/src/openssl32/providers/implementations/kdfs/tls1_prf.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2016-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * Refer to "The TLS Protocol Version 1.0" Section 5 |
12 | | * (https://tools.ietf.org/html/rfc2246#section-5) and |
13 | | * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 |
14 | | * (https://tools.ietf.org/html/rfc5246#section-5). |
15 | | * |
16 | | * For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by: |
17 | | * |
18 | | * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR |
19 | | * P_SHA-1(S2, label + seed) |
20 | | * |
21 | | * where P_MD5 and P_SHA-1 are defined by P_<hash>, below, and S1 and S2 are |
22 | | * two halves of the secret (with the possibility of one shared byte, in the |
23 | | * case where the length of the original secret is odd). S1 is taken from the |
24 | | * first half of the secret, S2 from the second half. |
25 | | * |
26 | | * For TLS v1.2 the TLS PRF algorithm is given by: |
27 | | * |
28 | | * PRF(secret, label, seed) = P_<hash>(secret, label + seed) |
29 | | * |
30 | | * where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as |
31 | | * those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect, |
32 | | * unless defined otherwise by the cipher suite. |
33 | | * |
34 | | * P_<hash> is an expansion function that uses a single hash function to expand |
35 | | * a secret and seed into an arbitrary quantity of output: |
36 | | * |
37 | | * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) + |
38 | | * HMAC_<hash>(secret, A(2) + seed) + |
39 | | * HMAC_<hash>(secret, A(3) + seed) + ... |
40 | | * |
41 | | * where + indicates concatenation. P_<hash> can be iterated as many times as |
42 | | * is necessary to produce the required quantity of data. |
43 | | * |
44 | | * A(i) is defined as: |
45 | | * A(0) = seed |
46 | | * A(i) = HMAC_<hash>(secret, A(i-1)) |
47 | | */ |
48 | | |
49 | | /* |
50 | | * Low level APIs (such as DH) are deprecated for public use, but still ok for |
51 | | * internal use. |
52 | | */ |
53 | | #include "internal/deprecated.h" |
54 | | |
55 | | #include <stdio.h> |
56 | | #include <stdarg.h> |
57 | | #include <string.h> |
58 | | #include <openssl/evp.h> |
59 | | #include <openssl/kdf.h> |
60 | | #include <openssl/core_names.h> |
61 | | #include <openssl/params.h> |
62 | | #include <openssl/proverr.h> |
63 | | #include "internal/cryptlib.h" |
64 | | #include "internal/numbers.h" |
65 | | #include "crypto/evp.h" |
66 | | #include "prov/provider_ctx.h" |
67 | | #include "prov/providercommon.h" |
68 | | #include "prov/implementations.h" |
69 | | #include "prov/provider_util.h" |
70 | | #include "prov/securitycheck.h" |
71 | | #include "internal/e_os.h" |
72 | | |
73 | | static OSSL_FUNC_kdf_newctx_fn kdf_tls1_prf_new; |
74 | | static OSSL_FUNC_kdf_dupctx_fn kdf_tls1_prf_dup; |
75 | | static OSSL_FUNC_kdf_freectx_fn kdf_tls1_prf_free; |
76 | | static OSSL_FUNC_kdf_reset_fn kdf_tls1_prf_reset; |
77 | | static OSSL_FUNC_kdf_derive_fn kdf_tls1_prf_derive; |
78 | | static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_tls1_prf_settable_ctx_params; |
79 | | static OSSL_FUNC_kdf_set_ctx_params_fn kdf_tls1_prf_set_ctx_params; |
80 | | static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_tls1_prf_gettable_ctx_params; |
81 | | static OSSL_FUNC_kdf_get_ctx_params_fn kdf_tls1_prf_get_ctx_params; |
82 | | |
83 | | static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx, |
84 | | const unsigned char *sec, size_t slen, |
85 | | const unsigned char *seed, size_t seed_len, |
86 | | unsigned char *out, size_t olen); |
