/src/openssl32/crypto/rsa/rsa_gen.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * NB: these functions have been "upgraded", the deprecated versions (which |
12 | | * are compatibility wrappers using these functions) are in rsa_depr.c. - |
13 | | * Geoff |
14 | | */ |
15 | | |
16 | | /* |
17 | | * RSA low level APIs are deprecated for public use, but still ok for |
18 | | * internal use. |
19 | | */ |
20 | | #include "internal/deprecated.h" |
21 | | |
22 | | #include <stdio.h> |
23 | | #include <time.h> |
24 | | #include "internal/cryptlib.h" |
25 | | #include <openssl/bn.h> |
26 | | #include <openssl/self_test.h> |
27 | | #include "prov/providercommon.h" |
28 | | #include "rsa_local.h" |
29 | | |
30 | | static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg); |
31 | | static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes, |
32 | | BIGNUM *e_value, BN_GENCB *cb, int pairwise_test); |
33 | | |
34 | | /* |
35 | | * NB: this wrapper would normally be placed in rsa_lib.c and the static |
36 | | * implementation would probably be in rsa_eay.c. Nonetheless, is kept here |
37 | | * so that we don't introduce a new linker dependency. Eg. any application |
38 | | * that wasn't previously linking object code related to key-generation won't |
39 | | * have to now just because key-generation is part of RSA_METHOD. |
40 | | */ |
41 | | int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) |
42 | 0 | { |
43 | 0 | if (rsa->meth->rsa_keygen != NULL) |
44 | 0 | return rsa->meth->rsa_keygen(rsa, bits, e_value, cb); |
45 | | |
46 | 0 | return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM, |
47 | 0 | e_value, cb); |
48 | 0 | } |
49 | | |
50 | | int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes, |
51 | | BIGNUM *e_value, BN_GENCB *cb) |
52 | 0 | { |
53 | 0 | #ifndef FIPS_MODULE |
54 | | /* multi-prime is only supported with the builtin key generation */ |
55 | 0 | if (rsa->meth->rsa_multi_prime_keygen != NULL) { |
56 | 0 | return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes, |
57 | 0 | e_value, cb); |
58 | 0 | } else if (rsa->meth->rsa_keygen != NULL) { |
59 | | /* |
60 | | * However, if rsa->meth implements only rsa_keygen, then we |
61 | | * have to honour it in 2-prime case and assume that it wouldn't |
62 | | * know what to do with multi-prime key generated by builtin |
63 | | * subroutine... |
64 | | */ |
65 | 0 | if (primes == 2) |
66 | 0 | return rsa->meth->rsa_keygen(rsa, bits, e_value, cb); |
67 | 0 | else |
68 | 0 | return 0; |
69 | 0 | } |
70 | 0 | #endif /* FIPS_MODULE */ |
71 | 0 | return rsa_keygen(rsa->libctx, rsa, bits, primes, e_value, cb, 0); |
72 | 0 | } |
73 | | |
74 | | #ifndef FIPS_MODULE |
75 | | static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes, |
76 | | BIGNUM *e_value, BN_GENCB *cb) |
77 | 0 | { |
78 | 0 | BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime; |
79 | 0 | int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0; |
80 | 0 | int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0; |
81 | 0 | RSA_PRIME_INFO *pinfo = NULL; |
