/src/openssl32/ssl/t1_lib.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include <stdio.h>  | 
11  |  | #include <stdlib.h>  | 
12  |  | #include <openssl/objects.h>  | 
13  |  | #include <openssl/evp.h>  | 
14  |  | #include <openssl/hmac.h>  | 
15  |  | #include <openssl/core_names.h>  | 
16  |  | #include <openssl/ocsp.h>  | 
17  |  | #include <openssl/conf.h>  | 
18  |  | #include <openssl/x509v3.h>  | 
19  |  | #include <openssl/dh.h>  | 
20  |  | #include <openssl/bn.h>  | 
21  |  | #include <openssl/provider.h>  | 
22  |  | #include <openssl/param_build.h>  | 
23  |  | #include "internal/nelem.h"  | 
24  |  | #include "internal/sizes.h"  | 
25  |  | #include "internal/tlsgroups.h"  | 
26  |  | #include "ssl_local.h"  | 
27  |  | #include "quic/quic_local.h"  | 
28  |  | #include <openssl/ct.h>  | 
29  |  |  | 
30  |  | static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);  | 
31  |  | static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);  | 
32  |  |  | 
33  |  | SSL3_ENC_METHOD const TLSv1_enc_data = { | 
34  |  |     tls1_setup_key_block,  | 
35  |  |     tls1_generate_master_secret,  | 
36  |  |     tls1_change_cipher_state,  | 
37  |  |     tls1_final_finish_mac,  | 
38  |  |     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,  | 
39  |  |     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,  | 
40  |  |     tls1_alert_code,  | 
41  |  |     tls1_export_keying_material,  | 
42  |  |     0,  | 
43  |  |     ssl3_set_handshake_header,  | 
44  |  |     tls_close_construct_packet,  | 
45  |  |     ssl3_handshake_write  | 
46  |  | };  | 
47  |  |  | 
48  |  | SSL3_ENC_METHOD const TLSv1_1_enc_data = { | 
49  |  |     tls1_setup_key_block,  | 
50  |  |     tls1_generate_master_secret,  | 
51  |  |     tls1_change_cipher_state,  | 
52  |  |     tls1_final_finish_mac,  | 
53  |  |     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,  | 
54  |  |     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,  | 
55  |  |     tls1_alert_code,  | 
56  |  |     tls1_export_keying_material,  | 
57  |  |     SSL_ENC_FLAG_EXPLICIT_IV,  | 
58  |  |     ssl3_set_handshake_header,  | 
59  |  |     tls_close_construct_packet,  | 
60  |  |     ssl3_handshake_write  | 
61  |  | };  | 
62  |  |  | 
63  |  | SSL3_ENC_METHOD const TLSv1_2_enc_data = { | 
64  |  |     tls1_setup_key_block,  | 
65  |  |     tls1_generate_master_secret,  | 
66  |  |     tls1_change_cipher_state,  | 
67  |  |     tls1_final_finish_mac,  | 
68  |  |     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,  | 
69  |  |     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,  | 
70  |  |     tls1_alert_code,  | 
71  |  |     tls1_export_keying_material,  | 
72  |  |     SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF  | 
73  |  |         | SSL_ENC_FLAG_TLS1_2_CIPHERS,  | 
74  |  |     ssl3_set_handshake_header,  | 
75  |  |     tls_close_construct_packet,  | 
76  |  |     ssl3_handshake_write  | 
77  |  | };  | 
78  |  |  | 
79  |  | SSL3_ENC_METHOD const TLSv1_3_enc_data = { | 
80  |  |     tls13_setup_key_block,  | 
81  |  |     tls13_generate_master_secret,  | 
82  |  |     tls13_change_cipher_state,  | 
83  |  |     tls13_final_finish_mac,  | 
84  |  |     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,  | 
85  |  |     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,  | 
86  |  |     tls13_alert_code,  | 
87  |  |     tls13_export_keying_material,  | 
88  |  |     SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,  | 
89  |  |     ssl3_set_handshake_header,  | 
90  |  |     tls_close_construct_packet,  | 
91  |  |     ssl3_handshake_write  | 
92  |  | };  | 
93  |  |  | 
94  |  | OSSL_TIME tls1_default_timeout(void)  | 
95  | 71.9k  | { | 
96  |  |     /*  | 
97  |  |      * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for  | 
98  |  |      * http, the cache would over fill  | 
99  |  |      */  | 
100  | 71.9k  |     return ossl_seconds2time(60 * 60 * 2);  | 
101  | 71.9k  | }  | 
102  |  |  | 
103  |  | int tls1_new(SSL *s)  | 
104  | 71.8k  | { | 
105  | 71.8k  |     if (!ssl3_new(s))  | 
106  | 0  |         return 0;  | 
107  | 71.8k  |     if (!s->method->ssl_clear(s))  | 
108  | 0  |         return 0;  | 
109  |  |  | 
110  | 71.8k  |     return 1;  | 
111  | 71.8k  | }  | 
112  |  |  | 
113  |  | void tls1_free(SSL *s)  | 
114  | 21.6k  | { | 
115  | 21.6k  |     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);  | 
116  |  |  | 
117  | 21.6k  |     if (sc == NULL)  | 
118  | 0  |         return;  | 
119  |  |  | 
120  | 21.6k  |     OPENSSL_free(sc->ext.session_ticket);  | 
121  | 21.6k  |     ssl3_free(s);  | 
122  | 21.6k  | }  | 
123  |  |  | 
124  |  | int tls1_clear(SSL *s)  | 
125  | 95.2k  | { | 
126  | 95.2k  |     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);  | 
127  |  |  | 
128  | 95.2k  |     if (sc == NULL)  | 
129  | 0  |         return 0;  | 
130  |  |  | 
131  | 95.2k  |     if (!ssl3_clear(s))  | 
132  | 0  |         return 0;  | 
133  |  |  | 
134  | 95.2k  |     if (s->method->version == TLS_ANY_VERSION)  | 
135  | 95.2k  |         sc->version = TLS_MAX_VERSION_INTERNAL;  | 
136  | 0  |     else  | 
137  | 0  |         sc->version = s->method->version;  | 
138  |  |  | 
139  | 95.2k  |     return 1;  | 
140  | 95.2k  | }  | 
141  |  |  | 
142  |  | /* Legacy NID to group_id mapping. Only works for groups we know about */  | 
143  |  | static struct { | 
144  |  |     int nid;  | 
145  |  |     uint16_t group_id;  | 
146  |  | } nid_to_group[] = { | 
147  |  |     {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1}, | 
148  |  |     {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1}, | 
149  |  |     {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2}, | 
150  |  |     {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1}, | 
151  |  |     {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2}, | 
152  |  |     {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1}, | 
153  |  |     {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1}, | 
154  |  |     {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1}, | 
155  |  |     {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1}, | 
156  |  |     {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1}, | 
157  |  |     {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1}, | 
158  |  |     {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1}, | 
159  |  |     {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1}, | 
160  |  |     {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1}, | 
161  |  |     {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1}, | 
162  |  |     {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1}, | 
163  |  |     {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2}, | 
164  |  |     {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1}, | 
165  |  |     {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1}, | 
166  |  |     {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1}, | 
167  |  |     {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1}, | 
168  |  |     {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1}, | 
169  |  |     {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1}, | 
170  |  |     {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1}, | 
171  |  |     {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1}, | 
172  |  |     {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1}, | 
173  |  |     {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1}, | 
174  |  |     {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1}, | 
175  |  |     {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519}, | 
176  |  |     {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448}, | 
177  |  |     {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13}, | 
178  |  |     {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13}, | 
179  |  |     {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13}, | 
180  |  |     {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A}, | 
181  |  |     {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B}, | 
182  |  |     {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C}, | 
183  |  |     {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D}, | 
184  |  |     {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A}, | 
185  |  |     {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B}, | 
186  |  |     {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C}, | 
187  |  |     {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048}, | 
188  |  |     {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072}, | 
189  |  |     {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096}, | 
190  |  |     {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144}, | 
191  |  |     {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192} | 
192  |  | };  | 
193  |  |  | 
194  |  | static const unsigned char ecformats_default[] = { | 
195  |  |     TLSEXT_ECPOINTFORMAT_uncompressed,  | 
196  |  |     TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,  | 
197  |  |     TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2  | 
198  |  | };  | 
199  |  |  | 
200  |  | /* The default curves */  | 
201  |  | static const uint16_t supported_groups_default[] = { | 
202  |  |     OSSL_TLS_GROUP_ID_x25519,        /* X25519 (29) */  | 
203  |  |     OSSL_TLS_GROUP_ID_secp256r1,     /* secp256r1 (23) */  | 
204  |  |     OSSL_TLS_GROUP_ID_x448,          /* X448 (30) */  | 
205  |  |     OSSL_TLS_GROUP_ID_secp521r1,     /* secp521r1 (25) */  | 
206  |  |     OSSL_TLS_GROUP_ID_secp384r1,     /* secp384r1 (24) */  | 
207  |  |     OSSL_TLS_GROUP_ID_gc256A,        /* GC256A (34) */  | 
208  |  |     OSSL_TLS_GROUP_ID_gc256B,        /* GC256B (35) */  | 
209  |  |     OSSL_TLS_GROUP_ID_gc256C,        /* GC256C (36) */  | 
210  |  |     OSSL_TLS_GROUP_ID_gc256D,        /* GC256D (37) */  | 
211  |  |     OSSL_TLS_GROUP_ID_gc512A,        /* GC512A (38) */  | 
212  |  |     OSSL_TLS_GROUP_ID_gc512B,        /* GC512B (39) */  | 
213  |  |     OSSL_TLS_GROUP_ID_gc512C,        /* GC512C (40) */  | 
214  |  |     OSSL_TLS_GROUP_ID_ffdhe2048,     /* ffdhe2048 (0x100) */  | 
215  |  |     OSSL_TLS_GROUP_ID_ffdhe3072,     /* ffdhe3072 (0x101) */  | 
216  |  |     OSSL_TLS_GROUP_ID_ffdhe4096,     /* ffdhe4096 (0x102) */  | 
217  |  |     OSSL_TLS_GROUP_ID_ffdhe6144,     /* ffdhe6144 (0x103) */  | 
218  |  |     OSSL_TLS_GROUP_ID_ffdhe8192,     /* ffdhe8192 (0x104) */  | 
219  |  | };  | 
220  |  |  | 
221  |  | static const uint16_t suiteb_curves[] = { | 
222  |  |     OSSL_TLS_GROUP_ID_secp256r1,  | 
223  |  |     OSSL_TLS_GROUP_ID_secp384r1,  | 
224  |  | };  | 
225  |  |  | 
226  |  | struct provider_ctx_data_st { | 
227  |  |     SSL_CTX *ctx;  | 
228  |  |     OSSL_PROVIDER *provider;  | 
229  |  | };  | 
230  |  |  | 
231  | 530k  | #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10  | 
232  |  | static OSSL_CALLBACK add_provider_groups;  | 
