Coverage Report

Created: 2025-06-13 06:58

/src/openssl32/providers/implementations/rands/seeding/rand_unix.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#ifndef _GNU_SOURCE
11
# define _GNU_SOURCE
12
#endif
13
#include "internal/e_os.h"
14
#include <stdio.h>
15
#include "internal/cryptlib.h"
16
#include <openssl/rand.h>
17
#include <openssl/crypto.h>
18
#include "crypto/rand_pool.h"
19
#include "crypto/rand.h"
20
#include "internal/dso.h"
21
#include "internal/nelem.h"
22
#include "prov/seeding.h"
23
24
#ifdef __linux
25
# include <sys/syscall.h>
26
# ifdef DEVRANDOM_WAIT
27
#  include <sys/shm.h>
28
#  include <sys/utsname.h>
29
# endif
30
#endif
31
#if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
32
# include <sys/types.h>
33
# include <sys/sysctl.h>
34
# include <sys/param.h>
35
#endif
36
#if defined(__OpenBSD__)
37
# include <sys/param.h>
38
#endif
39
#if defined(__DragonFly__)
40
# include <sys/param.h>
41
# include <sys/random.h>
42
#endif
43
44
#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
45
     || defined(__DJGPP__)
46
# include <sys/types.h>
47
# include <sys/stat.h>
48
# include <fcntl.h>
49
# include <unistd.h>
50
# include <sys/time.h>
51
52
static uint64_t get_time_stamp(void);
53
54
/* Macro to convert two thirty two bit values into a sixty four bit one */
55
100
# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
56
57
/*
58
 * Check for the existence and support of POSIX timers.  The standard
59
 * says that the _POSIX_TIMERS macro will have a positive value if they
60
 * are available.
61
 *
62
 * However, we want an additional constraint: that the timer support does
63
 * not require an extra library dependency.  Early versions of glibc
64
 * require -lrt to be specified on the link line to access the timers,
65
 * so this needs to be checked for.
66
 *
67
 * It is worse because some libraries define __GLIBC__ but don't
68
 * support the version testing macro (e.g. uClibc).  This means
69
 * an extra check is needed.
70
 *
71
 * The final condition is:
72
 *      "have posix timers and either not glibc or glibc without -lrt"
73
 *
74
 * The nested #if sequences are required to avoid using a parameterised
75
 * macro that might be undefined.
76
 */
77
# undef OSSL_POSIX_TIMER_OKAY
78
/* On some systems, _POSIX_TIMERS is defined but empty.
79
 * Subtracting by 0 when comparing avoids an error in this case. */
80
# if defined(_POSIX_TIMERS) && _POSIX_TIMERS -0 > 0
81
#  if defined(__GLIBC__)
82
#   if defined(__GLIBC_PREREQ)
83
#    if __GLIBC_PREREQ(2, 17)
84
#     define OSSL_POSIX_TIMER_OKAY
85
#    endif
86
#   endif
87
#  else
88
#   define OSSL_POSIX_TIMER_OKAY
89
#  endif
90
# endif
91
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
92
          || defined(__DJGPP__) */
93
94
#if defined(OPENSSL_RAND_SEED_NONE)
95
/* none means none. this simplifies the following logic */
96
# undef OPENSSL_RAND_SEED_OS
97
# undef OPENSSL_RAND_SEED_GETRANDOM
98
# undef OPENSSL_RAND_SEED_LIBRANDOM
99
# undef OPENSSL_RAND_SEED_DEVRANDOM
100
# undef OPENSSL_RAND_SEED_RDTSC
101
# undef OPENSSL_RAND_SEED_RDCPU
102
# undef OPENSSL_RAND_SEED_EGD
103
#endif
104
105
#if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
106
# error "UEFI only supports seeding NONE"
107
#endif
108
109
#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
110
    || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
111
    || defined(OPENSSL_SYS_UEFI))
