/src/openssl32/providers/implementations/kem/rsa_kem.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2020-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * RSA low level APIs are deprecated for public use, but still ok for |
12 | | * internal use. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | #include "internal/nelem.h" |
16 | | |
17 | | #include <openssl/crypto.h> |
18 | | #include <openssl/evp.h> |
19 | | #include <openssl/core_dispatch.h> |
20 | | #include <openssl/core_names.h> |
21 | | #include <openssl/rsa.h> |
22 | | #include <openssl/params.h> |
23 | | #include <openssl/err.h> |
24 | | #include "crypto/rsa.h" |
25 | | #include <openssl/proverr.h> |
26 | | #include "internal/nelem.h" |
27 | | #include "prov/provider_ctx.h" |
28 | | #include "prov/implementations.h" |
29 | | #include "prov/securitycheck.h" |
30 | | |
31 | | static OSSL_FUNC_kem_newctx_fn rsakem_newctx; |
32 | | static OSSL_FUNC_kem_encapsulate_init_fn rsakem_encapsulate_init; |
33 | | static OSSL_FUNC_kem_encapsulate_fn rsakem_generate; |
34 | | static OSSL_FUNC_kem_decapsulate_init_fn rsakem_decapsulate_init; |
35 | | static OSSL_FUNC_kem_decapsulate_fn rsakem_recover; |
36 | | static OSSL_FUNC_kem_freectx_fn rsakem_freectx; |
37 | | static OSSL_FUNC_kem_dupctx_fn rsakem_dupctx; |
38 | | static OSSL_FUNC_kem_get_ctx_params_fn rsakem_get_ctx_params; |
39 | | static OSSL_FUNC_kem_gettable_ctx_params_fn rsakem_gettable_ctx_params; |
40 | | static OSSL_FUNC_kem_set_ctx_params_fn rsakem_set_ctx_params; |
41 | | static OSSL_FUNC_kem_settable_ctx_params_fn rsakem_settable_ctx_params; |
42 | | |
43 | | /* |
44 | | * Only the KEM for RSASVE as defined in SP800-56b r2 is implemented |
45 | | * currently. |
46 | | */ |
47 | 0 | #define KEM_OP_UNDEFINED -1 |
48 | 0 | #define KEM_OP_RSASVE 0 |
49 | | |
50 | | /* |
51 | | * What's passed as an actual key is defined by the KEYMGMT interface. |
52 | | * We happen to know that our KEYMGMT simply passes RSA structures, so |
53 | | * we use that here too. |
54 | | */ |
55 | | typedef struct { |
56 | | OSSL_LIB_CTX *libctx; |
57 | | RSA *rsa; |
58 | | int op; |
59 | | } PROV_RSA_CTX; |
60 | | |
61 | | static const OSSL_ITEM rsakem_opname_id_map[] = { |
62 | | { KEM_OP_RSASVE, OSSL_KEM_PARAM_OPERATION_RSASVE }, |
63 | | }; |
64 | | |
65 | | static int name2id(const char *name, const OSSL_ITEM *map, size_t sz) |
66 | 0 | { |
67 | 0 | size_t i; |
68 | |
|
69 | 0 | if (name == NULL) |
70 | 0 | return -1; |
71 | | |
72 | 0 | for (i = 0; i < sz; ++i) { |
73 | 0 | if (OPENSSL_strcasecmp(map[i].ptr, name) == 0) |
74 | 0 | return map[i].id; |
75 | 0 | } |
76 | 0 | return -1; |
77 | 0 | } |
78 | | |
79 | | static int rsakem_opname2id(const char *name) |
80 | 0 | { |
81 | 0 | return name2id(name, rsakem_opname_id_map, OSSL_NELEM(rsakem_opname_id_map)); |
82 | 0 | } |
83 | | |
84 | | static void *rsakem_newctx(void *provctx) |
85 | 0 | { |
86 | 0 | PROV_RSA_CTX *prsactx = OPENSSL_zalloc(sizeof(PROV_RSA_CTX)); |
87 | |
|
88 | 0 | if (prsactx == NULL) |
89 | 0 | return NULL; |
90 | 0 | prsactx->libctx = PROV_LIBCTX_OF(provctx); |
91 | 0 | prsactx->op = KEM_OP_UNDEFINED; |
92 | |
|
93 | 0 | return prsactx; |
94 | 0 | } |
95 | | |
96 | | static void rsakem_freectx(void *vprsactx) |
97 | 0 | { |
98 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
99 | |
|
100 | 0 | RSA_free(prsactx->rsa); |
101 | 0 | OPENSSL_free(prsactx); |
102 | 0 | } |
103 | | |
104 | | static void *rsakem_dupctx(void *vprsactx) |
105 | 0 | { |
106 | 0 | PROV_RSA_CTX *srcctx = (PROV_RSA_CTX *)vprsactx; |
107 | 0 | PROV_RSA_CTX *dstctx; |
108 | |
|
109 | 0 | dstctx = OPENSSL_zalloc(sizeof(*srcctx)); |
