/src/openssl32/crypto/modes/gcm128.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2010-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <string.h> |
11 | | #include <openssl/crypto.h> |
12 | | #include "internal/cryptlib.h" |
13 | | #include "internal/endian.h" |
14 | | #include "crypto/modes.h" |
15 | | |
16 | | #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT) |
17 | | typedef size_t size_t_aX __attribute((__aligned__(1))); |
18 | | #else |
19 | | typedef size_t size_t_aX; |
20 | | #endif |
21 | | |
22 | | #if defined(BSWAP4) && defined(STRICT_ALIGNMENT) |
23 | | /* redefine, because alignment is ensured */ |
24 | | # undef GETU32 |
25 | | # define GETU32(p) BSWAP4(*(const u32 *)(p)) |
26 | | # undef PUTU32 |
27 | | # define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v) |
28 | | #endif |
29 | | |
30 | | /* RISC-V uses C implementation as a fallback. */ |
31 | | #if defined(__riscv) |
32 | | # define INCLUDE_C_GMULT_4BIT |
33 | | # define INCLUDE_C_GHASH_4BIT |
34 | | #endif |
35 | | |
36 | | #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16)) |
37 | 0 | #define REDUCE1BIT(V) do { \ |
38 | 0 | if (sizeof(size_t)==8) { \ |
39 | 0 | u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \ |
40 | 0 | V.lo = (V.hi<<63)|(V.lo>>1); \ |
41 | 0 | V.hi = (V.hi>>1 )^T; \ |
42 | 0 | } \ |
43 | 0 | else { \ |
44 | 0 | u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \ |
45 | 0 | V.lo = (V.hi<<63)|(V.lo>>1); \ |
46 | 0 | V.hi = (V.hi>>1 )^((u64)T<<32); \ |
47 | 0 | } \ |
48 | 0 | } while(0) |
49 | | |
50 | | /*- |
51 | | * |
52 | | * NOTE: TABLE_BITS and all non-4bit implementations have been removed in 3.1. |
53 | | * |
54 | | * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should |
55 | | * never be set to 8. 8 is effectively reserved for testing purposes. |
56 | | * TABLE_BITS>1 are lookup-table-driven implementations referred to as |
57 | | * "Shoup's" in GCM specification. In other words OpenSSL does not cover |
58 | | * whole spectrum of possible table driven implementations. Why? In |
59 | | * non-"Shoup's" case memory access pattern is segmented in such manner, |
60 | | * that it's trivial to see that cache timing information can reveal |
61 | | * fair portion of intermediate hash value. Given that ciphertext is |
62 | | * always available to attacker, it's possible for him to attempt to |
63 | | * deduce secret parameter H and if successful, tamper with messages |
64 | | * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's |
65 | | * not as trivial, but there is no reason to believe that it's resistant |
66 | | * to cache-timing attack. And the thing about "8-bit" implementation is |
67 | | * that it consumes 16 (sixteen) times more memory, 4KB per individual |
68 | | * key + 1KB shared. Well, on pros side it should be twice as fast as |
69 | | * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version |
70 | | * was observed to run ~75% faster, closer to 100% for commercial |
71 | | * compilers... Yet "4-bit" procedure is preferred, because it's |
72 | | * believed to provide better security-performance balance and adequate |
73 | | * all-round performance. "All-round" refers to things like: |
74 | | * |
75 | | * - shorter setup time effectively improves overall timing for |
76 | | * handling short messages; |
77 | | * - larger table allocation can become unbearable because of VM |
78 | | * subsystem penalties (for example on Windows large enough free |
79 | | * results in VM working set trimming, meaning that consequent |
80 | | * malloc would immediately incur working set expansion); |
81 | | * - larger table has larger cache footprint, which can affect |
82 | | * performance of other code paths (not necessarily even from same |
83 | | * thread in Hyper-Threading world); |
84 | | * |
85 | | * Value of 1 is not appropriate for performance reasons. |
86 | | */ |
87 | | |
88 | | static void gcm_init_4bit(u128 Htable[16], const u64 H[2]) |
89 | 0 | { |
90 | 0 | u128 V; |
91 | | # if defined(OPENSSL_SMALL_FOOTPRINT) |
92 | | int i; |
93 | | # endif |
94 | |
|
95 | 0 | Htable[0].hi = 0; |
96 | 0 | Htable[0].lo = 0; |
97 | 0 | V.hi = H[0]; |
98 | 0 | V.lo = H[1]; |
99 | |
|
100 | | # if defined(OPENSSL_SMALL_FOOTPRINT) |
101 | | for (Htable[8] = V, i = 4; i > 0; i >>= 1) { |
102 | | REDUCE1BIT(V); |
103 | | Htable[i] = V; |
104 | | } |
105 | | |
106 | | for (i = 2; i < 16; i <<= 1) { |
107 | | u128 *Hi = Htable + i; |
108 | | int j; |
109 | | for (V = *Hi, j = 1; j < i; ++j) { |
110 | | Hi[j].hi = V.hi ^ Htable[j].hi; |
111 | | Hi[j].lo = V.lo ^ Htable[j].lo; |
112 | | } |
113 | | } |
114 | | # else |
115 | 0 | Htable[8] = V; |
116 | 0 | REDUCE1BIT(V); |
117 | 0 | Htable[4] = V; |
118 | 0 | REDUCE1BIT(V); |
119 | 0 | Htable[2] = V; |
120 | 0 | REDUCE1BIT(V); |
121 | 0 | Htable[1] = V; |
122 | 0 | Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; |
123 | 0 | V = Htable[4]; |
124 | 0 | Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; |
125 | 0 | Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; |
126 | 0 | Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; |
127 | 0 | V = Htable[8]; |
128 | 0 | Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; |
129 | 0 | Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; |
130 | 0 | Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; |
131 | 0 | Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; |
132 | 0 | Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; |
133 | 0 | Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; |
134 | 0 | Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; |
135 | 0 | # endif |
136 | | # if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) |
137 | | /* |
138 | | * ARM assembler expects specific dword order in Htable. |
139 | | */ |
140 | | { |
141 | | int j; |
142 | | DECLARE_IS_ENDIAN; |
143 | | |
144 | | if (IS_LITTLE_ENDIAN) |
145 | | for (j = 0; j < 16; ++j) { |
146 | | V = Htable[j]; |
147 | | Htable[j].hi = V.lo; |
148 | | Htable[j].lo = V.hi; |
149 | | } else |
150 | | for (j = 0; j < 16; ++j) { |
151 | | V = Htable[j]; |
152 | | Htable[j].hi = V.lo << 32 | V.lo >> 32; |
153 | | Htable[j].lo = V.hi << 32 | V.hi >> 32; |
154 | | } |
155 | | } |
156 | | # endif |
157 | 0 | } |
158 | | |
159 | | # if !defined(GHASH_ASM) || defined(INCLUDE_C_GMULT_4BIT) |
160 | | static const size_t rem_4bit[16] = { |
161 | | PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), |
162 | | PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), |
163 | | PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), |
