Coverage Report

Created: 2025-06-13 06:58

/src/openssl32/crypto/poly1305/poly1305.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2015-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdlib.h>
11
#include <string.h>
12
#include <openssl/crypto.h>
13
14
#include "crypto/poly1305.h"
15
16
size_t Poly1305_ctx_size(void)
17
0
{
18
0
    return sizeof(struct poly1305_context);
19
0
}
20
21
/* pick 32-bit unsigned integer in little endian order */
22
static unsigned int U8TOU32(const unsigned char *p)
23
502k
{
24
502k
    return (((unsigned int)(p[0] & 0xff)) |
25
502k
            ((unsigned int)(p[1] & 0xff) << 8) |
26
502k
            ((unsigned int)(p[2] & 0xff) << 16) |
27
502k
            ((unsigned int)(p[3] & 0xff) << 24));
28
502k
}
29
30
/*
31
 * Implementations can be classified by amount of significant bits in
32
 * words making up the multi-precision value, or in other words radix
33
 * or base of numerical representation, e.g. base 2^64, base 2^32,
34
 * base 2^26. Complementary characteristic is how wide is the result of
35
 * multiplication of pair of digits, e.g. it would take 128 bits to
36
 * accommodate multiplication result in base 2^64 case. These are used
37
 * interchangeably. To describe implementation that is. But interface
38
 * is designed to isolate this so that low-level primitives implemented
39
 * in assembly can be self-contained/self-coherent.
40
 */
41
#ifndef POLY1305_ASM
42
/*
43
 * Even though there is __int128 reference implementation targeting
44
 * 64-bit platforms provided below, it's not obvious that it's optimal
45
 * choice for every one of them. Depending on instruction set overall
46
 * amount of instructions can be comparable to one in __int64
47
 * implementation. Amount of multiplication instructions would be lower,
48
 * but not necessarily overall. And in out-of-order execution context,
49
 * it is the latter that can be crucial...
50
 *
51
 * On related note. Poly1305 author, D. J. Bernstein, discusses and
52
 * provides floating-point implementations of the algorithm in question.
53
 * It made a lot of sense by the time of introduction, because most
54
 * then-modern processors didn't have pipelined integer multiplier.
55
 * [Not to mention that some had non-constant timing for integer
56
 * multiplications.] Floating-point instructions on the other hand could
57
 * be issued every cycle, which allowed to achieve better performance.
58
 * Nowadays, with SIMD and/or out-or-order execution, shared or
59
 * even emulated FPU, it's more complicated, and floating-point
60
 * implementation is not necessarily optimal choice in every situation,
61
 * rather contrary...
62
 *
63
 *                                              <appro@openssl.org>
64
 */
65
66
typedef unsigned int u32;
67
68
/*
69
 * poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks
70
 * of |inp| no longer than |len|. Behaviour for |len| not divisible by
71
 * block size is unspecified in general case, even though in reference
72
 * implementation the trailing chunk is simply ignored. Per algorithm
73
 * specification, every input block, complete or last partial, is to be
74
 * padded with a bit past most significant byte. The latter kind is then
75
 * padded with zeros till block size. This last partial block padding
76
 * is caller(*)'s responsibility, and because of this the last partial
77
 * block is always processed with separate call with |len| set to
78
 * POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit|
79
 * should be set to 1 to perform implicit padding with 128th bit.
80
 * poly1305_blocks does not actually check for this constraint though,
81
 * it's caller(*)'s responsibility to comply.
82
 *
83
 * (*)  In the context "caller" is not application code, but higher
84
 *      level Poly1305_* from this very module, so that quirks are
85
 *      handled locally.