112
113
# if defined(OPENSSL_SYS_VOS)
114
115
#  ifndef OPENSSL_RAND_SEED_OS
116
#   error "Unsupported seeding method configured; must be os"
117
#  endif
118
119
#  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
120
#   error "Unsupported HP-PA and IA32 at the same time."
121
#  endif
122
#  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
123
#   error "Must have one of HP-PA or IA32"
124
#  endif
125
126
/*
127
 * The following algorithm repeatedly samples the real-time clock (RTC) to
128
 * generate a sequence of unpredictable data.  The algorithm relies upon the
129
 * uneven execution speed of the code (due to factors such as cache misses,
130
 * interrupts, bus activity, and scheduling) and upon the rather large
131
 * relative difference between the speed of the clock and the rate at which
132
 * it can be read.  If it is ported to an environment where execution speed
133
 * is more constant or where the RTC ticks at a much slower rate, or the
134
 * clock can be read with fewer instructions, it is likely that the results
135
 * would be far more predictable.  This should only be used for legacy
136
 * platforms.
137
 *
138
 * As a precaution, we assume only 2 bits of entropy per byte.
139
 */
140
size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
141
{
142
    short int code;
143
    int i, k;
144
    size_t bytes_needed;
145
    struct timespec ts;
146
    unsigned char v;
147
#  ifdef OPENSSL_SYS_VOS_HPPA
148
    long duration;
149
    extern void s$sleep(long *_duration, short int *_code);
150
#  else
151
    long long duration;
152
    extern void s$sleep2(long long *_duration, short int *_code);
153
#  endif
154
155
    bytes_needed = ossl_rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
156
157
    for (i = 0; i < bytes_needed; i++) {
158
        /*
159
         * burn some cpu; hope for interrupts, cache collisions, bus
160
         * interference, etc.
161
         */
162
        for (k = 0; k < 99; k++)
163
            ts.tv_nsec = random();
164
165
#  ifdef OPENSSL_SYS_VOS_HPPA
166
        /* sleep for 1/1024 of a second (976 us).  */
167
        duration = 1;
168
        s$sleep(&duration, &code);
169
#  else
170
        /* sleep for 1/65536 of a second (15 us).  */
171
        duration = 1;
172
        s$sleep2(&duration, &code);
173
#  endif
174
175
        /* Get wall clock time, take 8 bits. */
176
        clock_gettime(CLOCK_REALTIME, &ts);
177
        v = (unsigned char)(ts.tv_nsec & 0xFF);
178
        ossl_rand_pool_add(pool, arg, &v, sizeof(v), 2);
179
    }
180
    return ossl_rand_pool_entropy_available(pool);
181
}
182
183
void ossl_rand_pool_cleanup(void)
184
{
185
}
186
187
void ossl_rand_pool_keep_random_devices_open(int keep)
188
{
189
}
190
191
# else
192
193
#  if defined(OPENSSL_RAND_SEED_EGD) && \
194
        (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
195
#   error "Seeding uses EGD but EGD is turned off or no device given"
196
#  endif
197
198
#  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
199
#   error "Seeding uses urandom but DEVRANDOM is not configured"
200
#  endif
201
202
#  if defined(OPENSSL_RAND_SEED_OS)
203
#   if !defined(DEVRANDOM)
204
#    error "OS seeding requires DEVRANDOM to be configured"
205
#   endif
206
#   define OPENSSL_RAND_SEED_GETRANDOM
207
#   define OPENSSL_RAND_SEED_DEVRANDOM
208
#  endif
209
210
#  if defined(OPENSSL_RAND_SEED_LIBRANDOM)
211
#   error "librandom not (yet) supported"
212
#  endif
213
214
#  if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
215
/*
216
 * sysctl_random(): Use sysctl() to read a random number from the kernel
217
 * Returns the number of bytes returned in buf on success, -1 on failure.