164 | | PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) |
165 | | }; |
166 | | |
167 | | static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) |
168 | | { |
169 | | u128 Z; |
170 | | int cnt = 15; |
171 | | size_t rem, nlo, nhi; |
172 | | DECLARE_IS_ENDIAN; |
173 | | |
174 | | nlo = ((const u8 *)Xi)[15]; |
175 | | nhi = nlo >> 4; |
176 | | nlo &= 0xf; |
177 | | |
178 | | Z.hi = Htable[nlo].hi; |
179 | | Z.lo = Htable[nlo].lo; |
180 | | |
181 | | while (1) { |
182 | | rem = (size_t)Z.lo & 0xf; |
183 | | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
184 | | Z.hi = (Z.hi >> 4); |
185 | | if (sizeof(size_t) == 8) |
186 | | Z.hi ^= rem_4bit[rem]; |
187 | | else |
188 | | Z.hi ^= (u64)rem_4bit[rem] << 32; |
189 | | |
190 | | Z.hi ^= Htable[nhi].hi; |
191 | | Z.lo ^= Htable[nhi].lo; |
192 | | |
193 | | if (--cnt < 0) |
194 | | break; |
195 | | |
196 | | nlo = ((const u8 *)Xi)[cnt]; |
197 | | nhi = nlo >> 4; |
198 | | nlo &= 0xf; |
199 | | |
200 | | rem = (size_t)Z.lo & 0xf; |
201 | | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
202 | | Z.hi = (Z.hi >> 4); |
203 | | if (sizeof(size_t) == 8) |
204 | | Z.hi ^= rem_4bit[rem]; |
205 | | else |
206 | | Z.hi ^= (u64)rem_4bit[rem] << 32; |
207 | | |
208 | | Z.hi ^= Htable[nlo].hi; |
209 | | Z.lo ^= Htable[nlo].lo; |
210 | | } |
211 | | |
212 | | if (IS_LITTLE_ENDIAN) { |
213 | | # ifdef BSWAP8 |
214 | | Xi[0] = BSWAP8(Z.hi); |
215 | | Xi[1] = BSWAP8(Z.lo); |
216 | | # else |
217 | | u8 *p = (u8 *)Xi; |
218 | | u32 v; |
219 | | v = (u32)(Z.hi >> 32); |
220 | | PUTU32(p, v); |
221 | | v = (u32)(Z.hi); |
222 | | PUTU32(p + 4, v); |
223 | | v = (u32)(Z.lo >> 32); |
224 | | PUTU32(p + 8, v); |
225 | | v = (u32)(Z.lo); |
226 | | PUTU32(p + 12, v); |
227 | | # endif |
228 | | } else { |
229 | | Xi[0] = Z.hi; |
230 | | Xi[1] = Z.lo; |
231 | | } |
232 | | } |
233 | | |
234 | | # endif |
235 | | |
236 | | # if !defined(GHASH_ASM) || defined(INCLUDE_C_GHASH_4BIT) |
237 | | # if !defined(OPENSSL_SMALL_FOOTPRINT) |
238 | | /* |
239 | | * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for |
240 | | * details... Compiler-generated code doesn't seem to give any |
241 | | * performance improvement, at least not on x86[_64]. It's here |
242 | | * mostly as reference and a placeholder for possible future |
243 | | * non-trivial optimization[s]... |
244 | | */ |
245 | | static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], |
246 | | const u8 *inp, size_t len) |
247 | | { |
248 | | u128 Z; |
249 | | int cnt; |
250 | | size_t rem, nlo, nhi; |
251 | | DECLARE_IS_ENDIAN; |
252 | | |
253 | | do { |
254 | | cnt = 15; |
255 | | nlo = ((const u8 *)Xi)[15]; |
256 | | nlo ^= inp[15]; |
257 | | nhi = nlo >> 4; |
258 | | nlo &= 0xf; |
259 | | |
260 | | Z.hi = Htable[nlo].hi; |
261 | | Z.lo = Htable[nlo].lo; |
262 | | |
263 | | while (1) { |
264 | | rem = (size_t)Z.lo & 0xf; |
265 | | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
266 | | Z.hi = (Z.hi >> 4); |
267 | | if (sizeof(size_t) == 8) |
268 | | Z.hi ^= rem_4bit[rem]; |
269 | | else |
270 | | Z.hi ^= (u64)rem_4bit[rem] << 32; |
271 | | |
272 | | Z.hi ^= Htable[nhi].hi; |
273 | | Z.lo ^= Htable[nhi].lo; |
274 | | |
275 | | if (--cnt < 0) |
276 | | break; |
277 | | |
278 | | nlo = ((const u8 *)Xi)[cnt]; |
279 | | nlo ^= inp[cnt]; |
280 | | nhi = nlo >> 4; |
281 | | nlo &= 0xf; |
282 | | |
283 | | rem = (size_t)Z.lo & 0xf; |
284 | | Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
285 | | Z.hi = (Z.hi >> 4); |
286 | | if (sizeof(size_t) == 8) |
287 | | Z.hi ^= rem_4bit[rem]; |
288 | | else |
289 | | Z.hi ^= (u64)rem_4bit[rem] << 32; |
290 | | |
291 | | Z.hi ^= Htable[nlo].hi; |
292 | | Z.lo ^= Htable[nlo].lo; |
293 | | } |
294 | | |
295 | | if (IS_LITTLE_ENDIAN) { |
296 | | # ifdef BSWAP8 |
297 | | Xi[0] = BSWAP8(Z.hi); |
298 | | Xi[1] = BSWAP8(Z.lo); |
299 | | # else |
300 | | u8 *p = (u8 *)Xi; |
301 | | u32 v; |
302 | | v = (u32)(Z.hi >> 32); |
303 | | PUTU32(p, v); |
304 | | v = (u32)(Z.hi); |
305 | | PUTU32(p + 4, v); |
306 | | v = (u32)(Z.lo >> 32); |
307 | | PUTU32(p + 8, v); |
308 | | v = (u32)(Z.lo); |
309 | | PUTU32(p + 12, v); |
310 | | # endif |
311 | | } else { |
312 | | Xi[0] = Z.hi; |
313 | | Xi[1] = Z.lo; |
314 | | } |
315 | | |
316 | | inp += 16; |
317 | | /* Block size is 128 bits so len is a multiple of 16 */ |
318 | | len -= 16; |
319 | | } while (len > 0); |
320 | | } |
321 | | # endif |
322 | | # else |
323 | | void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]); |
324 | | void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
325 | | size_t len); |
326 | | # endif |
327 | | |
328 | 291k | # define GCM_MUL(ctx) ctx->funcs.gmult(ctx->Xi.u,ctx->Htable) |
329 | | # if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) |
330 | 3.19M | # define GHASH(ctx,in,len) ctx->funcs.ghash((ctx)->Xi.u,(ctx)->Htable,in,len) |
331 | | /* |
332 | | * GHASH_CHUNK is "stride parameter" missioned to mitigate cache trashing |
333 | | * effect. In other words idea is to hash data while it's still in L1 cache |
334 | | * after encryption pass... |
335 | | */ |
336 | 2.24M | # define GHASH_CHUNK (3*1024) |
337 | | # endif |
338 | | |
339 | | #if (defined(GHASH_ASM) || defined(OPENSSL_CPUID_OBJ)) |
340 | | # if !defined(I386_ONLY) && \ |
341 | | (defined(__i386) || defined(__i386__) || \ |
342 | | defined(__x86_64) || defined(__x86_64__) || \ |
343 | | defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) |
344 | | # define GHASH_ASM_X86_OR_64 |
345 | | |
346 | | void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]); |
347 | | void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]); |
348 | | void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
349 | | size_t len); |
350 | | |
351 | | # if defined(__i386) || defined(__i386__) || defined(_M_IX86) |
352 | | # define gcm_init_avx gcm_init_clmul |
353 | | # define gcm_gmult_avx gcm_gmult_clmul |
354 | | # define gcm_ghash_avx gcm_ghash_clmul |
355 | | # else |
356 | | void gcm_init_avx(u128 Htable[16], const u64 Xi[2]); |
357 | | void gcm_gmult_avx(u64 Xi[2], const u128 Htable[16]); |
358 | | void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
359 | | size_t len); |
360 | | # endif |
361 | | |
362 | | # if defined(__i386) || defined(__i386__) || defined(_M_IX86) |
363 | | # define GHASH_ASM_X86 |
364 | | void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]); |
365 | | void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
366 | | size_t len); |
367 | | |
368 | | void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]); |
369 | | void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
