add a multiple of p before subtracting.
346
     * Use telescopic sums to represent 2^415 * p redundantly with each limb
347
     * of the form 2^127 + ...
348
     */
349
350
553k
    static const widelimb two127 = ((widelimb) 1) << 127;
351
553k
    static const widelimb two127m71 = (((widelimb) 1) << 127)
352
553k
                                    - (((widelimb) 1) << 71);
353
553k
    static const widelimb two127p111m79m71 = (((widelimb) 1) << 127)
354
553k
                                           + (((widelimb) 1) << 111)
355
553k
                                           - (((widelimb) 1) << 79)
356
553k
                                           - (((widelimb) 1) << 71);
357
553k
    static const widelimb two127m119m71 = (((widelimb) 1) << 127)
358
553k
                                        - (((widelimb) 1) << 119)
359
553k
                                        - (((widelimb) 1) << 71);
360
553k
    static const widelimb two127m95m71 = (((widelimb) 1) << 127)
361
553k
                                       - (((widelimb) 1) << 95)
362
553k
                                       - (((widelimb) 1) << 71);
363
553k
    unsigned int i;
364
365
553k
    out[0]  += two127;
366
553k
    out[1]  += two127m71;
367
553k
    out[2]  += two127m71;
368
553k
    out[3]  += two127m71;
369
553k
    out[4]  += two127m71;
370
553k
    out[5]  += two127m71;
371
553k
    out[6]  += two127p111m79m71;
372
553k
    out[7]  += two127m119m71;
373
553k
    out[8]  += two127m95m71;
374
553k
    out[9]  += two127m71;
375
553k
    out[10] += two127m71;
376
553k
    out[11] += two127m71;
377
553k
    out[12] += two127m71;
378
379
7.74M
    for (i = 0; i < 2*NLIMBS-1; i++)
380
7.19M
        out[i] -= in[i];
381
553k
}
382
#endif /* ECP_NISTP384_ASM */
383
384
static void felem_square_ref(widefelem out, const felem in)
385
3.38M
{
386
3.38M
    felem inx2;
387
3.38M
    felem_scalar(inx2, in, 2);
388
389
3.38M
    out[0] = ((uint128_t) in[0]) * in[0];
390
391
3.38M
    out[1] = ((uint128_t) in[0]) * inx2[1];
392
393
3.38M
    out[2] = ((uint128_t) in[0]) * inx2[2]
394
3.38M
           + ((uint128_t) in[1]) * in[1];
395
396
3.38M
    out[3] = ((uint128_t) in[0]) * inx2[3]
397
3.38M
           + ((uint128_t) in[1]) * inx2[2];
398
399
3.38M
    out[4] = ((uint128_t) in[0]) * inx2[4]
400
3.38M
           + ((uint128_t) in[1]) * inx2[3]
401
3.38M
           + ((uint128_t) in[2]) * in[2];
402
403
3.38M
    out[5] = ((uint128_t) in[0]) * inx2[5]
404
3.38M
           + ((uint128_t) in[1]) * inx2[4]
405
3.38M
           + ((uint128_t) in[2]) * inx2[3];
406
407
3.38M
    out[6] = ((uint128_t) in[0]) * inx2[6]
408
3.38M
           + ((uint128_t) in[1]) * inx2[5]
409
3.38M
           + ((uint128_t) in[2]) * inx2[4]
410
3.38M
           + ((uint128_t) in[3]) * in[3];
411
412
3.38M
    out[7] = ((uint128_t) in[1]) * inx2[6]
413
3.38M
           + ((uint128_t) in[2]) * inx2[5]
414
3.38M
           + ((uint128_t) in[3]) * inx2[4];
415
416
3.38M
    out[8] = ((uint128_t) in[2]) * inx2[6]
417
3.38M
           + ((uint128_t) in[3]) * inx2[5]
418
3.38M
           + ((uint128_t) in[4]) * in[4];
419
420
3.38M
    out[9] = ((uint128_t) in[3]) * inx2[6]
421
3.38M
           + ((uint128_t) in[4]) * inx2[5];
422
423
3.38M
    out[10] = ((uint128_t) in[4]) * inx2[6]
424
3.38M
            + ((uint128_t) in[5]) * in[5];
425
426
3.38M
    out[11] = ((uint128_t) in[5]) * inx2[6];
427
428
3.38M
    out[12] = ((uint128_t) in[6]) * in[6];
429
3.38M
}
430
431
static void felem_mul_ref(widefelem out, const felem in1, const felem in2)
432
2.74M
{
433
2.74M
    out[0] = ((uint128_t) in1[0]) * in2[0];
434
435
2.74M
    out[1] = ((uint128_t) in1[0]) * in2[1]
436
2.74M
           + ((uint128_t) in1[1]) * in2[0];
437
438
2.74M
    out[2] = ((uint128_t) in1[0]) * in2[2]
439
2.74M
           + ((uint128_t) in1[1]) * in2[1]
440
2.74M
           + ((uint128_t) in1[2]) * in2[0];
441
442
2.74M
    out[3] = ((uint128_t) in1[0]) * in2[3]
443
2.74M
           + ((uint128_t) in1[1]) * in2[2]
444
2.74M
           + ((uint128_t) in1[2]) * in2[1]
445
2.74M
           + ((uint128_t) in1[3]) * in2[0];
446
447
2.74M
    out[4] = ((uint128_t) in1[0]) * in2[4]
448
2.74M
           + ((uint128_t) in1[1]) * in2[3]
449
2.74M
           + ((uint128_t) in1[2]) * in2[2]
450
2.74M
           + ((uint128_t) in1[3]) * in2[1]
451
2.74M
           + ((uint128_t) in1[4]) * in2[0];
452
453
2.74M
    out[5] = ((uint128_t) in1[0]) * in2[5]
454
2.74M
           + ((uint128_t) in1[1]) * in2[4]
455
2.74M
           + ((uint128_t) in1[2]) * in2[3]
456
2.74M
           + ((uint128_t) in1[3]) * in2[2]
457
2.74M
           + ((uint128_t) in1[4]) * in2[1]
458
2.74M
           + ((uint128_t) in1[5]) * in2[0];
459
460
2.74M
    out[6] = ((uint128_t) in1[0]) * in2[6]
461
2.74M
           + ((uint128_t) in1[1]) * in2[5]
462
2.74M
           + ((uint128_t) in1[2]) * in2[4]
463
2.74M
           + ((uint128_t) in1[3]) * in2[3]
464
2.74M
           + ((uint128_t) in1[4]) * in2[2]
465
2.74M
           + ((uint128_t) in1[5]) * in2[1]
466
2.74M
           + ((uint128_t) in1[6]) * in2[0];
467
468
2.74M
    out[7] = ((uint128_t) in1[1]) * in2[6]
469
2.74M
           + ((uint128_t) in1[2]) * in2[5]
470
2.74M
           + ((uint128_t) in1[3]) * in2[4]
471
2.74M
           + ((uint128_t) in1[4]) * in2[3]
472
2.74M
           + ((uint128_t) in1[5]) * in2[2]
473
2.74M
           + ((uint128_t) in1[6]) * in2[1];
474
475
2.74M
    out[8] = ((uint128_t) in1[2]) * in2[6]
476
2.74M
           + ((uint128_t) in1[3]) * in2[5]
477
2.74M
           + ((uint128_t) in1[4]) * in2[4]
478
2.74M
           + ((uint128_t) in1[5]) * in2[3]
479
2.74M
           + ((uint128_t) in1[6]) * in2[2];
480
481
2.74M
    out[9] = ((uint128_t) in1[3]) * in2[6]
482
2.74M
           + ((uint128_t) in1[4]) * in2[5]
483
2.74M
           + ((uint128_t) in1[5]) * in2[4]
484
2.74M
           + ((uint128_t) in1[6]) * in2[3];
485
486
2.74M
    out[10] = ((uint128_t) in1[4]) * in2[6]
487
2.74M
            + ((uint128_t) in1[5]) * in2[5]
488
2.74M
            + ((uint128_t) in1[6]) * in2[4];
489
490
2.74M
    out[11] = ((uint128_t) in1[5]) * in2[6]
491
2.74M
            + ((uint128_t) in1[6]) * in2[5];
492
493
2.74M
    out[12] = ((uint128_t) in1[6]) * in2[6];
494
2.74M
}
495
496
/*-
497
 * Reduce thirteen 128-bit coefficients to seven 64-bit coefficients.
498
 * in[i] < 2^128 - 2^125
499
 * out[i] < 2^56 for i < 6,
500
 * out[6] <= 2^48
501
 *
502
 * The technique in use here stems from the format of the prime modulus:
503
 * P384 = 2^384 - delta
504
 *
505
 * Thus we can reduce numbers of the form (X + 2^384 * Y) by substituting
506
 * them with (X + delta Y), with delta = 2^128 + 2^96 + (-2^32 + 1). These
507
 * coefficients are still quite large, and so we repeatedly apply this
508
 * technique on high-order bits in order to guarantee the desired bounds on
509
 * the size of our output.
510
 *
511
 * The three phases of elimination are as follows:
512
 * [1]: Y = 2^120 (in[12] | in[11] | in[10] | in[9])
513
 * [2]: Y = 2^8 (acc[8] | acc[7])
514
 * [3]: Y = 2^48 (acc[6] >> 48)
515
 * (Where a | b | c | d = (2^56)^3 a + (2^56)^2 b + (2^56) c + d)
516
 */
517
static void felem_reduce_ref(felem out, const widefelem in)
518
5.57M
{
519
    /*
520
     * In order to prevent underflow, we add a multiple of p before subtracting.
521
     * Use telescopic sums to represent 2^76 * p redundantly with each limb
522
     * of the form 2^124 + ...