233  |  | static int add_provider_groups(const OSSL_PARAM params[], void *data)  | 
234  | 2.48M  | { | 
235  | 2.48M  |     struct provider_ctx_data_st *pgd = data;  | 
236  | 2.48M  |     SSL_CTX *ctx = pgd->ctx;  | 
237  | 2.48M  |     OSSL_PROVIDER *provider = pgd->provider;  | 
238  | 2.48M  |     const OSSL_PARAM *p;  | 
239  | 2.48M  |     TLS_GROUP_INFO *ginf = NULL;  | 
240  | 2.48M  |     EVP_KEYMGMT *keymgmt;  | 
241  | 2.48M  |     unsigned int gid;  | 
242  | 2.48M  |     unsigned int is_kem = 0;  | 
243  | 2.48M  |     int ret = 0;  | 
244  |  |  | 
245  | 2.48M  |     if (ctx->group_list_max_len == ctx->group_list_len) { | 
246  | 265k  |         TLS_GROUP_INFO *tmp = NULL;  | 
247  |  |  | 
248  | 265k  |         if (ctx->group_list_max_len == 0)  | 
249  | 48.2k  |             tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)  | 
250  | 265k  |                                  * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);  | 
251  | 216k  |         else  | 
252  | 216k  |             tmp = OPENSSL_realloc(ctx->group_list,  | 
253  | 265k  |                                   (ctx->group_list_max_len  | 
254  | 265k  |                                    + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)  | 
255  | 265k  |                                   * sizeof(TLS_GROUP_INFO));  | 
256  | 265k  |         if (tmp == NULL)  | 
257  | 0  |             return 0;  | 
258  | 265k  |         ctx->group_list = tmp;  | 
259  | 265k  |         memset(tmp + ctx->group_list_max_len,  | 
260  | 265k  |                0,  | 
261  | 265k  |                sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);  | 
262  | 265k  |         ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;  | 
263  | 265k  |     }  | 
264  |  |  | 
265  | 2.48M  |     ginf = &ctx->group_list[ctx->group_list_len];  | 
266  |  |  | 
267  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);  | 
268  | 2.48M  |     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { | 
269  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
270  | 0  |         goto err;  | 
271  | 0  |     }  | 
272  | 2.48M  |     ginf->tlsname = OPENSSL_strdup(p->data);  | 
273  | 2.48M  |     if (ginf->tlsname == NULL)  | 
274  | 0  |         goto err;  | 
275  |  |  | 
276  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);  | 
277  | 2.48M  |     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { | 
278  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
279  | 0  |         goto err;  | 
280  | 0  |     }  | 
281  | 2.48M  |     ginf->realname = OPENSSL_strdup(p->data);  | 
282  | 2.48M  |     if (ginf->realname == NULL)  | 
283  | 0  |         goto err;  | 
284  |  |  | 
285  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);  | 
286  | 2.48M  |     if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) { | 
287  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
288  | 0  |         goto err;  | 
289  | 0  |     }  | 
290  | 2.48M  |     ginf->group_id = (uint16_t)gid;  | 
291  |  |  | 
292  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);  | 
293  | 2.48M  |     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { | 
294  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
295  | 0  |         goto err;  | 
296  | 0  |     }  | 
297  | 2.48M  |     ginf->algorithm = OPENSSL_strdup(p->data);  | 
298  | 2.48M  |     if (ginf->algorithm == NULL)  | 
299  | 0  |         goto err;  | 
300  |  |  | 
301  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);  | 
302  | 2.48M  |     if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) { | 
303  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
304  | 0  |         goto err;  | 
305  | 0  |     }  | 
306  |  |  | 
307  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);  | 
308  | 2.48M  |     if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) { | 
309  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
310  | 0  |         goto err;  | 
311  | 0  |     }  | 
312  | 2.48M  |     ginf->is_kem = 1 & is_kem;  | 
313  |  |  | 
314  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);  | 
315  | 2.48M  |     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) { | 
316  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
317  | 0  |         goto err;  | 
318  | 0  |     }  | 
319  |  |  | 
320  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);  | 
321  | 2.48M  |     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) { | 
322  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
323  | 0  |         goto err;  | 
324  | 0  |     }  | 
325  |  |  | 
326  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);  | 
327  | 2.48M  |     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) { | 
328  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
329  | 0  |         goto err;  | 
330  | 0  |     }  | 
331  |  |  | 
332  | 2.48M  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);  | 
333  | 2.48M  |     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) { | 
334  | 0  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
335  | 0  |         goto err;  | 
336  | 0  |     }  | 
337  |  |     /*  | 
338  |  |      * Now check that the algorithm is actually usable for our property query  | 
339  |  |      * string. Regardless of the result we still return success because we have  | 
340  |  |      * successfully processed this group, even though we may decide not to use  | 
341  |  |      * it.  | 
342  |  |      */  | 
343  | 2.48M  |     ret = 1;  | 
344  | 2.48M  |     ERR_set_mark();  | 
345  | 2.48M  |     keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);  | 
346  | 2.48M  |     if (keymgmt != NULL) { | 
347  |  |         /*  | 
348  |  |          * We have successfully fetched the algorithm - however if the provider  | 
349  |  |          * doesn't match this one then we ignore it.  | 
350  |  |          *  | 
351  |  |          * Note: We're cheating a little here. Technically if the same algorithm  | 
352  |  |          * is available from more than one provider then it is undefined which  | 
353  |  |          * implementation you will get back. Theoretically this could be  | 
354  |  |          * different every time...we assume here that you'll always get the  | 
355  |  |          * same one back if you repeat the exact same fetch. Is this a reasonable  | 
356  |  |          * assumption to make (in which case perhaps we should document this  | 
357  |  |          * behaviour)?  | 
358  |  |          */  | 
359  | 2.48M  |         if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) { | 
360  |  |             /* We have a match - so we will use this group */  | 
361  | 2.48M  |             ctx->group_list_len++;  | 
362  | 2.48M  |             ginf = NULL;  | 
363  | 2.48M  |         }  | 
364  | 2.48M  |         EVP_KEYMGMT_free(keymgmt);  | 
365  | 2.48M  |     }  | 
366  | 2.48M  |     ERR_pop_to_mark();  | 
367  | 2.48M  |  err:  | 
368  | 2.48M  |     if (ginf != NULL) { | 
369  | 0  |         OPENSSL_free(ginf->tlsname);  | 
370  | 0  |         OPENSSL_free(ginf->realname);  | 
371  | 0  |         OPENSSL_free(ginf->algorithm);  | 
372  | 0  |         ginf->algorithm = ginf->tlsname = ginf->realname = NULL;  | 
373  | 0  |     }  | 
374  | 2.48M  |     return ret;  | 
375  | 2.48M  | }  | 
376  |  |  | 
377  |  | static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)  | 
378  | 158k  | { | 
379  | 158k  |     struct provider_ctx_data_st pgd;  | 
380  |  |  | 
381  | 158k  |     pgd.ctx = vctx;  | 
382  | 158k  |     pgd.provider = provider;  | 
383  | 158k  |     return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",  | 
384  | 158k  |                                           add_provider_groups, &pgd);  | 
385  | 158k  | }  | 
386  |  |  | 
387  |  | int ssl_load_groups(SSL_CTX *ctx)  | 
388  | 48.2k  | { | 
389  | 48.2k  |     size_t i, j, num_deflt_grps = 0;  | 
390  | 48.2k  |     uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];  | 
391  |  |  | 
392  | 48.2k  |     if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))  | 
393  | 0  |         return 0;  | 
394  |  |  | 
395  | 868k  |     for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) { | 
396  | 39.3M  |         for (j = 0; j < ctx->group_list_len; j++) { | 
397  | 38.9M  |             if (ctx->group_list[j].group_id == supported_groups_default[i]) { | 
398  | 482k  |                 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;  | 
399  | 482k  |                 break;  | 
400  | 482k  |             }  | 
401  | 38.9M  |         }  | 
402  | 820k  |     }  | 
403  |  |  | 
404  | 48.2k  |     if (num_deflt_grps == 0)  | 
405  | 0  |         return 1;  | 
406  |  |  | 
407  | 48.2k  |     ctx->ext.supported_groups_default  | 
408  | 48.2k  |         = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);  | 
409  |  |  | 
410  | 48.2k  |     if (ctx->ext.supported_groups_default == NULL)  | 
411  | 0  |         return 0;  | 
412  |  |  | 
413  | 48.2k  |     memcpy(ctx->ext.supported_groups_default,  | 
414  | 48.2k  |            tmp_supp_groups,  | 
415  | 48.2k  |            num_deflt_grps * sizeof(tmp_supp_groups[0]));  | 
416  | 48.2k  |     ctx->ext.supported_groups_default_len = num_deflt_grps;  | 
417  |  |  | 
418  | 48.2k  |     return 1;  | 
419  | 48.2k  | }  | 
420  |  |  | 
421  |  | #define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10  | 
422  |  | static OSSL_CALLBACK add_provider_sigalgs;  | 
423  |  | static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)  | 
424  |  | { | 
425  |  |     struct provider_ctx_data_st *pgd = data;  | 
426  |  |     SSL_CTX *ctx = pgd->ctx;  | 
427  |  |     OSSL_PROVIDER *provider = pgd->provider;  | 
428  |  |     const OSSL_PARAM *p;  | 
429  |  |     TLS_SIGALG_INFO *sinf = NULL;  | 
430  |  |     EVP_KEYMGMT *keymgmt;  | 
431  |  |     const char *keytype;  | 
432  |  |     unsigned int code_point = 0;  | 
433  |  |     int ret = 0;  | 
434  |  |  | 
435  |  |     if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) { | 
436  |  |         TLS_SIGALG_INFO *tmp = NULL;  | 
437  |  |  | 
438  |  |         if (ctx->sigalg_list_max_len == 0)  | 
439  |  |             tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)  | 
440  |  |                                  * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);  | 
441  |  |         else  | 
442  |  |             tmp = OPENSSL_realloc(ctx->sigalg_list,  | 
443  |  |                                   (ctx->sigalg_list_max_len  | 
444  |  |                                    + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)  | 
445  |  |                                   * sizeof(TLS_SIGALG_INFO));  | 
446  |  |         if (tmp == NULL)  | 
447  |  |             return 0;  | 
448  |  |         ctx->sigalg_list = tmp;  | 
449  |  |         memset(tmp + ctx->sigalg_list_max_len, 0,  | 
450  |  |                sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);  | 
451  |  |         ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;  | 