370 | | size_t len); |
371 | | # endif |
372 | | # elif defined(__arm__) || defined(__arm) || defined(__aarch64__) || defined(_M_ARM64) |
373 | | # include "arm_arch.h" |
374 | | # if __ARM_MAX_ARCH__>=7 |
375 | | # define GHASH_ASM_ARM |
376 | | # define PMULL_CAPABLE (OPENSSL_armcap_P & ARMV8_PMULL) |
377 | | # if defined(__arm__) || defined(__arm) |
378 | | # define NEON_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) |
379 | | # endif |
380 | | void gcm_init_neon(u128 Htable[16], const u64 Xi[2]); |
381 | | void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]); |
382 | | void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
383 | | size_t len); |
384 | | void gcm_init_v8(u128 Htable[16], const u64 Xi[2]); |
385 | | void gcm_gmult_v8(u64 Xi[2], const u128 Htable[16]); |
386 | | void gcm_ghash_v8(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
387 | | size_t len); |
388 | | # endif |
389 | | # elif defined(__sparc__) || defined(__sparc) |
390 | | # include "crypto/sparc_arch.h" |
391 | | # define GHASH_ASM_SPARC |
392 | | void gcm_init_vis3(u128 Htable[16], const u64 Xi[2]); |
393 | | void gcm_gmult_vis3(u64 Xi[2], const u128 Htable[16]); |
394 | | void gcm_ghash_vis3(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
395 | | size_t len); |
396 | | # elif defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC)) |
397 | | # include "crypto/ppc_arch.h" |
398 | | # define GHASH_ASM_PPC |
399 | | void gcm_init_p8(u128 Htable[16], const u64 Xi[2]); |
400 | | void gcm_gmult_p8(u64 Xi[2], const u128 Htable[16]); |
401 | | void gcm_ghash_p8(u64 Xi[2], const u128 Htable[16], const u8 *inp, |
402 | | size_t len); |
403 | | # elif defined(OPENSSL_CPUID_OBJ) && defined(__riscv) && __riscv_xlen == 64 |
404 | | # include "crypto/riscv_arch.h" |
405 | | # define GHASH_ASM_RV64I |
406 | | /* Zbc/Zbkc (scalar crypto with clmul) based routines. */ |
407 | | void gcm_init_rv64i_zbc(u128 Htable[16], const u64 Xi[2]); |
408 | | void gcm_init_rv64i_zbc__zbb(u128 Htable[16], const u64 Xi[2]); |
409 | | void gcm_init_rv64i_zbc__zbkb(u128 Htable[16], const u64 Xi[2]); |
410 | | void gcm_gmult_rv64i_zbc(u64 Xi[2], const u128 Htable[16]); |
411 | | void gcm_gmult_rv64i_zbc__zbkb(u64 Xi[2], const u128 Htable[16]); |
412 | | void gcm_ghash_rv64i_zbc(u64 Xi[2], const u128 Htable[16], |
413 | | const u8 *inp, size_t len); |
414 | | void gcm_ghash_rv64i_zbc__zbkb(u64 Xi[2], const u128 Htable[16], |
415 | | const u8 *inp, size_t len); |
416 | | # endif |
417 | | #endif |
418 | | |
419 | | static void gcm_get_funcs(struct gcm_funcs_st *ctx) |
420 | 224k | { |
421 | | /* set defaults -- overridden below as needed */ |
422 | 224k | ctx->ginit = gcm_init_4bit; |
423 | | #if !defined(GHASH_ASM) |
424 | | ctx->gmult = gcm_gmult_4bit; |
425 | | #else |
426 | 224k | ctx->gmult = NULL; |
427 | 224k | #endif |
428 | | #if !defined(GHASH_ASM) && !defined(OPENSSL_SMALL_FOOTPRINT) |
429 | | ctx->ghash = gcm_ghash_4bit; |
430 | | #else |
431 | 224k | ctx->ghash = NULL; |
432 | 224k | #endif |
433 | | |
434 | 224k | #if defined(GHASH_ASM_X86_OR_64) |
435 | 224k | # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) |
436 | | /* x86_64 */ |
437 | 224k | if (OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */ |
438 | 224k | if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */ |
439 | 224k | ctx->ginit = gcm_init_avx; |
440 | 224k | ctx->gmult = gcm_gmult_avx; |
441 | 224k | ctx->ghash = gcm_ghash_avx; |
442 | 224k | } else { |
443 | 0 | ctx->ginit = gcm_init_clmul; |
444 | 0 | ctx->gmult = gcm_gmult_clmul; |
445 | 0 | ctx->ghash = gcm_ghash_clmul; |
446 | 0 | } |
447 | 224k | return; |
448 | 224k | } |
449 | 0 | # endif |
450 | | # if defined(GHASH_ASM_X86) |
451 | | /* x86 only */ |
452 | | # if defined(OPENSSL_IA32_SSE2) |
453 | | if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */ |
454 | | ctx->gmult = gcm_gmult_4bit_mmx; |
455 | | ctx->ghash = gcm_ghash_4bit_mmx; |
456 | | return; |
457 | | } |
458 | | # else |
459 | | if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */ |
460 | | ctx->gmult = gcm_gmult_4bit_mmx; |
461 | | ctx->ghash = gcm_ghash_4bit_mmx; |
462 | | return; |
463 | | } |
464 | | # endif |
465 | | ctx->gmult = gcm_gmult_4bit_x86; |
466 | | ctx->ghash = gcm_ghash_4bit_x86; |
467 | | return; |
468 | | # else |
469 | | /* x86_64 fallback defaults */ |
470 | 0 | ctx->gmult = gcm_gmult_4bit; |
471 | 0 | ctx->ghash = gcm_ghash_4bit; |
472 | 0 | return; |
473 | 224k | # endif |
474 | | #elif defined(GHASH_ASM_ARM) |
475 | | /* ARM defaults */ |
476 | | ctx->gmult = gcm_gmult_4bit; |
477 | | # if !defined(OPENSSL_SMALL_FOOTPRINT) |
478 | | ctx->ghash = gcm_ghash_4bit; |
479 | | # else |
480 | | ctx->ghash = NULL; |
481 | | # endif |
482 | | # ifdef PMULL_CAPABLE |
483 | | if (PMULL_CAPABLE) { |
484 | | ctx->ginit = (gcm_init_fn)gcm_init_v8; |
485 | | ctx->gmult = gcm_gmult_v8; |
486 | | ctx->ghash = gcm_ghash_v8; |
487 | | } |
488 | | # elif defined(NEON_CAPABLE) |
489 | | if (NEON_CAPABLE) { |
490 | | ctx->ginit = gcm_init_neon; |
491 | | ctx->gmult = gcm_gmult_neon; |
492 | | ctx->ghash = gcm_ghash_neon; |
493 | | } |
494 | | # endif |
495 | | return; |
496 | | #elif defined(GHASH_ASM_SPARC) |
497 | | /* SPARC defaults */ |
498 | | ctx->gmult = gcm_gmult_4bit; |
499 | | ctx->ghash = gcm_ghash_4bit; |
500 | | if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) { |
501 | | ctx->ginit = gcm_init_vis3; |
502 | | ctx->gmult = gcm_gmult_vis3; |
503 | | ctx->ghash = gcm_ghash_vis3; |
504 | | } |
505 | | return; |
506 | | #elif defined(GHASH_ASM_PPC) |
507 | | /* PowerPC does not define GHASH_ASM; defaults set above */ |
508 | | if (OPENSSL_ppccap_P & PPC_CRYPTO207) { |
509 | | ctx->ginit = gcm_init_p8; |
510 | | ctx->gmult = gcm_gmult_p8; |
511 | | ctx->ghash = gcm_ghash_p8; |
512 | | } |
513 | | return; |
514 | | #elif defined(GHASH_ASM_RV64I) |
515 | | /* RISCV defaults */ |
516 | | ctx->gmult = gcm_gmult_4bit; |
517 | | ctx->ghash = gcm_ghash_4bit; |
518 | | |
519 | | if (RISCV_HAS_ZBC()) { |
520 | | if (RISCV_HAS_ZBKB()) { |
521 | | ctx->ginit = gcm_init_rv64i_zbc__zbkb; |
522 | | ctx->gmult = gcm_gmult_rv64i_zbc__zbkb; |
523 | | ctx->ghash = gcm_ghash_rv64i_zbc__zbkb; |
524 | | } else if (RISCV_HAS_ZBB()) { |
525 | | ctx->ginit = gcm_init_rv64i_zbc__zbb; |
526 | | ctx->gmult = gcm_gmult_rv64i_zbc; |
527 | | ctx->ghash = gcm_ghash_rv64i_zbc; |
528 | | } else { |
529 | | ctx->ginit = gcm_init_rv64i_zbc; |
530 | | ctx->gmult = gcm_gmult_rv64i_zbc; |
531 | | ctx->ghash = gcm_ghash_rv64i_zbc; |
532 | | } |
533 | | } |
534 | | return; |
535 | | #elif defined(GHASH_ASM) |