82 | 0 | STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL; |
83 | 0 | BN_CTX *ctx = NULL; |
84 | 0 | BN_ULONG bitst = 0; |
85 | 0 | unsigned long error = 0; |
86 | 0 | int ok = -1; |
87 | |
|
88 | 0 | if (bits < RSA_MIN_MODULUS_BITS) { |
89 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
90 | 0 | return 0; |
91 | 0 | } |
92 | 0 | if (e_value == NULL) { |
93 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE); |
94 | 0 | return 0; |
95 | 0 | } |
96 | | /* A bad value for e can cause infinite loops */ |
97 | 0 | if (!ossl_rsa_check_public_exponent(e_value)) { |
98 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE); |
99 | 0 | return 0; |
100 | 0 | } |
101 | | |
102 | 0 | if (primes < RSA_DEFAULT_PRIME_NUM || primes > ossl_rsa_multip_cap(bits)) { |
103 | 0 | ERR_raise(ERR_LIB_RSA, RSA_R_KEY_PRIME_NUM_INVALID); |
104 | 0 | return 0; |
105 | 0 | } |
106 | | |
107 | 0 | ctx = BN_CTX_new_ex(rsa->libctx); |
108 | 0 | if (ctx == NULL) |
109 | 0 | goto err; |
110 | 0 | BN_CTX_start(ctx); |
111 | 0 | r0 = BN_CTX_get(ctx); |
112 | 0 | r1 = BN_CTX_get(ctx); |
113 | 0 | r2 = BN_CTX_get(ctx); |
114 | 0 | if (r2 == NULL) |
115 | 0 | goto err; |
116 | | |
117 | | /* divide bits into 'primes' pieces evenly */ |
118 | 0 | quo = bits / primes; |
119 | 0 | rmd = bits % primes; |
120 | |
|
121 | 0 | for (i = 0; i < primes; i++) |
122 | 0 | bitsr[i] = (i < rmd) ? quo + 1 : quo; |
123 | |
|
124 | 0 | rsa->dirty_cnt++; |
125 | | |
126 | | /* We need the RSA components non-NULL */ |
127 | 0 | if (!rsa->n && ((rsa->n = BN_new()) == NULL)) |
128 | 0 | goto err; |
129 | 0 | if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL)) |
130 | 0 | goto err; |
131 | 0 | BN_set_flags(rsa->d, BN_FLG_CONSTTIME); |
132 | 0 | if (!rsa->e && ((rsa->e = BN_new()) == NULL)) |
133 | 0 | goto err; |
134 | 0 | if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL)) |
135 | 0 | goto err; |
136 | 0 | BN_set_flags(rsa->p, BN_FLG_CONSTTIME); |
137 | 0 | if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL)) |
138 | 0 | goto err; |
139 | 0 | BN_set_flags(rsa->q, BN_FLG_CONSTTIME); |
140 | 0 | if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL)) |
141 | 0 | goto err; |
142 | 0 | BN_set_flags(rsa->dmp1, BN_FLG_CONSTTIME); |
143 | 0 | if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL)) |
144 | 0 | goto err; |
145 | 0 | BN_set_flags(rsa->dmq1, BN_FLG_CONSTTIME); |
146 | 0 | if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL)) |
147 | 0 | goto err; |
148 | 0 | BN_set_flags(rsa->iqmp, BN_FLG_CONSTTIME); |
149 | | |
150 | | /* initialize multi-prime components */ |
151 | 0 | if (primes > RSA_DEFAULT_PRIME_NUM) { |
152 | 0 | rsa->version = RSA_ASN1_VERSION_MULTI; |
153 | 0 | prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2); |
154 | 0 | if (prime_infos == NULL) |
155 | 0 | goto err; |
156 | 0 | if (rsa->prime_infos != NULL) { |
157 | | /* could this happen? */ |
158 | 0 | sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, |
159 | 0 | ossl_rsa_multip_info_free); |
160 | 0 | } |
161 | 0 | rsa->prime_infos = prime_infos; |
162 | | |
163 | | /* prime_info from 2 to |primes| -1 */ |
