/src/openssl32/crypto/stack/stack.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include "internal/cryptlib.h" |
12 | | #include "internal/numbers.h" |
13 | | #include "internal/safe_math.h" |
14 | | #include <openssl/stack.h> |
15 | | #include <errno.h> |
16 | | #include <openssl/e_os2.h> /* For ossl_inline */ |
17 | | |
18 | | OSSL_SAFE_MATH_SIGNED(int, int) |
19 | | |
20 | | /* |
21 | | * The initial number of nodes in the array. |
22 | | */ |
23 | | static const int min_nodes = 4; |
24 | | static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX |
25 | | ? (int)(SIZE_MAX / sizeof(void *)) : INT_MAX; |
26 | | |
27 | | struct stack_st { |
28 | | int num; |
29 | | const void **data; |
30 | | int sorted; |
31 | | int num_alloc; |
32 | | OPENSSL_sk_compfunc comp; |
33 | | }; |
34 | | |
35 | | OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, |
36 | | OPENSSL_sk_compfunc c) |
37 | 158k | { |
38 | 158k | OPENSSL_sk_compfunc old = sk->comp; |
39 | | |
40 | 158k | if (sk->comp != c) |
41 | 158k | sk->sorted = 0; |
42 | 158k | sk->comp = c; |
43 | | |
44 | 158k | return old; |
45 | 158k | } |
46 | | |
47 | | OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) |
48 | 3.43M | { |
49 | 3.43M | OPENSSL_STACK *ret; |
50 | | |
51 | 3.43M | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) |
52 | 0 | goto err; |
53 | | |
54 | 3.43M | if (sk == NULL) { |
55 | 53 | ret->num = 0; |
56 | 53 | ret->sorted = 0; |
57 | 53 | ret->comp = NULL; |
58 | 3.43M | } else { |
59 | | /* direct structure assignment */ |
60 | 3.43M | *ret = *sk; |
61 | 3.43M | } |
62 | | |
63 | 3.43M | if (sk == NULL || sk->num == 0) { |
64 | | /* postpone |ret->data| allocation */ |
65 | 67 | ret->data = NULL; |
66 | 67 | ret->num_alloc = 0; |
67 | 67 | return ret; |
68 | 67 | } |
69 | | |
70 | | /* duplicate |sk->data| content */ |
71 | 3.43M | ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc); |
72 | 3.43M | if (ret->data == NULL) |
73 | 0 | goto err; |
74 | 3.43M | memcpy(ret->data, sk->data, sizeof(void *) * sk->num); |
75 | 3.43M | return ret; |
76 | | |
77 | 0 | err: |
78 | 0 | OPENSSL_sk_free(ret); |
79 | 0 | return NULL; |
80 | 3.43M | } |
81 | | |
82 | | OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk, |
83 | | OPENSSL_sk_copyfunc copy_func, |
84 | | OPENSSL_sk_freefunc free_func) |
85 | 907k | { |
86 | 907k | OPENSSL_STACK *ret; |
87 | 907k | int i; |
88 | | |
89 | 907k | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) |
90 | 0 | goto err; |
91 | | |
92 | 907k | if (sk == NULL) { |
93 | 105 | ret->num = 0; |
94 | 105 | ret->sorted = 0; |
95 | 105 | ret->comp = NULL; |
96 | 907k | } else { |
97 | | /* direct structure assignment */ |
98 | 907k | *ret = *sk; |
99 | 907k | } |
100 | | |
101 | 907k | if (sk == NULL || sk->num == 0) { |
102 | | /* postpone |ret| data allocation */ |
103 | 105 | ret->data = NULL; |
104 | 105 | ret->num_alloc = 0; |
105 | 105 | return ret; |
106 | 105 | } |
107 | | |
108 | 907k | ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes; |
109 | 907k | ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc); |
110 | 907k | if (ret->data == NULL) |
111 | 0 | goto err; |
112 | | |
113 | 8.79M | for (i = 0; i < ret->num; ++i) { |
114 | 7.88M | if (sk->data[i] == NULL) |
115 | 0 | continue; |
116 | 7.88M | if ((ret->data[i] = copy_func(sk->data[i])) == NULL) { |
117 | 0 | while (--i >= 0) |
118 | 0 | if (ret->data[i] != NULL) |
119 | 0 | free_func((void *)ret->data[i]); |
120 | 0 | goto err; |
121 | 0 | } |
122 | 7.88M | } |
123 | 907k | return ret; |
124 | | |
125 | 0 | err: |
126 | 0 | OPENSSL_sk_free(ret); |
127 | 0 | return NULL; |
128 | 907k | } |
129 | | |
130 | | OPENSSL_STACK *OPENSSL_sk_new_null(void) |
131 | 112M | { |
132 | 112M | return OPENSSL_sk_new_reserve(NULL, 0); |
133 | 112M | } |
134 | | |
135 | | OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c) |