87 | | |
88 | 44.4k | #define TLS1_PRF_MAXBUF 1024 |
89 | 0 | #define TLS_MD_MASTER_SECRET_CONST "\x6d\x61\x73\x74\x65\x72\x20\x73\x65\x63\x72\x65\x74" |
90 | 0 | #define TLS_MD_MASTER_SECRET_CONST_SIZE 13 |
91 | | |
92 | | /* TLS KDF kdf context structure */ |
93 | | typedef struct { |
94 | | void *provctx; |
95 | | |
96 | | /* MAC context for the main digest */ |
97 | | EVP_MAC_CTX *P_hash; |
98 | | /* MAC context for SHA1 for the MD5/SHA-1 combined PRF */ |
99 | | EVP_MAC_CTX *P_sha1; |
100 | | |
101 | | /* Secret value to use for PRF */ |
102 | | unsigned char *sec; |
103 | | size_t seclen; |
104 | | /* Buffer of concatenated seed data */ |
105 | | unsigned char seed[TLS1_PRF_MAXBUF]; |
106 | | size_t seedlen; |
107 | | } TLS1_PRF; |
108 | | |
109 | | static void *kdf_tls1_prf_new(void *provctx) |
110 | 19.3k | { |
111 | 19.3k | TLS1_PRF *ctx; |
112 | | |
113 | 19.3k | if (!ossl_prov_is_running()) |
114 | 0 | return NULL; |
115 | | |
116 | 19.3k | if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) != NULL) |
117 | 19.3k | ctx->provctx = provctx; |
118 | 19.3k | return ctx; |
119 | 19.3k | } |
120 | | |
121 | | static void kdf_tls1_prf_free(void *vctx) |
122 | 28.6k | { |
123 | 28.6k | TLS1_PRF *ctx = (TLS1_PRF *)vctx; |
124 | | |
125 | 28.6k | if (ctx != NULL) { |
126 | 28.6k | kdf_tls1_prf_reset(ctx); |
127 | 28.6k | OPENSSL_free(ctx); |
128 | 28.6k | } |
129 | 28.6k | } |
130 | | |
131 | | static void kdf_tls1_prf_reset(void *vctx) |
132 | 28.6k | { |
133 | 28.6k | TLS1_PRF *ctx = (TLS1_PRF *)vctx; |
134 | 28.6k | void *provctx = ctx->provctx; |
135 | | |
136 | 28.6k | EVP_MAC_CTX_free(ctx->P_hash); |
137 | 28.6k | EVP_MAC_CTX_free(ctx->P_sha1); |
138 | 28.6k | OPENSSL_clear_free(ctx->sec, ctx->seclen); |
139 | 28.6k | OPENSSL_cleanse(ctx->seed, ctx->seedlen); |
140 | 28.6k | memset(ctx, 0, sizeof(*ctx)); |
141 | 28.6k | ctx->provctx = provctx; |
142 | 28.6k | } |
143 | | |
144 | | static void *kdf_tls1_prf_dup(void *vctx) |
145 | 0 | { |
146 | 0 | const TLS1_PRF *src = (const TLS1_PRF *)vctx; |
147 | 0 | TLS1_PRF *dest; |
148 | |
|
149 | 0 | dest = kdf_tls1_prf_new(src->provctx); |
150 | 0 | if (dest != NULL) { |
151 | 0 | if (src->P_hash != NULL |
152 | 0 | && (dest->P_hash = EVP_MAC_CTX_dup(src->P_hash)) == NULL) |
153 | 0 | goto err; |
154 | 0 | if (src->P_sha1 != NULL |
155 | 0 | && (dest->P_sha1 = EVP_MAC_CTX_dup(src->P_sha1)) == NULL) |
156 | 0 | goto err; |
157 | 0 | if (!ossl_prov_memdup(src->sec, src->seclen, &dest->sec, &dest->seclen)) |
158 | 0 | goto err; |
159 | 0 | memcpy(dest->seed, src->seed, src->seedlen); |
160 | 0 | dest->seedlen = src->seedlen; |
161 | 0 | } |
162 | 0 | return dest; |
163 | | |
164 | 0 | err: |
165 | 0 | kdf_tls1_prf_free(dest); |
166 | 0 | return NULL; |
167 | 0 | } |
168 | | |
169 | | static int kdf_tls1_prf_derive(void *vctx, unsigned char *key, size_t keylen, |
170 | | const OSSL_PARAM params[]) |
171 | 12.3k | { |
172 | 12.3k | TLS1_PRF *ctx = (TLS1_PRF *)vctx; |
173 | 12.3k | OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); |
174 | | |
175 | 12.3k | if (!ossl_prov_is_running() || !kdf_tls1_prf_set_ctx_params(ctx, params)) |
176 | 0 | return 0; |
177 | | |
178 | 12.3k | if (ctx->P_hash == NULL) { |
179 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); |
180 | 0 | return 0; |
181 | 0 | } |
182 | 12.3k | if (ctx->sec == NULL) { |
183 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET); |
184 | 0 | return 0; |
185 | 0 | } |
186 | 12.3k | if (ctx->seedlen == 0) { |
187 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SEED); |
188 | 0 | return 0; |
189 | 0 | } |
190 | 12.3k | if (keylen == 0) { |