523
     */
524
5.57M
    static const widelimb two124m68 = (((widelimb) 1) << 124)
525
5.57M
                                    - (((widelimb) 1) << 68);
526
5.57M
    static const widelimb two124m116m68 = (((widelimb) 1) << 124)
527
5.57M
                                        - (((widelimb) 1) << 116)
528
5.57M
                                        - (((widelimb) 1) << 68);
529
5.57M
    static const widelimb two124p108m76 = (((widelimb) 1) << 124)
530
5.57M
                                        + (((widelimb) 1) << 108)
531
5.57M
                                        - (((widelimb) 1) << 76);
532
5.57M
    static const widelimb two124m92m68 = (((widelimb) 1) << 124)
533
5.57M
                                       - (((widelimb) 1) << 92)
534
5.57M
                                       - (((widelimb) 1) << 68);
535
5.57M
    widelimb temp, acc[9];
536
5.57M
    unsigned int i;
537
538
5.57M
    memcpy(acc, in, sizeof(widelimb) * 9);
539
540
5.57M
    acc[0] += two124p108m76;
541
5.57M
    acc[1] += two124m116m68;
542
5.57M
    acc[2] += two124m92m68;
543
5.57M
    acc[3] += two124m68;
544
5.57M
    acc[4] += two124m68;
545
5.57M
    acc[5] += two124m68;
546
5.57M
    acc[6] += two124m68;
547
548
    /* [1]: Eliminate in[9], ..., in[12] */
549
5.57M
    acc[8] += in[12] >> 32;
550
5.57M
    acc[7] += (in[12] & 0xffffffff) << 24;
551
5.57M
    acc[7] += in[12] >> 8;
552
5.57M
    acc[6] += (in[12] & 0xff) << 48;
553
5.57M
    acc[6] -= in[12] >> 16;
554
5.57M
    acc[5] -= (in[12] & 0xffff) << 40;
555
5.57M
    acc[6] += in[12] >> 48;
556
5.57M
    acc[5] += (in[12] & 0xffffffffffff) << 8;
557
558
5.57M
    acc[7] += in[11] >> 32;
559
5.57M
    acc[6] += (in[11] & 0xffffffff) << 24;
560
5.57M
    acc[6] += in[11] >> 8;
561
5.57M
    acc[5] += (in[11] & 0xff) << 48;
562
5.57M
    acc[5] -= in[11] >> 16;
563
5.57M
    acc[4] -= (in[11] & 0xffff) << 40;
564
5.57M
    acc[5] += in[11] >> 48;
565
5.57M
    acc[4] += (in[11] & 0xffffffffffff) << 8;
566
567
5.57M
    acc[6] += in[10] >> 32;
568
5.57M
    acc[5] += (in[10] & 0xffffffff) << 24;
569
5.57M
    acc[5] += in[10] >> 8;
570
5.57M
    acc[4] += (in[10] & 0xff) << 48;
571
5.57M
    acc[4] -= in[10] >> 16;
572
5.57M
    acc[3] -= (in[10] & 0xffff) << 40;
573
5.57M
    acc[4] += in[10] >> 48;
574
5.57M
    acc[3] += (in[10] & 0xffffffffffff) << 8;
575
576
5.57M
    acc[5] += in[9] >> 32;
577
5.57M
    acc[4] += (in[9] & 0xffffffff) << 24;
578
5.57M
    acc[4] += in[9] >> 8;
579
5.57M
    acc[3] += (in[9] & 0xff) << 48;
580
5.57M
    acc[3] -= in[9] >> 16;
581
5.57M
    acc[2] -= (in[9] & 0xffff) << 40;
582
5.57M
    acc[3] += in[9] >> 48;
583
5.57M
    acc[2] += (in[9] & 0xffffffffffff) << 8;
584
585
    /*
586
     * [2]: Eliminate acc[7], acc[8], that is the 7 and eighth limbs, as
587
     * well as the contributions made from eliminating higher limbs.
588
     * acc[7] < in[7] + 2^120 + 2^56 < in[7] + 2^121
589
     * acc[8] < in[8] + 2^96
590
     */
591
5.57M
    acc[4] += acc[8] >> 32;
592
5.57M
    acc[3] += (acc[8] & 0xffffffff) << 24;
593
5.57M
    acc[3] += acc[8] >> 8;
594
5.57M
    acc[2] += (acc[8] & 0xff) << 48;
595
5.57M
    acc[2] -= acc[8] >> 16;
596
5.57M
    acc[1] -= (acc[8] & 0xffff) << 40;
597
5.57M
    acc[2] += acc[8] >> 48;
598
5.57M
    acc[1] += (acc[8] & 0xffffffffffff) << 8;
599
600
5.57M
    acc[3] += acc[7] >> 32;
601
5.57M
    acc[2] += (acc[7] & 0xffffffff) << 24;
602
5.57M
    acc[2] += acc[7] >> 8;
603
5.57M
    acc[1] += (acc[7] & 0xff) << 48;
604
5.57M
    acc[1] -= acc[7] >> 16;
605
5.57M
    acc[0] -= (acc[7] & 0xffff) << 40;
606
5.57M
    acc[1] += acc[7] >> 48;
607
5.57M
    acc[0] += (acc[7] & 0xffffffffffff) << 8;
608
609
    /*-
610
     * acc[k] < in[k] + 2^124 + 2^121 
611
     *        < in[k] + 2^125
612
     *        < 2^128, for k <= 6
613
     */
614
615
    /*
616
     * Carry 4 -> 5 -> 6
617
     * This has the effect of ensuring that these more significant limbs
618
     * will be small in value after eliminating high bits from acc[6].
619
     */
620
5.57M
    acc[5] += acc[4] >> 56;
621
5.57M
    acc[4] &= 0x00ffffffffffffff;
622
623
5.57M
    acc[6] += acc[5] >> 56;
624
5.57M
    acc[5] &= 0x00ffffffffffffff;
625
626
    /*-
627
     * acc[6] < in[6] + 2^124 + 2^121 + 2^72 + 2^16
628
     *        < in[6] + 2^125
629
     *        < 2^128
630
     */
631
632
    /* [3]: Eliminate high bits of acc[6] */
633
5.57M
    temp = acc[6] >> 48;
634
5.57M
    acc[6] &= 0x0000ffffffffffff;
635
    
636
    /* temp < 2^80 */
637
638
5.57M
    acc[3] += temp >> 40;
639
5.57M
    acc[2] += (temp & 0xffffffffff) << 16;
640
5.57M
    acc[2] += temp >> 16;
641
5.57M
    acc[1] += (temp & 0xffff) << 40;
642
5.57M
    acc[1] -= temp >> 24;
643
5.57M
    acc[0] -= (temp & 0xffffff) << 32;
644
5.57M
    acc[0] += temp;
645
646
    /*-
647
     * acc[k] < acc_old[k] + 2^64 + 2^56
648
     *        < in[k] + 2^124 + 2^121 + 2^72 + 2^64 + 2^56 + 2^16 , k < 4
649
     */
650
651
    /* Carry 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
652
5.57M
    acc[1] += acc[0] >> 56;   /* acc[1] < acc_old[1] + 2^72 */
653
5.57M
    acc[0] &= 0x00ffffffffffffff;
654
655
5.57M
    acc[2] += acc[1] >> 56;   /* acc[2] < acc_old[2] + 2^72 + 2^16 */
656
5.57M
    acc[1] &= 0x00ffffffffffffff;
657
658
5.57M
    acc[3] += acc[2] >> 56;   /* acc[3] < acc_old[3] + 2^72 + 2^16 */
659
5.57M
    acc[2] &= 0x00ffffffffffffff;
660
661
    /*-
662
     * acc[k] < acc_old[k] + 2^72 + 2^16
663
     *        < in[k] + 2^124 + 2^121 + 2^73 + 2^64 + 2^56 + 2^17
664
     *        < in[k] + 2^125
665
     *        < 2^128 , k < 4
666
     */
667
668
5.57M
    acc[4] += acc[3] >> 56;   /*-
669
                               * acc[4] < acc_old[4] + 2^72 + 2^16
670
                               *        < 2^72 + 2^56 + 2^16
671
                               */
672
5.57M
    acc[3] &= 0x00ffffffffffffff;
673
674
5.57M
    acc[5] += acc[4] >> 56;   /*-
675
                               * acc[5] < acc_old[5] + 2^16 + 1
676
                               *        < 2^56 + 2^16 + 1
677
                               */
678
5.57M
    acc[4] &= 0x00ffffffffffffff;
679
680
5.57M
    acc[6] += acc[5] >> 56;   /* acc[6] < 2^48 + 1 <= 2^48 */
681
5.57M
    acc[5] &= 0x00ffffffffffffff;
682
683
44.6M
    for (i = 0; i < NLIMBS; i++)
684
39.0M
        out[i] = acc[i];
685
5.57M
}
686
687
static ossl_inline void felem_square_reduce_ref(felem out, const felem in)
688
2.02M
{
689
2.02M
    widefelem tmp;
690
691
2.02M
    felem_square_ref(tmp, in);
692
2.02M
    felem_reduce_ref(out, tmp);
693
2.02M
}
694
695
static ossl_inline void felem_mul_reduce_ref(felem out, const felem in1, const felem in2)
696
1.65M
{
697
1.65M
    widefelem tmp;
698
699
1.65M
    felem_mul_ref(tmp, in1, in2);
700
1.65M
    felem_reduce_ref(out, tmp);
701
1.65M
}
702
703
#if defined(ECP_NISTP384_ASM)
704
static void felem_square_wrapper(widefelem out, const felem in);
705
static void felem_mul_wrapper(widefelem out, const felem in1, const felem in2);
706
707
static void (*felem_square_p)(widefelem out, const felem in) =
708
    felem_square_wrapper;
709
static void (*felem_mul_p)(widefelem out, const felem in1, const felem in2) =
710
    felem_mul_wrapper;
711
712
static void (*felem_reduce_p)(felem out, const widefelem in) = felem_reduce_ref;
713
714
static void (*felem_square_reduce_p)(felem out, const felem in) =
715
    felem_square_reduce_ref;
716
static void (*felem_mul_reduce_p)(felem out, const felem in1, const felem in2) =
717
    felem_mul_reduce_ref;
718
719
void p384_felem_square(widefelem out, const felem in);
720
void p384_felem_mul(widefelem out, const felem in1, const felem in2);
721
void p384_felem_reduce(felem out, const widefelem in);
722
723
void p384_felem_square_reduce(felem out, const felem in);
724
void p384_felem_mul_reduce(felem out, const felem in1, const felem in2);
725
726
# if defined(_ARCH_PPC64)
727
#  include "crypto/ppc_arch.h"
728
# endif
729
730
static void felem_select(void)
731
{
732
# if defined(_ARCH_PPC64)
733
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
734
        felem_square_p = p384_felem_square;
735
        felem_mul_p = p384_felem_mul;
736
        felem_reduce_p = p384_felem_reduce;
737
        felem_square_reduce_p = p384_felem_square_reduce;
738
        felem_mul_reduce_p = p384_felem_mul_reduce;
739
740
        return;
741
    }
742
# endif
743
744
    /* Default */
745
    felem_square_p = felem_square_ref;
746
    felem_mul_p = felem_mul_ref;
747
    felem_reduce_p = felem_reduce_ref;
748
    felem_square_reduce_p = felem_square_reduce_ref;
749
    felem_mul_reduce_p = felem_mul_reduce_ref;
750
}
751
752