136 | 7.51M | { |
137 | 7.51M | return OPENSSL_sk_new_reserve(c, 0); |
138 | 7.51M | } |
139 | | |
140 | | /* |
141 | | * Calculate the array growth based on the target size. |
142 | | * |
143 | | * The growth factor is a rational number and is defined by a numerator |
144 | | * and a denominator. According to Andrew Koenig in his paper "Why Are |
145 | | * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less |
146 | | * than the golden ratio (1.618...). |
147 | | * |
148 | | * Considering only the Fibonacci ratios less than the golden ratio, the |
149 | | * number of steps from the minimum allocation to integer overflow is: |
150 | | * factor decimal growths |
151 | | * 3/2 1.5 51 |
152 | | * 8/5 1.6 45 |
153 | | * 21/13 1.615... 44 |
154 | | * |
155 | | * All larger factors have the same number of growths. |
156 | | * |
157 | | * 3/2 and 8/5 have nice power of two shifts, so seem like a good choice. |
158 | | */ |
159 | | static ossl_inline int compute_growth(int target, int current) |
160 | 1.68M | { |
161 | 1.68M | int err = 0; |
162 | | |
163 | 3.37M | while (current < target) { |
164 | 1.68M | if (current >= max_nodes) |
165 | 0 | return 0; |
166 | | |
167 | 1.68M | current = safe_muldiv_int(current, 8, 5, &err); |
168 | 1.68M | if (err != 0) |
169 | 0 | return 0; |
170 | 1.68M | if (current >= max_nodes) |
171 | 0 | current = max_nodes; |
172 | 1.68M | } |
173 | 1.68M | return current; |
174 | 1.68M | } |
175 | | |
176 | | /* internal STACK storage allocation */ |
177 | | static int sk_reserve(OPENSSL_STACK *st, int n, int exact) |
178 | 333M | { |
179 | 333M | const void **tmpdata; |
180 | 333M | int num_alloc; |
181 | | |
182 | | /* Check to see the reservation isn't exceeding the hard limit */ |
183 | 333M | if (n > max_nodes - st->num) { |
184 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
185 | 0 | return 0; |
186 | 0 | } |
187 | | |
188 | | /* Figure out the new size */ |
189 | 333M | num_alloc = st->num + n; |
190 | 333M | if (num_alloc < min_nodes) |
191 | 28.3M | num_alloc = min_nodes; |
192 | | |
193 | | /* If |st->data| allocation was postponed */ |
194 | 333M | if (st->data == NULL) { |
195 | | /* |
196 | | * At this point, |st->num_alloc| and |st->num| are 0; |
197 | | * so |num_alloc| value is |n| or |min_nodes| if greater than |n|. |
198 | | */ |
199 | 18.4M | if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) |
200 | 0 | return 0; |
201 | 18.4M | st->num_alloc = num_alloc; |
202 | 18.4M | return 1; |
203 | 18.4M | } |
204 | | |
205 | 315M | if (!exact) { |
206 | 315M | if (num_alloc <= st->num_alloc) |
207 | 307M | return 1; |
208 | 8.18M | num_alloc = compute_growth(num_alloc, st->num_alloc); |
209 | 8.18M | if (num_alloc == 0) { |
210 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
211 | 0 | return 0; |
212 | 0 | } |
213 | 8.18M | } else if (num_alloc == st->num_alloc) { |
214 | 0 | return 1; |
215 | 0 | } |
216 | | |
217 | 8.18M | tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc); |
218 | 8.18M | if (tmpdata == NULL) |
219 | 0 | return 0; |
220 | | |
221 | 8.18M | st->data = tmpdata; |
222 | 8.18M | st->num_alloc = num_alloc; |
223 | 8.18M | return 1; |
224 | 8.18M | } |
225 | | |
226 | | OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n) |
227 | 121M | { |
228 | 121M | OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK)); |
229 | | |
230 | 121M | if (st == NULL) |
231 | 0 | return NULL; |
232 | | |
233 | 121M | st->comp = c; |
234 | | |
235 | 121M | if (n <= 0) |
236 | 120M | return st; |
237 | | |
238 | 1.56M | if (!sk_reserve(st, n, 1)) { |
239 | 0 | OPENSSL_sk_free(st); |
240 | 0 | return NULL; |
241 | 0 | } |
242 | | |
243 | 1.56M | return st; |
244 | 1.56M | } |
245 | | |
246 | | int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n) |
247 | 0 | { |
248 | 0 | if (st == NULL) { |
249 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