191 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH); |
192 | 0 | return 0; |
193 | 0 | } |
194 | | |
195 | | /* |
196 | | * The seed buffer is prepended with a label. |
197 | | * If EMS mode is enforced then the label "master secret" is not allowed, |
198 | | * We do the check this way since the PRF is used for other purposes, as well |
199 | | * as "extended master secret". |
200 | | */ |
201 | 12.3k | if (ossl_tls1_prf_ems_check_enabled(libctx)) { |
202 | 0 | if (ctx->seedlen >= TLS_MD_MASTER_SECRET_CONST_SIZE |
203 | 0 | && memcmp(ctx->seed, TLS_MD_MASTER_SECRET_CONST, |
204 | 0 | TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) { |
205 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_EMS_NOT_ENABLED); |
206 | 0 | return 0; |
207 | 0 | } |
208 | 0 | } |
209 | | |
210 | 12.3k | return tls1_prf_alg(ctx->P_hash, ctx->P_sha1, |
211 | 12.3k | ctx->sec, ctx->seclen, |
212 | 12.3k | ctx->seed, ctx->seedlen, |
213 | 12.3k | key, keylen); |
214 | 12.3k | } |
215 | | |
216 | | static int kdf_tls1_prf_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
217 | 16.6k | { |
218 | 16.6k | const OSSL_PARAM *p; |
219 | 16.6k | TLS1_PRF *ctx = vctx; |
220 | 16.6k | OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); |
221 | | |
222 | 16.6k | if (params == NULL) |
223 | 0 | return 1; |
224 | | |
225 | 16.6k | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_DIGEST)) != NULL) { |
226 | 16.6k | if (OPENSSL_strcasecmp(p->data, SN_md5_sha1) == 0) { |
227 | 4.27k | if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params, |
228 | 4.27k | OSSL_MAC_NAME_HMAC, |
229 | 4.27k | NULL, SN_md5, libctx) |
230 | 4.27k | || !ossl_prov_macctx_load_from_params(&ctx->P_sha1, params, |
231 | 4.27k | OSSL_MAC_NAME_HMAC, |
232 | 4.27k | NULL, SN_sha1, libctx)) |
233 | 0 | return 0; |
234 | 12.3k | } else { |
235 | 12.3k | EVP_MAC_CTX_free(ctx->P_sha1); |
236 | 12.3k | if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params, |
237 | 12.3k | OSSL_MAC_NAME_HMAC, |
238 | 12.3k | NULL, NULL, libctx)) |
239 | 0 | return 0; |
240 | 12.3k | } |
241 | 16.6k | } |
242 | | |
243 | 16.6k | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SECRET)) != NULL) { |
244 | 16.6k | OPENSSL_clear_free(ctx->sec, ctx->seclen); |
245 | 16.6k | ctx->sec = NULL; |
246 | 16.6k | if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->sec, 0, &ctx->seclen)) |
247 | 0 | return 0; |
248 | 16.6k | } |
249 | | /* The seed fields concatenate, so process them all */ |
250 | 16.6k | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SEED)) != NULL) { |
251 | 100k | for (; p != NULL; p = OSSL_PARAM_locate_const(p + 1, |
252 | 83.3k | OSSL_KDF_PARAM_SEED)) { |
253 | 83.3k | const void *q = ctx->seed + ctx->seedlen; |
254 | 83.3k | size_t sz = 0; |
255 | | |
256 | 83.3k | if (p->data_size != 0 |
257 | 83.3k | && p->data != NULL |
258 | 83.3k | && !OSSL_PARAM_get_octet_string(p, (void **)&q, |
259 | 44.4k | TLS1_PRF_MAXBUF - ctx->seedlen, |
260 | 44.4k | &sz)) |
261 | 0 | return 0; |
262 | 83.3k | ctx->seedlen += sz; |
263 | 83.3k | } |
264 | 16.6k | } |
265 | 16.6k | return 1; |
266 | 16.6k | } |
267 | | |
268 | | static const OSSL_PARAM *kdf_tls1_prf_settable_ctx_params( |
269 | | ossl_unused void *ctx, ossl_unused void *provctx) |
270 | 1.16k | { |
271 | 1.16k | static const OSSL_PARAM known_settable_ctx_params[] = { |
272 | 1.16k | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), |
273 | 1.16k | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0), |
274 | 1.16k | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0), |
275 | 1.16k | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SEED, NULL, 0), |