536 | | /* all other architectures use the generic names */ |
537 | | ctx->gmult = gcm_gmult_4bit; |
538 | | ctx->ghash = gcm_ghash_4bit; |
539 | | return; |
540 | | #endif |
541 | 224k | } |
542 | | |
543 | | void ossl_gcm_init_4bit(u128 Htable[16], const u64 H[2]) |
544 | 0 | { |
545 | 0 | struct gcm_funcs_st funcs; |
546 | |
|
547 | 0 | gcm_get_funcs(&funcs); |
548 | 0 | funcs.ginit(Htable, H); |
549 | 0 | } |
550 | | |
551 | | void ossl_gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) |
552 | 0 | { |
553 | 0 | struct gcm_funcs_st funcs; |
554 | |
|
555 | 0 | gcm_get_funcs(&funcs); |
556 | 0 | funcs.gmult(Xi, Htable); |
557 | 0 | } |
558 | | |
559 | | void ossl_gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], |
560 | | const u8 *inp, size_t len) |
561 | 0 | { |
562 | 0 | struct gcm_funcs_st funcs; |
563 | 0 | u64 tmp[2]; |
564 | 0 | size_t i; |
565 | |
|
566 | 0 | gcm_get_funcs(&funcs); |
567 | 0 | if (funcs.ghash != NULL) { |
568 | 0 | funcs.ghash(Xi, Htable, inp, len); |
569 | 0 | } else { |
570 | | /* Emulate ghash if needed */ |
571 | 0 | for (i = 0; i < len; i += 16) { |
572 | 0 | memcpy(tmp, &inp[i], sizeof(tmp)); |
573 | 0 | Xi[0] ^= tmp[0]; |
574 | 0 | Xi[1] ^= tmp[1]; |
575 | 0 | funcs.gmult(Xi, Htable); |
576 | 0 | } |
577 | 0 | } |
578 | 0 | } |
579 | | |
580 | | void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block) |
581 | 224k | { |
582 | 224k | DECLARE_IS_ENDIAN; |
583 | | |
584 | 224k | memset(ctx, 0, sizeof(*ctx)); |
585 | 224k | ctx->block = block; |
586 | 224k | ctx->key = key; |
587 | | |
588 | 224k | (*block) (ctx->H.c, ctx->H.c, key); |
589 | | |
590 | 224k | if (IS_LITTLE_ENDIAN) { |
591 | | /* H is stored in host byte order */ |
592 | | #ifdef BSWAP8 |
593 | | ctx->H.u[0] = BSWAP8(ctx->H.u[0]); |
594 | | ctx->H.u[1] = BSWAP8(ctx->H.u[1]); |
595 | | #else |
596 | 224k | u8 *p = ctx->H.c; |
597 | 224k | u64 hi, lo; |
598 | 224k | hi = (u64)GETU32(p) << 32 | GETU32(p + 4); |
599 | 224k | lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); |
600 | 224k | ctx->H.u[0] = hi; |
601 | 224k | ctx->H.u[1] = lo; |
602 | 224k | #endif |
603 | 224k | } |
604 | | |
605 | 224k | gcm_get_funcs(&ctx->funcs); |
606 | 224k | ctx->funcs.ginit(ctx->Htable, ctx->H.u); |
607 | 224k | } |
608 | | |
609 | | void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv, |
610 | | size_t len) |
611 | 1.50M | { |
612 | 1.50M | DECLARE_IS_ENDIAN; |
613 | 1.50M | unsigned int ctr; |
614 | | |
615 | 1.50M | ctx->len.u[0] = 0; /* AAD length */ |
616 | 1.50M | ctx->len.u[1] = 0; /* message length */ |
617 | 1.50M | ctx->ares = 0; |
618 | 1.50M | ctx->mres = 0; |
619 | | |
620 | 1.50M | if (len == 12) { |
621 | 1.50M | memcpy(ctx->Yi.c, iv, 12); |
622 | 1.50M | ctx->Yi.c[12] = 0; |
623 | 1.50M | ctx->Yi.c[13] = 0; |
624 | 1.50M | ctx->Yi.c[14] = 0; |
625 | 1.50M | ctx->Yi.c[15] = 1; |
626 | 1.50M | ctr = 1; |
627 | 1.50M | } else { |
628 | 0 | size_t i; |
629 | 0 | u64 len0 = len; |
630 | | |
631 | | /* Borrow ctx->Xi to calculate initial Yi */ |
632 | 0 | ctx->Xi.u[0] = 0; |
633 | 0 | ctx->Xi.u[1] = 0; |
634 | |
|
635 | 0 | while (len >= 16) { |
636 | 0 | for (i = 0; i < 16; ++i) |
637 | 0 | ctx->Xi.c[i] ^= iv[i]; |
638 | 0 | GCM_MUL(ctx); |
639 | 0 | iv += 16; |
640 | 0 | len -= 16; |
641 | 0 | } |
642 | 0 | if (len) { |
643 | 0 | for (i = 0; i < len; ++i) |
644 | 0 | ctx->Xi.c[i] ^= iv[i]; |
645 | 0 | GCM_MUL(ctx); |
646 | 0 | } |
647 | 0 | len0 <<= 3; |
648 | 0 | if (IS_LITTLE_ENDIAN) { |
649 | | #ifdef BSWAP8 |
650 | | ctx->Xi.u[1] ^= BSWAP8(len0); |
651 | | #else |
652 | 0 | ctx->Xi.c[8] ^= (u8)(len0 >> 56); |
653 | 0 | ctx->Xi.c[9] ^= (u8)(len0 >> 48); |
654 | 0 | ctx->Xi.c[10] ^= (u8)(len0 >> 40); |
655 | 0 | ctx->Xi.c[11] ^= (u8)(len0 >> 32); |
656 | 0 | ctx->Xi.c[12] ^= (u8)(len0 >> 24); |
657 | 0 | ctx->Xi.c[13] ^= (u8)(len0 >> 16); |
658 | 0 | ctx->Xi.c[14] ^= (u8)(len0 >> 8); |
659 | 0 | ctx->Xi.c[15] ^= (u8)(len0); |
660 | 0 | #endif |
661 | 0 | } else { |
662 | 0 | ctx->Xi.u[1] ^= len0; |
663 | 0 | } |
664 | |
|
665 | 0 | GCM_MUL(ctx); |
666 | |
|
667 | 0 | if (IS_LITTLE_ENDIAN) |
668 | | #ifdef BSWAP4 |
669 | | ctr = BSWAP4(ctx->Xi.d[3]); |
670 | | #else |
671 | 0 | ctr = GETU32(ctx->Xi.c + 12); |
672 | 0 | #endif |
673 | 0 | else |
674 | 0 | ctr = ctx->Xi.d[3]; |
675 | | |
676 | | /* Copy borrowed Xi to Yi */ |
677 | 0 | ctx->Yi.u[0] = ctx->Xi.u[0]; |
678 | 0 | ctx->Yi.u[1] = ctx->Xi.u[1]; |
679 | 0 | } |
680 | | |
681 | 1.50M | ctx->Xi.u[0] = 0; |
682 | 1.50M | ctx->Xi.u[1] = 0; |
683 | | |
684 | 1.50M | (*ctx->block) (ctx->Yi.c, ctx->EK0.c, ctx->key); |
685 | 1.50M | ++ctr; |
686 | 1.50M | if (IS_LITTLE_ENDIAN) |
687 | | #ifdef BSWAP4 |
688 | | ctx->Yi.d[3] = BSWAP4(ctr); |
689 | | #else |
690 | 1.50M | PUTU32(ctx->Yi.c + 12, ctr); |
691 | 0 | #endif |
692 | 0 | else |
693 | 0 | ctx->Yi.d[3] = ctr; |
694 | 1.50M | } |
695 | | |
696 | | int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad, |
697 | | size_t len) |
698 | 1.60M | { |
699 | 1.60M | size_t i; |
700 | 1.60M | unsigned int n; |
701 | 1.60M | u64 alen = ctx->len.u[0]; |
702 | | |
703 | 1.60M | if (ctx->len.u[1]) |
704 | 0 | return -2; |
705 | | |
706 | 1.60M | alen += len; |
707 | 1.60M | if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) |
708 | 0 | return -1; |
709 | 1.60M | ctx->len.u[0] = alen; |
710 | | |
711 | 1.60M | n = ctx->ares; |
712 | 1.60M | if (n) { |
713 | 452k | while (n && len) { |
714 | 358k | ctx->Xi.c[n] ^= *(aad++); |
715 | 358k | --len; |
716 | 358k | n = (n + 1) % 16; |
717 | 358k | } |
718 | 94.8k | if (n == 0) |
719 | 9.12k | GCM_MUL(ctx); |
720 | 85.7k | else { |
721 | 85.7k | ctx->ares = n; |
722 | 85.7k | return 0; |
723 | 85.7k | } |
724 | 94.8k | } |
725 | 1.51M | #ifdef GHASH |
726 | 1.51M | if ((i = (len & (size_t)-16))) { |
727 | 529k | GHASH(ctx, aad, i); |
728 | 529k | aad += i; |
729 | 529k | len -= i; |
730 | 529k | } |
731 | | #else |
732 | | while (len >= 16) { |
733 | | for (i = 0; i < 16; ++i) |
734 | | ctx->Xi.c[i] ^= aad[i]; |
735 | | GCM_MUL(ctx); |
736 | | aad += 16; |
737 | | len -= 16; |
738 | | } |
739 | | #endif |
740 | 1.51M | if (len) { |
741 | 1.34M | n = (unsigned int)len; |
742 | 15.6M | for (i = 0; i < len; ++i) |
743 | 14.2M | ctx->Xi.c[i] ^= aad[i]; |
744 | 1.34M | } |
745 | | |
746 | 1.51M | ctx->ares = n; |
747 | 1.51M | return 0; |
748 | 1.60M | } |
749 | | |
750 | | int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, |
751 | | const unsigned char *in, unsigned char *out, |
752 | | size_t len) |
753 | 611k | { |
754 | 611k | DECLARE_IS_ENDIAN; |
755 | 611k | unsigned int n, ctr, mres; |