86
 */
87
static void
88
poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit);
89
90
/*
91
 * Type-agnostic "rip-off" from constant_time.h
92
 */
93
# define CONSTANT_TIME_CARRY(a,b) ( \
94
         (a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \
95
         )
96
97
# if defined(INT64_MAX) && defined(INT128_MAX)
98
99
typedef unsigned long u64;
100
typedef uint128_t u128;
101
102
typedef struct {
103
    u64 h[3];
104
    u64 r[2];
105
} poly1305_internal;
106
107
/* pick 32-bit unsigned integer in little endian order */
108
static u64 U8TOU64(const unsigned char *p)
109
{
110
    return (((u64)(p[0] & 0xff)) |
111
            ((u64)(p[1] & 0xff) << 8) |
112
            ((u64)(p[2] & 0xff) << 16) |
113
            ((u64)(p[3] & 0xff) << 24) |
114
            ((u64)(p[4] & 0xff) << 32) |
115
            ((u64)(p[5] & 0xff) << 40) |
116
            ((u64)(p[6] & 0xff) << 48) |
117
            ((u64)(p[7] & 0xff) << 56));
118
}
119
120
/* store a 32-bit unsigned integer in little endian */
121
static void U64TO8(unsigned char *p, u64 v)
122
{
123
    p[0] = (unsigned char)((v) & 0xff);
124
    p[1] = (unsigned char)((v >> 8) & 0xff);
125
    p[2] = (unsigned char)((v >> 16) & 0xff);
126
    p[3] = (unsigned char)((v >> 24) & 0xff);
127
    p[4] = (unsigned char)((v >> 32) & 0xff);
128
    p[5] = (unsigned char)((v >> 40) & 0xff);
129
    p[6] = (unsigned char)((v >> 48) & 0xff);
130
    p[7] = (unsigned char)((v >> 56) & 0xff);
131
}
132
133
static void poly1305_init(void *ctx, const unsigned char key[16])
134
{
135
    poly1305_internal *st = (poly1305_internal *) ctx;
136
137
    /* h = 0 */
138
    st->h[0] = 0;
139
    st->h[1] = 0;
140
    st->h[2] = 0;
141
142
    /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
143
    st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff;
144
    st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc;
145
}
146
147
static void
148
poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
149
{
150
    poly1305_internal *st = (poly1305_internal *)ctx;
151
    u64 r0, r1;
152
    u64 s1;
153
    u64 h0, h1, h2, c;
154
    u128 d0, d1;
155
156
    r0 = st->r[0];
157
    r1 = st->r[1];
158
159
    s1 = r1 + (r1 >> 2);
160
161
    h0 = st->h[0];
162
    h1 = st->h[1];
163
    h2 = st->h[2];
164
165
    while (len >= POLY1305_BLOCK_SIZE) {
166
        /* h += m[i] */
167
        h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0));
168
        h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8));
169
        /*
170
         * padbit can be zero only when original len was
171
         * POLY1306_BLOCK_SIZE, but we don't check
172
         */
173
        h2 += (u64)(d1 >> 64) + padbit;
174
175
        /* h *= r "%" p, where "%" stands for "partial remainder" */
176
        d0 = ((u128)h0 * r0) +
177
             ((u128)h1 * s1);
178
        d1 = ((u128)h0 * r1) +
179
             ((u128)h1 * r0) +
180
             (h2 * s1);
181
        h2 = (h2 * r0);
182
183
        /* last reduction step: */
184
        /* a) h2:h0 = h2<<128 + d1<<64 + d0 */
185
        h0 = (u64)d0;
186
        h1 = (u64)(d1 += d0 >> 64);
187
        h2 += (u64)(d1 >> 64);
188
        /* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */
189
        c = (h2 >> 2) + (h2 & ~3UL);
190
        h2 &= 3;
191
        h0 += c;
192
        h1 += (c = CONSTANT_TIME_CARRY(h0,c));
193
        h2 += CONSTANT_TIME_CARRY(h1,c);
194
        /*
195
         * Occasional overflows to 3rd bit of h2 are taken care of
196
         * "naturally". If after this point we end up at the top of
197
         * this loop, then the overflow bit will be accounted for
198
         * in next iteration. If we end up in poly1305_emit, then
199
         * comparison to modulus below will still count as "carry
200
         * into 131st bit", so that properly reduced value will be
201
         * picked in conditional move.