276 | 1.16k | OSSL_PARAM_END |
277 | 1.16k | }; |
278 | 1.16k | return known_settable_ctx_params; |
279 | 1.16k | } |
280 | | |
281 | | static int kdf_tls1_prf_get_ctx_params(void *vctx, OSSL_PARAM params[]) |
282 | 0 | { |
283 | 0 | OSSL_PARAM *p; |
284 | |
|
285 | 0 | if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) |
286 | 0 | return OSSL_PARAM_set_size_t(p, SIZE_MAX); |
287 | 0 | return -2; |
288 | 0 | } |
289 | | |
290 | | static const OSSL_PARAM *kdf_tls1_prf_gettable_ctx_params( |
291 | | ossl_unused void *ctx, ossl_unused void *provctx) |
292 | 0 | { |
293 | 0 | static const OSSL_PARAM known_gettable_ctx_params[] = { |
294 | 0 | OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), |
295 | 0 | OSSL_PARAM_END |
296 | 0 | }; |
297 | 0 | return known_gettable_ctx_params; |
298 | 0 | } |
299 | | |
300 | | const OSSL_DISPATCH ossl_kdf_tls1_prf_functions[] = { |
301 | | { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_tls1_prf_new }, |
302 | | { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_tls1_prf_dup }, |
303 | | { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_tls1_prf_free }, |
304 | | { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_tls1_prf_reset }, |
305 | | { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_tls1_prf_derive }, |
306 | | { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, |
307 | | (void(*)(void))kdf_tls1_prf_settable_ctx_params }, |
308 | | { OSSL_FUNC_KDF_SET_CTX_PARAMS, |
309 | | (void(*)(void))kdf_tls1_prf_set_ctx_params }, |
310 | | { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, |
311 | | (void(*)(void))kdf_tls1_prf_gettable_ctx_params }, |
312 | | { OSSL_FUNC_KDF_GET_CTX_PARAMS, |
313 | | (void(*)(void))kdf_tls1_prf_get_ctx_params }, |
314 | | OSSL_DISPATCH_END |
315 | | }; |
316 | | |
317 | | /* |
318 | | * Refer to "The TLS Protocol Version 1.0" Section 5 |
319 | | * (https://tools.ietf.org/html/rfc2246#section-5) and |
320 | | * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 |
321 | | * (https://tools.ietf.org/html/rfc5246#section-5). |
322 | | * |
323 | | * P_<hash> is an expansion function that uses a single hash function to expand |
324 | | * a secret and seed into an arbitrary quantity of output: |
325 | | * |
326 | | * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) + |
327 | | * HMAC_<hash>(secret, A(2) + seed) + |
328 | | * HMAC_<hash>(secret, A(3) + seed) + ... |
329 | | * |
330 | | * where + indicates concatenation. P_<hash> can be iterated as many times as |
331 | | * is necessary to produce the required quantity of data. |
332 | | * |
333 | | * A(i) is defined as: |
334 | | * A(0) = seed |
335 | | * A(i) = HMAC_<hash>(secret, A(i-1)) |
336 | | */ |
337 | | static int tls1_prf_P_hash(EVP_MAC_CTX *ctx_init, |
338 | | const unsigned char *sec, size_t sec_len, |
339 | | const unsigned char *seed, size_t seed_len, |
340 | | unsigned char *out, size_t olen) |
341 | 34.9k | { |
342 | 34.9k | size_t chunk; |
343 | 34.9k | EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL; |
344 | 34.9k | unsigned char Ai[EVP_MAX_MD_SIZE]; |
345 | 34.9k | size_t Ai_len; |
346 | 34.9k | int ret = 0; |
347 | | |
348 | 34.9k | if (!EVP_MAC_init(ctx_init, sec, sec_len, NULL)) |
349 | 0 | goto err; |
350 | 34.9k | chunk = EVP_MAC_CTX_get_mac_size(ctx_init); |
351 | 34.9k | if (chunk == 0) |
352 | 2 | goto err; |
353 | | /* A(0) = seed */ |
354 | 34.8k | ctx_Ai = EVP_MAC_CTX_dup(ctx_init); |
355 | 34.8k | if (ctx_Ai == NULL) |
356 | 0 | goto err; |
357 | 34.8k | if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len)) |
358 | 0 | goto err; |