756 | 611k | size_t i; |
757 | 611k | u64 mlen = ctx->len.u[1]; |
758 | 611k | block128_f block = ctx->block; |
759 | 611k | void *key = ctx->key; |
760 | | |
761 | 611k | mlen += len; |
762 | 611k | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
763 | 0 | return -1; |
764 | 611k | ctx->len.u[1] = mlen; |
765 | | |
766 | 611k | mres = ctx->mres; |
767 | | |
768 | 611k | if (ctx->ares) { |
769 | | /* First call to encrypt finalizes GHASH(AAD) */ |
770 | 4.90k | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
771 | 4.90k | if (len == 0) { |
772 | 4.45k | GCM_MUL(ctx); |
773 | 4.45k | ctx->ares = 0; |
774 | 4.45k | return 0; |
775 | 4.45k | } |
776 | 449 | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); |
777 | 449 | ctx->Xi.u[0] = 0; |
778 | 449 | ctx->Xi.u[1] = 0; |
779 | 449 | mres = sizeof(ctx->Xi); |
780 | | #else |
781 | | GCM_MUL(ctx); |
782 | | #endif |
783 | 449 | ctx->ares = 0; |
784 | 449 | } |
785 | | |
786 | 606k | if (IS_LITTLE_ENDIAN) |
787 | | #ifdef BSWAP4 |
788 | | ctr = BSWAP4(ctx->Yi.d[3]); |
789 | | #else |
790 | 606k | ctr = GETU32(ctx->Yi.c + 12); |
791 | 0 | #endif |
792 | 0 | else |
793 | 0 | ctr = ctx->Yi.d[3]; |
794 | | |
795 | 606k | n = mres % 16; |
796 | 606k | #if !defined(OPENSSL_SMALL_FOOTPRINT) |
797 | 606k | if (16 % sizeof(size_t) == 0) { /* always true actually */ |
798 | 606k | do { |
799 | 606k | if (n) { |
800 | 596k | # if defined(GHASH) |
801 | 8.82M | while (n && len) { |
802 | 8.23M | ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n]; |
803 | 8.23M | --len; |
804 | 8.23M | n = (n + 1) % 16; |
805 | 8.23M | } |
806 | 596k | if (n == 0) { |
807 | 596k | GHASH(ctx, ctx->Xn, mres); |
808 | 596k | mres = 0; |
809 | 596k | } else { |
810 | 0 | ctx->mres = mres; |
811 | 0 | return 0; |
812 | 0 | } |
813 | | # else |
814 | | while (n && len) { |
815 | | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
816 | | --len; |
817 | | n = (n + 1) % 16; |
818 | | } |
819 | | if (n == 0) { |
820 | | GCM_MUL(ctx); |
821 | | mres = 0; |
822 | | } else { |
823 | | ctx->mres = n; |
824 | | return 0; |
825 | | } |
826 | | # endif |
827 | 596k | } |
828 | 606k | # if defined(STRICT_ALIGNMENT) |
829 | 606k | if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) |
830 | 603k | break; |
831 | 3.16k | # endif |
832 | 3.16k | # if defined(GHASH) |
833 | 3.16k | if (len >= 16 && mres) { |
834 | 234 | GHASH(ctx, ctx->Xn, mres); |
835 | 234 | mres = 0; |
836 | 234 | } |
837 | 3.16k | # if defined(GHASH_CHUNK) |
838 | 3.16k | while (len >= GHASH_CHUNK) { |
839 | 0 | size_t j = GHASH_CHUNK; |
840 | |
|
841 | 0 | while (j) { |
842 | 0 | size_t_aX *out_t = (size_t_aX *)out; |
843 | 0 | const size_t_aX *in_t = (const size_t_aX *)in; |
844 | |
|
845 | 0 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
846 | 0 | ++ctr; |
847 | 0 | if (IS_LITTLE_ENDIAN) |
848 | | # ifdef BSWAP4 |
849 | | ctx->Yi.d[3] = BSWAP4(ctr); |
850 | | # else |
851 | 0 | PUTU32(ctx->Yi.c + 12, ctr); |
852 | 0 | # endif |
853 | 0 | else |
854 | 0 | ctx->Yi.d[3] = ctr; |
855 | 0 | for (i = 0; i < 16 / sizeof(size_t); ++i) |
856 | 0 | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
857 | 0 | out += 16; |
858 | 0 | in += 16; |
859 | 0 | j -= 16; |
860 | 0 | } |
861 | 0 | GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); |
862 | 0 | len -= GHASH_CHUNK; |
863 | 0 | } |
864 | 3.16k | # endif |
865 | 3.16k | if ((i = (len & (size_t)-16))) { |
866 | 234 | size_t j = i; |
867 | | |
868 | 468 | while (len >= 16) { |
869 | 234 | size_t_aX *out_t = (size_t_aX *)out; |
870 | 234 | const size_t_aX *in_t = (const size_t_aX *)in; |
871 | | |
872 | 234 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
873 | 234 | ++ctr; |
874 | 234 | if (IS_LITTLE_ENDIAN) |
875 | | # ifdef BSWAP4 |
876 | | ctx->Yi.d[3] = BSWAP4(ctr); |
877 | | # else |
878 | 234 | PUTU32(ctx->Yi.c + 12, ctr); |
879 | 0 | # endif |
880 | 0 | else |
881 | 0 | ctx->Yi.d[3] = ctr; |
882 | 702 | for (i = 0; i < 16 / sizeof(size_t); ++i) |
883 | 468 | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
884 | 234 | out += 16; |
885 | 234 | in += 16; |
886 | 234 | len -= 16; |
887 | 234 | } |
888 | 234 | GHASH(ctx, out - j, j); |
889 | 234 | } |
890 | | # else |
891 | | while (len >= 16) { |
892 | | size_t *out_t = (size_t *)out; |
893 | | const size_t *in_t = (const size_t *)in; |
894 | | |
895 | | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
896 | | ++ctr; |
897 | | if (IS_LITTLE_ENDIAN) |
898 | | # ifdef BSWAP4 |
899 | | ctx->Yi.d[3] = BSWAP4(ctr); |
900 | | # else |
901 | | PUTU32(ctx->Yi.c + 12, ctr); |
902 | | # endif |
903 | | else |
904 | | ctx->Yi.d[3] = ctr; |
905 | | for (i = 0; i < 16 / sizeof(size_t); ++i) |
906 | | ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
907 | | GCM_MUL(ctx); |
908 | | out += 16; |
909 | | in += 16; |
910 | | len -= 16; |
911 | | } |
912 | | # endif |
913 | 3.16k | if (len) { |
914 | 215 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
915 | 215 | ++ctr; |
916 | 215 | if (IS_LITTLE_ENDIAN) |
917 | | # ifdef BSWAP4 |
918 | | ctx->Yi.d[3] = BSWAP4(ctr); |
919 | | # else |
920 | 215 | PUTU32(ctx->Yi.c + 12, ctr); |
921 | 0 | # endif |
922 | 0 | else |
923 | 0 | ctx->Yi.d[3] = ctr; |
924 | 215 | # if defined(GHASH) |
925 | 645 | while (len--) { |
926 | 430 | ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n]; |
927 | 430 | ++n; |
928 | 430 | } |
929 | | # else |
930 | | while (len--) { |
931 | | ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
932 | | ++n; |
933 | | } |
934 | | mres = n; |
935 | | # endif |
936 | 215 | } |
937 | | |
938 | 3.16k | ctx->mres = mres; |
939 | 3.16k | return 0; |
940 | 606k | } while (0); |
941 | 606k | } |
942 | 603k | #endif |
943 | 603k | for (i = 0; i < len; ++i) { |
944 | 0 | if (n == 0) { |
945 | 0 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
946 | 0 | ++ctr; |
947 | 0 | if (IS_LITTLE_ENDIAN) |
948 | | #ifdef BSWAP4 |
949 | | ctx->Yi.d[3] = BSWAP4(ctr); |
950 | | #else |
951 | 0 | PUTU32(ctx->Yi.c + 12, ctr); |
952 | 0 | #endif |
953 | 0 | else |
954 | 0 | ctx->Yi.d[3] = ctr; |
955 | 0 | } |
956 | 0 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
957 | 0 | ctx->Xn[mres++] = out[i] = in[i] ^ ctx->EKi.c[n]; |
958 | 0 | n = (n + 1) % 16; |
959 | 0 | if (mres == sizeof(ctx->Xn)) { |
960 | 0 | GHASH(ctx,ctx->Xn,sizeof(ctx->Xn)); |
961 | 0 | mres = 0; |
962 | 0 | } |
963 | | #else |
964 | | ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n]; |
965 | | mres = n = (n + 1) % 16; |
966 | | if (n == 0) |
967 | | GCM_MUL(ctx); |
968 | | #endif |
969 | 0 | } |
970 | | |
971 | 603k | ctx->mres = mres; |