452  |  |     }  | 
453  |  |  | 
454  |  |     sinf = &ctx->sigalg_list[ctx->sigalg_list_len];  | 
455  |  |  | 
456  |  |     /* First, mandatory parameters */  | 
457  |  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);  | 
458  |  |     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { | 
459  |  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
460  |  |         goto err;  | 
461  |  |     }  | 
462  |  |     OPENSSL_free(sinf->sigalg_name);  | 
463  |  |     sinf->sigalg_name = OPENSSL_strdup(p->data);  | 
464  |  |     if (sinf->sigalg_name == NULL)  | 
465  |  |         goto err;  | 
466  |  |  | 
467  |  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);  | 
468  |  |     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) { | 
469  |  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
470  |  |         goto err;  | 
471  |  |     }  | 
472  |  |     OPENSSL_free(sinf->name);  | 
473  |  |     sinf->name = OPENSSL_strdup(p->data);  | 
474  |  |     if (sinf->name == NULL)  | 
475  |  |         goto err;  | 
476  |  |  | 
477  |  |     p = OSSL_PARAM_locate_const(params,  | 
478  |  |                                 OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);  | 
479  |  |     if (p == NULL  | 
480  |  |         || !OSSL_PARAM_get_uint(p, &code_point)  | 
481  |  |         || code_point > UINT16_MAX) { | 
482  |  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
483  |  |         goto err;  | 
484  |  |     }  | 
485  |  |     sinf->code_point = (uint16_t)code_point;  | 
486  |  |  | 
487  |  |     p = OSSL_PARAM_locate_const(params,  | 
488  |  |                                 OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);  | 
489  |  |     if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) { | 
490  |  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
491  |  |         goto err;  | 
492  |  |     }  | 
493  |  |  | 
494  |  |     /* Now, optional parameters */  | 
495  |  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);  | 
496  |  |     if (p == NULL) { | 
497  |  |         sinf->sigalg_oid = NULL;  | 
498  |  |     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { | 
499  |  |         goto err;  | 
500  |  |     } else { | 
501  |  |         OPENSSL_free(sinf->sigalg_oid);  | 
502  |  |         sinf->sigalg_oid = OPENSSL_strdup(p->data);  | 
503  |  |         if (sinf->sigalg_oid == NULL)  | 
504  |  |             goto err;  | 
505  |  |     }  | 
506  |  |  | 
507  |  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);  | 
508  |  |     if (p == NULL) { | 
509  |  |         sinf->sig_name = NULL;  | 
510  |  |     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { | 
511  |  |         goto err;  | 
512  |  |     } else { | 
513  |  |         OPENSSL_free(sinf->sig_name);  | 
514  |  |         sinf->sig_name = OPENSSL_strdup(p->data);  | 
515  |  |         if (sinf->sig_name == NULL)  | 
516  |  |             goto err;  | 
517  |  |     }  | 
518  |  |  | 
519  |  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);  | 
520  |  |     if (p == NULL) { | 
521  |  |         sinf->sig_oid = NULL;  | 
522  |  |     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { | 
523  |  |         goto err;  | 
524  |  |     } else { | 
525  |  |         OPENSSL_free(sinf->sig_oid);  | 
526  |  |         sinf->sig_oid = OPENSSL_strdup(p->data);  | 
527  |  |         if (sinf->sig_oid == NULL)  | 
528  |  |             goto err;  | 
529  |  |     }  | 
530  |  |  | 
531  |  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);  | 
532  |  |     if (p == NULL) { | 
533  |  |         sinf->hash_name = NULL;  | 
534  |  |     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { | 
535  |  |         goto err;  | 
536  |  |     } else { | 
537  |  |         OPENSSL_free(sinf->hash_name);  | 
538  |  |         sinf->hash_name = OPENSSL_strdup(p->data);  | 
539  |  |         if (sinf->hash_name == NULL)  | 
540  |  |             goto err;  | 
541  |  |     }  | 
542  |  |  | 
543  |  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);  | 
544  |  |     if (p == NULL) { | 
545  |  |         sinf->hash_oid = NULL;  | 
546  |  |     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { | 
547  |  |         goto err;  | 
548  |  |     } else { | 
549  |  |         OPENSSL_free(sinf->hash_oid);  | 
550  |  |         sinf->hash_oid = OPENSSL_strdup(p->data);  | 
551  |  |         if (sinf->hash_oid == NULL)  | 
552  |  |             goto err;  | 
553  |  |     }  | 
554  |  |  | 
555  |  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);  | 
556  |  |     if (p == NULL) { | 
557  |  |         sinf->keytype = NULL;  | 
558  |  |     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { | 
559  |  |         goto err;  | 
560  |  |     } else { | 
561  |  |         OPENSSL_free(sinf->keytype);  | 
562  |  |         sinf->keytype = OPENSSL_strdup(p->data);  | 
563  |  |         if (sinf->keytype == NULL)  | 
564  |  |             goto err;  | 
565  |  |     }  | 
566  |  |  | 
567  |  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);  | 
568  |  |     if (p == NULL) { | 
569  |  |         sinf->keytype_oid = NULL;  | 
570  |  |     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) { | 
571  |  |         goto err;  | 
572  |  |     } else { | 
573  |  |         OPENSSL_free(sinf->keytype_oid);  | 
574  |  |         sinf->keytype_oid = OPENSSL_strdup(p->data);  | 
575  |  |         if (sinf->keytype_oid == NULL)  | 
576  |  |             goto err;  | 
577  |  |     }  | 
578  |  |  | 
579  |  |     /* The remaining parameters below are mandatory again */  | 
580  |  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);  | 
581  |  |     if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) { | 
582  |  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
583  |  |         goto err;  | 
584  |  |     }  | 
585  |  |     if ((sinf->mintls != 0) && (sinf->mintls != -1) &&  | 
586  |  |         ((sinf->mintls < TLS1_3_VERSION))) { | 
587  |  |         /* ignore this sigalg as this OpenSSL doesn't know how to handle it */  | 
588  |  |         ret = 1;  | 
589  |  |         goto err;  | 
590  |  |     }  | 
591  |  |  | 
592  |  |     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);  | 
593  |  |     if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) { | 
594  |  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
595  |  |         goto err;  | 
596  |  |     }  | 
597  |  |     if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&  | 
598  |  |         ((sinf->maxtls < sinf->mintls))) { | 
599  |  |         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
600  |  |         goto err;  | 
601  |  |     }  | 
602  |  |     if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&  | 
603  |  |         ((sinf->maxtls < TLS1_3_VERSION))) { | 
604  |  |         /* ignore this sigalg as this OpenSSL doesn't know how to handle it */  | 
605  |  |         ret = 1;  | 
606  |  |         goto err;  | 
607  |  |     }  | 
608  |  |  | 
609  |  |     /*  | 
610  |  |      * Now check that the algorithm is actually usable for our property query  | 
611  |  |      * string. Regardless of the result we still return success because we have  | 
612  |  |      * successfully processed this signature, even though we may decide not to  | 
613  |  |      * use it.  | 
614  |  |      */  | 
615  |  |     ret = 1;  | 
616  |  |     ERR_set_mark();  | 
617  |  |     keytype = (sinf->keytype != NULL  | 
618  |  |                ? sinf->keytype  | 
619  |  |                : (sinf->sig_name != NULL  | 
620  |  |                   ? sinf->sig_name  | 
621  |  |                   : sinf->sigalg_name));  | 
622  |  |     keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);  | 
623  |  |     if (keymgmt != NULL) { | 
624  |  |         /*  | 
625  |  |          * We have successfully fetched the algorithm - however if the provider  | 
626  |  |          * doesn't match this one then we ignore it.  | 
627  |  |          *  | 
628  |  |          * Note: We're cheating a little here. Technically if the same algorithm  | 
629  |  |          * is available from more than one provider then it is undefined which  | 
630  |  |          * implementation you will get back. Theoretically this could be  | 
631  |  |          * different every time...we assume here that you'll always get the  | 
632  |  |          * same one back if you repeat the exact same fetch. Is this a reasonable  | 
633  |  |          * assumption to make (in which case perhaps we should document this  | 
634  |  |          * behaviour)?  | 
635  |  |          */  | 
636  |  |         if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) { | 
637  |  |             /*  | 
638  |  |              * We have a match - so we could use this signature;  | 
639  |  |              * Check proper object registration first, though.   | 
640  |  |              * Don't care about return value as this may have been  | 
641  |  |              * done within providers or previous calls to  | 
642  |  |              * add_provider_sigalgs.  | 
643  |  |              */  | 
644  |  |             OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);  | 
645  |  |             /* sanity check: Without successful registration don't use alg */  | 
646  |  |             if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||  | 
647  |  |                 (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) { | 
648  |  |                     ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);  | 
649  |  |                     goto err;  | 
650  |  |             }  | 
651  |  |             if (sinf->sig_name != NULL)  | 
652  |  |                 OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);  | 
653  |  |             if (sinf->keytype != NULL)  | 
654  |  |                 OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);  | 
655  |  |             if (sinf->hash_name != NULL)  | 
656  |  |                 OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);  | 
657  |  |             OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),  | 
658  |  |                           (sinf->hash_name != NULL  | 
659  |  |                            ? OBJ_txt2nid(sinf->hash_name)  | 
660  |  |                            : NID_undef),  | 
661  |  |                           OBJ_txt2nid(keytype));  | 
662  |  |             ctx->sigalg_list_len++;  | 
663  |  |             sinf = NULL;  | 
664  |  |         }  | 
665  |  |         EVP_KEYMGMT_free(keymgmt);  | 
666  |  |     }  | 
667  |  |     ERR_pop_to_mark();  | 
668  |  |  err:  | 
669  |  |     if (sinf != NULL) { | 
670  |  |         OPENSSL_free(sinf->name);  | 
671  |  |         sinf->name = NULL;  | 
672  |  |         OPENSSL_free(sinf->sigalg_name);  | 
673  |  |         sinf->sigalg_name = NULL;  | 
674  |  |         OPENSSL_free(sinf->sigalg_oid);  | 
675  |  |         sinf->sigalg_oid = NULL;  | 
676  |  |         OPENSSL_free(sinf->sig_name);  | 