110 | 0 | if (dstctx == NULL) |
111 | 0 | return NULL; |
112 | | |
113 | 0 | *dstctx = *srcctx; |
114 | 0 | if (dstctx->rsa != NULL && !RSA_up_ref(dstctx->rsa)) { |
115 | 0 | OPENSSL_free(dstctx); |
116 | 0 | return NULL; |
117 | 0 | } |
118 | 0 | return dstctx; |
119 | 0 | } |
120 | | |
121 | | static int rsakem_init(void *vprsactx, void *vrsa, |
122 | | const OSSL_PARAM params[], int operation) |
123 | 0 | { |
124 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
125 | |
|
126 | 0 | if (prsactx == NULL || vrsa == NULL) |
127 | 0 | return 0; |
128 | | |
129 | 0 | if (!ossl_rsa_check_key(prsactx->libctx, vrsa, operation)) |
130 | 0 | return 0; |
131 | | |
132 | 0 | if (!RSA_up_ref(vrsa)) |
133 | 0 | return 0; |
134 | 0 | RSA_free(prsactx->rsa); |
135 | 0 | prsactx->rsa = vrsa; |
136 | |
|
137 | 0 | return rsakem_set_ctx_params(prsactx, params); |
138 | 0 | } |
139 | | |
140 | | static int rsakem_encapsulate_init(void *vprsactx, void *vrsa, |
141 | | const OSSL_PARAM params[]) |
142 | 0 | { |
143 | 0 | return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_ENCAPSULATE); |
144 | 0 | } |
145 | | |
146 | | static int rsakem_decapsulate_init(void *vprsactx, void *vrsa, |
147 | | const OSSL_PARAM params[]) |
148 | 0 | { |
149 | 0 | return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_DECAPSULATE); |
150 | 0 | } |
151 | | |
152 | | static int rsakem_get_ctx_params(void *vprsactx, OSSL_PARAM *params) |
153 | 0 | { |
154 | 0 | PROV_RSA_CTX *ctx = (PROV_RSA_CTX *)vprsactx; |
155 | |
|
156 | 0 | return ctx != NULL; |
157 | 0 | } |
158 | | |
159 | | static const OSSL_PARAM known_gettable_rsakem_ctx_params[] = { |
160 | | OSSL_PARAM_END |
161 | | }; |
162 | | |
163 | | static const OSSL_PARAM *rsakem_gettable_ctx_params(ossl_unused void *vprsactx, |
164 | | ossl_unused void *provctx) |
165 | 0 | { |
166 | 0 | return known_gettable_rsakem_ctx_params; |
167 | 0 | } |
168 | | |
169 | | static int rsakem_set_ctx_params(void *vprsactx, const OSSL_PARAM params[]) |
170 | 0 | { |
171 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
172 | 0 | const OSSL_PARAM *p; |
173 | 0 | int op; |
174 | |
|
175 | 0 | if (prsactx == NULL) |
176 | 0 | return 0; |
177 | 0 | if (params == NULL) |
178 | 0 | return 1; |
179 | | |
180 | | |
181 | 0 | p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION); |
182 | 0 | if (p != NULL) { |
183 | 0 | if (p->data_type != OSSL_PARAM_UTF8_STRING) |
184 | 0 | return 0; |
185 | 0 | op = rsakem_opname2id(p->data); |
186 | 0 | if (op < 0) |
187 | 0 | return 0; |
188 | 0 | prsactx->op = op; |
189 | 0 | } |
190 | 0 | return 1; |
191 | 0 | } |
192 | | |
193 | | static const OSSL_PARAM known_settable_rsakem_ctx_params[] = { |
194 | | OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0), |
195 | | OSSL_PARAM_END |
196 | | }; |
197 | | |
198 | | static const OSSL_PARAM *rsakem_settable_ctx_params(ossl_unused void *vprsactx, |
199 | | ossl_unused void *provctx) |
200 | 5 | { |
201 | 5 | return known_settable_rsakem_ctx_params; |
202 | 5 | } |
203 | | |
204 | | /* |
205 | | * NIST.SP.800-56Br2 |
206 | | * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE). |
207 | | * |
208 | | * Generate a random in the range 1 < z < (n – 1) |
209 | | */ |
210 | | static int rsasve_gen_rand_bytes(RSA *rsa_pub, |
211 | | unsigned char *out, int outlen) |
212 | 0 | { |
213 | 0 | int ret = 0; |
214 | 0 | BN_CTX *bnctx; |
215 | 0 | BIGNUM *z, *nminus3; |
216 | |
|
217 | 0 | bnctx = BN_CTX_secure_new_ex(ossl_rsa_get0_libctx(rsa_pub)); |
218 | 0 | if (bnctx == NULL) |
219 | 0 | return 0; |
220 | | |
221 | | /* |
222 | | * Generate a random in the range 1 < z < (n – 1). |