359 | | |
360 | 86.0k | for (;;) { |
361 | | /* calc: A(i) = HMAC_<hash>(secret, A(i-1)) */ |
362 | 86.0k | if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len, sizeof(Ai))) |
363 | 0 | goto err; |
364 | 86.0k | EVP_MAC_CTX_free(ctx_Ai); |
365 | 86.0k | ctx_Ai = NULL; |
366 | | |
367 | | /* calc next chunk: HMAC_<hash>(secret, A(i) + seed) */ |
368 | 86.0k | ctx = EVP_MAC_CTX_dup(ctx_init); |
369 | 86.0k | if (ctx == NULL) |
370 | 0 | goto err; |
371 | 86.0k | if (!EVP_MAC_update(ctx, Ai, Ai_len)) |
372 | 0 | goto err; |
373 | | /* save state for calculating next A(i) value */ |
374 | 86.0k | if (olen > chunk) { |
375 | 51.1k | ctx_Ai = EVP_MAC_CTX_dup(ctx); |
376 | 51.1k | if (ctx_Ai == NULL) |
377 | 0 | goto err; |
378 | 51.1k | } |
379 | 86.0k | if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len)) |
380 | 0 | goto err; |
381 | 86.0k | if (olen <= chunk) { |
382 | | /* last chunk - use Ai as temp bounce buffer */ |
383 | 34.8k | if (!EVP_MAC_final(ctx, Ai, &Ai_len, sizeof(Ai))) |
384 | 0 | goto err; |
385 | 34.8k | memcpy(out, Ai, olen); |
386 | 34.8k | break; |
387 | 34.8k | } |
388 | 51.1k | if (!EVP_MAC_final(ctx, out, NULL, olen)) |
389 | 0 | goto err; |
390 | 51.1k | EVP_MAC_CTX_free(ctx); |
391 | 51.1k | ctx = NULL; |
392 | 51.1k | out += chunk; |
393 | 51.1k | olen -= chunk; |
394 | 51.1k | } |
395 | 34.8k | ret = 1; |
396 | 34.9k | err: |
397 | 34.9k | EVP_MAC_CTX_free(ctx); |
398 | 34.9k | EVP_MAC_CTX_free(ctx_Ai); |
399 | 34.9k | OPENSSL_cleanse(Ai, sizeof(Ai)); |
400 | 34.9k | return ret; |
401 | 34.8k | } |
402 | | |
403 | | /* |
404 | | * Refer to "The TLS Protocol Version 1.0" Section 5 |
405 | | * (https://tools.ietf.org/html/rfc2246#section-5) and |
406 | | * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 |
407 | | * (https://tools.ietf.org/html/rfc5246#section-5). |
408 | | * |
409 | | * For TLS v1.0 and TLS v1.1: |
410 | | * |
411 | | * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR |
412 | | * P_SHA-1(S2, label + seed) |
413 | | * |
414 | | * S1 is taken from the first half of the secret, S2 from the second half. |
415 | | * |
416 | | * L_S = length in bytes of secret; |
417 | | * L_S1 = L_S2 = ceil(L_S / 2); |
418 | | * |
419 | | * For TLS v1.2: |
420 | | * |
421 | | * PRF(secret, label, seed) = P_<hash>(secret, label + seed) |
422 | | */ |
423 | | static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx, |
424 | | const unsigned char *sec, size_t slen, |
425 | | const unsigned char *seed, size_t seed_len, |
426 | | unsigned char *out, size_t olen) |
427 | 27.7k | { |
428 | 27.7k | if (sha1ctx != NULL) { |
429 | | /* TLS v1.0 and TLS v1.1 */ |
430 | 7.13k | size_t i; |
431 | 7.13k | unsigned char *tmp; |
432 | | /* calc: L_S1 = L_S2 = ceil(L_S / 2) */ |
433 | 7.13k | size_t L_S1 = (slen + 1) / 2; |
434 | 7.13k | size_t L_S2 = L_S1; |
435 | | |
436 | 7.13k | if (!tls1_prf_P_hash(mdctx, sec, L_S1, |
437 | 7.13k | seed, seed_len, out, olen)) |
438 | 0 | return 0; |
439 | | |
440 | 7.13k | if ((tmp = OPENSSL_malloc(olen)) == NULL) |
441 | 0 | return 0; |
442 | | |
443 | 7.13k | if (!tls1_prf_P_hash(sha1ctx, sec + slen - L_S2, L_S2, |
444 | 7.13k | seed, seed_len, tmp, olen)) { |
445 | 0 | OPENSSL_clear_free(tmp, olen); |
446 | 0 | return 0; |
447 | 0 | } |
448 | 374k | for (i = 0; i < olen; i++) |
449 | 367k | out[i] ^= tmp[i]; |
450 | 7.13k | OPENSSL_clear_free(tmp, olen); |
451 | 7.13k | return 1; |
452 | 7.13k | } |
453 | | |
454 | | /* TLS v1.2 */ |
455 | 20.6k | if (!tls1_prf_P_hash(mdctx, sec, slen, seed, seed_len, out, olen)) |
456 | 2 | return 0; |
457 | | |
458 | 20.6k | return 1; |
459 | 20.6k | } |