164 | 0 | for (i = 2; i < primes; i++) { |
165 | 0 | pinfo = ossl_rsa_multip_info_new(); |
166 | 0 | if (pinfo == NULL) |
167 | 0 | goto err; |
168 | 0 | (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); |
169 | 0 | } |
170 | 0 | } |
171 | | |
172 | 0 | if (BN_copy(rsa->e, e_value) == NULL) |
173 | 0 | goto err; |
174 | | |
175 | | /* generate p, q and other primes (if any) */ |
176 | 0 | for (i = 0; i < primes; i++) { |
177 | 0 | adj = 0; |
178 | 0 | retries = 0; |
179 | |
|
180 | 0 | if (i == 0) { |
181 | 0 | prime = rsa->p; |
182 | 0 | } else if (i == 1) { |
183 | 0 | prime = rsa->q; |
184 | 0 | } else { |
185 | 0 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); |
186 | 0 | prime = pinfo->r; |
187 | 0 | } |
188 | 0 | BN_set_flags(prime, BN_FLG_CONSTTIME); |
189 | |
|
190 | 0 | for (;;) { |
191 | 0 | redo: |
192 | 0 | if (!BN_generate_prime_ex2(prime, bitsr[i] + adj, 0, NULL, NULL, |
193 | 0 | cb, ctx)) |
194 | 0 | goto err; |
195 | | /* |
196 | | * prime should not be equal to p, q, r_3... |
197 | | * (those primes prior to this one) |
198 | | */ |
199 | 0 | { |
200 | 0 | int j; |
201 | |
|
202 | 0 | for (j = 0; j < i; j++) { |
203 | 0 | BIGNUM *prev_prime; |
204 | |
|
205 | 0 | if (j == 0) |
206 | 0 | prev_prime = rsa->p; |
207 | 0 | else if (j == 1) |
208 | 0 | prev_prime = rsa->q; |
209 | 0 | else |
210 | 0 | prev_prime = sk_RSA_PRIME_INFO_value(prime_infos, |
211 | 0 | j - 2)->r; |
212 | |
|
213 | 0 | if (!BN_cmp(prime, prev_prime)) { |
214 | 0 | goto redo; |
215 | 0 | } |
216 | 0 | } |
217 | 0 | } |
218 | 0 | if (!BN_sub(r2, prime, BN_value_one())) |
219 | 0 | goto err; |
220 | 0 | ERR_set_mark(); |
221 | 0 | BN_set_flags(r2, BN_FLG_CONSTTIME); |
222 | 0 | if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) { |
223 | | /* GCD == 1 since inverse exists */ |
224 | 0 | break; |
225 | 0 | } |
226 | 0 | error = ERR_peek_last_error(); |
227 | 0 | if (ERR_GET_LIB(error) == ERR_LIB_BN |
228 | 0 | && ERR_GET_REASON(error) == BN_R_NO_INVERSE) { |
229 | | /* GCD != 1 */ |
230 | 0 | ERR_pop_to_mark(); |
231 | 0 | } else { |
232 | 0 | goto err; |
233 | 0 | } |
234 | 0 | if (!BN_GENCB_call(cb, 2, n++)) |
235 | 0 | goto err; |
236 | 0 | } |
237 | | |
238 | 0 | bitse += bitsr[i]; |
239 | | |
240 | | /* calculate n immediately to see if it's sufficient */ |
241 | 0 | if (i == 1) { |
242 | | /* we get at least 2 primes */ |
243 | 0 | if (!BN_mul(r1, rsa->p, rsa->q, ctx)) |
244 | 0 | goto err; |
245 | 0 | } else if (i != 0) { |
246 | | /* modulus n = p * q * r_3 * r_4 ... */ |
247 | 0 | if (!BN_mul(r1, rsa->n, prime, ctx)) |
248 | 0 | goto err; |
249 | 0 | } else { |
250 | | /* i == 0, do nothing */ |
251 | 0 | if (!BN_GENCB_call(cb, 3, i)) |
252 | 0 | goto err; |
253 | 0 | continue; |
254 | 0 | } |
255 | | /* |
256 | | * if |r1|, product of factors so far, is not as long as expected |
257 | | * (by checking the first 4 bits are less than 0x9 or greater than |
258 | | * 0xF). If so, re-generate the last prime. |
259 | | * |
260 | | * NOTE: This actually can't happen in two-prime case, because of |
261 | | * the way factors are generated. |