972 | 603k | return 0; |
973 | 606k | } |
974 | | |
975 | | int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, |
976 | | const unsigned char *in, unsigned char *out, |
977 | | size_t len) |
978 | 251k | { |
979 | 251k | DECLARE_IS_ENDIAN; |
980 | 251k | unsigned int n, ctr, mres; |
981 | 251k | size_t i; |
982 | 251k | u64 mlen = ctx->len.u[1]; |
983 | 251k | block128_f block = ctx->block; |
984 | 251k | void *key = ctx->key; |
985 | | |
986 | 251k | mlen += len; |
987 | 251k | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
988 | 0 | return -1; |
989 | 251k | ctx->len.u[1] = mlen; |
990 | | |
991 | 251k | mres = ctx->mres; |
992 | | |
993 | 251k | if (ctx->ares) { |
994 | | /* First call to decrypt finalizes GHASH(AAD) */ |
995 | 95.1k | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
996 | 95.1k | if (len == 0) { |
997 | 88.1k | GCM_MUL(ctx); |
998 | 88.1k | ctx->ares = 0; |
999 | 88.1k | return 0; |
1000 | 88.1k | } |
1001 | 7.00k | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); |
1002 | 7.00k | ctx->Xi.u[0] = 0; |
1003 | 7.00k | ctx->Xi.u[1] = 0; |
1004 | 7.00k | mres = sizeof(ctx->Xi); |
1005 | | #else |
1006 | | GCM_MUL(ctx); |
1007 | | #endif |
1008 | 7.00k | ctx->ares = 0; |
1009 | 7.00k | } |
1010 | | |
1011 | 163k | if (IS_LITTLE_ENDIAN) |
1012 | | #ifdef BSWAP4 |
1013 | | ctr = BSWAP4(ctx->Yi.d[3]); |
1014 | | #else |
1015 | 163k | ctr = GETU32(ctx->Yi.c + 12); |
1016 | 0 | #endif |
1017 | 0 | else |
1018 | 0 | ctr = ctx->Yi.d[3]; |
1019 | | |
1020 | 163k | n = mres % 16; |
1021 | 163k | #if !defined(OPENSSL_SMALL_FOOTPRINT) |
1022 | 163k | if (16 % sizeof(size_t) == 0) { /* always true actually */ |
1023 | 163k | do { |
1024 | 163k | if (n) { |
1025 | 0 | # if defined(GHASH) |
1026 | 0 | while (n && len) { |
1027 | 0 | *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n]; |
1028 | 0 | --len; |
1029 | 0 | n = (n + 1) % 16; |
1030 | 0 | } |
1031 | 0 | if (n == 0) { |
1032 | 0 | GHASH(ctx, ctx->Xn, mres); |
1033 | 0 | mres = 0; |
1034 | 0 | } else { |
1035 | 0 | ctx->mres = mres; |
1036 | 0 | return 0; |
1037 | 0 | } |
1038 | | # else |
1039 | | while (n && len) { |
1040 | | u8 c = *(in++); |
1041 | | *(out++) = c ^ ctx->EKi.c[n]; |
1042 | | ctx->Xi.c[n] ^= c; |
1043 | | --len; |
1044 | | n = (n + 1) % 16; |
1045 | | } |
1046 | | if (n == 0) { |
1047 | | GCM_MUL(ctx); |
1048 | | mres = 0; |
1049 | | } else { |
1050 | | ctx->mres = n; |
1051 | | return 0; |
1052 | | } |
1053 | | # endif |
1054 | 0 | } |
1055 | 163k | # if defined(STRICT_ALIGNMENT) |
1056 | 163k | if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) |
1057 | 391 | break; |
1058 | 163k | # endif |
1059 | 163k | # if defined(GHASH) |
1060 | 163k | if (len >= 16 && mres) { |
1061 | 1.88k | GHASH(ctx, ctx->Xn, mres); |
1062 | 1.88k | mres = 0; |
1063 | 1.88k | } |
1064 | 163k | # if defined(GHASH_CHUNK) |
1065 | 164k | while (len >= GHASH_CHUNK) { |
1066 | 1.27k | size_t j = GHASH_CHUNK; |
1067 | | |
1068 | 1.27k | GHASH(ctx, in, GHASH_CHUNK); |
1069 | 246k | while (j) { |
1070 | 245k | size_t_aX *out_t = (size_t_aX *)out; |
1071 | 245k | const size_t_aX *in_t = (const size_t_aX *)in; |
1072 | | |
1073 | 245k | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
1074 | 245k | ++ctr; |
1075 | 245k | if (IS_LITTLE_ENDIAN) |
1076 | | # ifdef BSWAP4 |
1077 | | ctx->Yi.d[3] = BSWAP4(ctr); |
1078 | | # else |
1079 | 245k | PUTU32(ctx->Yi.c + 12, ctr); |
1080 | 0 | # endif |
1081 | 0 | else |
1082 | 0 | ctx->Yi.d[3] = ctr; |
1083 | 735k | for (i = 0; i < 16 / sizeof(size_t); ++i) |
1084 | 490k | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
1085 | 245k | out += 16; |
1086 | 245k | in += 16; |
1087 | 245k | j -= 16; |
1088 | 245k | } |
1089 | 1.27k | len -= GHASH_CHUNK; |
1090 | 1.27k | } |
1091 | 163k | # endif |
1092 | 163k | if ((i = (len & (size_t)-16))) { |
1093 | 1.86k | GHASH(ctx, in, i); |
1094 | 25.0k | while (len >= 16) { |
1095 | 23.1k | size_t_aX *out_t = (size_t_aX *)out; |
1096 | 23.1k | const size_t_aX *in_t = (const size_t_aX *)in; |
1097 | | |
1098 | 23.1k | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
1099 | 23.1k | ++ctr; |
1100 | 23.1k | if (IS_LITTLE_ENDIAN) |
1101 | | # ifdef BSWAP4 |
1102 | | ctx->Yi.d[3] = BSWAP4(ctr); |
1103 | | # else |
1104 | 23.1k | PUTU32(ctx->Yi.c + 12, ctr); |
1105 | 0 | # endif |
1106 | 0 | else |
1107 | 0 | ctx->Yi.d[3] = ctr; |
1108 | 69.5k | for (i = 0; i < 16 / sizeof(size_t); ++i) |
1109 | 46.3k | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; |
1110 | 23.1k | out += 16; |
1111 | 23.1k | in += 16; |
1112 | 23.1k | len -= 16; |
1113 | 23.1k | } |
1114 | 1.86k | } |
1115 | | # else |
1116 | | while (len >= 16) { |
1117 | | size_t *out_t = (size_t *)out; |
1118 | | const size_t *in_t = (const size_t *)in; |
1119 | | |
1120 | | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
1121 | | ++ctr; |
1122 | | if (IS_LITTLE_ENDIAN) |
1123 | | # ifdef BSWAP4 |
1124 | | ctx->Yi.d[3] = BSWAP4(ctr); |
1125 | | # else |
1126 | | PUTU32(ctx->Yi.c + 12, ctr); |
1127 | | # endif |
1128 | | else |
1129 | | ctx->Yi.d[3] = ctr; |
1130 | | for (i = 0; i < 16 / sizeof(size_t); ++i) { |
1131 | | size_t c = in_t[i]; |
1132 | | out_t[i] = c ^ ctx->EKi.t[i]; |
1133 | | ctx->Xi.t[i] ^= c; |
1134 | | } |
1135 | | GCM_MUL(ctx); |
1136 | | out += 16; |
1137 | | in += 16; |
1138 | | len -= 16; |
1139 | | } |
1140 | | # endif |
1141 | 163k | if (len) { |
1142 | 6.69k | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
1143 | 6.69k | ++ctr; |
1144 | 6.69k | if (IS_LITTLE_ENDIAN) |
1145 | | # ifdef BSWAP4 |
1146 | | ctx->Yi.d[3] = BSWAP4(ctr); |
1147 | | # else |
1148 | 6.69k | PUTU32(ctx->Yi.c + 12, ctr); |
1149 | 0 | # endif |
1150 | 0 | else |
1151 | 0 | ctx->Yi.d[3] = ctr; |
1152 | 6.69k | # if defined(GHASH) |
1153 | 65.6k | while (len--) { |
1154 | 58.9k | out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n]; |
1155 | 58.9k | ++n; |
1156 | 58.9k | } |
1157 | | # else |
1158 | | while (len--) { |
1159 | | u8 c = in[n]; |
1160 | | ctx->Xi.c[n] ^= c; |
1161 | | out[n] = c ^ ctx->EKi.c[n]; |
1162 | | ++n; |
1163 | | } |
1164 | | mres = n; |
1165 | | # endif |
1166 | 6.69k | } |
1167 | | |
1168 | 163k | ctx->mres = mres; |
1169 | 163k | return 0; |
1170 | 163k | } while (0); |
1171 | 163k | } |
1172 | 391 | #endif |
1173 | 391 | for (i = 0; i < len; ++i) { |
1174 | 0 | u8 c; |
1175 | 0 | if (n == 0) { |
1176 | 0 | (*block) (ctx->Yi.c, ctx->EKi.c, key); |
1177 | 0 | ++ctr; |
1178 | 0 | if (IS_LITTLE_ENDIAN) |
1179 | | #ifdef BSWAP4 |
1180 | | ctx->Yi.d[3] = BSWAP4(ctr); |
1181 | | #else |
1182 | 0 | PUTU32(ctx->Yi.c + 12, ctr); |