218
 */
219
static ssize_t sysctl_random(char *buf, size_t buflen)
220
{
221
    int mib[2];
222
    size_t done = 0;
223
    size_t len;
224
225
    /*
226
     * Note: sign conversion between size_t and ssize_t is safe even
227
     * without a range check, see comment in syscall_random()
228
     */
229
230
    /*
231
     * On FreeBSD old implementations returned longs, newer versions support
232
     * variable sizes up to 256 byte. The code below would not work properly
233
     * when the sysctl returns long and we want to request something not a
234
     * multiple of longs, which should never be the case.
235
     */
236
#if   defined(__FreeBSD__)
237
    if (!ossl_assert(buflen % sizeof(long) == 0)) {
238
        errno = EINVAL;
239
        return -1;
240
    }
241
#endif
242
243
    /*
244
     * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
245
     * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
246
     * it returns a variable number of bytes with the current version supporting
247
     * up to 256 bytes.
248
     * Just return an error on older NetBSD versions.
249
     */
250
#if   defined(__NetBSD__) && __NetBSD_Version__ < 400000000
251
    errno = ENOSYS;
252
    return -1;
253
#endif
254
255
    mib[0] = CTL_KERN;
256
    mib[1] = KERN_ARND;
257
258
    do {
259
        len = buflen > 256 ? 256 : buflen;
260
        if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
261
            return done > 0 ? done : -1;
262
        done += len;
263
        buf += len;
264
        buflen -= len;
265
    } while (buflen > 0);
266
267
    return done;
268
}
269
#  endif
270
271
#  if defined(OPENSSL_RAND_SEED_GETRANDOM)
272
273
#   if defined(__linux) && !defined(__NR_getrandom)
274
#    if defined(__arm__)
275
#     define __NR_getrandom    (__NR_SYSCALL_BASE+384)
276
#    elif defined(__i386__)
277
#     define __NR_getrandom    355
278
#    elif defined(__x86_64__)
279
#     if defined(__ILP32__)
280
#      define __NR_getrandom   (__X32_SYSCALL_BIT + 318)
281
#     else
282
#      define __NR_getrandom   318
283
#     endif
284
#    elif defined(__xtensa__)
285
#     define __NR_getrandom    338
286
#    elif defined(__s390__) || defined(__s390x__)
287
#     define __NR_getrandom    349
288
#    elif defined(__bfin__)
289
#     define __NR_getrandom    389
290
#    elif defined(__powerpc__)
291
#     define __NR_getrandom    359
292
#    elif defined(__mips__) || defined(__mips64)
293
#     if _MIPS_SIM == _MIPS_SIM_ABI32
294
#      define __NR_getrandom   (__NR_Linux + 353)
295
#     elif _MIPS_SIM == _MIPS_SIM_ABI64
296
#      define __NR_getrandom   (__NR_Linux + 313)
297
#     elif _MIPS_SIM == _MIPS_SIM_NABI32
298
#      define __NR_getrandom   (__NR_Linux + 317)
299
#     endif
300
#    elif defined(__hppa__)
301
#     define __NR_getrandom    (__NR_Linux + 339)
302
#    elif defined(__sparc__)
303
#     define __NR_getrandom    347
304
#    elif defined(__ia64__)
305
#     define __NR_getrandom    1339
306
#    elif defined(__alpha__)
307
#     define __NR_getrandom    511
308
#    elif defined(__sh__)
309
#     if defined(__SH5__)
310
#      define __NR_getrandom   373
311
#     else
312
#      define __NR_getrandom   384
313
#     endif
314
#    elif defined(__avr32__)
315
#     define __NR_getrandom    317
316
#    elif defined(__microblaze__)
317
#     define __NR_getrandom    385
318
#    elif defined(__m68k__)
319
#     define __NR_getrandom    352
320
#    elif defined(__cris__)
321
#     define __NR_getrandom    356
322
#    else /* generic (f.e. aarch64, loongarch, loongarch64) */
323
#     define __NR_getrandom    278
324
#    endif
325
#   endif
326
327
/*
328
 * syscall_random(): Try to get random data using a system call
329
 * returns the number of bytes returned in buf, or < 0 on error.