static void felem_square_wrapper(widefelem out, const felem in)
753
{
754
    felem_select();
755
    felem_square_p(out, in);
756
}
757
758
static void felem_mul_wrapper(widefelem out, const felem in1, const felem in2)
759
{
760
    felem_select();
761
    felem_mul_p(out, in1, in2);
762
}
763
764
# define felem_square felem_square_p
765
# define felem_mul felem_mul_p
766
# define felem_reduce felem_reduce_p
767
768
# define felem_square_reduce felem_square_reduce_p
769
# define felem_mul_reduce felem_mul_reduce_p
770
#else
771
1.36M
# define felem_square felem_square_ref
772
1.08M
# define felem_mul felem_mul_ref
773
1.89M
# define felem_reduce felem_reduce_ref
774
775
2.02M
# define felem_square_reduce felem_square_reduce_ref
776
1.65M
# define felem_mul_reduce felem_mul_reduce_ref
777
#endif
778
779
/*-
780
 * felem_inv calculates |out| = |in|^{-1}
781
 *
782
 * Based on Fermat's Little Theorem:
783
 *   a^p = a (mod p)
784
 *   a^{p-1} = 1 (mod p)
785
 *   a^{p-2} = a^{-1} (mod p)
786
 */
787
static void felem_inv(felem out, const felem in)
788
2.25k
{
789
2.25k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6;
790
2.25k
    unsigned int i = 0;
791
792
2.25k
    felem_square_reduce(ftmp, in);      /* 2^1 */
793
2.25k
    felem_mul_reduce(ftmp, ftmp, in);   /* 2^1 + 2^0 */
794
2.25k
    felem_assign(ftmp2, ftmp);
795
796
2.25k
    felem_square_reduce(ftmp, ftmp);    /* 2^2 + 2^1 */
797
2.25k
    felem_mul_reduce(ftmp, ftmp, in);   /* 2^2 + 2^1 * 2^0 */
798
2.25k
    felem_assign(ftmp3, ftmp);
799
800
9.01k
    for (i = 0; i < 3; i++)
801
6.76k
        felem_square_reduce(ftmp, ftmp); /* 2^5 + 2^4 + 2^3 */
802
2.25k
    felem_mul_reduce(ftmp, ftmp3, ftmp); /* 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 */
803
2.25k
    felem_assign(ftmp4, ftmp);
804
805
15.7k
    for (i = 0; i < 6; i++)
806
13.5k
        felem_square_reduce(ftmp, ftmp); /* 2^11 + ... + 2^6 */
807
2.25k
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^11 + ... + 2^0 */
808
809
9.01k
    for (i = 0; i < 3; i++)
810
6.76k
        felem_square_reduce(ftmp, ftmp); /* 2^14 + ... + 2^3 */
811
2.25k
    felem_mul_reduce(ftmp, ftmp3, ftmp); /* 2^14 + ... + 2^0 */
812
2.25k
    felem_assign(ftmp5, ftmp);
813
814
36.0k
    for (i = 0; i < 15; i++)
815
33.8k
        felem_square_reduce(ftmp, ftmp); /* 2^29 + ... + 2^15 */
816
2.25k
    felem_mul_reduce(ftmp, ftmp5, ftmp); /* 2^29 + ... + 2^0 */
817
2.25k
    felem_assign(ftmp6, ftmp);
818
819
69.8k
    for (i = 0; i < 30; i++)
820
67.6k
        felem_square_reduce(ftmp, ftmp); /* 2^59 + ... + 2^30 */
821
2.25k
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^59 + ... + 2^0 */
822
2.25k
    felem_assign(ftmp4, ftmp);
823
824
137k
    for (i = 0; i < 60; i++)
825
135k
        felem_square_reduce(ftmp, ftmp); /* 2^119 + ... + 2^60 */
826
2.25k
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^119 + ... + 2^0 */
827
2.25k
    felem_assign(ftmp4, ftmp);
828
829
272k
    for (i = 0; i < 120; i++)
830
270k
      felem_square_reduce(ftmp, ftmp);   /* 2^239 + ... + 2^120 */
831
2.25k
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^239 + ... + 2^0 */
832
833
36.0k
    for (i = 0; i < 15; i++)
834
33.8k
        felem_square_reduce(ftmp, ftmp); /* 2^254 + ... + 2^15 */
835
2.25k
    felem_mul_reduce(ftmp, ftmp5, ftmp); /* 2^254 + ... + 2^0 */
836
837
72.1k
    for (i = 0; i < 31; i++)
838
69.8k
        felem_square_reduce(ftmp, ftmp); /* 2^285 + ... + 2^31 */
839
2.25k
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^285 + ... + 2^31 + 2^29 + ... + 2^0 */
840
841
6.76k
    for (i = 0; i < 2; i++)
842
4.50k
        felem_square_reduce(ftmp, ftmp); /* 2^287 + ... + 2^33 + 2^31 + ... + 2^2 */
843
2.25k
    felem_mul_reduce(ftmp, ftmp2, ftmp); /* 2^287 + ... + 2^33 + 2^31 + ... + 2^0 */
844
845
214k
    for (i = 0; i < 94; i++)
846
211k
        felem_square_reduce(ftmp, ftmp); /* 2^381 + ... + 2^127 + 2^125 + ... + 2^94 */
847
2.25k
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^381 + ... + 2^127 + 2^125 + ... + 2^94 + 2^29 + ... + 2^0 */
848
849
6.76k
    for (i = 0; i < 2; i++)
850
4.50k
        felem_square_reduce(ftmp, ftmp); /* 2^383 + ... + 2^129 + 2^127 + ... + 2^96 + 2^31 + ... + 2^2 */
851
2.25k
    felem_mul_reduce(ftmp, in, ftmp);    /* 2^383 + ... + 2^129 + 2^127 + ... + 2^96 + 2^31 + ... + 2^2 + 2^0 */
852
853
2.25k
    memcpy(out, ftmp, sizeof(felem));
854
2.25k
}
855
856
/*
857
 * Zero-check: returns a limb with all bits set if |in| == 0 (mod p)
858
 * and 0 otherwise. We know that field elements are reduced to
859
 * 0 < in < 2p, so we only need to check two cases:
860
 * 0 and 2^384 - 2^128 - 2^96 + 2^32 - 1
861
 *   in[k] < 2^56, k < 6
862
 *   in[6] <= 2^48
863
 */
864
static limb felem_is_zero(const felem in)
865
703k
{
866
703k
    limb zero, p384;
867
868
703k
    zero = in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6];
869
703k
    zero = ((int64_t) (zero) - 1) >> 63;
870
703k
    p384 = (in[0] ^ 0x000000ffffffff) | (in[1] ^ 0xffff0000000000)
871
703k
         | (in[2] ^ 0xfffffffffeffff) | (in[3] ^ 0xffffffffffffff)
872
703k
         | (in[4] ^ 0xffffffffffffff) | (in[5] ^ 0xffffffffffffff)
873
703k
         | (in[6] ^ 0xffffffffffff);
874
703k
    p384 = ((int64_t) (p384) - 1) >> 63;
875
876
703k
    return (zero | p384);
877
703k
}
878
879
static int felem_is_zero_int(const void *in)
880
0
{
881
0
    return (int)(felem_is_zero(in) & ((limb) 1));
882
0
}
883
884
/*-
885
 * felem_contract converts |in| to its unique, minimal representation.
886
 * Assume we've removed all redundant bits.
887
 * On entry:
888
 *   in[k] < 2^56, k < 6
889
 *   in[6] <= 2^48
890
 */
891
static void felem_contract(felem out, const felem in)
892
10.1k
{
893
10.1k
    static const int64_t two56 = ((limb) 1) << 56;
894
895
    /*
896
     * We know for a fact that 0 <= |in| < 2*p, for p = 2^384 - 2^128 - 2^96 + 2^32 - 1
897
     * Perform two successive, idempotent subtractions to reduce if |in| >= p.
898
     */
899
900
10.1k
    int64_t tmp[NLIMBS], cond[5], a;
901
10.1k
    unsigned int i;
902
903
10.1k
    memcpy(tmp, in, sizeof(felem));
904
 
905
    /* Case 1: a = 1 iff |in| >= 2^384 */
906
10.1k
    a = (in[6] >> 48);
907
10.1k
    tmp[0] += a;
908
10.1k
    tmp[0] -= a << 32;
909
10.1k
    tmp[1] += a << 40;
910
10.1k
    tmp[2] += a << 16;
911
10.1k
    tmp[6] &= 0x0000ffffffffffff;
912
913
    /*
914
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
915
     * non-zero, so we only need one step
916
     */
917
918
10.1k
    a = tmp[0] >> 63;
919
10.1k
    tmp[0] += a & two56;
920
10.1k
    tmp[1] -= a & 1;
921
922
    /* Carry 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
923
10.1k
    tmp[2] += tmp[1] >> 56;
924
10.1k
    tmp[1] &= 0x00ffffffffffffff;
925
926
10.1k
    tmp[3] += tmp[2] >> 56;
927
10.1k
    tmp[2] &= 0x00ffffffffffffff;
928
929
10.1k
    tmp[4] += tmp[3] >> 56;
930
10.1k
    tmp[3] &= 0x00ffffffffffffff;
931
932
10.1k
    tmp[5] += tmp[4] >> 56;
933
10.1k
    tmp[4] &= 0x00ffffffffffffff;
934
935
10.1k
    tmp[6] += tmp[5] >> 56; /* tmp[6] < 2^48 */
936
10.1k
    tmp[5] &= 0x00ffffffffffffff;
937
938
    /*
939
     * Case 2: a = all ones if p <= |in| < 2^384, 0 otherwise
940
     */
941
942
    /* 0 iff (2^129..2^383) are all one */
943
10.1k
    cond[0] = ((tmp[6] | 0xff000000000000) & tmp[5] & tmp[4] & tmp[3] & (tmp[2] | 0x0000000001ffff)) + 1;
944
    /* 0 iff 2^128 bit is one */
945
10.1k
    cond[1] = (tmp[2] | ~0x00000000010000) + 1;
946
    /* 0 iff (2^96..2^127) bits are all one */
947
10.1k
    cond[2] = ((tmp[2] | 0xffffffffff0000) & (tmp[1] | 0x0000ffffffffff)) + 1;
948
    /* 0 iff (2^32..2^95) bits are all zero */
949
10.1k
    cond[3] = (tmp[1] & ~0xffff0000000000) | (tmp[0] & ~((int64_t) 0x000000ffffffff));
950
    /* 0 iff (2^0..2^31) bits are all one */
951
10.1k
    cond[4] = (tmp[0] | 0xffffff00000000) + 1;
952
953
    /*
954
     * In effect, invert our conditions, so that 0 values become all 1's,
955
     * any non-zero value in the low-order 56 bits becomes all 0's
956
     */
957
60.9k
    for (i = 0; i < 5; i++)
958
50.8k
       cond[i] = ((cond[i] & 0x00ffffffffffffff) - 1) >> 63;
959
960
    /*
961
     * The condition for determining whether in is greater than our
962
     * prime is given by the following condition.
963
     */
964
965
    /* First subtract 2^384 - 2^129 cheaply */
966
10.1k
    a = cond[0] & (cond[1] | (cond[2] & (~cond[3] | cond[4])));
967
10.1k
    tmp[6] &= ~a;
968
10.1k
    tmp[5] &= ~a;
969
10.1k
    tmp[4] &= ~a;
970
10.1k
    tmp[3] &= ~a;
971
10.1k
    tmp[2] &= ~a | 0x0000000001ffff;
972
973
    /*
974
     * Subtract 2^128 - 2^96 by
975
     * means of disjoint cases.