1183 | 0 | #endif |
1184 | 0 | else |
1185 | 0 | ctx->Yi.d[3] = ctr; |
1186 | 0 | } |
1187 | 0 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
1188 | 0 | out[i] = (ctx->Xn[mres++] = c = in[i]) ^ ctx->EKi.c[n]; |
1189 | 0 | n = (n + 1) % 16; |
1190 | 0 | if (mres == sizeof(ctx->Xn)) { |
1191 | 0 | GHASH(ctx,ctx->Xn,sizeof(ctx->Xn)); |
1192 | 0 | mres = 0; |
1193 | 0 | } |
1194 | | #else |
1195 | | c = in[i]; |
1196 | | out[i] = c ^ ctx->EKi.c[n]; |
1197 | | ctx->Xi.c[n] ^= c; |
1198 | | mres = n = (n + 1) % 16; |
1199 | | if (n == 0) |
1200 | | GCM_MUL(ctx); |
1201 | | #endif |
1202 | 0 | } |
1203 | | |
1204 | 391 | ctx->mres = mres; |
1205 | 391 | return 0; |
1206 | 163k | } |
1207 | | |
1208 | | int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, |
1209 | | const unsigned char *in, unsigned char *out, |
1210 | | size_t len, ctr128_f stream) |
1211 | 1.55M | { |
1212 | | #if defined(OPENSSL_SMALL_FOOTPRINT) |
1213 | | return CRYPTO_gcm128_encrypt(ctx, in, out, len); |
1214 | | #else |
1215 | 1.55M | DECLARE_IS_ENDIAN; |
1216 | 1.55M | unsigned int n, ctr, mres; |
1217 | 1.55M | size_t i; |
1218 | 1.55M | u64 mlen = ctx->len.u[1]; |
1219 | 1.55M | void *key = ctx->key; |
1220 | | |
1221 | 1.55M | mlen += len; |
1222 | 1.55M | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
1223 | 0 | return -1; |
1224 | 1.55M | ctx->len.u[1] = mlen; |
1225 | | |
1226 | 1.55M | mres = ctx->mres; |
1227 | | |
1228 | 1.55M | if (ctx->ares) { |
1229 | | /* First call to encrypt finalizes GHASH(AAD) */ |
1230 | 776k | #if defined(GHASH) |
1231 | 776k | if (len == 0) { |
1232 | 0 | GCM_MUL(ctx); |
1233 | 0 | ctx->ares = 0; |
1234 | 0 | return 0; |
1235 | 0 | } |
1236 | 776k | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); |
1237 | 776k | ctx->Xi.u[0] = 0; |
1238 | 776k | ctx->Xi.u[1] = 0; |
1239 | 776k | mres = sizeof(ctx->Xi); |
1240 | | #else |
1241 | | GCM_MUL(ctx); |
1242 | | #endif |
1243 | 776k | ctx->ares = 0; |
1244 | 776k | } |
1245 | | |
1246 | 1.55M | if (IS_LITTLE_ENDIAN) |
1247 | | # ifdef BSWAP4 |
1248 | | ctr = BSWAP4(ctx->Yi.d[3]); |
1249 | | # else |
1250 | 1.55M | ctr = GETU32(ctx->Yi.c + 12); |
1251 | 0 | # endif |
1252 | 0 | else |
1253 | 0 | ctr = ctx->Yi.d[3]; |
1254 | | |
1255 | 1.55M | n = mres % 16; |
1256 | 1.55M | if (n) { |
1257 | 154k | # if defined(GHASH) |
1258 | 930k | while (n && len) { |
1259 | 775k | ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n]; |
1260 | 775k | --len; |
1261 | 775k | n = (n + 1) % 16; |
1262 | 775k | } |
1263 | 154k | if (n == 0) { |
1264 | 72.4k | GHASH(ctx, ctx->Xn, mres); |
1265 | 72.4k | mres = 0; |
1266 | 82.5k | } else { |
1267 | 82.5k | ctx->mres = mres; |
1268 | 82.5k | return 0; |
1269 | 82.5k | } |
1270 | | # else |
1271 | | while (n && len) { |
1272 | | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
1273 | | --len; |
1274 | | n = (n + 1) % 16; |
1275 | | } |
1276 | | if (n == 0) { |
1277 | | GCM_MUL(ctx); |
1278 | | mres = 0; |
1279 | | } else { |
1280 | | ctx->mres = n; |
1281 | | return 0; |
1282 | | } |
1283 | | # endif |
1284 | 154k | } |
1285 | 1.46M | # if defined(GHASH) |
1286 | 1.46M | if (len >= 16 && mres) { |
1287 | 48.2k | GHASH(ctx, ctx->Xn, mres); |
1288 | 48.2k | mres = 0; |
1289 | 48.2k | } |
1290 | 1.46M | # if defined(GHASH_CHUNK) |
1291 | 1.46M | while (len >= GHASH_CHUNK) { |
1292 | 0 | (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
1293 | 0 | ctr += GHASH_CHUNK / 16; |
1294 | 0 | if (IS_LITTLE_ENDIAN) |
1295 | | # ifdef BSWAP4 |
1296 | | ctx->Yi.d[3] = BSWAP4(ctr); |
1297 | | # else |
1298 | 0 | PUTU32(ctx->Yi.c + 12, ctr); |
1299 | 0 | # endif |
1300 | 0 | else |
1301 | 0 | ctx->Yi.d[3] = ctr; |
1302 | 0 | GHASH(ctx, out, GHASH_CHUNK); |
1303 | 0 | out += GHASH_CHUNK; |
1304 | 0 | in += GHASH_CHUNK; |
1305 | 0 | len -= GHASH_CHUNK; |
1306 | 0 | } |
1307 | 1.46M | # endif |
1308 | 1.46M | # endif |
1309 | 1.46M | if ((i = (len & (size_t)-16))) { |
1310 | 221k | size_t j = i / 16; |
1311 | | |
1312 | 221k | (*stream) (in, out, j, key, ctx->Yi.c); |
1313 | 221k | ctr += (unsigned int)j; |
1314 | 221k | if (IS_LITTLE_ENDIAN) |
1315 | | # ifdef BSWAP4 |
1316 | | ctx->Yi.d[3] = BSWAP4(ctr); |
1317 | | # else |
1318 | 221k | PUTU32(ctx->Yi.c + 12, ctr); |
1319 | 0 | # endif |
1320 | 0 | else |
1321 | 0 | ctx->Yi.d[3] = ctr; |
1322 | 221k | in += i; |
1323 | 221k | len -= i; |
1324 | 221k | # if defined(GHASH) |
1325 | 221k | GHASH(ctx, out, i); |
1326 | 221k | out += i; |
1327 | | # else |
1328 | | while (j--) { |
1329 | | for (i = 0; i < 16; ++i) |
1330 | | ctx->Xi.c[i] ^= out[i]; |
1331 | | GCM_MUL(ctx); |
1332 | | out += 16; |
1333 | | } |
1334 | | # endif |
1335 | 221k | } |
1336 | 1.46M | if (len) { |
1337 | 1.44M | (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); |
1338 | 1.44M | ++ctr; |
1339 | 1.44M | if (IS_LITTLE_ENDIAN) |
1340 | | # ifdef BSWAP4 |
1341 | | ctx->Yi.d[3] = BSWAP4(ctr); |
1342 | | # else |
1343 | 1.44M | PUTU32(ctx->Yi.c + 12, ctr); |
1344 | 0 | # endif |
1345 | 0 | else |
1346 | 0 | ctx->Yi.d[3] = ctr; |
1347 | 5.73M | while (len--) { |
1348 | 4.28M | # if defined(GHASH) |
1349 | 4.28M | ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n]; |
1350 | | # else |
1351 | | ctx->Xi.c[mres++] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
1352 | | # endif |
1353 | 4.28M | ++n; |
1354 | 4.28M | } |
1355 | 1.44M | } |
1356 | | |
1357 | 1.46M | ctx->mres = mres; |
1358 | 1.46M | return 0; |
1359 | 1.55M | #endif |
1360 | 1.55M | } |
1361 | | |
1362 | | int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, |
1363 | | const unsigned char *in, unsigned char *out, |
1364 | | size_t len, ctr128_f stream) |
1365 | 606k | { |
1366 | | #if defined(OPENSSL_SMALL_FOOTPRINT) |
1367 | | return CRYPTO_gcm128_decrypt(ctx, in, out, len); |
1368 | | #else |
1369 | 606k | DECLARE_IS_ENDIAN; |
1370 | 606k | unsigned int n, ctr, mres; |
1371 | 606k | size_t i; |
1372 | 606k | u64 mlen = ctx->len.u[1]; |
1373 | 606k | void *key = ctx->key; |
1374 | | |
1375 | 606k | mlen += len; |
1376 | 606k | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
1377 | 0 | return -1; |
1378 | 606k | ctx->len.u[1] = mlen; |
1379 | | |
1380 | 606k | mres = ctx->mres; |
1381 | | |
1382 | 606k | if (ctx->ares) { |
1383 | | /* First call to decrypt finalizes GHASH(AAD) */ |
1384 | 361k | # if defined(GHASH) |
1385 | 361k | if (len == 0) { |
1386 | 1.43k | GCM_MUL(ctx); |
1387 | 1.43k | ctx->ares = 0; |
1388 | 1.43k | return 0; |
1389 | 1.43k | } |
1390 | 360k | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); |
1391 | 360k | ctx->Xi.u[0] = 0; |