330
 */
331
static ssize_t syscall_random(void *buf, size_t buflen)
332
215
{
333
    /*
334
     * Note: 'buflen' equals the size of the buffer which is used by the
335
     * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
336
     *
337
     *   2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
338
     *
339
     * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
340
     * between size_t and ssize_t is safe even without a range check.
341
     */
342
343
    /*
344
     * Do runtime detection to find getentropy().
345
     *
346
     * Known OSs that should support this:
347
     * - Darwin since 16 (OSX 10.12, IOS 10.0).
348
     * - Solaris since 11.3
349
     * - OpenBSD since 5.6
350
     * - Linux since 3.17 with glibc 2.25
351
     * - FreeBSD since 12.0 (1200061)
352
     *
353
     * Note: Sometimes getentropy() can be provided but not implemented
354
     * internally. So we need to check errno for ENOSYS
355
     */
356
215
#  if !defined(__DragonFly__) && !defined(__NetBSD__)
357
215
#    if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
358
215
    extern int getentropy(void *buffer, size_t length) __attribute__((weak));
359
360
215
    if (getentropy != NULL) {
361
215
        if (getentropy(buf, buflen) == 0)
362
215
            return (ssize_t)buflen;
363
0
        if (errno != ENOSYS)
364
0
            return -1;
365
0
    }
366
#    elif defined(OPENSSL_APPLE_CRYPTO_RANDOM)
367
368
    if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
369
      return (ssize_t)buflen;
370
371
    return -1;
372
#    else
373
    union {
374
        void *p;
375
        int (*f)(void *buffer, size_t length);
376
    } p_getentropy;
377
378
    /*
379
     * We could cache the result of the lookup, but we normally don't
380
     * call this function often.
381
     */
382
    ERR_set_mark();
383
    p_getentropy.p = DSO_global_lookup("getentropy");
384
    ERR_pop_to_mark();
385
    if (p_getentropy.p != NULL)
386
        return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
387
#    endif
388
0
#  endif /* !__DragonFly__ */
389
390
    /* Linux supports this since version 3.17 */
391
0
#  if defined(__linux) && defined(__NR_getrandom)
392
0
    return syscall(__NR_getrandom, buf, buflen, 0);
393
#  elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
394
    return sysctl_random(buf, buflen);
395
#  elif (defined(__DragonFly__)  && __DragonFly_version >= 500700) \
396
     || (defined(__NetBSD__) && __NetBSD_Version >= 1000000000)
397
    return getrandom(buf, buflen, 0);
398
#  elif defined(__wasi__)
399
    if (getentropy(buf, buflen) == 0)
400
      return (ssize_t)buflen;
401
    return -1;
402
#  else
403
    errno = ENOSYS;
404
    return -1;
405
#  endif
406
215
}
407
#  endif    /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
408
409
#  if defined(OPENSSL_RAND_SEED_DEVRANDOM)
410
static const char *random_device_paths[] = { DEVRANDOM };
411
static struct random_device {
412
    int fd;
413
    dev_t dev;
414
    ino_t ino;
415
    mode_t mode;
416
    dev_t rdev;
417
} random_devices[OSSL_NELEM(random_device_paths)];
418
static int keep_random_devices_open = 1;
419
420
#   if defined(__linux) && defined(DEVRANDOM_WAIT) \
421
       && defined(OPENSSL_RAND_SEED_GETRANDOM)
422
static void *shm_addr;
423
424
static void cleanup_shm(void)
425
0
{
426
0
    shmdt(shm_addr);
427
0
}
428
429
/*
430
 * Ensure that the system randomness source has been adequately seeded.
431
 * This is done by having the first start of libcrypto, wait until the device
432
 * /dev/random becomes able to supply a byte of entropy.  Subsequent starts
433
 * of the library and later reseedings do not need to do this.