223 | | * Since BN_priv_rand_range_ex() returns a value in range 0 <= r < max |
224 | | * We can achieve this by adding 2.. but then we need to subtract 3 from |
225 | | * the upper bound i.e: 2 + (0 <= r < (n - 3)) |
226 | | */ |
227 | 0 | BN_CTX_start(bnctx); |
228 | 0 | nminus3 = BN_CTX_get(bnctx); |
229 | 0 | z = BN_CTX_get(bnctx); |
230 | 0 | ret = (z != NULL |
231 | 0 | && (BN_copy(nminus3, RSA_get0_n(rsa_pub)) != NULL) |
232 | 0 | && BN_sub_word(nminus3, 3) |
233 | 0 | && BN_priv_rand_range_ex(z, nminus3, 0, bnctx) |
234 | 0 | && BN_add_word(z, 2) |
235 | 0 | && (BN_bn2binpad(z, out, outlen) == outlen)); |
236 | 0 | BN_CTX_end(bnctx); |
237 | 0 | BN_CTX_free(bnctx); |
238 | 0 | return ret; |
239 | 0 | } |
240 | | |
241 | | /* |
242 | | * NIST.SP.800-56Br2 |
243 | | * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE). |
244 | | */ |
245 | | static int rsasve_generate(PROV_RSA_CTX *prsactx, |
246 | | unsigned char *out, size_t *outlen, |
247 | | unsigned char *secret, size_t *secretlen) |
248 | 0 | { |
249 | 0 | int ret; |
250 | 0 | size_t nlen; |
251 | | |
252 | | /* Step (1): nlen = Ceil(len(n)/8) */ |
253 | 0 | nlen = RSA_size(prsactx->rsa); |
254 | |
|
255 | 0 | if (out == NULL) { |
256 | 0 | if (nlen == 0) { |
257 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY); |
258 | 0 | return 0; |
259 | 0 | } |
260 | 0 | if (outlen == NULL && secretlen == NULL) |
261 | 0 | return 0; |
262 | 0 | if (outlen != NULL) |
263 | 0 | *outlen = nlen; |
264 | 0 | if (secretlen != NULL) |
265 | 0 | *secretlen = nlen; |
266 | 0 | return 1; |
267 | 0 | } |
268 | | |
269 | | /* |
270 | | * If outlen is specified, then it must report the length |
271 | | * of the out buffer on input so that we can confirm |
272 | | * its size is sufficent for encapsulation |
273 | | */ |
274 | 0 | if (outlen != NULL && *outlen < nlen) { |
275 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH); |
276 | 0 | return 0; |
277 | 0 | } |
278 | | |
279 | | /* |
280 | | * Step (2): Generate a random byte string z of nlen bytes where |
281 | | * 1 < z < n - 1 |
282 | | */ |
283 | 0 | if (!rsasve_gen_rand_bytes(prsactx->rsa, secret, nlen)) |
284 | 0 | return 0; |
285 | | |
286 | | /* Step(3): out = RSAEP((n,e), z) */ |
287 | 0 | ret = RSA_public_encrypt(nlen, secret, out, prsactx->rsa, RSA_NO_PADDING); |
288 | 0 | if (ret) { |
289 | 0 | ret = 1; |
290 | 0 | if (outlen != NULL) |
291 | 0 | *outlen = nlen; |
292 | 0 | if (secretlen != NULL) |
293 | 0 | *secretlen = nlen; |
294 | 0 | } else { |
295 | 0 | OPENSSL_cleanse(secret, nlen); |
296 | 0 | } |
297 | 0 | return ret; |
298 | 0 | } |
299 | | |
300 | | /** |
301 | | * rsasve_recover - Recovers a secret value from ciphertext using an RSA |
302 | | * private key. Once, recovered, the secret value is considered to be a |
303 | | * shared secret. Algorithm is preformed as per |
304 | | * NIST SP 800-56B Rev 2 |
305 | | * 7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER). |
306 | | * |
307 | | * This function performs RSA decryption using the private key from the |
308 | | * provided RSA context (`prsactx`). It takes the input ciphertext, decrypts |
309 | | * it, and writes the decrypted message to the output buffer. |
310 | | * |
311 | | * @prsactx: The RSA context containing the private key. |
312 | | * @out: The output buffer to store the decrypted message. |
313 | | * @outlen: On input, the size of the output buffer. On successful |
314 | | * completion, the actual length of the decrypted message. |
315 | | * @in: The input buffer containing the ciphertext to be decrypted. |
316 | | * @inlen: The length of the input ciphertext in bytes. |
317 | | * |