202
         */
203
204
        inp += POLY1305_BLOCK_SIZE;
205
        len -= POLY1305_BLOCK_SIZE;
206
    }
207
208
    st->h[0] = h0;
209
    st->h[1] = h1;
210
    st->h[2] = h2;
211
}
212
213
static void poly1305_emit(void *ctx, unsigned char mac[16],
214
                          const u32 nonce[4])
215
{
216
    poly1305_internal *st = (poly1305_internal *) ctx;
217
    u64 h0, h1, h2;
218
    u64 g0, g1, g2;
219
    u128 t;
220
    u64 mask;
221
222
    h0 = st->h[0];
223
    h1 = st->h[1];
224
    h2 = st->h[2];
225
226
    /* compare to modulus by computing h + -p */
227
    g0 = (u64)(t = (u128)h0 + 5);
228
    g1 = (u64)(t = (u128)h1 + (t >> 64));
229
    g2 = h2 + (u64)(t >> 64);
230
231
    /* if there was carry into 131st bit, h1:h0 = g1:g0 */
232
    mask = 0 - (g2 >> 2);
233
    g0 &= mask;
234
    g1 &= mask;
235
    mask = ~mask;
236
    h0 = (h0 & mask) | g0;
237
    h1 = (h1 & mask) | g1;
238
239
    /* mac = (h + nonce) % (2^128) */
240
    h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32));
241
    h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64));
242
243
    U64TO8(mac + 0, h0);
244
    U64TO8(mac + 8, h1);
245
}
246
247
# else
248
249
#  if defined(_WIN32) && !defined(__MINGW32__)
250
typedef unsigned __int64 u64;
251
#  elif defined(__arch64__)
252
typedef unsigned long u64;
253
#  else
254
typedef unsigned long long u64;
255
#  endif
256
257
typedef struct {
258
    u32 h[5];
259
    u32 r[4];
260
} poly1305_internal;
261
262
/* store a 32-bit unsigned integer in little endian */
263
static void U32TO8(unsigned char *p, unsigned int v)
264
{
265
    p[0] = (unsigned char)((v) & 0xff);
266
    p[1] = (unsigned char)((v >> 8) & 0xff);
267
    p[2] = (unsigned char)((v >> 16) & 0xff);
268
    p[3] = (unsigned char)((v >> 24) & 0xff);
269
}
270
271
static void poly1305_init(void *ctx, const unsigned char key[16])
272
{
273
    poly1305_internal *st = (poly1305_internal *) ctx;
274
275
    /* h = 0 */
276
    st->h[0] = 0;
277
    st->h[1] = 0;
278
    st->h[2] = 0;
279
    st->h[3] = 0;
280
    st->h[4] = 0;
281
282
    /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
283
    st->r[0] = U8TOU32(&key[0]) & 0x0fffffff;
284
    st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc;
285
    st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc;
286
    st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc;
287
}
288
289
static void
290
poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
291
{
292
    poly1305_internal *st = (poly1305_internal *)ctx;
293
    u32 r0, r1, r2, r3;
294
    u32 s1, s2, s3;
295
    u32 h0, h1, h2, h3, h4, c;
296
    u64 d0, d1, d2, d3;
297
298
    r0 = st->r[0];
299
    r1 = st->r[1];
300
    r2 = st->r[2];
301
    r3 = st->r[3];
302
303
    s1 = r1 + (r1 >> 2);
304
    s2 = r2 + (r2 >> 2);
305
    s3 = r3 + (r3 >> 2);
306
307
    h0 = st->h[0];
308
    h1 = st->h[1];
309
    h2 = st->h[2];
310
    h3 = st->h[3];
311
    h4 = st->h[4];
312
313
    while (len >= POLY1305_BLOCK_SIZE) {
314
        /* h += m[i] */
315
        h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0));
316
        h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4));
317
        h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8));
318
        h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12));
319
        h4 += (u32)(d3 >> 32) + padbit;
320
321
        /* h *= r "%" p, where "%" stands for "partial remainder" */
322
        d0 = ((u64)h0 * r0) +
323
             ((u64)h1 * s3) +
324
             ((u64)h2 * s2) +
325
             ((u64)h3 * s1);
326
        d1 = ((u64)h0 * r1) +
327
             ((u64)h1 * r0) +
328
             ((u64)h2 * s3) +
329
             ((u64)h3 * s2) +
330
             (h4 * s1);
331
        d2 = ((u64)h0 * r2) +
332
             ((u64)h1 * r1) +
333
             ((u64)h2 * r0) +
334
             ((u64)h3 * s3) +
335
             (h4 * s2);
336