976
     */
977
978
    /* subtract 2^128 if that bit is present, and add 2^96 */
979
10.1k
    a = cond[0] & cond[1];
980
10.1k
    tmp[2] &= ~a | 0xfffffffffeffff;
981
10.1k
    tmp[1] += a & ((int64_t) 1 << 40);
982
983
    /* otherwise, clear bits 2^127 .. 2^96  */
984
10.1k
    a = cond[0] & ~cond[1] & (cond[2] & (~cond[3] | cond[4]));
985
10.1k
    tmp[2] &= ~a | 0xffffffffff0000;
986
10.1k
    tmp[1] &= ~a | 0x0000ffffffffff;
987
988
    /* finally, subtract the last 2^32 - 1 */
989
10.1k
    a = cond[0] & (cond[1] | (cond[2] & (~cond[3] | cond[4])));
990
10.1k
    tmp[0] += a & (-((int64_t) 1 << 32) + 1);
991
992
    /*
993
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
994
     * non-zero, so we only need one step
995
     */
996
10.1k
    a = tmp[0] >> 63;
997
10.1k
    tmp[0] += a & two56;
998
10.1k
    tmp[1] -= a & 1;
999
1000
    /* Carry 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
1001
10.1k
    tmp[2] += tmp[1] >> 56;
1002
10.1k
    tmp[1] &= 0x00ffffffffffffff;
1003
1004
10.1k
    tmp[3] += tmp[2] >> 56;
1005
10.1k
    tmp[2] &= 0x00ffffffffffffff;
1006
1007
10.1k
    tmp[4] += tmp[3] >> 56;
1008
10.1k
    tmp[3] &= 0x00ffffffffffffff;
1009
1010
10.1k
    tmp[5] += tmp[4] >> 56;
1011
10.1k
    tmp[4] &= 0x00ffffffffffffff;
1012
1013
10.1k
    tmp[6] += tmp[5] >> 56;
1014
10.1k
    tmp[5] &= 0x00ffffffffffffff;
1015
1016
10.1k
    memcpy(out, tmp, sizeof(felem));
1017
10.1k
}
1018
1019
/*-
1020
 * Group operations
1021
 * ----------------
1022
 *
1023
 * Building on top of the field operations we have the operations on the
1024
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1025
 * coordinates
1026
 */
1027
1028
/*-
1029
 * point_double calculates 2*(x_in, y_in, z_in)
1030
 *
1031
 * The method is taken from:
1032
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1033
 *
1034
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1035
 * while x_out == y_in is not (maybe this works, but it's not tested).
1036
 */
1037
static void
1038
point_double(felem x_out, felem y_out, felem z_out,
1039
             const felem x_in, const felem y_in, const felem z_in)
1040
377k
{
1041
377k
    widefelem tmp, tmp2;
1042
377k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1043
1044
377k
    felem_assign(ftmp, x_in);
1045
377k
    felem_assign(ftmp2, x_in);
1046
1047
    /* delta = z^2 */
1048
377k
    felem_square_reduce(delta, z_in);     /* delta[i] < 2^56 */
1049
1050
    /* gamma = y^2 */
1051
377k
    felem_square_reduce(gamma, y_in);     /* gamma[i] < 2^56 */
1052
1053
    /* beta = x*gamma */
1054
377k
    felem_mul_reduce(beta, x_in, gamma);  /* beta[i] < 2^56 */
1055
1056
    /* alpha = 3*(x-delta)*(x+delta) */
1057
377k
    felem_diff64(ftmp, delta);            /* ftmp[i] < 2^60 + 2^58 + 2^44 */
1058
377k
    felem_sum64(ftmp2, delta);            /* ftmp2[i] < 2^59 */
1059
377k
    felem_scalar64(ftmp2, 3);             /* ftmp2[i] < 2^61 */
1060
377k
    felem_mul_reduce(alpha, ftmp, ftmp2); /* alpha[i] < 2^56 */
1061
1062
    /* x' = alpha^2 - 8*beta */
1063
377k
    felem_square(tmp, alpha);             /* tmp[i] < 2^115 */
1064
377k
    felem_assign(ftmp, beta);             /* ftmp[i] < 2^56 */
1065
377k
    felem_scalar64(ftmp, 8);              /* ftmp[i] < 2^59 */
1066
377k
    felem_diff_128_64(tmp, ftmp);         /* tmp[i] < 2^115 + 2^64 + 2^48 */
1067
377k
    felem_reduce(x_out, tmp);             /* x_out[i] < 2^56 */
1068
1069
    /* z' = (y + z)^2 - gamma - delta */
1070
377k
    felem_sum64(delta, gamma);     /* delta[i] < 2^57 */
1071
377k
    felem_assign(ftmp, y_in);      /* ftmp[i] < 2^56 */
1072
377k
    felem_sum64(ftmp, z_in);       /* ftmp[i] < 2^56 */
1073
377k
    felem_square(tmp, ftmp);       /* tmp[i] < 2^115 */
1074
377k
    felem_diff_128_64(tmp, delta); /* tmp[i] < 2^115 + 2^64 + 2^48 */
1075
377k
    felem_reduce(z_out, tmp);      /* z_out[i] < 2^56 */
1076
1077
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1078
377k
    felem_scalar64(beta, 4);       /* beta[i] < 2^58 */
1079
377k
    felem_diff64(beta, x_out);     /* beta[i] < 2^60 + 2^58 + 2^44 */
1080
377k
    felem_mul(tmp, alpha, beta);   /* tmp[i] < 2^119 */
1081
377k
    felem_square(tmp2, gamma);     /* tmp2[i] < 2^115 */
1082
377k
    felem_scalar128(tmp2, 8);      /* tmp2[i] < 2^118 */
1083
377k
    felem_diff128(tmp, tmp2);      /* tmp[i] < 2^127 + 2^119 + 2^111 */
1084
377k
    felem_reduce(y_out, tmp);      /* tmp[i] < 2^56 */
1085
377k
}
1086
1087
/* copy_conditional copies in to out iff mask is all ones. */
1088
static void copy_conditional(felem out, const felem in, limb mask)
1089
1.10M
{
1090
1.10M
    unsigned int i;
1091
1092
8.84M
    for (i = 0; i < NLIMBS; i++)
1093
7.73M
        out[i] ^= mask & (in[i] ^ out[i]);
1094
1.10M
}
1095
1096
/*-
1097
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1098
 *
1099
 * The method is taken from
1100
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1101
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1102
 *
1103
 * This function includes a branch for checking whether the two input points
1104
 * are equal (while not equal to the point at infinity). See comment below
1105
 * on constant-time.
1106
 */
1107
static void point_add(felem x3, felem y3, felem z3,
1108
                      const felem x1, const felem y1, const felem z1,
1109
                      const int mixed, const felem x2, const felem y2,
1110
                      const felem z2)
1111
175k
{
1112
175k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1113
175k
    widefelem tmp, tmp2;
1114
175k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1115
175k
    limb points_equal;
1116
1117
175k
    z1_is_zero = felem_is_zero(z1);
1118
175k
    z2_is_zero = felem_is_zero(z2);
1119
1120
    /* ftmp = z1z1 = z1**2 */
1121
175k
    felem_square_reduce(ftmp, z1);      /* ftmp[i] < 2^56 */
1122
1123
175k
    if (!mixed) {
1124
        /* ftmp2 = z2z2 = z2**2 */
1125
55.1k
        felem_square_reduce(ftmp2, z2); /* ftmp2[i] < 2^56 */
1126
1127
        /* u1 = ftmp3 = x1*z2z2 */
1128
55.1k
        felem_mul_reduce(ftmp3, x1, ftmp2); /* ftmp3[i] < 2^56 */
1129
1130
        /* ftmp5 = z1 + z2 */
1131
55.1k
        felem_assign(ftmp5, z1);       /* ftmp5[i] < 2^56 */
1132
55.1k
        felem_sum64(ftmp5, z2);        /* ftmp5[i] < 2^57 */
1133
1134
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1135
55.1k
        felem_square(tmp, ftmp5);      /* tmp[i] < 2^117 */
1136
55.1k
        felem_diff_128_64(tmp, ftmp);  /* tmp[i] < 2^117 + 2^64 + 2^48 */
1137
55.1k
        felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 2^117 + 2^65 + 2^49 */
1138
55.1k
        felem_reduce(ftmp5, tmp);      /* ftmp5[i] < 2^56 */
1139
1140
        /* ftmp2 = z2 * z2z2 */
1141
55.1k
        felem_mul_reduce(ftmp2, ftmp2, z2); /* ftmp2[i] < 2^56 */
1142
1143
        /* s1 = ftmp6 = y1 * z2**3 */
1144
55.1k
        felem_mul_reduce(ftmp6, y1, ftmp2); /* ftmp6[i] < 2^56 */
1145
120k
    } else {
1146
        /*
1147
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1148
         */
1149
1150
        /* u1 = ftmp3 = x1*z2z2 */
1151
120k
        felem_assign(ftmp3, x1);     /* ftmp3[i] < 2^56 */
1152
1153
        /* ftmp5 = 2*z1z2 */
1154
120k
        felem_scalar(ftmp5, z1, 2);  /* ftmp5[i] < 2^57 */
1155
1156
        /* s1 = ftmp6 = y1 * z2**3 */
1157
120k
        felem_assign(ftmp6, y1);     /* ftmp6[i] < 2^56 */
1158
120k
    }
1159
    /* ftmp3[i] < 2^56, ftmp5[i] < 2^57, ftmp6[i] < 2^56 */
1160
1161
    /* u2 = x2*z1z1 */
1162
175k
    felem_mul(tmp, x2, ftmp);        /* tmp[i] < 2^115 */
1163
1164
    /* h = ftmp4 = u2 - u1 */
1165
175k
    felem_diff_128_64(tmp, ftmp3);   /* tmp[i] < 2^115 + 2^64 + 2^48 */
1166
175k
    felem_reduce(ftmp4, tmp);        /* ftmp[4] < 2^56 */
1167
1168
175k
    x_equal = felem_is_zero(ftmp4);
1169
1170
    /* z_out = ftmp5 * h */
1171
175k
    felem_mul_reduce(z_out, ftmp5, ftmp4);  /* z_out[i] < 2^56 */
1172
1173
    /* ftmp = z1 * z1z1 */
1174
175k
    felem_mul_reduce(ftmp, ftmp, z1);  /* ftmp[i] < 2^56 */
1175
1176
    /* s2 = tmp = y2 * z1**3 */
1177
175k
    felem_mul(tmp, y2, ftmp);      /* tmp[i] < 2^115 */
1178
1179
    /* r = ftmp5 = (s2 - s1)*2 */
1180
175k
    felem_diff_128_64(tmp, ftmp6); /* tmp[i] < 2^115 + 2^64 + 2^48 */
1181
175k
    felem_reduce(ftmp5, tmp);      /* ftmp5[i] < 2^56 */
1182
175k
    y_equal = felem_is_zero(ftmp5);
1183
175k
    felem_scalar64(ftmp5, 2);      /* ftmp5[i] < 2^57 */
1184
1185
    /*
1186
     * The formulae are incorrect if the points are equal, in affine coordinates
1187
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1188
     * happens.
1189
     *
1190
     * We use bitwise operations to avoid potential side-channels introduced by
1191
     * the short-circuiting behaviour of boolean operators.
1192
     *
1193
     * The special case of either point being the point at infinity (z1 and/or
1194
     * z2 are zero), is handled separately later on in this function, so we
1195
     * avoid jumping to point_double here in those special cases.