318 | | * Returns 1 on success, or 0 on error. In case of error, appropriate |
319 | | * error messages are raised using the ERR_raise function. |
320 | | */ |
321 | | static int rsasve_recover(PROV_RSA_CTX *prsactx, |
322 | | unsigned char *out, size_t *outlen, |
323 | | const unsigned char *in, size_t inlen) |
324 | 0 | { |
325 | 0 | size_t nlen; |
326 | 0 | int ret; |
327 | | |
328 | | /* Step (1): get the byte length of n */ |
329 | 0 | nlen = RSA_size(prsactx->rsa); |
330 | |
|
331 | 0 | if (out == NULL) { |
332 | 0 | if (nlen == 0) { |
333 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY); |
334 | 0 | return 0; |
335 | 0 | } |
336 | 0 | *outlen = nlen; |
337 | 0 | return 1; |
338 | 0 | } |
339 | | |
340 | | /* |
341 | | * Step (2): check the input ciphertext 'inlen' matches the nlen |
342 | | * and that outlen is at least nlen bytes |
343 | | */ |
344 | 0 | if (inlen != nlen) { |
345 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH); |
346 | 0 | return 0; |
347 | 0 | } |
348 | | |
349 | | /* |
350 | | * If outlen is specified, then it must report the length |
351 | | * of the out buffer, so that we can confirm that it is of |
352 | | * sufficient size to hold the output of decapsulation |
353 | | */ |
354 | 0 | if (outlen != NULL && *outlen < nlen) { |
355 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH); |
356 | 0 | return 0; |
357 | 0 | } |
358 | | |
359 | | /* Step (3): out = RSADP((n,d), in) */ |
360 | 0 | ret = RSA_private_decrypt(inlen, in, out, prsactx->rsa, RSA_NO_PADDING); |
361 | 0 | if (ret > 0 && outlen != NULL) |
362 | 0 | *outlen = ret; |
363 | 0 | return ret > 0; |
364 | 0 | } |
365 | | |
366 | | static int rsakem_generate(void *vprsactx, unsigned char *out, size_t *outlen, |
367 | | unsigned char *secret, size_t *secretlen) |
368 | 0 | { |
369 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
370 | |
|
371 | 0 | switch (prsactx->op) { |
372 | 0 | case KEM_OP_RSASVE: |
373 | 0 | return rsasve_generate(prsactx, out, outlen, secret, secretlen); |
374 | 0 | default: |
375 | 0 | return -2; |
376 | 0 | } |
377 | 0 | } |
378 | | |
379 | | static int rsakem_recover(void *vprsactx, unsigned char *out, size_t *outlen, |
380 | | const unsigned char *in, size_t inlen) |
381 | 0 | { |
382 | 0 | PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx; |
383 | |
|
384 | 0 | switch (prsactx->op) { |
385 | 0 | case KEM_OP_RSASVE: |
386 | 0 | return rsasve_recover(prsactx, out, outlen, in, inlen); |
387 | 0 | default: |
388 | 0 | return -2; |
389 | 0 | } |
390 | 0 | } |
391 | | |
392 | | const OSSL_DISPATCH ossl_rsa_asym_kem_functions[] = { |
393 | | { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))rsakem_newctx }, |
394 | | { OSSL_FUNC_KEM_ENCAPSULATE_INIT, |
395 | | (void (*)(void))rsakem_encapsulate_init }, |
396 | | { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))rsakem_generate }, |
397 | | { OSSL_FUNC_KEM_DECAPSULATE_INIT, |
398 | | (void (*)(void))rsakem_decapsulate_init }, |
399 | | { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))rsakem_recover }, |
400 | | { OSSL_FUNC_KEM_FREECTX, (void (*)(void))rsakem_freectx }, |
401 | | { OSSL_FUNC_KEM_DUPCTX, (void (*)(void))rsakem_dupctx }, |
402 | | { OSSL_FUNC_KEM_GET_CTX_PARAMS, |
403 | | (void (*)(void))rsakem_get_ctx_params }, |
404 | | { OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS, |
405 | | (void (*)(void))rsakem_gettable_ctx_params }, |
406 | | { OSSL_FUNC_KEM_SET_CTX_PARAMS, |
407 | | (void (*)(void))rsakem_set_ctx_params }, |
408 | | { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS, |
409 | | (void (*)(void))rsakem_settable_ctx_params }, |
410 | | OSSL_DISPATCH_END |
411 | | }; |