677  |  |         sinf->sig_name = NULL;  | 
678  |  |         OPENSSL_free(sinf->sig_oid);  | 
679  |  |         sinf->sig_oid = NULL;  | 
680  |  |         OPENSSL_free(sinf->hash_name);  | 
681  |  |         sinf->hash_name = NULL;  | 
682  |  |         OPENSSL_free(sinf->hash_oid);  | 
683  |  |         sinf->hash_oid = NULL;  | 
684  |  |         OPENSSL_free(sinf->keytype);  | 
685  |  |         sinf->keytype = NULL;  | 
686  |  |         OPENSSL_free(sinf->keytype_oid);  | 
687  |  |         sinf->keytype_oid = NULL;  | 
688  |  |     }  | 
689  |  |     return ret;  | 
690  |  | }  | 
691  |  |  | 
692  |  | static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)  | 
693  | 109k  | { | 
694  | 109k  |     struct provider_ctx_data_st pgd;  | 
695  |  |  | 
696  | 109k  |     pgd.ctx = vctx;  | 
697  | 109k  |     pgd.provider = provider;  | 
698  | 109k  |     OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",  | 
699  | 109k  |                                    add_provider_sigalgs, &pgd);  | 
700  |  |     /*  | 
701  |  |      * Always OK, even if provider doesn't support the capability:  | 
702  |  |      * Reconsider testing retval when legacy sigalgs are also loaded this way.  | 
703  |  |      */  | 
704  | 109k  |     return 1;  | 
705  | 109k  | }  | 
706  |  |  | 
707  |  | int ssl_load_sigalgs(SSL_CTX *ctx)  | 
708  | 54.8k  | { | 
709  | 54.8k  |     size_t i;  | 
710  | 54.8k  |     SSL_CERT_LOOKUP lu;  | 
711  |  |  | 
712  | 54.8k  |     if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))  | 
713  | 0  |         return 0;  | 
714  |  |  | 
715  |  |     /* now populate ctx->ssl_cert_info */  | 
716  | 54.8k  |     if (ctx->sigalg_list_len > 0) { | 
717  | 31.0k  |         OPENSSL_free(ctx->ssl_cert_info);  | 
718  | 31.0k  |         ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);  | 
719  | 31.0k  |         if (ctx->ssl_cert_info == NULL)  | 
720  | 0  |             return 0;  | 
721  | 124k  |         for(i = 0; i < ctx->sigalg_list_len; i++) { | 
722  | 93.1k  |             ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);  | 
723  | 93.1k  |             ctx->ssl_cert_info[i].amask = SSL_aANY;  | 
724  | 93.1k  |         }  | 
725  | 31.0k  |     }  | 
726  |  |  | 
727  |  |     /*   | 
728  |  |      * For now, leave it at this: legacy sigalgs stay in their own  | 
729  |  |      * data structures until "legacy cleanup" occurs.  | 
730  |  |      */  | 
731  |  |  | 
732  | 54.8k  |     return 1;  | 
733  | 54.8k  | }  | 
734  |  |  | 
735  |  | static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)  | 
736  | 248k  | { | 
737  | 248k  |     size_t i;  | 
738  |  |  | 
739  | 1.39M  |     for (i = 0; i < ctx->group_list_len; i++) { | 
740  | 1.39M  |         if (strcmp(ctx->group_list[i].tlsname, name) == 0  | 
741  | 1.39M  |                 || strcmp(ctx->group_list[i].realname, name) == 0)  | 
742  | 248k  |             return ctx->group_list[i].group_id;  | 
743  | 1.39M  |     }  | 
744  |  |  | 
745  | 0  |     return 0;  | 
746  | 248k  | }  | 
747  |  |  | 
748  |  | const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)  | 
749  | 1.57M  | { | 
750  | 1.57M  |     size_t i;  | 
751  |  |  | 
752  | 44.7M  |     for (i = 0; i < ctx->group_list_len; i++) { | 
753  | 44.7M  |         if (ctx->group_list[i].group_id == group_id)  | 
754  | 1.57M  |             return &ctx->group_list[i];  | 
755  | 44.7M  |     }  | 
756  |  |  | 
757  | 0  |     return NULL;  | 
758  | 1.57M  | }  | 
759  |  |  | 
760  |  | const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)  | 
761  | 0  | { | 
762  | 0  |     const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);  | 
763  |  | 
  | 
764  | 0  |     if (tls_group_info == NULL)  | 
765  | 0  |         return NULL;  | 
766  |  |  | 
767  | 0  |     return tls_group_info->tlsname;  | 
768  | 0  | }  | 
769  |  |  | 
770  |  | int tls1_group_id2nid(uint16_t group_id, int include_unknown)  | 
771  | 724k  | { | 
772  | 724k  |     size_t i;  | 
773  |  |  | 
774  | 724k  |     if (group_id == 0)  | 
775  | 0  |         return NID_undef;  | 
776  |  |  | 
777  |  |     /*  | 
778  |  |      * Return well known Group NIDs - for backwards compatibility. This won't  | 
779  |  |      * work for groups we don't know about.  | 
780  |  |      */  | 
781  | 23.3M  |     for (i = 0; i < OSSL_NELEM(nid_to_group); i++)  | 
782  | 23.3M  |     { | 
783  | 23.3M  |         if (nid_to_group[i].group_id == group_id)  | 
784  | 686k  |             return nid_to_group[i].nid;  | 
785  | 23.3M  |     }  | 
786  | 37.2k  |     if (!include_unknown)  | 
787  | 37.2k  |         return NID_undef;  | 
788  | 0  |     return TLSEXT_nid_unknown | (int)group_id;  | 
789  | 37.2k  | }  | 
790  |  |  | 
791  |  | uint16_t tls1_nid2group_id(int nid)  | 
792  | 13.7k  | { | 
793  | 13.7k  |     size_t i;  | 
794  |  |  | 
795  |  |     /*  | 
796  |  |      * Return well known Group ids - for backwards compatibility. This won't  | 
797  |  |      * work for groups we don't know about.  | 
798  |  |      */  | 
799  | 317k  |     for (i = 0; i < OSSL_NELEM(nid_to_group); i++)  | 
800  | 317k  |     { | 
801  | 317k  |         if (nid_to_group[i].nid == nid)  | 
802  | 13.7k  |             return nid_to_group[i].group_id;  | 
803  | 317k  |     }  | 
804  |  |  | 
805  | 4  |     return 0;  | 
806  | 13.7k  | }  | 
807  |  |  | 
808  |  | /*  | 
809  |  |  * Set *pgroups to the supported groups list and *pgroupslen to  | 
810  |  |  * the number of groups supported.  | 
811  |  |  */  | 
812  |  | void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,  | 
813  |  |                                size_t *pgroupslen)  | 
814  | 230k  | { | 
815  | 230k  |     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);  | 
816  |  |  | 
817  |  |     /* For Suite B mode only include P-256, P-384 */  | 
818  | 230k  |     switch (tls1_suiteb(s)) { | 
819  | 0  |     case SSL_CERT_FLAG_SUITEB_128_LOS:  | 
820  | 0  |         *pgroups = suiteb_curves;  | 
821  | 0  |         *pgroupslen = OSSL_NELEM(suiteb_curves);  | 
822  | 0  |         break;  | 
823  |  |  | 
824  | 0  |     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:  | 
825  | 0  |         *pgroups = suiteb_curves;  | 
826  | 0  |         *pgroupslen = 1;  | 
827  | 0  |         break;  | 
828  |  |  | 
829  | 0  |     case SSL_CERT_FLAG_SUITEB_192_LOS:  | 
830  | 0  |         *pgroups = suiteb_curves + 1;  | 
831  | 0  |         *pgroupslen = 1;  | 
832  | 0  |         break;  | 
833  |  |  | 
834  | 230k  |     default:  | 
835  | 230k  |         if (s->ext.supportedgroups == NULL) { | 
836  | 154k  |             *pgroups = sctx->ext.supported_groups_default;  | 
837  | 154k  |             *pgroupslen = sctx->ext.supported_groups_default_len;  | 
838  | 154k  |         } else { | 
839  | 75.8k  |             *pgroups = s->ext.supportedgroups;  | 
840  | 75.8k  |             *pgroupslen = s->ext.supportedgroups_len;  | 
841  | 75.8k  |         }  | 
842  | 230k  |         break;  | 
843  | 230k  |     }  | 
844  | 230k  | }  | 
845  |  |  | 
846  |  | int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,  | 
847  |  |                     int minversion, int maxversion,  | 
848  |  |                     int isec, int *okfortls13)  | 
849  | 435k  | { | 
850  | 435k  |     const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),  | 
851  | 435k  |                                                        group_id);  | 
852  | 435k  |     int ret;  | 
853  |  |  | 
854  | 435k  |     if (okfortls13 != NULL)  | 
855  | 332k  |         *okfortls13 = 0;  | 
856  |  |  | 
857  | 435k  |     if (ginfo == NULL)  | 
858  | 0  |         return 0;  | 
859  |  |  | 
860  | 435k  |     if (SSL_CONNECTION_IS_DTLS(s)) { | 
861  | 0  |         if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)  | 
862  | 0  |             return 0;  | 
863  | 0  |         if (ginfo->maxdtls == 0)  | 
864  | 0  |             ret = 1;  | 
865  | 0  |         else  | 
866  | 0  |             ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);  | 
867  | 0  |         if (ginfo->mindtls > 0)  | 
868  | 0  |             ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);  | 
869  | 435k  |     } else { | 
870  | 435k  |         if (ginfo->mintls < 0 || ginfo->maxtls < 0)  | 
871  | 0  |             return 0;  | 
872  | 435k  |         if (ginfo->maxtls == 0)  | 
873  | 435k  |             ret = 1;  | 
874  | 0  |         else  | 
875  | 0  |             ret = (minversion <= ginfo->maxtls);  | 
876  | 435k  |         if (ginfo->mintls > 0)  | 
877  | 435k  |             ret &= (maxversion >= ginfo->mintls);  | 
878  | 435k  |         if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)  | 
879  | 330k  |             *okfortls13 = (ginfo->maxtls == 0)  | 
880  | 330k  |                           || (ginfo->maxtls >= TLS1_3_VERSION);  | 
881  | 435k  |     }  | 
882  | 435k  |     ret &= !isec  | 
883  | 435k  |            || strcmp(ginfo->algorithm, "EC") == 0  | 
884  | 435k  |            || strcmp(ginfo->algorithm, "X25519") == 0  | 
885  | 435k  |            || strcmp(ginfo->algorithm, "X448") == 0;  | 
886  |  |  | 
887  | 435k  |     return ret;  | 
888  | 435k  | }  | 
889  |  |  | 
890  |  | /* See if group is allowed by security callback */  | 
891  |  | int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)  | 
892  | 724k  | { | 
893  | 724k  |     const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),  | 
894  | 724k  |                                                        group);  | 
895  | 724k  |     unsigned char gtmp[2];  | 
896  |  |  | 
897  | 724k  |     if (ginfo == NULL)  | 
898  | 0  |         return 0;  | 
899  |  |  | 
900  | 724k  |     gtmp[0] = group >> 8;  | 
901  | 724k  |     gtmp[1] = group & 0xff;  | 
902  | 724k  |     return ssl_security(s, op, ginfo->secbits,  | 
903  | 724k  |                         tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);  | 
904  | 724k  | }  | 
905  |  |  | 
906  |  | /* Return 1 if "id" is in "list" */  | 
907  |  | static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)  | 
908  | 47.7k  | { | 
909  | 47.7k  |     size_t i;  | 
910  | 307k  |     for (i = 0; i < listlen; i++)  | 
911  | 284k  |         if (list[i] == id)  | 
912  | 23.8k  |             return 1;  | 
913  | 23.8k  |     return 0;  | 
914  | 47.7k  | }  | 
915  |  |  | 
916  |  | /*-  | 
917  |  |  * For nmatch >= 0, return the id of the |nmatch|th shared group or 0  | 
918  |  |  * if there is no match.  | 
919  |  |  * For nmatch == -1, return number of matches  | 
920  |  |  * For nmatch == -2, return the id of the group to use for  | 
921  |  |  * a tmp key, or 0 if there is no match.  | 
922  |  |  */  | 
923  |  | uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)  | 
924  | 12.3k  | { | 
925  | 12.3k  |     const uint16_t *pref, *supp;  | 
926  | 12.3k  |     size_t num_pref, num_supp, i;  | 
927  | 12.3k  |     int k;  | 