        d3 = ((u64)h0 * r3) +
337
             ((u64)h1 * r2) +
338
             ((u64)h2 * r1) +
339
             ((u64)h3 * r0) +
340
             (h4 * s3);
341
        h4 = (h4 * r0);
342
343
        /* last reduction step: */
344
        /* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */
345
        h0 = (u32)d0;
346
        h1 = (u32)(d1 += d0 >> 32);
347
        h2 = (u32)(d2 += d1 >> 32);
348
        h3 = (u32)(d3 += d2 >> 32);
349
        h4 += (u32)(d3 >> 32);
350
        /* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */
351
        c = (h4 >> 2) + (h4 & ~3U);
352
        h4 &= 3;
353
        h0 += c;
354
        h1 += (c = CONSTANT_TIME_CARRY(h0,c));
355
        h2 += (c = CONSTANT_TIME_CARRY(h1,c));
356
        h3 += (c = CONSTANT_TIME_CARRY(h2,c));
357
        h4 += CONSTANT_TIME_CARRY(h3,c);
358
        /*
359
         * Occasional overflows to 3rd bit of h4 are taken care of
360
         * "naturally". If after this point we end up at the top of
361
         * this loop, then the overflow bit will be accounted for
362
         * in next iteration. If we end up in poly1305_emit, then
363
         * comparison to modulus below will still count as "carry
364
         * into 131st bit", so that properly reduced value will be
365
         * picked in conditional move.
366
         */
367
368
        inp += POLY1305_BLOCK_SIZE;
369
        len -= POLY1305_BLOCK_SIZE;
370
    }
371
372
    st->h[0] = h0;
373
    st->h[1] = h1;
374
    st->h[2] = h2;
375
    st->h[3] = h3;
376
    st->h[4] = h4;
377
}
378
379
static void poly1305_emit(void *ctx, unsigned char mac[16],
380
                          const u32 nonce[4])
381
{
382
    poly1305_internal *st = (poly1305_internal *) ctx;
383
    u32 h0, h1, h2, h3, h4;
384
    u32 g0, g1, g2, g3, g4;
385
    u64 t;
386
    u32 mask;
387
388
    h0 = st->h[0];
389
    h1 = st->h[1];
390
    h2 = st->h[2];
391
    h3 = st->h[3];
392
    h4 = st->h[4];
393
394
    /* compare to modulus by computing h + -p */
395
    g0 = (u32)(t = (u64)h0 + 5);
396
    g1 = (u32)(t = (u64)h1 + (t >> 32));
397
    g2 = (u32)(t = (u64)h2 + (t >> 32));
398
    g3 = (u32)(t = (u64)h3 + (t >> 32));
399
    g4 = h4 + (u32)(t >> 32);
400
401
    /* if there was carry into 131st bit, h3:h0 = g3:g0 */
402
    mask = 0 - (g4 >> 2);
403
    g0 &= mask;
404
    g1 &= mask;
405
    g2 &= mask;
406
    g3 &= mask;
407
    mask = ~mask;
408
    h0 = (h0 & mask) | g0;
409
    h1 = (h1 & mask) | g1;
410
    h2 = (h2 & mask) | g2;
411
    h3 = (h3 & mask) | g3;
412
413
    /* mac = (h + nonce) % (2^128) */
414
    h0 = (u32)(t = (u64)h0 + nonce[0]);
415
    h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]);
416
    h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]);
417
    h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]);
418
419
    U32TO8(mac + 0, h0);
420
    U32TO8(mac + 4, h1);
421
    U32TO8(mac + 8, h2);
422
    U32TO8(mac + 12, h3);
423
}
424
# endif
425
#else
426
int poly1305_init(void *ctx, const unsigned char key[16], void *func);
427
void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
428
                     unsigned int padbit);
429
void poly1305_emit(void *ctx, unsigned char mac[16],
430
                   const unsigned int nonce[4]);
431
#endif
432
433
void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32])
434
125k
{
435
125k
    ctx->nonce[0] = U8TOU32(&key[16]);
436
125k
    ctx->nonce[1] = U8TOU32(&key[20]);
437
125k
    ctx->nonce[2] = U8TOU32(&key[24]);
438
125k
    ctx->nonce[3] = U8TOU32(&key[28]);
439
440
#ifndef POLY1305_ASM
441
    poly1305_init(ctx->opaque, key);
442
#else
443
    /*
444
     * Unlike reference poly1305_init assembly counterpart is expected
445
     * to return a value: non-zero if it initializes ctx->func, and zero
446
     * otherwise. Latter is to simplify assembly in cases when there no
447
     * multiple code paths to switch between.