1392 | 360k | ctx->Xi.u[1] = 0; |
1393 | 360k | mres = sizeof(ctx->Xi); |
1394 | | # else |
1395 | | GCM_MUL(ctx); |
1396 | | # endif |
1397 | 360k | ctx->ares = 0; |
1398 | 360k | } |
1399 | | |
1400 | 604k | if (IS_LITTLE_ENDIAN) |
1401 | | # ifdef BSWAP4 |
1402 | | ctr = BSWAP4(ctx->Yi.d[3]); |
1403 | | # else |
1404 | 604k | ctr = GETU32(ctx->Yi.c + 12); |
1405 | 0 | # endif |
1406 | 0 | else |
1407 | 0 | ctr = ctx->Yi.d[3]; |
1408 | | |
1409 | 604k | n = mres % 16; |
1410 | 604k | if (n) { |
1411 | 0 | # if defined(GHASH) |
1412 | 0 | while (n && len) { |
1413 | 0 | *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n]; |
1414 | 0 | --len; |
1415 | 0 | n = (n + 1) % 16; |
1416 | 0 | } |
1417 | 0 | if (n == 0) { |
1418 | 0 | GHASH(ctx, ctx->Xn, mres); |
1419 | 0 | mres = 0; |
1420 | 0 | } else { |
1421 | 0 | ctx->mres = mres; |
1422 | 0 | return 0; |
1423 | 0 | } |
1424 | | # else |
1425 | | while (n && len) { |
1426 | | u8 c = *(in++); |
1427 | | *(out++) = c ^ ctx->EKi.c[n]; |
1428 | | ctx->Xi.c[n] ^= c; |
1429 | | --len; |
1430 | | n = (n + 1) % 16; |
1431 | | } |
1432 | | if (n == 0) { |
1433 | | GCM_MUL(ctx); |
1434 | | mres = 0; |
1435 | | } else { |
1436 | | ctx->mres = n; |
1437 | | return 0; |
1438 | | } |
1439 | | # endif |
1440 | 0 | } |
1441 | 604k | # if defined(GHASH) |
1442 | 604k | if (len >= 16 && mres) { |
1443 | 0 | GHASH(ctx, ctx->Xn, mres); |
1444 | 0 | mres = 0; |
1445 | 0 | } |
1446 | 604k | # if defined(GHASH_CHUNK) |
1447 | 604k | while (len >= GHASH_CHUNK) { |
1448 | 0 | GHASH(ctx, in, GHASH_CHUNK); |
1449 | 0 | (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
1450 | 0 | ctr += GHASH_CHUNK / 16; |
1451 | 0 | if (IS_LITTLE_ENDIAN) |
1452 | | # ifdef BSWAP4 |
1453 | | ctx->Yi.d[3] = BSWAP4(ctr); |
1454 | | # else |
1455 | 0 | PUTU32(ctx->Yi.c + 12, ctr); |
1456 | 0 | # endif |
1457 | 0 | else |
1458 | 0 | ctx->Yi.d[3] = ctr; |
1459 | 0 | out += GHASH_CHUNK; |
1460 | 0 | in += GHASH_CHUNK; |
1461 | 0 | len -= GHASH_CHUNK; |
1462 | 0 | } |
1463 | 604k | # endif |
1464 | 604k | # endif |
1465 | 604k | if ((i = (len & (size_t)-16))) { |
1466 | 219k | size_t j = i / 16; |
1467 | | |
1468 | 219k | # if defined(GHASH) |
1469 | 219k | GHASH(ctx, in, i); |
1470 | | # else |
1471 | | while (j--) { |
1472 | | size_t k; |
1473 | | for (k = 0; k < 16; ++k) |
1474 | | ctx->Xi.c[k] ^= in[k]; |
1475 | | GCM_MUL(ctx); |
1476 | | in += 16; |
1477 | | } |
1478 | | j = i / 16; |
1479 | | in -= i; |
1480 | | # endif |
1481 | 219k | (*stream) (in, out, j, key, ctx->Yi.c); |
1482 | 219k | ctr += (unsigned int)j; |
1483 | 219k | if (IS_LITTLE_ENDIAN) |
1484 | | # ifdef BSWAP4 |
1485 | | ctx->Yi.d[3] = BSWAP4(ctr); |
1486 | | # else |
1487 | 219k | PUTU32(ctx->Yi.c + 12, ctr); |
1488 | 0 | # endif |
1489 | 0 | else |
1490 | 0 | ctx->Yi.d[3] = ctr; |
1491 | 219k | out += i; |
1492 | 219k | in += i; |
1493 | 219k | len -= i; |
1494 | 219k | } |
1495 | 604k | if (len) { |
1496 | 593k | (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); |
1497 | 593k | ++ctr; |
1498 | 593k | if (IS_LITTLE_ENDIAN) |
1499 | | # ifdef BSWAP4 |
1500 | | ctx->Yi.d[3] = BSWAP4(ctr); |
1501 | | # else |
1502 | 593k | PUTU32(ctx->Yi.c + 12, ctr); |
1503 | 0 | # endif |
1504 | 0 | else |
1505 | 0 | ctx->Yi.d[3] = ctr; |
1506 | 2.53M | while (len--) { |
1507 | 1.93M | # if defined(GHASH) |
1508 | 1.93M | out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n]; |
1509 | | # else |
1510 | | u8 c = in[n]; |
1511 | | ctx->Xi.c[mres++] ^= c; |
1512 | | out[n] = c ^ ctx->EKi.c[n]; |
1513 | | # endif |
1514 | 1.93M | ++n; |
1515 | 1.93M | } |
1516 | 593k | } |
1517 | | |
1518 | 604k | ctx->mres = mres; |
1519 | 604k | return 0; |
1520 | 604k | #endif |
1521 | 604k | } |
1522 | | |
1523 | | int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag, |
1524 | | size_t len) |
1525 | 1.50M | { |
1526 | 1.50M | DECLARE_IS_ENDIAN; |
1527 | 1.50M | u64 alen = ctx->len.u[0] << 3; |
1528 | 1.50M | u64 clen = ctx->len.u[1] << 3; |
1529 | | |
1530 | 1.50M | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
1531 | 1.50M | u128 bitlen; |
1532 | 1.50M | unsigned int mres = ctx->mres; |
1533 | | |
1534 | 1.50M | if (mres) { |
1535 | 1.37M | unsigned blocks = (mres + 15) & -16; |
1536 | | |
1537 | 1.37M | memset(ctx->Xn + mres, 0, blocks - mres); |
1538 | 1.37M | mres = blocks; |
1539 | 1.37M | if (mres == sizeof(ctx->Xn)) { |
1540 | 0 | GHASH(ctx, ctx->Xn, mres); |
1541 | 0 | mres = 0; |
1542 | 0 | } |
1543 | 1.37M | } else if (ctx->ares) { |
1544 | 93.6k | GCM_MUL(ctx); |
1545 | 93.6k | } |
1546 | | #else |
1547 | | if (ctx->mres || ctx->ares) |
1548 | | GCM_MUL(ctx); |
1549 | | #endif |
1550 | | |
1551 | 1.50M | if (IS_LITTLE_ENDIAN) { |
1552 | | #ifdef BSWAP8 |
1553 | | alen = BSWAP8(alen); |
1554 | | clen = BSWAP8(clen); |
1555 | | #else |
1556 | 1.50M | u8 *p = ctx->len.c; |
1557 | | |
1558 | 1.50M | ctx->len.u[0] = alen; |
1559 | 1.50M | ctx->len.u[1] = clen; |
1560 | | |
1561 | 1.50M | alen = (u64)GETU32(p) << 32 | GETU32(p + 4); |
1562 | 1.50M | clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); |
1563 | 1.50M | #endif |
1564 | 1.50M | } |
1565 | | |
1566 | 1.50M | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
1567 | 1.50M | bitlen.hi = alen; |
1568 | 1.50M | bitlen.lo = clen; |
1569 | 1.50M | memcpy(ctx->Xn + mres, &bitlen, sizeof(bitlen)); |
1570 | 1.50M | mres += sizeof(bitlen); |
1571 | 1.50M | GHASH(ctx, ctx->Xn, mres); |
1572 | | #else |
1573 | | ctx->Xi.u[0] ^= alen; |
1574 | | ctx->Xi.u[1] ^= clen; |
1575 | | GCM_MUL(ctx); |
1576 | | #endif |
1577 | | |
1578 | 1.50M | ctx->Xi.u[0] ^= ctx->EK0.u[0]; |
1579 | 1.50M | ctx->Xi.u[1] ^= ctx->EK0.u[1]; |
1580 | | |
1581 | 1.50M | if (tag && len <= sizeof(ctx->Xi)) |
1582 | 613k | return CRYPTO_memcmp(ctx->Xi.c, tag, len); |
1583 | 887k | else |
1584 | 887k | return -1; |
1585 | 1.50M | } |
1586 | | |
1587 | | void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) |
1588 | 887k | { |
1589 | 887k | CRYPTO_gcm128_finish(ctx, NULL, 0); |
1590 | 887k | memcpy(tag, ctx->Xi.c, |
1591 | 887k | len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); |
1592 | 887k | } |
1593 | | |
1594 | | GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block) |
1595 | 0 | { |
1596 | 0 | GCM128_CONTEXT *ret; |
1597 | |
|
1598 | 0 | if ((ret = OPENSSL_malloc(sizeof(*ret))) != NULL) |
1599 | 0 | CRYPTO_gcm128_init(ret, key, block); |
1600 | |
|
1601 | 0 | return ret; |
1602 | 0 | } |
1603 | | |
1604 | | void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) |
1605 | 0 | { |
1606 | 0 | OPENSSL_clear_free(ctx, sizeof(*ctx)); |
1607 | 0 | } |