928  | 12.3k  |     SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);  | 
929  |  |  | 
930  |  |     /* Can't do anything on client side */  | 
931  | 12.3k  |     if (s->server == 0)  | 
932  | 0  |         return 0;  | 
933  | 12.3k  |     if (nmatch == -2) { | 
934  | 2.87k  |         if (tls1_suiteb(s)) { | 
935  |  |             /*  | 
936  |  |              * For Suite B ciphersuite determines curve: we already know  | 
937  |  |              * these are acceptable due to previous checks.  | 
938  |  |              */  | 
939  | 0  |             unsigned long cid = s->s3.tmp.new_cipher->id;  | 
940  |  | 
  | 
941  | 0  |             if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)  | 
942  | 0  |                 return OSSL_TLS_GROUP_ID_secp256r1;  | 
943  | 0  |             if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)  | 
944  | 0  |                 return OSSL_TLS_GROUP_ID_secp384r1;  | 
945  |  |             /* Should never happen */  | 
946  | 0  |             return 0;  | 
947  | 0  |         }  | 
948  |  |         /* If not Suite B just return first preference shared curve */  | 
949  | 2.87k  |         nmatch = 0;  | 
950  | 2.87k  |     }  | 
951  |  |     /*  | 
952  |  |      * If server preference set, our groups are the preference order  | 
953  |  |      * otherwise peer decides.  | 
954  |  |      */  | 
955  | 12.3k  |     if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { | 
956  | 0  |         tls1_get_supported_groups(s, &pref, &num_pref);  | 
957  | 0  |         tls1_get_peer_groups(s, &supp, &num_supp);  | 
958  | 12.3k  |     } else { | 
959  | 12.3k  |         tls1_get_peer_groups(s, &pref, &num_pref);  | 
960  | 12.3k  |         tls1_get_supported_groups(s, &supp, &num_supp);  | 
961  | 12.3k  |     }  | 
962  |  |  | 
963  | 27.5k  |     for (k = 0, i = 0; i < num_pref; i++) { | 
964  | 21.2k  |         uint16_t id = pref[i];  | 
965  | 21.2k  |         const TLS_GROUP_INFO *inf;  | 
966  |  |  | 
967  | 21.2k  |         if (!tls1_in_list(id, supp, num_supp)  | 
968  | 21.2k  |                 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))  | 
969  | 13.0k  |             continue;  | 
970  | 8.21k  |         inf = tls1_group_id_lookup(ctx, id);  | 
971  | 8.21k  |         if (!ossl_assert(inf != NULL))  | 
972  | 0  |             return 0;  | 
973  | 8.21k  |         if (SSL_CONNECTION_IS_DTLS(s)) { | 
974  | 0  |             if (inf->maxdtls == -1)  | 
975  | 0  |                 continue;  | 
976  | 0  |             if ((inf->mindtls != 0 && DTLS_VERSION_LT(s->version, inf->mindtls))  | 
977  | 0  |                     || (inf->maxdtls != 0  | 
978  | 0  |                         && DTLS_VERSION_GT(s->version, inf->maxdtls)))  | 
979  | 0  |                 continue;  | 
980  | 8.21k  |         } else { | 
981  | 8.21k  |             if (inf->maxtls == -1)  | 
982  | 0  |                 continue;  | 
983  | 8.21k  |             if ((inf->mintls != 0 && s->version < inf->mintls)  | 
984  | 8.21k  |                     || (inf->maxtls != 0 && s->version > inf->maxtls))  | 
985  | 2.23k  |                 continue;  | 
986  | 8.21k  |         }  | 
987  |  |  | 
988  | 5.98k  |         if (nmatch == k)  | 
989  | 5.98k  |             return id;  | 
990  | 0  |          k++;  | 
991  | 0  |     }  | 
992  | 6.32k  |     if (nmatch == -1)  | 
993  | 0  |         return k;  | 
994  |  |     /* Out of range (nmatch > k). */  | 
995  | 6.32k  |     return 0;  | 
996  | 6.32k  | }  | 
997  |  |  | 
998  |  | int tls1_set_groups(uint16_t **pext, size_t *pextlen,  | 
999  |  |                     int *groups, size_t ngroups)  | 
1000  | 0  | { | 
1001  | 0  |     uint16_t *glist;  | 
1002  | 0  |     size_t i;  | 
1003  |  |     /*  | 
1004  |  |      * Bitmap of groups included to detect duplicates: two variables are added  | 
1005  |  |      * to detect duplicates as some values are more than 32.  | 
1006  |  |      */  | 
1007  | 0  |     unsigned long *dup_list = NULL;  | 
1008  | 0  |     unsigned long dup_list_egrp = 0;  | 
1009  | 0  |     unsigned long dup_list_dhgrp = 0;  | 
1010  |  | 
  | 
1011  | 0  |     if (ngroups == 0) { | 
1012  | 0  |         ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);  | 
1013  | 0  |         return 0;  | 
1014  | 0  |     }  | 
1015  | 0  |     if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)  | 
1016  | 0  |         return 0;  | 
1017  | 0  |     for (i = 0; i < ngroups; i++) { | 
1018  | 0  |         unsigned long idmask;  | 
1019  | 0  |         uint16_t id;  | 
1020  | 0  |         id = tls1_nid2group_id(groups[i]);  | 
1021  | 0  |         if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))  | 
1022  | 0  |             goto err;  | 
1023  | 0  |         idmask = 1L << (id & 0x00FF);  | 
1024  | 0  |         dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;  | 
1025  | 0  |         if (!id || ((*dup_list) & idmask))  | 
1026  | 0  |             goto err;  | 
1027  | 0  |         *dup_list |= idmask;  | 
1028  | 0  |         glist[i] = id;  | 
1029  | 0  |     }  | 
1030  | 0  |     OPENSSL_free(*pext);  | 
1031  | 0  |     *pext = glist;  | 
1032  | 0  |     *pextlen = ngroups;  | 
1033  | 0  |     return 1;  | 
1034  | 0  | err:  | 
1035  | 0  |     OPENSSL_free(glist);  | 
1036  | 0  |     return 0;  | 
1037  | 0  | }  | 
1038  |  |  | 
1039  |  | # define GROUPLIST_INCREMENT   40  | 
1040  |  | # define GROUP_NAME_BUFFER_LENGTH 64  | 
1041  |  | typedef struct { | 
1042  |  |     SSL_CTX *ctx;  | 
1043  |  |     size_t gidcnt;  | 
1044  |  |     size_t gidmax;  | 
1045  |  |     uint16_t *gid_arr;  | 
1046  |  | } gid_cb_st;  | 
1047  |  |  | 
1048  |  | static int gid_cb(const char *elem, int len, void *arg)  | 
1049  |  | { | 
1050  |  |     gid_cb_st *garg = arg;  | 
1051  |  |     size_t i;  | 
1052  |  |     uint16_t gid = 0;  | 
1053  |  |     char etmp[GROUP_NAME_BUFFER_LENGTH];  | 
1054  |  |  | 
1055  |  |     if (elem == NULL)  | 
1056  |  |         return 0;  | 
1057  |  |     if (garg->gidcnt == garg->gidmax) { | 
1058  |  |         uint16_t *tmp =  | 
1059  |  |             OPENSSL_realloc(garg->gid_arr,  | 
1060  |  |                             (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));  | 
1061  |  |         if (tmp == NULL)  | 
1062  |  |             return 0;  | 
1063  |  |         garg->gidmax += GROUPLIST_INCREMENT;  | 
1064  |  |         garg->gid_arr = tmp;  | 
1065  |  |     }  | 
1066  |  |     if (len > (int)(sizeof(etmp) - 1))  | 
1067  |  |         return 0;  | 
1068  |  |     memcpy(etmp, elem, len);  | 
1069  |  |     etmp[len] = 0;  | 
1070  |  |  | 
1071  |  |     gid = tls1_group_name2id(garg->ctx, etmp);  | 
1072  |  |     if (gid == 0) { | 
1073  |  |         ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,  | 
1074  |  |                        "group '%s' cannot be set", etmp);  | 
1075  |  |         return 0;  | 
1076  |  |     }  | 
1077  |  |     for (i = 0; i < garg->gidcnt; i++)  | 
1078  |  |         if (garg->gid_arr[i] == gid)  | 
1079  |  |             return 0;  | 
1080  |  |     garg->gid_arr[garg->gidcnt++] = gid;  | 
1081  |  |     return 1;  | 
1082  |  | }  | 
1083  |  |  | 
1084  |  | /* Set groups based on a colon separated list */  | 
1085  |  | int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,  | 
1086  |  |                          const char *str)  | 
1087  |  | { | 
1088  |  |     gid_cb_st gcb;  | 
1089  |  |     uint16_t *tmparr;  | 
1090  |  |     int ret = 0;  | 
1091  |  |  | 
1092  |  |     gcb.gidcnt = 0;  | 
1093  |  |     gcb.gidmax = GROUPLIST_INCREMENT;  | 
1094  |  |     gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));  | 
1095  |  |     if (gcb.gid_arr == NULL)  | 
1096  |  |         return 0;  | 
1097  |  |     gcb.ctx = ctx;  | 
1098  |  |     if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))  | 
1099  |  |         goto end;  | 
1100  |  |     if (pext == NULL) { | 
1101  |  |         ret = 1;  | 
1102  |  |         goto end;  | 
1103  |  |     }  | 
1104  |  |  | 
1105  |  |     /*  | 
1106  |  |      * gid_cb ensurse there are no duplicates so we can just go ahead and set  | 
1107  |  |      * the result  | 
1108  |  |      */  | 
1109  |  |     tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));  | 
1110  |  |     if (tmparr == NULL)  | 
1111  |  |         goto end;  | 
1112  |  |     OPENSSL_free(*pext);  | 
1113  |  |     *pext = tmparr;  | 
1114  |  |     *pextlen = gcb.gidcnt;  | 
1115  |  |     ret = 1;  | 
1116  |  |  end:  | 
1117  |  |     OPENSSL_free(gcb.gid_arr);  | 
1118  |  |     return ret;  | 
1119  |  | }  | 
1120  |  |  | 
1121  |  | /* Check a group id matches preferences */  | 
1122  |  | int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,  | 
1123  |  |                         int check_own_groups)  | 
1124  | 20.5k  |     { | 
1125  | 20.5k  |     const uint16_t *groups;  | 
1126  | 20.5k  |     size_t groups_len;  | 
1127  |  |  | 
1128  | 20.5k  |     if (group_id == 0)  | 
1129  | 9  |         return 0;  | 
1130  |  |  | 
1131  |  |     /* Check for Suite B compliance */  | 
1132  | 20.5k  |     if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) { | 
1133  | 0  |         unsigned long cid = s->s3.tmp.new_cipher->id;  | 
1134  |  | 
  | 
1135  | 0  |         if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { | 
1136  | 0  |             if (group_id != OSSL_TLS_GROUP_ID_secp256r1)  | 
1137  | 0  |                 return 0;  | 
1138  | 0  |         } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { | 
1139  | 0  |             if (group_id != OSSL_TLS_GROUP_ID_secp384r1)  | 
1140  | 0  |                 return 0;  | 
1141  | 0  |         } else { | 
1142  |  |             /* Should never happen */  | 
1143  | 0  |             return 0;  | 
1144  | 0  |         }  | 
1145  | 0  |     }  | 
1146  |  |  | 
1147  | 20.5k  |     if (check_own_groups) { | 
1148  |  |         /* Check group is one of our preferences */  | 
1149  | 7.13k  |         tls1_get_supported_groups(s, &groups, &groups_len);  | 
1150  | 7.13k  |         if (!tls1_in_list(group_id, groups, groups_len))  | 
1151  | 62  |             return 0;  | 
1152  | 7.13k  |     }  | 
1153  |  |  | 
1154  | 20.5k  |     if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))  | 
1155  | 0  |         return 0;  | 
1156  |  |  | 
1157  |  |     /* For clients, nothing more to check */  | 
1158  | 20.5k  |     if (!s->server)  | 
1159  | 7.06k  |         return 1;  | 
1160  |  |  | 
1161  |  |     /* Check group is one of peers preferences */  | 
1162  | 13.4k  |     tls1_get_peer_groups(s, &groups, &groups_len);  | 
1163  |  |  | 
1164  |  |     /*  | 
1165  |  |      * RFC 4492 does not require the supported elliptic curves extension  | 
1166  |  |      * so if it is not sent we can just choose any curve.  | 
1167  |  |      * It is invalid to send an empty list in the supported groups  | 
1168  |  |      * extension, so groups_len == 0 always means no extension.  | 
1169  |  |      */  | 
1170  | 13.4k  |     if (groups_len == 0)  | 