1196
     *
1197
     * Notice the comment below on the implications of this branching for timing
1198
     * leaks and why it is considered practically irrelevant.
1199
     */
1200
175k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1201
1202
175k
    if (points_equal) {
1203
        /*
1204
         * This is obviously not constant-time but it will almost-never happen
1205
         * for ECDH / ECDSA.
1206
         */
1207
0
        point_double(x3, y3, z3, x1, y1, z1);
1208
0
        return;
1209
0
    }
1210
1211
    /* I = ftmp = (2h)**2 */
1212
175k
    felem_assign(ftmp, ftmp4);        /* ftmp[i] < 2^56 */
1213
175k
    felem_scalar64(ftmp, 2);          /* ftmp[i] < 2^57 */
1214
175k
    felem_square_reduce(ftmp, ftmp);  /* ftmp[i] < 2^56 */
1215
1216
    /* J = ftmp2 = h * I */
1217
175k
    felem_mul_reduce(ftmp2, ftmp4, ftmp); /* ftmp2[i] < 2^56 */
1218
1219
    /* V = ftmp4 = U1 * I */
1220
175k
    felem_mul_reduce(ftmp4, ftmp3, ftmp); /* ftmp4[i] < 2^56 */
1221
1222
    /* x_out = r**2 - J - 2V */
1223
175k
    felem_square(tmp, ftmp5);      /* tmp[i] < 2^117 */
1224
175k
    felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 2^117 + 2^64 + 2^48 */
1225
175k
    felem_assign(ftmp3, ftmp4);    /* ftmp3[i] < 2^56 */
1226
175k
    felem_scalar64(ftmp4, 2);      /* ftmp4[i] < 2^57 */
1227
175k
    felem_diff_128_64(tmp, ftmp4); /* tmp[i] < 2^117 + 2^65 + 2^49 */
1228
175k
    felem_reduce(x_out, tmp);      /* x_out[i] < 2^56 */
1229
1230
    /* y_out = r(V-x_out) - 2 * s1 * J */
1231
175k
    felem_diff64(ftmp3, x_out);    /* ftmp3[i] < 2^60 + 2^56 + 2^44 */
1232
175k
    felem_mul(tmp, ftmp5, ftmp3);  /* tmp[i] < 2^116 */
1233
175k
    felem_mul(tmp2, ftmp6, ftmp2); /* tmp2[i] < 2^115 */
1234
175k
    felem_scalar128(tmp2, 2);      /* tmp2[i] < 2^116 */
1235
175k
    felem_diff128(tmp, tmp2);      /* tmp[i] < 2^127 + 2^116 + 2^111 */
1236
175k
    felem_reduce(y_out, tmp);      /* y_out[i] < 2^56 */
1237
1238
175k
    copy_conditional(x_out, x2, z1_is_zero);
1239
175k
    copy_conditional(x_out, x1, z2_is_zero);
1240
175k
    copy_conditional(y_out, y2, z1_is_zero);
1241
175k
    copy_conditional(y_out, y1, z2_is_zero);
1242
175k
    copy_conditional(z_out, z2, z1_is_zero);
1243
175k
    copy_conditional(z_out, z1, z2_is_zero);
1244
175k
    felem_assign(x3, x_out);
1245
175k
    felem_assign(y3, y_out);
1246
175k
    felem_assign(z3, z_out);
1247
175k
}
1248
1249
/*-
1250
 * Base point pre computation
1251
 * --------------------------
1252
 *
1253
 * Two different sorts of precomputed tables are used in the following code.
1254
 * Each contain various points on the curve, where each point is three field
1255
 * elements (x, y, z).
1256
 *
1257
 * For the base point table, z is usually 1 (0 for the point at infinity).
1258
 * This table has 16 elements:
1259
 * index | bits    | point
1260
 * ------+---------+------------------------------
1261
 *     0 | 0 0 0 0 | 0G
1262
 *     1 | 0 0 0 1 | 1G
1263
 *     2 | 0 0 1 0 | 2^95G
1264
 *     3 | 0 0 1 1 | (2^95 + 1)G
1265
 *     4 | 0 1 0 0 | 2^190G
1266
 *     5 | 0 1 0 1 | (2^190 + 1)G
1267
 *     6 | 0 1 1 0 | (2^190 + 2^95)G
1268
 *     7 | 0 1 1 1 | (2^190 + 2^95 + 1)G
1269
 *     8 | 1 0 0 0 | 2^285G
1270
 *     9 | 1 0 0 1 | (2^285 + 1)G
1271
 *    10 | 1 0 1 0 | (2^285 + 2^95)G
1272
 *    11 | 1 0 1 1 | (2^285 + 2^95 + 1)G
1273
 *    12 | 1 1 0 0 | (2^285 + 2^190)G
1274
 *    13 | 1 1 0 1 | (2^285 + 2^190 + 1)G
1275
 *    14 | 1 1 1 0 | (2^285 + 2^190 + 2^95)G
1276
 *    15 | 1 1 1 1 | (2^285 + 2^190 + 2^95 + 1)G
1277
 *
1278
 * The reason for this is so that we can clock bits into four different
1279
 * locations when doing simple scalar multiplies against the base point.
1280
 *
1281
 * Tables for other points have table[i] = iG for i in 0 .. 16.
1282
 */
1283
1284
/* gmul is the table of precomputed base points */
1285
static const felem gmul[16][3] = {
1286
{{0, 0, 0, 0, 0, 0, 0},
1287
 {0, 0, 0, 0, 0, 0, 0},
1288
 {0, 0, 0, 0, 0, 0, 0}},
1289
{{0x00545e3872760ab7, 0x00f25dbf55296c3a, 0x00e082542a385502, 0x008ba79b9859f741,
1290
  0x0020ad746e1d3b62, 0x0005378eb1c71ef3, 0x0000aa87ca22be8b},
1291
 {0x00431d7c90ea0e5f, 0x00b1ce1d7e819d7a, 0x0013b5f0b8c00a60, 0x00289a147ce9da31,
1292
  0x0092dc29f8f41dbd, 0x002c6f5d9e98bf92, 0x00003617de4a9626},
1293
 {1, 0, 0, 0, 0, 0, 0}},
1294
{{0x00024711cc902a90, 0x00acb2e579ab4fe1, 0x00af818a4b4d57b1, 0x00a17c7bec49c3de,
1295
  0x004280482d726a8b, 0x00128dd0f0a90f3b, 0x00004387c1c3fa3c},
1296
 {0x002ce76543cf5c3a, 0x00de6cee5ef58f0a, 0x00403e42fa561ca6, 0x00bc54d6f9cb9731,
1297
  0x007155f925fb4ff1, 0x004a9ce731b7b9bc, 0x00002609076bd7b2},
1298
 {1, 0, 0, 0, 0, 0, 0}},
1299
{{0x00e74c9182f0251d, 0x0039bf54bb111974, 0x00b9d2f2eec511d2, 0x0036b1594eb3a6a4,
1300
  0x00ac3bb82d9d564b, 0x00f9313f4615a100, 0x00006716a9a91b10},
1301
 {0x0046698116e2f15c, 0x00f34347067d3d33, 0x008de4ccfdebd002, 0x00e838c6b8e8c97b,
1302
  0x006faf0798def346, 0x007349794a57563c, 0x00002629e7e6ad84},
1303
 {1, 0, 0, 0, 0, 0, 0}},
1304
{{0x0075300e34fd163b, 0x0092e9db4e8d0ad3, 0x00254be9f625f760, 0x00512c518c72ae68,
1305
  0x009bfcf162bede5a, 0x00bf9341566ce311, 0x0000cd6175bd41cf},
1306
 {0x007dfe52af4ac70f, 0x0002159d2d5c4880, 0x00b504d16f0af8d0, 0x0014585e11f5e64c,
1307
  0x0089c6388e030967, 0x00ffb270cbfa5f71, 0x00009a15d92c3947},
1308
 {1, 0, 0, 0, 0, 0, 0}},
1309
{{0x0033fc1278dc4fe5, 0x00d53088c2caa043, 0x0085558827e2db66, 0x00c192bef387b736,
1310
  0x00df6405a2225f2c, 0x0075205aa90fd91a, 0x0000137e3f12349d},
1311
 {0x00ce5b115efcb07e, 0x00abc3308410deeb, 0x005dc6fc1de39904, 0x00907c1c496f36b4,
1312
  0x0008e6ad3926cbe1, 0x00110747b787928c, 0x0000021b9162eb7e},
1313
 {1, 0, 0, 0, 0, 0, 0}},
1314
{{0x008180042cfa26e1, 0x007b826a96254967, 0x0082473694d6b194, 0x007bd6880a45b589,
1315
  0x00c0a5097072d1a3, 0x0019186555e18b4e, 0x000020278190e5ca},
1316
 {0x00b4bef17de61ac0, 0x009535e3c38ed348, 0x002d4aa8e468ceab, 0x00ef40b431036ad3,
1317
  0x00defd52f4542857, 0x0086edbf98234266, 0x00002025b3a7814d},
1318
 {1, 0, 0, 0, 0, 0, 0}},
1319
{{0x00b238aa97b886be, 0x00ef3192d6dd3a32, 0x0079f9e01fd62df8, 0x00742e890daba6c5,
1320
  0x008e5289144408ce, 0x0073bbcc8e0171a5, 0x0000c4fd329d3b52},
1321
 {0x00c6f64a15ee23e7, 0x00dcfb7b171cad8b, 0x00039f6cbd805867, 0x00de024e428d4562,
1322
  0x00be6a594d7c64c5, 0x0078467b70dbcd64, 0x0000251f2ed7079b},
1323
 {1, 0, 0, 0, 0, 0, 0}},
1324
{{0x000e5cc25fc4b872, 0x005ebf10d31ef4e1, 0x0061e0ebd11e8256, 0x0076e026096f5a27,
1325
  0x0013e6fc44662e9a, 0x0042b00289d3597e, 0x000024f089170d88},
1326
 {0x001604d7e0effbe6, 0x0048d77cba64ec2c, 0x008166b16da19e36, 0x006b0d1a0f28c088,
1327
  0x000259fcd47754fd, 0x00cc643e4d725f9a, 0x00007b10f3c79c14},
1328
 {1, 0, 0, 0, 0, 0, 0}},
1329
{{0x00430155e3b908af, 0x00b801e4fec25226, 0x00b0d4bcfe806d26, 0x009fc4014eb13d37,
1330
  0x0066c94e44ec07e8, 0x00d16adc03874ba2, 0x000030c917a0d2a7},
1331
 {0x00edac9e21eb891c, 0x00ef0fb768102eff, 0x00c088cef272a5f3, 0x00cbf782134e2964,
1332
  0x0001044a7ba9a0e3, 0x00e363f5b194cf3c, 0x00009ce85249e372},
1333
 {1, 0, 0, 0, 0, 0, 0}},
1334
{{0x001dd492dda5a7eb, 0x008fd577be539fd1, 0x002ff4b25a5fc3f1, 0x0074a8a1b64df72f,
1335
  0x002ba3d8c204a76c, 0x009d5cff95c8235a, 0x0000e014b9406e0f},
1336
 {0x008c2e4dbfc98aba, 0x00f30bb89f1a1436, 0x00b46f7aea3e259c, 0x009224454ac02f54,
1337
  0x00906401f5645fa2, 0x003a1d1940eabc77, 0x00007c9351d680e6},
1338
 {1, 0, 0, 0, 0, 0, 0}},
1339
{{0x005a35d872ef967c, 0x0049f1b7884e1987, 0x0059d46d7e31f552, 0x00ceb4869d2d0fb6,
1340
  0x00e8e89eee56802a, 0x0049d806a774aaf2, 0x0000147e2af0ae24},
1341
 {0x005fd1bd852c6e5e, 0x00b674b7b3de6885, 0x003b9ea5eb9b6c08, 0x005c9f03babf3ef7,
1342
  0x00605337fecab3c7, 0x009a3f85b11bbcc8, 0x0000455470f330ec},
1343
 {1, 0, 0, 0, 0, 0, 0}},
1344
{{0x002197ff4d55498d, 0x00383e8916c2d8af, 0x00eb203f34d1c6d2, 0x0080367cbd11b542,
1345
  0x00769b3be864e4f5, 0x0081a8458521c7bb, 0x0000c531b34d3539},
1346
 {0x00e2a3d775fa2e13, 0x00534fc379573844, 0x00ff237d2a8db54a, 0x00d301b2335a8882,
1347
  0x000f75ea96103a80, 0x0018fecb3cdd96fa, 0x0000304bf61e94eb},