250 | 0 | return 0; |
251 | 0 | } |
252 | | |
253 | 0 | if (n < 0) |
254 | 0 | return 1; |
255 | 0 | return sk_reserve(st, n, 1); |
256 | 0 | } |
257 | | |
258 | | int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc) |
259 | 332M | { |
260 | 332M | if (st == NULL) { |
261 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
262 | 0 | return 0; |
263 | 0 | } |
264 | 332M | if (st->num == max_nodes) { |
265 | 0 | ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS); |
266 | 0 | return 0; |
267 | 0 | } |
268 | | |
269 | 332M | if (!sk_reserve(st, 1, 0)) |
270 | 0 | return 0; |
271 | | |
272 | 332M | if ((loc >= st->num) || (loc < 0)) { |
273 | 332M | st->data[st->num] = data; |
274 | 332M | } else { |
275 | 3.43k | memmove(&st->data[loc + 1], &st->data[loc], |
276 | 3.43k | sizeof(st->data[0]) * (st->num - loc)); |
277 | 3.43k | st->data[loc] = data; |
278 | 3.43k | } |
279 | 332M | st->num++; |
280 | 332M | st->sorted = 0; |
281 | 332M | return st->num; |
282 | 332M | } |
283 | | |
284 | | static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc) |
285 | 1.34M | { |
286 | 1.34M | const void *ret = st->data[loc]; |
287 | | |
288 | 1.34M | if (loc != st->num - 1) |
289 | 191k | memmove(&st->data[loc], &st->data[loc + 1], |
290 | 191k | sizeof(st->data[0]) * (st->num - loc - 1)); |
291 | 1.34M | st->num--; |
292 | | |
293 | 1.34M | return (void *)ret; |
294 | 1.34M | } |
295 | | |
296 | | void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p) |
297 | 162k | { |
298 | 162k | int i; |
299 | | |
300 | 162k | if (st == NULL) |
301 | 0 | return NULL; |
302 | | |
303 | 398k | for (i = 0; i < st->num; i++) |
304 | 398k | if (st->data[i] == p) |
305 | 162k | return internal_delete(st, i); |
306 | 0 | return NULL; |
307 | 162k | } |
308 | | |
309 | | void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc) |
310 | 72.6k | { |
311 | 72.6k | if (st == NULL || loc < 0 || loc >= st->num) |
312 | 0 | return NULL; |
313 | | |
314 | 72.6k | return internal_delete(st, loc); |
315 | 72.6k | } |
316 | | |
317 | | static int internal_find(OPENSSL_STACK *st, const void *data, |
318 | | int ret_val_options, int *pnum_matched) |
319 | 96.3k | { |
320 | 96.3k | const void *r; |
321 | 96.3k | int i, count = 0; |
322 | 96.3k | int *pnum = pnum_matched; |
323 | | |
324 | 96.3k | if (st == NULL || st->num == 0) |
325 | 40.1k | return -1; |
326 | | |
327 | 56.2k | if (pnum == NULL) |
328 | 53.3k | pnum = &count; |
329 | | |
330 | 56.2k | if (st->comp == NULL) { |
331 | 1.11M | for (i = 0; i < st->num; i++) |
332 | 1.11M | if (st->data[i] == data) { |
333 | 10.1k | *pnum = 1; |
334 | 10.1k | return i; |
335 | 10.1k | } |
336 | 1.08k | *pnum = 0; |
337 | 1.08k | return -1; |
338 | 11.2k | } |
339 | | |
340 | 44.9k | if (data == NULL) |
341 | 0 | return -1; |
342 | | |
343 | 44.9k | if (!st->sorted) { |
344 | 0 | int res = -1; |
345 | |
|
346 | 0 | for (i = 0; i < st->num; i++) |
347 | 0 | if (st->comp(&data, st->data + i) == 0) { |
348 | 0 | if (res == -1) |
349 | 0 | res = i; |
350 | 0 | ++*pnum; |
351 | | /* Check if only one result is wanted and exit if so */ |
352 | 0 | if (pnum_matched == NULL) |
353 | 0 | return i; |
354 | 0 | } |
355 | 0 | if (res == -1) |
356 | 0 | *pnum = 0; |
357 | 0 | return res; |
358 | 0 | } |
359 | | |
360 | 44.9k | if (pnum_matched != NULL) |
361 | 2.84k | ret_val_options |= OSSL_BSEARCH_FIRST_VALUE_ON_MATCH; |
362 | 44.9k | r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp, |
363 | 44.9k | ret_val_options); |
364 | | |
365 | 44.9k | if (pnum_matched != NULL) { |
366 | 2.84k | *pnum = 0; |
367 | 2.84k | if (r != NULL) { |
368 | 1.99k | const void **p = (const void **)r; |
369 | | |
370 | 3.99k | while (p < st->data + st->num) { |
371 | 1.99k | if (st->comp(&data, p) != 0) |
372 | 0 | break; |
373 | 1.99k | ++*pnum; |
374 | 1.99k | ++p; |
375 | 1.99k | } |