1171  | 7.97k  |             return 1;  | 
1172  | 5.47k  |     return tls1_in_list(group_id, groups, groups_len);  | 
1173  | 13.4k  | }  | 
1174  |  |  | 
1175  |  | void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,  | 
1176  |  |                          size_t *num_formats)  | 
1177  | 33.8k  | { | 
1178  |  |     /*  | 
1179  |  |      * If we have a custom point format list use it otherwise use default  | 
1180  |  |      */  | 
1181  | 33.8k  |     if (s->ext.ecpointformats) { | 
1182  | 0  |         *pformats = s->ext.ecpointformats;  | 
1183  | 0  |         *num_formats = s->ext.ecpointformats_len;  | 
1184  | 33.8k  |     } else { | 
1185  | 33.8k  |         *pformats = ecformats_default;  | 
1186  |  |         /* For Suite B we don't support char2 fields */  | 
1187  | 33.8k  |         if (tls1_suiteb(s))  | 
1188  | 0  |             *num_formats = sizeof(ecformats_default) - 1;  | 
1189  | 33.8k  |         else  | 
1190  | 33.8k  |             *num_formats = sizeof(ecformats_default);  | 
1191  | 33.8k  |     }  | 
1192  | 33.8k  | }  | 
1193  |  |  | 
1194  |  | /* Check a key is compatible with compression extension */  | 
1195  |  | static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)  | 
1196  | 14.0k  | { | 
1197  | 14.0k  |     unsigned char comp_id;  | 
1198  | 14.0k  |     size_t i;  | 
1199  | 14.0k  |     int point_conv;  | 
1200  |  |  | 
1201  |  |     /* If not an EC key nothing to check */  | 
1202  | 14.0k  |     if (!EVP_PKEY_is_a(pkey, "EC"))  | 
1203  | 0  |         return 1;  | 
1204  |  |  | 
1205  |  |  | 
1206  |  |     /* Get required compression id */  | 
1207  | 14.0k  |     point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);  | 
1208  | 14.0k  |     if (point_conv == 0)  | 
1209  | 0  |         return 0;  | 
1210  | 14.0k  |     if (point_conv == POINT_CONVERSION_UNCOMPRESSED) { | 
1211  | 14.0k  |             comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;  | 
1212  | 14.0k  |     } else if (SSL_CONNECTION_IS_TLS13(s)) { | 
1213  |  |         /*  | 
1214  |  |          * ec_point_formats extension is not used in TLSv1.3 so we ignore  | 
1215  |  |          * this check.  | 
1216  |  |          */  | 
1217  | 0  |         return 1;  | 
1218  | 58  |     } else { | 
1219  | 58  |         int field_type = EVP_PKEY_get_field_type(pkey);  | 
1220  |  |  | 
1221  | 58  |         if (field_type == NID_X9_62_prime_field)  | 
1222  | 54  |             comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;  | 
1223  | 4  |         else if (field_type == NID_X9_62_characteristic_two_field)  | 
1224  | 0  |             comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;  | 
1225  | 4  |         else  | 
1226  | 4  |             return 0;  | 
1227  | 58  |     }  | 
1228  |  |     /*  | 
1229  |  |      * If point formats extension present check it, otherwise everything is  | 
1230  |  |      * supported (see RFC4492).  | 
1231  |  |      */  | 
1232  | 14.0k  |     if (s->ext.peer_ecpointformats == NULL)  | 
1233  | 12.2k  |         return 1;  | 
1234  |  |  | 
1235  | 3.50k  |     for (i = 0; i < s->ext.peer_ecpointformats_len; i++) { | 
1236  | 3.18k  |         if (s->ext.peer_ecpointformats[i] == comp_id)  | 
1237  | 1.52k  |             return 1;  | 
1238  | 3.18k  |     }  | 
1239  | 321  |     return 0;  | 
1240  | 1.84k  | }  | 
1241  |  |  | 
1242  |  | /* Return group id of a key */  | 
1243  |  | static uint16_t tls1_get_group_id(EVP_PKEY *pkey)  | 
1244  | 13.7k  | { | 
1245  | 13.7k  |     int curve_nid = ssl_get_EC_curve_nid(pkey);  | 
1246  |  |  | 
1247  | 13.7k  |     if (curve_nid == NID_undef)  | 
1248  | 0  |         return 0;  | 
1249  | 13.7k  |     return tls1_nid2group_id(curve_nid);  | 
1250  | 13.7k  | }  | 
1251  |  |  | 
1252  |  | /*  | 
1253  |  |  * Check cert parameters compatible with extensions: currently just checks EC  | 
1254  |  |  * certificates have compatible curves and compression.  | 
1255  |  |  */  | 
1256  |  | static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)  | 
1257  | 41.2k  | { | 
1258  | 41.2k  |     uint16_t group_id;  | 
1259  | 41.2k  |     EVP_PKEY *pkey;  | 
1260  | 41.2k  |     pkey = X509_get0_pubkey(x);  | 
1261  | 41.2k  |     if (pkey == NULL)  | 
1262  | 0  |         return 0;  | 
1263  |  |     /* If not EC nothing to do */  | 
1264  | 41.2k  |     if (!EVP_PKEY_is_a(pkey, "EC"))  | 
1265  | 27.5k  |         return 1;  | 
1266  |  |     /* Check compression */  | 
1267  | 13.7k  |     if (!tls1_check_pkey_comp(s, pkey))  | 
1268  | 305  |         return 0;  | 
1269  | 13.4k  |     group_id = tls1_get_group_id(pkey);  | 
1270  |  |     /*  | 
1271  |  |      * For a server we allow the certificate to not be in our list of supported  | 
1272  |  |      * groups.  | 
1273  |  |      */  | 
1274  | 13.4k  |     if (!tls1_check_group_id(s, group_id, !s->server))  | 
1275  | 2.75k  |         return 0;  | 
1276  |  |     /*  | 
1277  |  |      * Special case for suite B. We *MUST* sign using SHA256+P-256 or  | 
1278  |  |      * SHA384+P-384.  | 
1279  |  |      */  | 
1280  | 10.6k  |     if (check_ee_md && tls1_suiteb(s)) { | 
1281  | 0  |         int check_md;  | 
1282  | 0  |         size_t i;  | 
1283  |  |  | 
1284  |  |         /* Check to see we have necessary signing algorithm */  | 
1285  | 0  |         if (group_id == OSSL_TLS_GROUP_ID_secp256r1)  | 
1286  | 0  |             check_md = NID_ecdsa_with_SHA256;  | 
1287  | 0  |         else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)  | 
1288  | 0  |             check_md = NID_ecdsa_with_SHA384;  | 
1289  | 0  |         else  | 
1290  | 0  |             return 0;           /* Should never happen */  | 
1291  | 0  |         for (i = 0; i < s->shared_sigalgslen; i++) { | 
1292  | 0  |             if (check_md == s->shared_sigalgs[i]->sigandhash)  | 
1293  | 0  |                 return 1;  | 
1294  | 0  |         }  | 
1295  | 0  |         return 0;  | 
1296  | 0  |     }  | 
1297  | 10.6k  |     return 1;  | 
1298  | 10.6k  | }  | 
1299  |  |  | 
1300  |  | /*  | 
1301  |  |  * tls1_check_ec_tmp_key - Check EC temporary key compatibility  | 
1302  |  |  * @s: SSL connection  | 
1303  |  |  * @cid: Cipher ID we're considering using  | 
1304  |  |  *  | 
1305  |  |  * Checks that the kECDHE cipher suite we're considering using  | 
1306  |  |  * is compatible with the client extensions.  | 
1307  |  |  *  | 
1308  |  |  * Returns 0 when the cipher can't be used or 1 when it can.  | 
1309  |  |  */  | 
1310  |  | int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)  | 
1311  | 13.4k  | { | 
1312  |  |     /* If not Suite B just need a shared group */  | 
1313  | 13.4k  |     if (!tls1_suiteb(s))  | 
1314  | 13.4k  |         return tls1_shared_group(s, 0) != 0;  | 
1315  |  |     /*  | 
1316  |  |      * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other  | 
1317  |  |      * curves permitted.  | 
1318  |  |      */  | 
1319  | 0  |     if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)  | 
1320  | 0  |         return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);  | 
1321  | 0  |     if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)  | 
1322  | 0  |         return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);  | 
1323  |  |  | 
1324  | 0  |     return 0;  | 
1325  | 0  | }  | 
1326  |  |  | 
1327  |  | /* Default sigalg schemes */  | 
1328  |  | static const uint16_t tls12_sigalgs[] = { | 
1329  |  |     TLSEXT_SIGALG_ecdsa_secp256r1_sha256,  | 
1330  |  |     TLSEXT_SIGALG_ecdsa_secp384r1_sha384,  | 
1331  |  |     TLSEXT_SIGALG_ecdsa_secp521r1_sha512,  | 
1332  |  |     TLSEXT_SIGALG_ed25519,  | 
1333  |  |     TLSEXT_SIGALG_ed448,  | 
1334  |  |     TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,  | 
1335  |  |     TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,  | 
1336  |  |     TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,  | 
1337  |  |  | 
1338  |  |     TLSEXT_SIGALG_rsa_pss_pss_sha256,  | 
1339  |  |     TLSEXT_SIGALG_rsa_pss_pss_sha384,  | 
1340  |  |     TLSEXT_SIGALG_rsa_pss_pss_sha512,  | 
1341  |  |     TLSEXT_SIGALG_rsa_pss_rsae_sha256,  | 
1342  |  |     TLSEXT_SIGALG_rsa_pss_rsae_sha384,  | 
1343  |  |     TLSEXT_SIGALG_rsa_pss_rsae_sha512,  | 
1344  |  |  | 
1345  |  |     TLSEXT_SIGALG_rsa_pkcs1_sha256,  | 
1346  |  |     TLSEXT_SIGALG_rsa_pkcs1_sha384,  | 
1347  |  |     TLSEXT_SIGALG_rsa_pkcs1_sha512,  | 
1348  |  |  | 
1349  |  |     TLSEXT_SIGALG_ecdsa_sha224,  | 
1350  |  |     TLSEXT_SIGALG_ecdsa_sha1,  | 
1351  |  |  | 
1352  |  |     TLSEXT_SIGALG_rsa_pkcs1_sha224,  | 
1353  |  |     TLSEXT_SIGALG_rsa_pkcs1_sha1,  | 
1354  |  |  | 
1355  |  |     TLSEXT_SIGALG_dsa_sha224,  | 
1356  |  |     TLSEXT_SIGALG_dsa_sha1,  | 
1357  |  |  | 
1358  |  |     TLSEXT_SIGALG_dsa_sha256,  | 
1359  |  |     TLSEXT_SIGALG_dsa_sha384,  | 
1360  |  |     TLSEXT_SIGALG_dsa_sha512,  | 
1361  |  |  | 
1362  |  | #ifndef OPENSSL_NO_GOST  | 
1363  |  |     TLSEXT_SIGALG_gostr34102012_256_intrinsic,  | 
1364  |  |     TLSEXT_SIGALG_gostr34102012_512_intrinsic,  | 
1365  |  |     TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,  | 
1366  |  |     TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,  | 
1367  |  |     TLSEXT_SIGALG_gostr34102001_gostr3411,  | 
1368  |  | #endif  | 
1369  |  | };  | 
1370  |  |  | 
1371  |  |  | 
1372  |  | static const uint16_t suiteb_sigalgs[] = { | 
1373  |  |     TLSEXT_SIGALG_ecdsa_secp256r1_sha256,  | 
1374  |  |     TLSEXT_SIGALG_ecdsa_secp384r1_sha384  | 
1375  |  | };  | 
1376  |  |  | 
1377  |  | static const SIGALG_LOOKUP sigalg_lookup_tbl[] = { | 
1378  |  |     {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256, | 
1379  |  |      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,  | 
1380  |  |      NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},  | 
1381  |  |     {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384, | 
1382  |  |      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,  | 
1383  |  |      NID_ecdsa_with_SHA384, NID_secp384r1, 1},  | 
1384  |  |     {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512, | 
1385  |  |      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,  | 
1386  |  |      NID_ecdsa_with_SHA512, NID_secp521r1, 1},  | 
1387  |  |     {"ed25519", TLSEXT_SIGALG_ed25519, | 
1388  |  |      NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,  | 
1389  |  |      NID_undef, NID_undef, 1},  | 
1390  |  |     {"ed448", TLSEXT_SIGALG_ed448, | 
1391  |  |      NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,  | 
1392  |  |      NID_undef, NID_undef, 1},  | 
1393  |  |     {NULL, TLSEXT_SIGALG_ecdsa_sha224, | 
1394  |  |      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,  | 
1395  |  |      NID_ecdsa_with_SHA224, NID_undef, 1},  | 
1396  |  |     {NULL, TLSEXT_SIGALG_ecdsa_sha1, | 
1397  |  |      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,  | 
1398  |  |      NID_ecdsa_with_SHA1, NID_undef, 1},  | 
1399  |  |     {"ecdsa_brainpoolP256r1_sha256", TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256, | 