434
 */
435
static int wait_random_seeded(void)
436
0
{
437
0
    static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
438
0
    static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
439
0
    int kernel[2];
440
0
    int shm_id, fd, r;
441
0
    char c, *p;
442
0
    struct utsname un;
443
0
    fd_set fds;
444
445
0
    if (!seeded) {
446
        /* See if anything has created the global seeded indication */
447
0
        if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
448
            /*
449
             * Check the kernel's version and fail if it is too recent.
450
             *
451
             * Linux kernels from 4.8 onwards do not guarantee that
452
             * /dev/urandom is properly seeded when /dev/random becomes
453
             * readable.  However, such kernels support the getentropy(2)
454
             * system call and this should always succeed which renders
455
             * this alternative but essentially identical source moot.
456
             */
457
0
            if (uname(&un) == 0) {
458
0
                kernel[0] = atoi(un.release);
459
0
                p = strchr(un.release, '.');
460
0
                kernel[1] = p == NULL ? 0 : atoi(p + 1);
461
0
                if (kernel[0] > kernel_version[0]
462
0
                    || (kernel[0] == kernel_version[0]
463
0
                        && kernel[1] >= kernel_version[1])) {
464
0
                    return 0;
465
0
                }
466
0
            }
467
            /* Open /dev/random and wait for it to be readable */
468
0
            if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
469
0
                if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
470
0
                    FD_ZERO(&fds);
471
0
                    FD_SET(fd, &fds);
472
0
                    while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
473
0
                           && errno == EINTR);
474
0
                } else {
475
0
                    while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
476
0
                }
477
0
                close(fd);
478
0
                if (r == 1) {
479
0
                    seeded = 1;
480
                    /* Create the shared memory indicator */
481
0
                    shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
482
0
                                    IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
483
0
                }
484
0
            }
485
0
        }
486
0
        if (shm_id != -1) {
487
0
            seeded = 1;
488
            /*
489
             * Map the shared memory to prevent its premature destruction.
490
             * If this call fails, it isn't a big problem.
491
             */
492
0
            shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
493
0
            if (shm_addr != (void *)-1)
494
0
                OPENSSL_atexit(&cleanup_shm);
495
0
        }
496
0
    }
497
0
    return seeded;
498
0
}
499
#   else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
500
static int wait_random_seeded(void)
501
{
502
    return 1;
503
}
504
#   endif
505
506
/*
507
 * Verify that the file descriptor associated with the random source is
508
 * still valid. The rationale for doing this is the fact that it is not
509
 * uncommon for daemons to close all open file handles when daemonizing.
510
 * So the handle might have been closed or even reused for opening
511
 * another file.
512
 */
513
static int check_random_device(struct random_device *rd)
514
144
{
515
144
    struct stat st;
516
517
144
    return rd->fd != -1
518
144
           && fstat(rd->fd, &st) != -1
519
144
           && rd->dev == st.st_dev
520
144
           && rd->ino == st.st_ino
521
144
           && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
522
144
           && rd->rdev == st.st_rdev;
523
144
}
524
525
/*
526
 * Open a random device if required and return its file descriptor or -1 on error
527
 */
528
static int get_random_device(size_t n)
529
0
{
530
0
    struct stat st;
531
0
    struct random_device *rd = &random_devices[n];
532
533
    /* reuse existing file descriptor if it is (still) valid */
534
0
    if (check_random_device(rd))
535
0
        return rd->fd;
536
537
    /* open the random device ... */
538
0
    if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
539
0
        return rd->fd;
540
541
    /* ... and cache its relevant stat(2) data */
542
0
    if (fstat(rd->fd, &st) != -1) {
543