262 | | * |
263 | | * Besides, another consideration is, for multi-prime case, even the |
264 | | * length modulus is as long as expected, the modulus could start at |
265 | | * 0x8, which could be utilized to distinguish a multi-prime private |
266 | | * key by using the modulus in a certificate. This is also covered |
267 | | * by checking the length should not be less than 0x9. |
268 | | */ |
269 | 0 | if (!BN_rshift(r2, r1, bitse - 4)) |
270 | 0 | goto err; |
271 | 0 | bitst = BN_get_word(r2); |
272 | |
|
273 | 0 | if (bitst < 0x9 || bitst > 0xF) { |
274 | | /* |
275 | | * For keys with more than 4 primes, we attempt longer factor to |
276 | | * meet length requirement. |
277 | | * |
278 | | * Otherwise, we just re-generate the prime with the same length. |
279 | | * |
280 | | * This strategy has the following goals: |
281 | | * |
282 | | * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key |
283 | | * 2. stay the same logic with normal 2-prime key |
284 | | */ |
285 | 0 | bitse -= bitsr[i]; |
286 | 0 | if (!BN_GENCB_call(cb, 2, n++)) |
287 | 0 | goto err; |
288 | 0 | if (primes > 4) { |
289 | 0 | if (bitst < 0x9) |
290 | 0 | adj++; |
291 | 0 | else |
292 | 0 | adj--; |
293 | 0 | } else if (retries == 4) { |
294 | | /* |
295 | | * re-generate all primes from scratch, mainly used |
296 | | * in 4 prime case to avoid long loop. Max retry times |
297 | | * is set to 4. |
298 | | */ |
299 | 0 | i = -1; |
300 | 0 | bitse = 0; |
301 | 0 | continue; |
302 | 0 | } |
303 | 0 | retries++; |
304 | 0 | goto redo; |
305 | 0 | } |
306 | | /* save product of primes for further use, for multi-prime only */ |
307 | 0 | if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL) |
308 | 0 | goto err; |
309 | 0 | if (BN_copy(rsa->n, r1) == NULL) |
310 | 0 | goto err; |
311 | 0 | if (!BN_GENCB_call(cb, 3, i)) |
312 | 0 | goto err; |
313 | 0 | } |
314 | | |
315 | 0 | if (BN_cmp(rsa->p, rsa->q) < 0) { |
316 | 0 | tmp = rsa->p; |
317 | 0 | rsa->p = rsa->q; |
318 | 0 | rsa->q = tmp; |
319 | 0 | } |
320 | | |
321 | | /* calculate d */ |
322 | | |
323 | | /* p - 1 */ |
324 | 0 | if (!BN_sub(r1, rsa->p, BN_value_one())) |
325 | 0 | goto err; |
326 | | /* q - 1 */ |
327 | 0 | if (!BN_sub(r2, rsa->q, BN_value_one())) |
328 | 0 | goto err; |
329 | | /* (p - 1)(q - 1) */ |
330 | 0 | if (!BN_mul(r0, r1, r2, ctx)) |
331 | 0 | goto err; |
332 | | /* multi-prime */ |
333 | 0 | for (i = 2; i < primes; i++) { |
334 | 0 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); |
335 | | /* save r_i - 1 to pinfo->d temporarily */ |
336 | 0 | if (!BN_sub(pinfo->d, pinfo->r, BN_value_one())) |
337 | 0 | goto err; |
338 | 0 | if (!BN_mul(r0, r0, pinfo->d, ctx)) |
339 | 0 | goto err; |
340 | 0 | } |
341 | | |
342 | 0 | { |
343 | 0 | BIGNUM *pr0 = BN_new(); |
344 | |
|
345 | 0 | if (pr0 == NULL) |
346 | 0 | goto err; |
347 | | |
348 | 0 | BN_with_flags(pr0, r0, BN_FLG_CONSTTIME); |
349 | 0 | if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) { |
350 | 0 | BN_free(pr0); |
351 | 0 | goto err; /* d */ |
352 | 0 | } |
353 | | /* We MUST free pr0 before any further use of r0 */ |