376 | 1.99k | } |
377 | 2.84k | } |
378 | | |
379 | 44.9k | return r == NULL ? -1 : (int)((const void **)r - st->data); |
380 | 44.9k | } |
381 | | |
382 | | int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data) |
383 | 86.4k | { |
384 | 86.4k | return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, NULL); |
385 | 86.4k | } |
386 | | |
387 | | int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data) |
388 | 0 | { |
389 | 0 | return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH, NULL); |
390 | 0 | } |
391 | | |
392 | | int OPENSSL_sk_find_all(OPENSSL_STACK *st, const void *data, int *pnum) |
393 | 59.9k | { |
394 | 59.9k | return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, pnum); |
395 | 59.9k | } |
396 | | |
397 | | int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data) |
398 | 332M | { |
399 | 332M | if (st == NULL) |
400 | 0 | return -1; |
401 | 332M | return OPENSSL_sk_insert(st, data, st->num); |
402 | 332M | } |
403 | | |
404 | | int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data) |
405 | 0 | { |
406 | 0 | return OPENSSL_sk_insert(st, data, 0); |
407 | 0 | } |
408 | | |
409 | | void *OPENSSL_sk_shift(OPENSSL_STACK *st) |
410 | 0 | { |
411 | 0 | if (st == NULL || st->num == 0) |
412 | 0 | return NULL; |
413 | 0 | return internal_delete(st, 0); |
414 | 0 | } |
415 | | |
416 | | void *OPENSSL_sk_pop(OPENSSL_STACK *st) |
417 | 1.12M | { |
418 | 1.12M | if (st == NULL || st->num == 0) |
419 | 7.61k | return NULL; |
420 | 1.11M | return internal_delete(st, st->num - 1); |
421 | 1.12M | } |
422 | | |
423 | | void OPENSSL_sk_zero(OPENSSL_STACK *st) |
424 | 0 | { |
425 | 0 | if (st == NULL || st->num == 0) |
426 | 0 | return; |
427 | 0 | memset(st->data, 0, sizeof(*st->data) * st->num); |
428 | 0 | st->num = 0; |
429 | 0 | } |
430 | | |
431 | | void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func) |
432 | 25.9M | { |
433 | 25.9M | int i; |
434 | | |
435 | 25.9M | if (st == NULL) |
436 | 6.84M | return; |
437 | 134M | for (i = 0; i < st->num; i++) |
438 | 115M | if (st->data[i] != NULL) |
439 | 115M | func((char *)st->data[i]); |
440 | 19.1M | OPENSSL_sk_free(st); |
441 | 19.1M | } |
442 | | |
443 | | void OPENSSL_sk_free(OPENSSL_STACK *st) |
444 | 158M | { |
445 | 158M | if (st == NULL) |
446 | 32.2M | return; |
447 | 126M | OPENSSL_free(st->data); |
448 | 126M | OPENSSL_free(st); |
449 | 126M | } |
450 | | |
451 | | int OPENSSL_sk_num(const OPENSSL_STACK *st) |
452 | 973M | { |
453 | 973M | return st == NULL ? -1 : st->num; |
454 | 973M | } |
455 | | |
456 | | void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i) |
457 | 1.43G | { |
458 | 1.43G | if (st == NULL || i < 0 || i >= st->num) |
459 | 2.20k | return NULL; |
460 | 1.43G | return (void *)st->data[i]; |
461 | 1.43G | } |
462 | | |
463 | | void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data) |
464 | 16.1M | { |
465 | 16.1M | if (st == NULL) { |
466 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); |
467 | 0 | return NULL; |
468 | 0 | } |
469 | 16.1M | if (i < 0 || i >= st->num) { |
470 | 0 | ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT, |
471 | 0 | "i=%d", i); |
472 | 0 | return NULL; |
473 | 0 | } |
474 | 16.1M | st->data[i] = data; |
475 | 16.1M | st->sorted = 0; |
476 | 16.1M | return (void *)st->data[i]; |
477 | 16.1M | } |
478 | | |
479 | | void OPENSSL_sk_sort(OPENSSL_STACK *st) |
480 | 7.59M | { |
481 | 7.59M | if (st != NULL && !st->sorted && st->comp != NULL) { |
482 | 7.58M | if (st->num > 1) |
483 | 143k | qsort(st->data, st->num, sizeof(void *), st->comp); |
484 | 7.58M | st->sorted = 1; /* empty or single-element stack is considered sorted */ |
485 | 7.58M | } |
486 | 7.59M | } |
487 | | |
488 | | int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st) |
489 | 44.6k | { |
490 | 44.6k | return st == NULL ? 1 : st->sorted; |
491 | 44.6k | } |