1348
 {1, 0, 0, 0, 0, 0, 0}},
1349
{{0x00b2afc332a73dbd, 0x0029a0d5bb007bc5, 0x002d628eb210f577, 0x009f59a36dd05f50,
1350
  0x006d339de4eca613, 0x00c75a71addc86bc, 0x000060384c5ea93c},
1351
 {0x00aa9641c32a30b4, 0x00cc73ae8cce565d, 0x00ec911a4df07f61, 0x00aa4b762ea4b264,
1352
  0x0096d395bb393629, 0x004efacfb7632fe0, 0x00006f252f46fa3f},
1353
 {1, 0, 0, 0, 0, 0, 0}},
1354
{{0x00567eec597c7af6, 0x0059ba6795204413, 0x00816d4e6f01196f, 0x004ae6b3eb57951d,
1355
  0x00420f5abdda2108, 0x003401d1f57ca9d9, 0x0000cf5837b0b67a},
1356
 {0x00eaa64b8aeeabf9, 0x00246ddf16bcb4de, 0x000e7e3c3aecd751, 0x0008449f04fed72e,
1357
  0x00307b67ccf09183, 0x0017108c3556b7b1, 0x0000229b2483b3bf},
1358
 {1, 0, 0, 0, 0, 0, 0}},
1359
{{0x00e7c491a7bb78a1, 0x00eafddd1d3049ab, 0x00352c05e2bc7c98, 0x003d6880c165fa5c,
1360
  0x00b6ac61cc11c97d, 0x00beeb54fcf90ce5, 0x0000dc1f0b455edc},
1361
 {0x002db2e7aee34d60, 0x0073b5f415a2d8c0, 0x00dd84e4193e9a0c, 0x00d02d873467c572,
1362
  0x0018baaeda60aee5, 0x0013fb11d697c61e, 0x000083aafcc3a973},
1363
 {1, 0, 0, 0, 0, 0, 0}}
1364
};
1365
1366
/*
1367
 * select_point selects the |idx|th point from a precomputation table and
1368
 * copies it to out.
1369
 *
1370
 * pre_comp below is of the size provided in |size|.
1371
 */
1372
static void select_point(const limb idx, unsigned int size,
1373
                         const felem pre_comp[][3], felem out[3])
1374
172k
{
1375
172k
    unsigned int i, j;
1376
172k
    limb *outlimbs = &out[0][0];
1377
1378
172k
    memset(out, 0, sizeof(*out) * 3);
1379
1380
2.99M
    for (i = 0; i < size; i++) {
1381
2.81M
        const limb *inlimbs = &pre_comp[i][0][0];
1382
2.81M
        limb mask = i ^ idx;
1383
1384
2.81M
        mask |= mask >> 4;
1385
2.81M
        mask |= mask >> 2;
1386
2.81M
        mask |= mask >> 1;
1387
2.81M
        mask &= 1;
1388
2.81M
        mask--;
1389
62.0M
        for (j = 0; j < NLIMBS * 3; j++)
1390
59.2M
            outlimbs[j] |= inlimbs[j] & mask;
1391
2.81M
    }
1392
172k
}
1393
1394
/* get_bit returns the |i|th bit in |in| */
1395
static char get_bit(const felem_bytearray in, int i)
1396
779k
{
1397
779k
    if (i < 0 || i >= 384)
1398
1.32k
        return 0;
1399
778k
    return (in[i >> 3] >> (i & 7)) & 1;
1400
779k
}
1401
1402
/*
1403
 * Interleaved point multiplication using precomputed point multiples: The
1404
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1405
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1406
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1407
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1408
 */
1409
static void batch_mul(felem x_out, felem y_out, felem z_out,
1410
                      const felem_bytearray scalars[],
1411
                      const unsigned int num_points, const u8 *g_scalar,
1412
                      const int mixed, const felem pre_comp[][17][3],
1413
                      const felem g_pre_comp[16][3])
1414
1.88k
{
1415
1.88k
    int i, skip;
1416
1.88k
    unsigned int num, gen_mul = (g_scalar != NULL);
1417
1.88k
    felem nq[3], tmp[4];
1418
1.88k
    limb bits;
1419
1.88k
    u8 sign, digit;
1420
1421
    /* set nq to the point at infinity */
1422
1.88k
    memset(nq, 0, sizeof(nq));
1423
1424
    /*
1425
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1426
     * of the generator (last quarter of rounds) and additions of other
1427
     * points multiples (every 5th round).
1428
     */
1429
1.88k
    skip = 1;                   /* save two point operations in the first
1430
                                 * round */
1431
375k
    for (i = (num_points ? 380 : 98); i >= 0; --i) {
1432
        /* double */
1433
373k
        if (!skip)
1434
372k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1435
1436
        /* add multiples of the generator */
1437
373k
        if (gen_mul && (i <= 98)) {
1438
121k
            bits = get_bit(g_scalar, i + 285) << 3;
1439
121k
            if (i < 95) {
1440
116k
                bits |= get_bit(g_scalar, i + 190) << 2;
1441
116k
                bits |= get_bit(g_scalar, i + 95) << 1;
1442
116k
                bits |= get_bit(g_scalar, i);
1443
116k
            }
1444
            /* select the point to add, in constant time */
1445
121k
            select_point(bits, 16, g_pre_comp, tmp);
1446
121k
            if (!skip) {
1447
                /* The 1 argument below is for "mixed" */
1448
120k
                point_add(nq[0],  nq[1],  nq[2],
1449
120k
                          nq[0],  nq[1],  nq[2], 1,
1450
120k
                          tmp[0], tmp[1], tmp[2]);
1451
120k
            } else {
1452
1.22k
                memcpy(nq, tmp, 3 * sizeof(felem));
1453
1.22k
                skip = 0;
1454
1.22k
            }
1455
121k
        }
1456
1457
        /* do other additions every 5 doublings */
1458
373k
        if (num_points && (i % 5 == 0)) {
1459
            /* loop over all scalars */
1460
102k
            for (num = 0; num < num_points; ++num) {
1461
51.1k
                bits = get_bit(scalars[num], i + 4) << 5;
1462
51.1k
                bits |= get_bit(scalars[num], i + 3) << 4;
1463
51.1k
                bits |= get_bit(scalars[num], i + 2) << 3;
1464
51.1k
                bits |= get_bit(scalars[num], i + 1) << 2;
1465
51.1k
                bits |= get_bit(scalars[num], i) << 1;
1466
51.1k
                bits |= get_bit(scalars[num], i - 1);
1467
51.1k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1468
1469
                /*
1470
                 * select the point to add or subtract, in constant time
1471
                 */
1472
51.1k
                select_point(digit, 17, pre_comp[num], tmp);
1473
51.1k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1474
                                            * point */
1475
51.1k
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1476
1477
51.1k
                if (!skip) {
1478
50.4k
                    point_add(nq[0],  nq[1],  nq[2],
1479
50.4k
                              nq[0],  nq[1],  nq[2], mixed,
1480
50.4k
                              tmp[0], tmp[1], tmp[2]);
1481
50.4k
                } else {
1482
664
                    memcpy(nq, tmp, 3 * sizeof(felem));
1483
664
                    skip = 0;
1484
664
                }
1485
51.1k
            }
1486
51.1k
        }
1487
373k
    }
1488
1.88k
    felem_assign(x_out, nq[0]);
1489
1.88k
    felem_assign(y_out, nq[1]);
1490
1.88k
    felem_assign(z_out, nq[2]);
1491
1.88k
}
1492
1493
/* Precomputation for the group generator. */
1494
struct nistp384_pre_comp_st {
1495
    felem g_pre_comp[16][3];
1496
    CRYPTO_REF_COUNT references;
1497
};
1498
1499
const EC_METHOD *ossl_ec_GFp_nistp384_method(void)
1500
8.92k
{
1501
8.92k
    static const EC_METHOD ret = {
1502
8.92k
        EC_FLAGS_DEFAULT_OCT,
1503
8.92k
        NID_X9_62_prime_field,
1504
8.92k
        ossl_ec_GFp_nistp384_group_init,
1505
8.92k
        ossl_ec_GFp_simple_group_finish,
1506
8.92k
        ossl_ec_GFp_simple_group_clear_finish,
1507
8.92k
        ossl_ec_GFp_nist_group_copy,
1508
8.92k
        ossl_ec_GFp_nistp384_group_set_curve,
1509
8.92k
        ossl_ec_GFp_simple_group_get_curve,
1510
8.92k
        ossl_ec_GFp_simple_group_get_degree,
1511
8.92k
        ossl_ec_group_simple_order_bits,
1512
8.92k
        ossl_ec_GFp_simple_group_check_discriminant,
1513
8.92k
        ossl_ec_GFp_simple_point_init,
1514
8.92k
        ossl_ec_GFp_simple_point_finish,
1515
8.92k
        ossl_ec_GFp_simple_point_clear_finish,
1516
8.92k
        ossl_ec_GFp_simple_point_copy,
1517
8.92k
        ossl_ec_GFp_simple_point_set_to_infinity,
1518
8.92k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1519
8.92k
        ossl_ec_GFp_nistp384_point_get_affine_coordinates,
1520
8.92k
        0, /* point_set_compressed_coordinates */
1521
8.92k
        0, /* point2oct */
1522
8.92k
        0, /* oct2point */
1523
8.92k
        ossl_ec_GFp_simple_add,
1524
8.92k
        ossl_ec_GFp_simple_dbl,
1525
8.92k
        ossl_ec_GFp_simple_invert,
1526
8.92k
        ossl_ec_GFp_simple_is_at_infinity,