354 | 0 | BN_free(pr0); |
355 | 0 | } |
356 | | |
357 | 0 | { |
358 | 0 | BIGNUM *d = BN_new(); |
359 | |
|
360 | 0 | if (d == NULL) |
361 | 0 | goto err; |
362 | | |
363 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
364 | | |
365 | | /* calculate d mod (p-1) and d mod (q - 1) */ |
366 | 0 | if (!BN_mod(rsa->dmp1, d, r1, ctx) |
367 | 0 | || !BN_mod(rsa->dmq1, d, r2, ctx)) { |
368 | 0 | BN_free(d); |
369 | 0 | goto err; |
370 | 0 | } |
371 | | |
372 | | /* calculate CRT exponents */ |
373 | 0 | for (i = 2; i < primes; i++) { |
374 | 0 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); |
375 | | /* pinfo->d == r_i - 1 */ |
376 | 0 | if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) { |
377 | 0 | BN_free(d); |
378 | 0 | goto err; |
379 | 0 | } |
380 | 0 | } |
381 | | |
382 | | /* We MUST free d before any further use of rsa->d */ |
383 | 0 | BN_free(d); |
384 | 0 | } |
385 | | |
386 | 0 | { |
387 | 0 | BIGNUM *p = BN_new(); |
388 | |
|
389 | 0 | if (p == NULL) |
390 | 0 | goto err; |
391 | 0 | BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME); |
392 | | |
393 | | /* calculate inverse of q mod p */ |
394 | 0 | if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) { |
395 | 0 | BN_free(p); |
396 | 0 | goto err; |
397 | 0 | } |
398 | | |
399 | | /* calculate CRT coefficient for other primes */ |
400 | 0 | for (i = 2; i < primes; i++) { |
401 | 0 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2); |
402 | 0 | BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME); |
403 | 0 | if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) { |
404 | 0 | BN_free(p); |
405 | 0 | goto err; |
406 | 0 | } |
407 | 0 | } |
408 | | |
409 | | /* We MUST free p before any further use of rsa->p */ |
410 | 0 | BN_free(p); |
411 | 0 | } |
412 | | |
413 | 0 | ok = 1; |
414 | 0 | err: |
415 | 0 | if (ok == -1) { |
416 | 0 | ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB); |
417 | 0 | ok = 0; |
418 | 0 | } |
419 | 0 | BN_CTX_end(ctx); |
420 | 0 | BN_CTX_free(ctx); |
421 | 0 | return ok; |
422 | 0 | } |
423 | | #endif /* FIPS_MODULE */ |
424 | | |
425 | | static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes, |
426 | | BIGNUM *e_value, BN_GENCB *cb, int pairwise_test) |
427 | 0 | { |
428 | 0 | int ok = 0; |
429 | |
|
430 | | #ifdef FIPS_MODULE |
431 | | ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb); |
432 | | pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */ |
433 | | #else |
434 | | /* |
435 | | * Only multi-prime keys or insecure keys with a small key length or a |
436 | | * public exponent <= 2^16 will use the older rsa_multiprime_keygen(). |
437 | | */ |
438 | 0 | if (primes == 2 |
439 | 0 | && bits >= 2048 |
440 | 0 | && (e_value == NULL || BN_num_bits(e_value) > 16)) |
441 | 0 | ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb); |
442 | 0 | else |
443 | 0 | ok = rsa_multiprime_keygen(rsa, bits, primes, e_value, cb); |
444 | 0 | #endif /* FIPS_MODULE */ |
445 | |
|
446 | 0 | if (pairwise_test && ok > 0) { |
447 | 0 | OSSL_CALLBACK *stcb = NULL; |
448 | 0 | void *stcbarg = NULL; |