0
        rd->dev = st.st_dev;
544
0
        rd->ino = st.st_ino;
545
0
        rd->mode = st.st_mode;
546
0
        rd->rdev = st.st_rdev;
547
0
    } else {
548
0
        close(rd->fd);
549
0
        rd->fd = -1;
550
0
    }
551
552
0
    return rd->fd;
553
0
}
554
555
/*
556
 * Close a random device making sure it is a random device
557
 */
558
static void close_random_device(size_t n)
559
144
{
560
144
    struct random_device *rd = &random_devices[n];
561
562
144
    if (check_random_device(rd))
563
0
        close(rd->fd);
564
144
    rd->fd = -1;
565
144
}
566
567
int ossl_rand_pool_init(void)
568
36
{
569
36
    size_t i;
570
571
180
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
572
144
        random_devices[i].fd = -1;
573
574
36
    return 1;
575
36
}
576
577
void ossl_rand_pool_cleanup(void)
578
36
{
579
36
    size_t i;
580
581
180
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
582
144
        close_random_device(i);
583
36
}
584
585
void ossl_rand_pool_keep_random_devices_open(int keep)
586
0
{
587
0
    if (!keep)
588
0
        ossl_rand_pool_cleanup();
589
590
0
    keep_random_devices_open = keep;
591
0
}
592
593
#  else     /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
594
595
int ossl_rand_pool_init(void)
596
{
597
    return 1;
598
}
599
600
void ossl_rand_pool_cleanup(void)
601
{
602
}
603
604
void ossl_rand_pool_keep_random_devices_open(int keep)
605
{
606
}
607
608
#  endif    /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
609
610
/*
611
 * Try the various seeding methods in turn, exit when successful.
612
 *
613
 * If more than one entropy source is available, is it
614
 * preferable to stop as soon as enough entropy has been collected
615
 * (as favored by @rsalz) or should one rather be defensive and add
616
 * more entropy than requested and/or from different sources?
617
 *
618
 * Currently, the user can select multiple entropy sources in the
619
 * configure step, yet in practice only the first available source
620
 * will be used. A more flexible solution has been requested, but
621
 * currently it is not clear how this can be achieved without
622
 * overengineering the problem. There are many parameters which
623
 * could be taken into account when selecting the order and amount
624
 * of input from the different entropy sources (trust, quality,
625
 * possibility of blocking).
626
 */
627
size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
628
215
{
629
#  if defined(OPENSSL_RAND_SEED_NONE)
630
    return ossl_rand_pool_entropy_available(pool);
631
#  else
632
215
    size_t entropy_available = 0;
633
634
215
    (void)entropy_available;    /* avoid compiler warning */
635
636
215
#   if defined(OPENSSL_RAND_SEED_GETRANDOM)
637
215
    {
638
215
        size_t bytes_needed;
639
215
        unsigned char *buffer;
640
215
        ssize_t bytes;
641
        /* Maximum allowed number of consecutive unsuccessful attempts */
642
215
        int attempts = 3;
643
644
215
        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
645
430
        while (bytes_needed != 0 && attempts-- > 0) {
646
215
            buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
647
215
            bytes = syscall_random(buffer, bytes_needed);
648
215
            if (bytes > 0) {
649
215
                ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
650
215
                bytes_needed -= bytes;
651
215
                attempts = 3; /* reset counter after successful attempt */
652
215
            } else if (bytes < 0 && errno != EINTR) {
653
0
                break;
654
0
            }
655
215
        }
656
215
    }
657
215
    entropy_available = ossl_rand_pool_entropy_available(pool);
658
215
    if (entropy_available > 0)
659
215
        return entropy_available;
660
0
#   endif
661
662
#   if defined(OPENSSL_RAND_SEED_LIBRANDOM)
663
    {
664
        /* Not yet implemented. */
665
    }
666
#   endif
667
668
0
#   if defined(OPENSSL_RAND_SEED_DEVRANDOM)
669
0
    if (wait_random_seeded()) {
670
0
        size_t bytes_needed;
671
0
        unsigned char *buffer;
672
0
        size_t i;
673
674
0
        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
675
0
        for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
676
0
             i++) {
677
0
            ssize_t bytes = 0;
678
            /* Maximum number of consecutive unsuccessful attempts */
679
0
            int attempts = 3;
680
0