1527
8.92k
        ossl_ec_GFp_simple_is_on_curve,
1528
8.92k
        ossl_ec_GFp_simple_cmp,
1529
8.92k
        ossl_ec_GFp_simple_make_affine,
1530
8.92k
        ossl_ec_GFp_simple_points_make_affine,
1531
8.92k
        ossl_ec_GFp_nistp384_points_mul,
1532
8.92k
        ossl_ec_GFp_nistp384_precompute_mult,
1533
8.92k
        ossl_ec_GFp_nistp384_have_precompute_mult,
1534
8.92k
        ossl_ec_GFp_nist_field_mul,
1535
8.92k
        ossl_ec_GFp_nist_field_sqr,
1536
8.92k
        0, /* field_div */
1537
8.92k
        ossl_ec_GFp_simple_field_inv,
1538
8.92k
        0, /* field_encode */
1539
8.92k
        0, /* field_decode */
1540
8.92k
        0, /* field_set_to_one */
1541
8.92k
        ossl_ec_key_simple_priv2oct,
1542
8.92k
        ossl_ec_key_simple_oct2priv,
1543
8.92k
        0, /* set private */
1544
8.92k
        ossl_ec_key_simple_generate_key,
1545
8.92k
        ossl_ec_key_simple_check_key,
1546
8.92k
        ossl_ec_key_simple_generate_public_key,
1547
8.92k
        0, /* keycopy */
1548
8.92k
        0, /* keyfinish */
1549
8.92k
        ossl_ecdh_simple_compute_key,
1550
8.92k
        ossl_ecdsa_simple_sign_setup,
1551
8.92k
        ossl_ecdsa_simple_sign_sig,
1552
8.92k
        ossl_ecdsa_simple_verify_sig,
1553
8.92k
        0, /* field_inverse_mod_ord */
1554
8.92k
        0, /* blind_coordinates */
1555
8.92k
        0, /* ladder_pre */
1556
8.92k
        0, /* ladder_step */
1557
8.92k
        0  /* ladder_post */
1558
8.92k
    };
1559
1560
8.92k
    return &ret;
1561
8.92k
}
1562
1563
/******************************************************************************/
1564
/*
1565
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1566
 */
1567
1568
static NISTP384_PRE_COMP *nistp384_pre_comp_new(void)
1569
0
{
1570
0
    NISTP384_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1571
1572
0
    if (ret == NULL)
1573
0
        return ret;
1574
1575
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1576
0
        OPENSSL_free(ret);
1577
0
        return NULL;
1578
0
    }
1579
0
    return ret;
1580
0
}
1581
1582
NISTP384_PRE_COMP *ossl_ec_nistp384_pre_comp_dup(NISTP384_PRE_COMP *p)
1583
0
{
1584
0
    int i;
1585
1586
0
    if (p != NULL)
1587
0
        CRYPTO_UP_REF(&p->references, &i);
1588
0
    return p;
1589
0
}
1590
1591
void ossl_ec_nistp384_pre_comp_free(NISTP384_PRE_COMP *p)
1592
0
{
1593
0
    int i;
1594
1595
0
    if (p == NULL)
1596
0
        return;
1597
1598
0
    CRYPTO_DOWN_REF(&p->references, &i);
1599
0
    REF_PRINT_COUNT("ossl_ec_nistp384", i, p);
1600
0
    if (i > 0)
1601
0
        return;
1602
0
    REF_ASSERT_ISNT(i < 0);
1603
1604
0
    CRYPTO_FREE_REF(&p->references);
1605
0
    OPENSSL_free(p);
1606
0
}
1607
1608
/******************************************************************************/
1609
/*
1610
 * OPENSSL EC_METHOD FUNCTIONS
1611
 */
1612
1613
int ossl_ec_GFp_nistp384_group_init(EC_GROUP *group)
1614
18.0k
{
1615
18.0k
    int ret;
1616
1617
18.0k
    ret = ossl_ec_GFp_simple_group_init(group);
1618
18.0k
    group->a_is_minus3 = 1;
1619
18.0k
    return ret;
1620
18.0k
}
1621
1622
int ossl_ec_GFp_nistp384_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1623
                                         const BIGNUM *a, const BIGNUM *b,
1624
                                         BN_CTX *ctx)
1625
8.92k
{
1626
8.92k
    int ret = 0;
1627
8.92k
    BIGNUM *curve_p, *curve_a, *curve_b;
1628
8.92k
#ifndef FIPS_MODULE
1629
8.92k
    BN_CTX *new_ctx = NULL;
1630
1631
8.92k
    if (ctx == NULL)
1632
0
        ctx = new_ctx = BN_CTX_new();
1633
8.92k
#endif
1634
8.92k
    if (ctx == NULL)
1635
0
        return 0;
1636
1637
8.92k
    BN_CTX_start(ctx);
1638
8.92k
    curve_p = BN_CTX_get(ctx);
1639
8.92k
    curve_a = BN_CTX_get(ctx);
1640
8.92k
    curve_b = BN_CTX_get(ctx);
1641
8.92k
    if (curve_b == NULL)
1642
0
        goto err;
1643
8.92k
    BN_bin2bn(nistp384_curve_params[0], sizeof(felem_bytearray), curve_p);
1644
8.92k
    BN_bin2bn(nistp384_curve_params[1], sizeof(felem_bytearray), curve_a);
1645
8.92k
    BN_bin2bn(nistp384_curve_params[2], sizeof(felem_bytearray), curve_b);
1646
8.92k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1647
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1648
0
        goto err;
1649
0
    }
1650
8.92k
    group->field_mod_func = BN_nist_mod_384;
1651
8.92k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1652
8.92k
 err:
1653
8.92k
    BN_CTX_end(ctx);
1654
8.92k
#ifndef FIPS_MODULE
1655
8.92k
    BN_CTX_free(new_ctx);
1656
8.92k
#endif
1657
8.92k
    return ret;
1658
8.92k
}
1659
1660
/*
1661
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1662
 * (X/Z^2, Y/Z^3)
1663
 */
1664
int ossl_ec_GFp_nistp384_point_get_affine_coordinates(const EC_GROUP *group,
1665
                                                      const EC_POINT *point,
1666
                                                      BIGNUM *x, BIGNUM *y,
1667
                                                      BN_CTX *ctx)
1668
2.25k
{
1669
2.25k
    felem z1, z2, x_in, y_in, x_out, y_out;
1670
2.25k
    widefelem tmp;
1671
1672
2.25k
    if (EC_POINT_is_at_infinity(group, point)) {
1673
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1674
0
        return 0;
1675
0
    }
1676
2.25k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1677
2.25k
        (!BN_to_felem(z1, point->Z)))
1678
0
        return 0;
1679
2.25k
    felem_inv(z2, z1);
1680
2.25k
    felem_square(tmp, z2);
1681
2.25k
    felem_reduce(z1, tmp);
1682
2.25k
    felem_mul(tmp, x_in, z1);
1683
2.25k
    felem_reduce(x_in, tmp);
1684
2.25k
    felem_contract(x_out, x_in);
1685
2.25k
    if (x != NULL) {
1686
2.25k
        if (!felem_to_BN(x, x_out)) {
1687
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1688
0
            return 0;
1689
0
        }
1690
2.25k
    }
1691
2.25k
    felem_mul(tmp, z1, z2);
1692
2.25k
    felem_reduce(z1, tmp);
1693
2.25k
    felem_mul(tmp, y_in, z1);
1694
2.25k
    felem_reduce(y_in, tmp);
1695
2.25k
    felem_contract(y_out, y_in);
1696
2.25k
    if (y != NULL) {
1697
1.87k
        if (!felem_to_BN(y, y_out)) {
1698
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1699
0
            return 0;
1700
0
        }
1701
1.87k
    }
1702
2.25k
    return 1;
1703
2.25k
}
1704
1705
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1706
static void make_points_affine(size_t num, felem points[][3],
1707
                               felem tmp_felems[])
1708
0
{
1709
    /*
1710
     * Runs in constant time, unless an input is the point at infinity (which
1711
     * normally shouldn't happen).
1712
     */
1713
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1714
0
                                                  points,
1715
0
                                                  sizeof(felem),
1716
0
                                                  tmp_felems,
1717
0
                                                  (void (*)(void *))felem_one,
1718
0
                                                  felem_is_zero_int,
1719
0
                                                  (void (*)(void *, const void *))
1720
0
                                                  felem_assign,
1721
0
                                                  (void (*)(void *, const void *))
1722
0
                                                  felem_square_reduce,
1723
0
                                                  (void (*)(void *, const void *, const void*))
1724
0
                                                  felem_mul_reduce,
1725
0
                                                  (void (*)(void *, const void *))
1726
0
                                                  felem_inv,
1727
0
                                                  (void (*)(void *, const void *))
1728
0
                                                  felem_contract);
1729
0
}
1730
1731
/*
1732
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1733
 * values Result is stored in r (r can equal one of the inputs).