449 | |
|
450 | 0 | OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg); |
451 | 0 | ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg); |
452 | 0 | if (!ok) { |
453 | 0 | ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT); |
454 | | /* Clear intermediate results */ |
455 | 0 | BN_clear_free(rsa->d); |
456 | 0 | BN_clear_free(rsa->p); |
457 | 0 | BN_clear_free(rsa->q); |
458 | 0 | BN_clear_free(rsa->dmp1); |
459 | 0 | BN_clear_free(rsa->dmq1); |
460 | 0 | BN_clear_free(rsa->iqmp); |
461 | 0 | rsa->d = NULL; |
462 | 0 | rsa->p = NULL; |
463 | 0 | rsa->q = NULL; |
464 | 0 | rsa->dmp1 = NULL; |
465 | 0 | rsa->dmq1 = NULL; |
466 | 0 | rsa->iqmp = NULL; |
467 | 0 | } |
468 | 0 | } |
469 | 0 | return ok; |
470 | 0 | } |
471 | | |
472 | | /* |
473 | | * For RSA key generation it is not known whether the key pair will be used |
474 | | * for key transport or signatures. FIPS 140-2 IG 9.9 states that in this case |
475 | | * either a signature verification OR an encryption operation may be used to |
476 | | * perform the pairwise consistency check. The simpler encrypt/decrypt operation |
477 | | * has been chosen for this case. |
478 | | */ |
479 | | static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg) |
480 | 0 | { |
481 | 0 | int ret = 0; |
482 | 0 | unsigned int ciphertxt_len; |
483 | 0 | unsigned char *ciphertxt = NULL; |
484 | 0 | const unsigned char plaintxt[16] = {0}; |
485 | 0 | unsigned char *decoded = NULL; |
486 | 0 | unsigned int decoded_len; |
487 | 0 | unsigned int plaintxt_len = (unsigned int)sizeof(plaintxt_len); |
488 | 0 | int padding = RSA_PKCS1_PADDING; |
489 | 0 | OSSL_SELF_TEST *st = NULL; |
490 | |
|
491 | 0 | st = OSSL_SELF_TEST_new(cb, cbarg); |
492 | 0 | if (st == NULL) |
493 | 0 | goto err; |
494 | 0 | OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT, |
495 | 0 | OSSL_SELF_TEST_DESC_PCT_RSA_PKCS1); |
496 | |
|
497 | 0 | ciphertxt_len = RSA_size(rsa); |
498 | | /* |
499 | | * RSA_private_encrypt() and RSA_private_decrypt() requires the 'to' |
500 | | * parameter to be a maximum of RSA_size() - allocate space for both. |
501 | | */ |
502 | 0 | ciphertxt = OPENSSL_zalloc(ciphertxt_len * 2); |
503 | 0 | if (ciphertxt == NULL) |
504 | 0 | goto err; |
505 | 0 | decoded = ciphertxt + ciphertxt_len; |
506 | |
|
507 | 0 | ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa, |
508 | 0 | padding); |
509 | 0 | if (ciphertxt_len <= 0) |
510 | 0 | goto err; |
511 | 0 | if (ciphertxt_len == plaintxt_len |
512 | 0 | && memcmp(ciphertxt, plaintxt, plaintxt_len) == 0) |
513 | 0 | goto err; |
514 | | |
515 | 0 | OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt); |
516 | |
|
517 | 0 | decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa, |
518 | 0 | padding); |
519 | 0 | if (decoded_len != plaintxt_len |
520 | 0 | || memcmp(decoded, plaintxt, decoded_len) != 0) |
521 | 0 | goto err; |
522 | | |
523 | 0 | ret = 1; |
524 | 0 | err: |
525 | 0 | OSSL_SELF_TEST_onend(st, ret); |
526 | 0 | OSSL_SELF_TEST_free(st); |
527 | 0 | OPENSSL_free(ciphertxt); |
528 | |
|
529 | 0 | return ret; |
530 | 0 | } |