1400  |  |      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,  | 
1401  |  |      NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},  | 
1402  |  |     {"ecdsa_brainpoolP384r1_sha384", TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384, | 
1403  |  |      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,  | 
1404  |  |      NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},  | 
1405  |  |     {"ecdsa_brainpoolP512r1_sha512", TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512, | 
1406  |  |      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,  | 
1407  |  |      NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},  | 
1408  |  |     {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256, | 
1409  |  |      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,  | 
1410  |  |      NID_undef, NID_undef, 1},  | 
1411  |  |     {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384, | 
1412  |  |      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,  | 
1413  |  |      NID_undef, NID_undef, 1},  | 
1414  |  |     {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512, | 
1415  |  |      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,  | 
1416  |  |      NID_undef, NID_undef, 1},  | 
1417  |  |     {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256, | 
1418  |  |      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,  | 
1419  |  |      NID_undef, NID_undef, 1},  | 
1420  |  |     {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384, | 
1421  |  |      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,  | 
1422  |  |      NID_undef, NID_undef, 1},  | 
1423  |  |     {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512, | 
1424  |  |      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,  | 
1425  |  |      NID_undef, NID_undef, 1},  | 
1426  |  |     {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256, | 
1427  |  |      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,  | 
1428  |  |      NID_sha256WithRSAEncryption, NID_undef, 1},  | 
1429  |  |     {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384, | 
1430  |  |      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,  | 
1431  |  |      NID_sha384WithRSAEncryption, NID_undef, 1},  | 
1432  |  |     {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512, | 
1433  |  |      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,  | 
1434  |  |      NID_sha512WithRSAEncryption, NID_undef, 1},  | 
1435  |  |     {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224, | 
1436  |  |      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,  | 
1437  |  |      NID_sha224WithRSAEncryption, NID_undef, 1},  | 
1438  |  |     {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1, | 
1439  |  |      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,  | 
1440  |  |      NID_sha1WithRSAEncryption, NID_undef, 1},  | 
1441  |  |     {NULL, TLSEXT_SIGALG_dsa_sha256, | 
1442  |  |      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,  | 
1443  |  |      NID_dsa_with_SHA256, NID_undef, 1},  | 
1444  |  |     {NULL, TLSEXT_SIGALG_dsa_sha384, | 
1445  |  |      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,  | 
1446  |  |      NID_undef, NID_undef, 1},  | 
1447  |  |     {NULL, TLSEXT_SIGALG_dsa_sha512, | 
1448  |  |      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,  | 
1449  |  |      NID_undef, NID_undef, 1},  | 
1450  |  |     {NULL, TLSEXT_SIGALG_dsa_sha224, | 
1451  |  |      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,  | 
1452  |  |      NID_undef, NID_undef, 1},  | 
1453  |  |     {NULL, TLSEXT_SIGALG_dsa_sha1, | 
1454  |  |      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,  | 
1455  |  |      NID_dsaWithSHA1, NID_undef, 1},  | 
1456  |  | #ifndef OPENSSL_NO_GOST  | 
1457  |  |     {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic, | 
1458  |  |      NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,  | 
1459  |  |      NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,  | 
1460  |  |      NID_undef, NID_undef, 1},  | 
1461  |  |     {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic, | 
1462  |  |      NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,  | 
1463  |  |      NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,  | 
1464  |  |      NID_undef, NID_undef, 1},  | 
1465  |  |     {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, | 
1466  |  |      NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,  | 
1467  |  |      NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,  | 
1468  |  |      NID_undef, NID_undef, 1},  | 
1469  |  |     {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, | 
1470  |  |      NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,  | 
1471  |  |      NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,  | 
1472  |  |      NID_undef, NID_undef, 1},  | 
1473  |  |     {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411, | 
1474  |  |      NID_id_GostR3411_94, SSL_MD_GOST94_IDX,  | 
1475  |  |      NID_id_GostR3410_2001, SSL_PKEY_GOST01,  | 
1476  |  |      NID_undef, NID_undef, 1}  | 
1477  |  | #endif  | 
1478  |  | };  | 
1479  |  | /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */  | 
1480  |  | static const SIGALG_LOOKUP legacy_rsa_sigalg = { | 
1481  |  |     "rsa_pkcs1_md5_sha1", 0,  | 
1482  |  |      NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,  | 
1483  |  |      EVP_PKEY_RSA, SSL_PKEY_RSA,  | 
1484  |  |      NID_undef, NID_undef, 1  | 
1485  |  | };  | 
1486  |  |  | 
1487  |  | /*  | 
1488  |  |  * Default signature algorithm values used if signature algorithms not present.  | 
1489  |  |  * From RFC5246. Note: order must match certificate index order.  | 
1490  |  |  */  | 
1491  |  | static const uint16_t tls_default_sigalg[] = { | 
1492  |  |     TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */  | 
1493  |  |     0, /* SSL_PKEY_RSA_PSS_SIGN */  | 
1494  |  |     TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */  | 
1495  |  |     TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */  | 
1496  |  |     TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */  | 
1497  |  |     TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */  | 
1498  |  |     TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */  | 
1499  |  |     0, /* SSL_PKEY_ED25519 */  | 
1500  |  |     0, /* SSL_PKEY_ED448 */  | 
1501  |  | };  | 
1502  |  |  | 
1503  |  | int ssl_setup_sigalgs(SSL_CTX *ctx)  | 
1504  | 23.8k  | { | 
1505  | 23.8k  |     size_t i, cache_idx, sigalgs_len;  | 
1506  | 23.8k  |     const SIGALG_LOOKUP *lu;  | 
1507  | 23.8k  |     SIGALG_LOOKUP *cache = NULL;  | 
1508  | 23.8k  |     uint16_t *tls12_sigalgs_list = NULL;  | 
1509  | 23.8k  |     EVP_PKEY *tmpkey = EVP_PKEY_new();  | 
1510  | 23.8k  |     int ret = 0;  | 
1511  |  |  | 
1512  | 23.8k  |     if (ctx == NULL)  | 
1513  | 0  |         goto err;  | 
1514  |  |  | 
1515  | 23.8k  |     sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;  | 
1516  |  |  | 
1517  | 23.8k  |     cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);  | 
1518  | 23.8k  |     if (cache == NULL || tmpkey == NULL)  | 
1519  | 0  |         goto err;  | 
1520  |  |  | 
1521  | 23.8k  |     tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);  | 
1522  | 23.8k  |     if (tls12_sigalgs_list == NULL)  | 
1523  | 0  |         goto err;  | 
1524  |  |  | 
1525  | 23.8k  |     ERR_set_mark();  | 
1526  |  |     /* First fill cache and tls12_sigalgs list from legacy algorithm list */  | 
1527  | 23.8k  |     for (i = 0, lu = sigalg_lookup_tbl;  | 
1528  | 762k  |          i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) { | 
1529  | 738k  |         EVP_PKEY_CTX *pctx;  | 
1530  |  |  | 
1531  | 738k  |         cache[i] = *lu;  | 
1532  | 738k  |         tls12_sigalgs_list[i] = tls12_sigalgs[i];  | 
1533  |  |  | 
1534  |  |         /*  | 
1535  |  |          * Check hash is available.  | 
1536  |  |          * This test is not perfect. A provider could have support  | 
1537  |  |          * for a signature scheme, but not a particular hash. However the hash  | 
1538  |  |          * could be available from some other loaded provider. In that case it  | 
1539  |  |          * could be that the signature is available, and the hash is available  | 
1540  |  |          * independently - but not as a combination. We ignore this for now.  | 
1541  |  |          */  | 
1542  | 738k  |         if (lu->hash != NID_undef  | 
1543  | 738k  |                 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) { | 
1544  | 119k  |             cache[i].enabled = 0;  | 
1545  | 119k  |             continue;  | 
1546  | 119k  |         }  | 
1547  |  |  | 
1548  | 619k  |         if (!EVP_PKEY_set_type(tmpkey, lu->sig)) { | 
1549  | 0  |             cache[i].enabled = 0;  | 
1550  | 0  |             continue;  | 
1551  | 0  |         }  | 
1552  | 619k  |         pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);  | 
1553  |  |         /* If unable to create pctx we assume the sig algorithm is unavailable */  | 
1554  | 619k  |         if (pctx == NULL)  | 
1555  | 0  |             cache[i].enabled = 0;  | 
1556  | 619k  |         EVP_PKEY_CTX_free(pctx);  | 
1557  | 619k  |     }  | 
1558  |  |  | 
1559  |  |     /* Now complete cache and tls12_sigalgs list with provider sig information */  | 
1560  | 23.8k  |     cache_idx = OSSL_NELEM(sigalg_lookup_tbl);  | 
1561  | 23.8k  |     for (i = 0; i < ctx->sigalg_list_len; i++) { | 
1562  | 0  |         TLS_SIGALG_INFO si = ctx->sigalg_list[i];  | 
1563  | 0  |         cache[cache_idx].name = si.name;  | 
1564  | 0  |         cache[cache_idx].sigalg = si.code_point;  | 
1565  | 0  |         tls12_sigalgs_list[cache_idx] = si.code_point;  | 
1566  | 0  |         cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;  | 
1567  | 0  |         cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);  | 
1568  | 0  |         cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);  | 
1569  | 0  |         cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;  | 
1570  | 0  |         cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);  | 
1571  | 0  |         cache[cache_idx].curve = NID_undef;  | 
1572  |  |         /* all provided sigalgs are enabled by load */  | 
1573  | 0  |         cache[cache_idx].enabled = 1;  | 
1574  | 0  |         cache_idx++;  | 
1575  | 0  |     }  | 
1576  | 23.8k  |     ERR_pop_to_mark();  | 
1577  | 23.8k  |     ctx->sigalg_lookup_cache = cache;  | 
1578  | 23.8k  |     ctx->tls12_sigalgs = tls12_sigalgs_list;  | 
1579  | 23.8k  |     ctx->tls12_sigalgs_len = sigalgs_len;  | 
1580  | 23.8k  |     cache = NULL;  | 
1581  | 23.8k  |     tls12_sigalgs_list = NULL;  | 
1582  |  |  | 
1583  | 23.8k  |     ret = 1;  | 
1584  | 23.8k  |  err:  | 
1585  | 23.8k  |     OPENSSL_free(cache);  | 
1586  | 23.8k  |     OPENSSL_free(tls12_sigalgs_list);  | 