1734
 */
1735
int ossl_ec_GFp_nistp384_points_mul(const EC_GROUP *group, EC_POINT *r,
1736
                                    const BIGNUM *scalar, size_t num,
1737
                                    const EC_POINT *points[],
1738
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1739
1.88k
{
1740
1.88k
    int ret = 0;
1741
1.88k
    int j;
1742
1.88k
    int mixed = 0;
1743
1.88k
    BIGNUM *x, *y, *z, *tmp_scalar;
1744
1.88k
    felem_bytearray g_secret;
1745
1.88k
    felem_bytearray *secrets = NULL;
1746
1.88k
    felem (*pre_comp)[17][3] = NULL;
1747
1.88k
    felem *tmp_felems = NULL;
1748
1.88k
    unsigned int i;
1749
1.88k
    int num_bytes;
1750
1.88k
    int have_pre_comp = 0;
1751
1.88k
    size_t num_points = num;
1752
1.88k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1753
1.88k
    NISTP384_PRE_COMP *pre = NULL;
1754
1.88k
    felem(*g_pre_comp)[3] = NULL;
1755
1.88k
    EC_POINT *generator = NULL;
1756
1.88k
    const EC_POINT *p = NULL;
1757
1.88k
    const BIGNUM *p_scalar = NULL;
1758
1759
1.88k
    BN_CTX_start(ctx);
1760
1.88k
    x = BN_CTX_get(ctx);
1761
1.88k
    y = BN_CTX_get(ctx);
1762
1.88k
    z = BN_CTX_get(ctx);
1763
1.88k
    tmp_scalar = BN_CTX_get(ctx);
1764
1.88k
    if (tmp_scalar == NULL)
1765
0
        goto err;
1766
1767
1.88k
    if (scalar != NULL) {
1768
1.23k
        pre = group->pre_comp.nistp384;
1769
1.23k
        if (pre)
1770
            /* we have precomputation, try to use it */
1771
0
            g_pre_comp = &pre->g_pre_comp[0];
1772
1.23k
        else
1773
            /* try to use the standard precomputation */
1774
1.23k
            g_pre_comp = (felem(*)[3]) gmul;
1775
1.23k
        generator = EC_POINT_new(group);
1776
1.23k
        if (generator == NULL)
1777
0
            goto err;
1778
        /* get the generator from precomputation */
1779
1.23k
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1780
1.23k
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1781
1.23k
            !felem_to_BN(z, g_pre_comp[1][2])) {
1782
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1783
0
            goto err;
1784
0
        }
1785
1.23k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1786
1.23k
                                                                generator,
1787
1.23k
                                                                x, y, z, ctx))
1788
0
            goto err;
1789
1.23k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1790
            /* precomputation matches generator */
1791
1.23k
            have_pre_comp = 1;
1792
0
        else
1793
            /*
1794
             * we don't have valid precomputation: treat the generator as a
1795
             * random point
1796
             */
1797
0
            num_points++;
1798
1.23k
    }
1799
1800
1.88k
    if (num_points > 0) {
1801
664
        if (num_points >= 2) {
1802
            /*
1803
             * unless we precompute multiples for just one point, converting
1804
             * those into affine form is time well spent
1805
             */
1806
0
            mixed = 1;
1807
0
        }
1808
664
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1809
664
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1810
664
        if (mixed)
1811
0
            tmp_felems =
1812
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1813
664
        if ((secrets == NULL) || (pre_comp == NULL)
1814
664
            || (mixed && (tmp_felems == NULL)))
1815
0
            goto err;
1816
1817
        /*
1818
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1819
         * i.e., they contribute nothing to the linear combination
1820
         */
1821
1.32k
        for (i = 0; i < num_points; ++i) {
1822
664
            if (i == num) {
1823
                /*
1824
                 * we didn't have a valid precomputation, so we pick the
1825
                 * generator
1826
                 */
1827
0
                p = EC_GROUP_get0_generator(group);
1828
0
                p_scalar = scalar;
1829
664
            } else {
1830
                /* the i^th point */
1831
664
                p = points[i];
1832
664
                p_scalar = scalars[i];
1833
664
            }
1834
664
            if (p_scalar != NULL && p != NULL) {
1835
                /* reduce scalar to 0 <= scalar < 2^384 */
1836
664
                if ((BN_num_bits(p_scalar) > 384)
1837
664
                    || (BN_is_negative(p_scalar))) {
1838
                    /*
1839
                     * this is an unusual input, and we don't guarantee
1840
                     * constant-timeness
1841
                     */
1842
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1843
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1844
0
                        goto err;
1845
0
                    }
1846
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1847
0
                                               secrets[i], sizeof(secrets[i]));
1848
664
                } else {
1849
664
                    num_bytes = BN_bn2lebinpad(p_scalar,
1850
664
                                               secrets[i], sizeof(secrets[i]));
1851
664
                }
1852
664
                if (num_bytes < 0) {
1853
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1854
0
                    goto err;
1855
0
                }
1856
                /* precompute multiples */
1857
664
                if ((!BN_to_felem(x_out, p->X)) ||
1858
664
                    (!BN_to_felem(y_out, p->Y)) ||
1859
664
                    (!BN_to_felem(z_out, p->Z)))
1860
0
                    goto err;
1861
664
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1862
664
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1863
664
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1864
10.6k
                for (j = 2; j <= 16; ++j) {
1865
9.96k
                    if (j & 1) {
1866
4.64k
                        point_add(pre_comp[i][j][0],     pre_comp[i][j][1],     pre_comp[i][j][2],
1867
4.64k
                                  pre_comp[i][1][0],     pre_comp[i][1][1],     pre_comp[i][1][2], 0,
1868
4.64k
                                  pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]);
1869
5.31k
                    } else {
1870
5.31k
                        point_double(pre_comp[i][j][0],     pre_comp[i][j][1],     pre_comp[i][j][2],
1871
5.31k
                                     pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]);
1872
5.31k
                    }
1873
9.96k
                }
1874
664
            }
1875
664
        }
1876
664
        if (mixed)
1877
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1878
664
    }
1879
1880
    /* the scalar for the generator */
1881
1.88k
    if (scalar != NULL && have_pre_comp) {
1882
1.23k
        memset(g_secret, 0, sizeof(g_secret));
1883
        /* reduce scalar to 0 <= scalar < 2^384 */
1884
1.23k
        if ((BN_num_bits(scalar) > 384) || (BN_is_negative(scalar))) {
1885
            /*
1886
             * this is an unusual input, and we don't guarantee
1887
             * constant-timeness
1888
             */
1889
22
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1890
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1891
0
                goto err;
1892
0
            }
1893
22
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1894
1.20k
        } else {
1895
1.20k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1896
1.20k
        }
1897
        /* do the multiplication with generator precomputation */
1898
1.23k
        batch_mul(x_out, y_out, z_out,
1899
1.23k
                  (const felem_bytearray(*))secrets, num_points,
1900
1.23k
                  g_secret,
1901
1.23k
                  mixed, (const felem(*)[17][3])pre_comp,
1902
1.23k
                  (const felem(*)[3])g_pre_comp);
1903
1.23k
    } else {
1904
        /* do the multiplication without generator precomputation */
1905
655
        batch_mul(x_out, y_out, z_out,
1906
655
                  (const felem_bytearray(*))secrets, num_points,
1907
655
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1908
655
    }
1909
    /* reduce the output to its unique minimal representation */
1910
1.88k
    felem_contract(x_in, x_out);
1911
1.88k
    felem_contract(y_in, y_out);
1912
1.88k
    felem_contract(z_in, z_out);
1913
1.88k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1914
1.88k
        (!felem_to_BN(z, z_in))) {
1915
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1916
0
        goto err;
1917
0
    }
1918
1.88k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1919
1.88k
                                                             ctx);
1920
1921
1.88k
 err:
1922
1.88k
    BN_CTX_end(ctx);
1923
1.88k
    EC_POINT_free(generator);
1924
1.88k
    OPENSSL_free(secrets);
1925
1.88k
    OPENSSL_free(pre_comp);
1926
1.88k
    OPENSSL_free(tmp_felems);
1927
1.88k
    return ret;
1928
1.88k
}
1929
1930
int ossl_ec_GFp_nistp384_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1931
0
{
1932
0
    int ret = 0;
1933
0
    NISTP384_PRE_COMP *pre = NULL;
1934
0
    int i, j;
1935
0
    BIGNUM *x, *y;
1936
0
    EC_POINT *generator = NULL;
1937
0
    felem tmp_felems[16];
1938
0
#ifndef FIPS_MODULE
1939
0
    BN_CTX *new_ctx = NULL;
1940
0
#endif
1941
1942
    /* throw away old precomputation */
1943
0
    EC_pre_comp_free(group);
1944
1945
0
#ifndef FIPS_MODULE
1946
0
    if (ctx == NULL)
1947
0
        ctx = new_ctx = BN_CTX_new();
1948
0
#endif
1949
0
    if (ctx == NULL)
1950
0
        return 0;
1951
1952
0
    BN_CTX_start(ctx);
1953
0
    x = BN_CTX_get(ctx);
1954
0
    y = BN_CTX_get(ctx);
1955
0
    if (y == NULL)
1956
0
        goto err;
1957
    /* get the generator */
1958
0
    if (group->generator == NULL)
1959
0
        goto err;
1960
0
    generator = EC_POINT_new(group);
1961
0
    if (generator == NULL)
1962
0
        goto err;
1963
0
    BN_bin2bn(nistp384_curve_params[3], sizeof(felem_bytearray), x);
1964
0
    BN_bin2bn(nistp384_curve_params[4], sizeof(felem_bytearray), y);
1965
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1966
0
        goto err;
1967
0
    if ((pre = nistp384_pre_comp_new()) == NULL)
1968
0
        goto err;
1969
    /*
1970
     * if the generator is the standard one, use built-in precomputation
1971
     */
1972
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1973
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1974
0
        goto done;
1975
0
    }
1976
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
1977
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
1978
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
1979
0
        goto err;
1980
    /* compute 2^95*G, 2^190*G, 2^285*G */
1981
0
    for (i = 1; i <= 4; i <<= 1) {
1982
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2],
1983
0
                     pre->g_pre_comp[i][0],  pre->g_pre_comp[i][1],    pre->g_pre_comp[i][2]);
1984
0
        for (j = 0; j < 94; ++j) {
1985
0
            point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2],
1986
0
                         pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2]);
1987
0
        }
1988
0
    }
1989
    /* g_pre_comp[0] is the point at infinity */
1990
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
1991
    /* the remaining multiples */
1992
    /* 2^95*G + 2^190*G */
1993
0
    point_add(pre->g_pre_comp[6][0],  pre->g_pre_comp[6][1],  pre->g_pre_comp[6][2],
1994
0
              pre->g_pre_comp[4][0],  pre->g_pre_comp[4][1],  pre->g_pre_comp[4][2], 0,
1995
0
              pre->g_pre_comp[2][0],  pre->g_pre_comp[2][1],  pre->g_pre_comp[2][2]);
1996
    /* 2^95*G + 2^285*G */
1997
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], pre->g_pre_comp[10][2],
1998
0
              pre->g_pre_comp[8][0],  pre->g_pre_comp[8][1],  pre->g_pre_comp[8][2], 0,
1999
0
              pre->g_pre_comp[2][0],  pre->g_pre_comp[2][1],  pre->g_pre_comp[2][2]);
2000
    /* 2^190*G + 2^285*G */
2001
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2002
0
              pre->g_pre_comp[8][0],  pre->g_pre_comp[8][1],  pre->g_pre_comp[8][2], 0,
2003
0
              pre->g_pre_comp[4][0],  pre->g_pre_comp[4][1],  pre->g_pre_comp[4][2]);
2004
    /* 2^95*G + 2^190*G + 2^285*G */
2005
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], pre->g_pre_comp[14][2],
2006
0
              pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], 0,
2007
0
              pre->g_pre_comp[2][0],  pre->g_pre_comp[2][1],  pre->g_pre_comp[2][2]);
2008
0
    for (i = 1; i < 8; ++i) {
2009
        /* odd multiples: add G */
2010
0
        point_add(pre->g_pre_comp[2 * i + 1][0], pre->g_pre_comp[2 * i + 1][1], pre->g_pre_comp[2 * i + 1][2],
2011
0
                  pre->g_pre_comp[2 * i][0],     pre->g_pre_comp[2 * i][1],     pre->g_pre_comp[2 * i][2], 0,
2012
0
                  pre->g_pre_comp[1][0],         pre->g_pre_comp[1][1],         pre->g_pre_comp[1][2]);
2013
0
    }
2014
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2015
2016
0
 done:
2017
0
    SETPRECOMP(group, nistp384, pre);
2018
0
    ret = 1;
2019
0
    pre = NULL;
2020
0
 err:
2021
0
    BN_CTX_end(ctx);
2022
0
    EC_POINT_free(generator);
2023
0
#ifndef FIPS_MODULE
2024
0
    BN_CTX_free(new_ctx);
2025
0
#endif
2026
0
    ossl_ec_nistp384_pre_comp_free(pre);
2027
0
    return ret;
2028
0
}
2029
2030
int ossl_ec_GFp_nistp384_have_precompute_mult(const EC_GROUP *group)
2031
0
{
2032
0
    return HAVEPRECOMP(group, nistp384);
2033
0
}