448
     */
449
125k
    if (!poly1305_init(ctx->opaque, key, &ctx->func)) {
450
0
        ctx->func.blocks = poly1305_blocks;
451
0
        ctx->func.emit = poly1305_emit;
452
0
    }
453
125k
#endif
454
455
125k
    ctx->num = 0;
456
457
125k
}
458
459
#ifdef POLY1305_ASM
460
/*
461
 * This "eclipses" poly1305_blocks and poly1305_emit, but it's
462
 * conscious choice imposed by -Wshadow compiler warnings.
463
 */
464
422k
# define poly1305_blocks (*poly1305_blocks_p)
465
125k
# define poly1305_emit   (*poly1305_emit_p)
466
#endif
467
468
void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len)
469
609k
{
470
609k
#ifdef POLY1305_ASM
471
    /*
472
     * As documented, poly1305_blocks is never called with input
473
     * longer than single block and padbit argument set to 0. This
474
     * property is fluently used in assembly modules to optimize
475
     * padbit handling on loop boundary.
476
     */
477
609k
    poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
478
609k
#endif
479
609k
    size_t rem, num;
480
481
609k
    if ((num = ctx->num)) {
482
236k
        rem = POLY1305_BLOCK_SIZE - num;
483
236k
        if (len >= rem) {
484
236k
            memcpy(ctx->data + num, inp, rem);
485
236k
            poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1);
486
236k
            inp += rem;
487
236k
            len -= rem;
488
236k
        } else {
489
            /* Still not enough data to process a block. */
490
101
            memcpy(ctx->data + num, inp, len);
491
101
            ctx->num = num + len;
492
101
            return;
493
101
        }
494
236k
    }
495
496
609k
    rem = len % POLY1305_BLOCK_SIZE;
497
609k
    len -= rem;
498
499
609k
    if (len >= POLY1305_BLOCK_SIZE) {
500
186k
        poly1305_blocks(ctx->opaque, inp, len, 1);
501
186k
        inp += len;
502
186k
    }
503
504
609k
    if (rem)
505
236k
        memcpy(ctx->data, inp, rem);
506
507
609k
    ctx->num = rem;
508
609k
}
509
510
void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16])
511
125k
{
512
125k
#ifdef POLY1305_ASM
513
125k
    poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
514
125k
    poly1305_emit_f poly1305_emit_p = ctx->func.emit;
515
125k
#endif
516
125k
    size_t num;
517
518
125k
    if ((num = ctx->num)) {
519
0
        ctx->data[num++] = 1;   /* pad bit */
520
0
        while (num < POLY1305_BLOCK_SIZE)
521
0
            ctx->data[num++] = 0;
522
0
        poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0);
523
0
    }
524
525
125k
    poly1305_emit(ctx->opaque, mac, ctx->nonce);
526
527
    /* zero out the state */
528
125k
    OPENSSL_cleanse(ctx, sizeof(*ctx));
529
125k
}