            const int fd = get_random_device(i);
681
682
0
            if (fd == -1)
683
0
                continue;
684
685
0
            while (bytes_needed != 0 && attempts-- > 0) {
686
0
                buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
687
0
                bytes = read(fd, buffer, bytes_needed);
688
689
0
                if (bytes > 0) {
690
0
                    ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
691
0
                    bytes_needed -= bytes;
692
0
                    attempts = 3; /* reset counter on successful attempt */
693
0
                } else if (bytes < 0 && errno != EINTR) {
694
0
                    break;
695
0
                }
696
0
            }
697
0
            if (bytes < 0 || !keep_random_devices_open)
698
0
                close_random_device(i);
699
700
0
            bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
701
0
        }
702
0
        entropy_available = ossl_rand_pool_entropy_available(pool);
703
0
        if (entropy_available > 0)
704
0
            return entropy_available;
705
0
    }
706
0
#   endif
707
708
#   if defined(OPENSSL_RAND_SEED_RDTSC)
709
    entropy_available = ossl_prov_acquire_entropy_from_tsc(pool);
710
    if (entropy_available > 0)
711
        return entropy_available;
712
#   endif
713
714
#   if defined(OPENSSL_RAND_SEED_RDCPU)
715
    entropy_available = ossl_prov_acquire_entropy_from_cpu(pool);
716
    if (entropy_available > 0)
717
        return entropy_available;
718
#   endif
719
720
#   if defined(OPENSSL_RAND_SEED_EGD)
721
    {
722
        static const char *paths[] = { DEVRANDOM_EGD, NULL };
723
        size_t bytes_needed;
724
        unsigned char *buffer;
725
        int i;
726
727
        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
728
        for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
729
            size_t bytes = 0;
730
            int num;
731
732
            buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
733
            num = RAND_query_egd_bytes(paths[i],
734
                                       buffer, (int)bytes_needed);
735
            if (num == (int)bytes_needed)
736
                bytes = bytes_needed;
737
738
            ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
739
            bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
740
        }
741
        entropy_available = ossl_rand_pool_entropy_available(pool);
742
        if (entropy_available > 0)
743
            return entropy_available;
744
    }
745
#   endif
746
747
0
    return ossl_rand_pool_entropy_available(pool);
748
0
#  endif
749
0
}
750
# endif
751
#endif
752
753
#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
754
     || defined(__DJGPP__)
755
int ossl_pool_add_nonce_data(RAND_POOL *pool)
756
100
{
757
100
    struct {
758
100
        pid_t pid;
759
100
        CRYPTO_THREAD_ID tid;
760
100
        uint64_t time;
761
100
    } data;
762
763
    /* Erase the entire structure including any padding */
764
100
    memset(&data, 0, sizeof(data));
765
766
    /*
767
     * Add process id, thread id, and a high resolution timestamp to
768
     * ensure that the nonce is unique with high probability for
769
     * different process instances.
770
     */
771
100
    data.pid = getpid();
772
100
    data.tid = CRYPTO_THREAD_get_current_id();
773
100
    data.time = get_time_stamp();
774
775
100
    return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
776
100
}
777
778
/*
779
 * Get the current time with the highest possible resolution
780
 *
781
 * The time stamp is added to the nonce, so it is optimized for not repeating.
782
 * The current time is ideal for this purpose, provided the computer's clock
783
 * is synchronized.
784
 */
785
static uint64_t get_time_stamp(void)
786
100
{
787
100
# if defined(OSSL_POSIX_TIMER_OKAY)
788
100
    {
789
100
        struct timespec ts;
790
791
100
        if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
792
100
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
793
100
    }
794
0
# endif
795
0
# if defined(__unix__) \
796
0
     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
797
0
    {
798
0
        struct timeval tv;
799
800
0
        if (gettimeofday(&tv, NULL) == 0)
801
0
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
802
0
    }
803
0
# endif
804
0
    return time(NULL);
805
0
}
806
807
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
808
          || defined(__DJGPP__) */