1587  | 23.8k  |     EVP_PKEY_free(tmpkey);  | 
1588  | 23.8k  |     return ret;  | 
1589  | 23.8k  | }  | 
1590  |  |  | 
1591  |  | /* Lookup TLS signature algorithm */  | 
1592  |  | static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,  | 
1593  |  |                                                uint16_t sigalg)  | 
1594  | 6.97M  | { | 
1595  | 6.97M  |     size_t i;  | 
1596  | 6.97M  |     const SIGALG_LOOKUP *lu;  | 
1597  |  |  | 
1598  | 6.97M  |     for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;  | 
1599  | 111M  |          i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;  | 
1600  | 110M  |          lu++, i++) { | 
1601  | 110M  |         if (lu->sigalg == sigalg) { | 
1602  | 6.73M  |             if (!lu->enabled)  | 
1603  | 712k  |                 return NULL;  | 
1604  | 6.01M  |             return lu;  | 
1605  | 6.73M  |         }  | 
1606  | 110M  |     }  | 
1607  | 244k  |     return NULL;  | 
1608  | 6.97M  | }  | 
1609  |  | /* Lookup hash: return 0 if invalid or not enabled */  | 
1610  |  | int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)  | 
1611  | 1.96M  | { | 
1612  | 1.96M  |     const EVP_MD *md;  | 
1613  |  |  | 
1614  | 1.96M  |     if (lu == NULL)  | 
1615  | 0  |         return 0;  | 
1616  |  |     /* lu->hash == NID_undef means no associated digest */  | 
1617  | 1.96M  |     if (lu->hash == NID_undef) { | 
1618  | 176k  |         md = NULL;  | 
1619  | 1.78M  |     } else { | 
1620  | 1.78M  |         md = ssl_md(ctx, lu->hash_idx);  | 
1621  | 1.78M  |         if (md == NULL)  | 
1622  | 0  |             return 0;  | 
1623  | 1.78M  |     }  | 
1624  | 1.96M  |     if (pmd)  | 
1625  | 1.91M  |         *pmd = md;  | 
1626  | 1.96M  |     return 1;  | 
1627  | 1.96M  | }  | 
1628  |  |  | 
1629  |  | /*  | 
1630  |  |  * Check if key is large enough to generate RSA-PSS signature.  | 
1631  |  |  *  | 
1632  |  |  * The key must greater than or equal to 2 * hash length + 2.  | 
1633  |  |  * SHA512 has a hash length of 64 bytes, which is incompatible  | 
1634  |  |  * with a 128 byte (1024 bit) key.  | 
1635  |  |  */  | 
1636  | 484  | #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)  | 
1637  |  | static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,  | 
1638  |  |                                       const SIGALG_LOOKUP *lu)  | 
1639  | 484  | { | 
1640  | 484  |     const EVP_MD *md;  | 
1641  |  |  | 
1642  | 484  |     if (pkey == NULL)  | 
1643  | 0  |         return 0;  | 
1644  | 484  |     if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)  | 
1645  | 0  |         return 0;  | 
1646  | 484  |     if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))  | 
1647  | 0  |         return 0;  | 
1648  | 484  |     return 1;  | 
1649  | 484  | }  | 
1650  |  |  | 
1651  |  | /*  | 
1652  |  |  * Returns a signature algorithm when the peer did not send a list of supported  | 
1653  |  |  * signature algorithms. The signature algorithm is fixed for the certificate  | 
1654  |  |  * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the  | 
1655  |  |  * certificate type from |s| will be used.  | 
1656  |  |  * Returns the signature algorithm to use, or NULL on error.  | 
1657  |  |  */  | 
1658  |  | static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,  | 
1659  |  |                                                    int idx)  | 
1660  | 129k  | { | 
1661  | 129k  |     if (idx == -1) { | 
1662  | 10.0k  |         if (s->server) { | 
1663  | 10.0k  |             size_t i;  | 
1664  |  |  | 
1665  |  |             /* Work out index corresponding to ciphersuite */  | 
1666  | 13.2k  |             for (i = 0; i < s->ssl_pkey_num; i++) { | 
1667  | 13.2k  |                 const SSL_CERT_LOOKUP *clu  | 
1668  | 13.2k  |                     = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));  | 
1669  |  |  | 
1670  | 13.2k  |                 if (clu == NULL)  | 
1671  | 0  |                     continue;  | 
1672  | 13.2k  |                 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) { | 
1673  | 10.0k  |                     idx = i;  | 
1674  | 10.0k  |                     break;  | 
1675  | 10.0k  |                 }  | 
1676  | 13.2k  |             }  | 
1677  |  |  | 
1678  |  |             /*  | 
1679  |  |              * Some GOST ciphersuites allow more than one signature algorithms  | 
1680  |  |              * */  | 
1681  | 10.0k  |             if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) { | 
1682  | 0  |                 int real_idx;  | 
1683  |  | 
  | 
1684  | 0  |                 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;  | 
1685  | 0  |                      real_idx--) { | 
1686  | 0  |                     if (s->cert->pkeys[real_idx].privatekey != NULL) { | 
1687  | 0  |                         idx = real_idx;  | 
1688  | 0  |                         break;  | 
1689  | 0  |                     }  | 
1690  | 0  |                 }  | 
1691  | 0  |             }  | 
1692  |  |             /*  | 
1693  |  |              * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used  | 
1694  |  |              * with new (aGOST12-only) ciphersuites, we should find out which one is available really.  | 
1695  |  |              */  | 
1696  | 10.0k  |             else if (idx == SSL_PKEY_GOST12_256) { | 
1697  | 0  |                 int real_idx;  | 
1698  |  | 
  | 
1699  | 0  |                 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;  | 
1700  | 0  |                      real_idx--) { | 
1701  | 0  |                      if (s->cert->pkeys[real_idx].privatekey != NULL) { | 
1702  | 0  |                          idx = real_idx;  | 
1703  | 0  |                          break;  | 
1704  | 0  |                      }  | 
1705  | 0  |                 }  | 
1706  | 0  |             }  | 
1707  | 10.0k  |         } else { | 
1708  | 0  |             idx = s->cert->key - s->cert->pkeys;  | 
1709  | 0  |         }  | 
1710  | 10.0k  |     }  | 
1711  | 129k  |     if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))  | 
1712  | 14.0k  |         return NULL;  | 
1713  |  |  | 
1714  | 115k  |     if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) { | 
1715  | 106k  |         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);  | 
1716  |  |  | 
1717  | 106k  |         if (lu == NULL)  | 
1718  | 69.3k  |             return NULL;  | 
1719  | 36.9k  |         if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))  | 
1720  | 0  |             return NULL;  | 
1721  | 36.9k  |         if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))  | 
1722  | 0  |             return NULL;  | 
1723  | 36.9k  |         return lu;  | 
1724  | 36.9k  |     }  | 
1725  | 8.85k  |     if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))  | 
1726  | 0  |         return NULL;  | 
1727  | 8.85k  |     return &legacy_rsa_sigalg;  | 
1728  | 8.85k  | }  | 
1729  |  | /* Set peer sigalg based key type */  | 
1730  |  | int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)  | 
1731  | 1.14k  | { | 
1732  | 1.14k  |     size_t idx;  | 
1733  | 1.14k  |     const SIGALG_LOOKUP *lu;  | 
1734  |  |  | 
1735  | 1.14k  |     if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)  | 
1736  | 0  |         return 0;  | 
1737  | 1.14k  |     lu = tls1_get_legacy_sigalg(s, idx);  | 
1738  | 1.14k  |     if (lu == NULL)  | 
1739  | 7  |         return 0;  | 
1740  | 1.14k  |     s->s3.tmp.peer_sigalg = lu;  | 
1741  | 1.14k  |     return 1;  | 
1742  | 1.14k  | }  | 
1743  |  |  | 
1744  |  | size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)  | 
1745  | 252k  | { | 
1746  |  |     /*  | 
1747  |  |      * If Suite B mode use Suite B sigalgs only, ignore any other  | 
1748  |  |      * preferences.  | 
1749  |  |      */  | 
1750  | 252k  |     switch (tls1_suiteb(s)) { | 
1751  | 0  |     case SSL_CERT_FLAG_SUITEB_128_LOS:  | 
1752  | 0  |         *psigs = suiteb_sigalgs;  | 
1753  | 0  |         return OSSL_NELEM(suiteb_sigalgs);  | 
1754  |  |  | 
1755  | 0  |     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:  | 
1756  | 0  |         *psigs = suiteb_sigalgs;  | 
1757  | 0  |         return 1;  | 
1758  |  |  | 
1759  | 0  |     case SSL_CERT_FLAG_SUITEB_192_LOS:  | 
1760  | 0  |         *psigs = suiteb_sigalgs + 1;  | 
1761  | 0  |         return 1;  | 
1762  | 252k  |     }  | 
1763  |  |     /*  | 
1764  |  |      *  We use client_sigalgs (if not NULL) if we're a server  | 
1765  |  |      *  and sending a certificate request or if we're a client and  | 
1766  |  |      *  determining which shared algorithm to use.  | 
1767  |  |      */  | 
1768  | 252k  |     if ((s->server == sent) && s->cert->client_sigalgs != NULL) { | 
1769  | 0  |         *psigs = s->cert->client_sigalgs;  | 
1770  | 0  |         return s->cert->client_sigalgslen;  | 
1771  | 252k  |     } else if (s->cert->conf_sigalgs) { | 
1772  | 0  |         *psigs = s->cert->conf_sigalgs;  | 
1773  | 0  |         return s->cert->conf_sigalgslen;  | 
1774  | 252k  |     } else { | 
1775  | 252k  |         *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;  | 
1776  | 252k  |         return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;  | 
1777  | 252k  |     }  | 
1778  | 252k  | }  | 
1779  |  |  | 
1780  |  | /*  | 
1781  |  |  * Called by servers only. Checks that we have a sig alg that supports the  | 
1782  |  |  * specified EC curve.  | 
1783  |  |  */  | 
1784  |  | int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)  | 
1785  | 0  | { | 
1786  | 0  |    const uint16_t *sigs;  | 
1787  | 0  |    size_t siglen, i;  | 
1788  |  | 
  | 
1789  | 0  |     if (s->cert->conf_sigalgs) { | 
1790  | 0  |         sigs = s->cert->conf_sigalgs;  | 
1791  | 0  |         siglen = s->cert->conf_sigalgslen;  | 
1792  | 0  |     } else { | 
1793  | 0  |         sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;  | 
1794  | 0  |         siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;  | 
1795  | 0  |     }  | 
1796  |  | 
  | 
1797  | 0  |     for (i = 0; i < siglen; i++) { | 
1798  | 0  |         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);  | 
1799  |  | 
  | 
1800  | 0  |         if (lu == NULL)  | 
1801  | 0  |             continue;  | 
1802  | 0  |         if (lu->sig == EVP_PKEY_EC  | 
1803  | 0  |                 && lu->curve != NID_undef  | 
1804  | 0  |                 && curve == lu->curve)  | 
1805  | 0  |             return 1;  | 
1806  | 0  |     }  | 
1807  |  |  | 
1808  | 0  |     return 0;  | 
1809  | 0  | }  | 
1810  |  |  | 
1811  |  | /*  | 
1812  |  |  * Return the number of security bits for the signature algorithm, or 0 on  | 
1813  |  |  * error.  | 
1814  |  |  */  | 
1815  |  | static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)  | 
1816  | 572k  | { | 
1817  | 572k  |     const EVP_MD *md = NULL;  | 
1818  | 572k  |     int secbits = 0;  | 
1819  |  |  | 
1820  | 572k  |     if (!tls1_lookup_md(ctx, lu, &md))  | 
1821  | 0  |         return 0;  | 
1822  | 572k  |     if (md != NULL)  | 
1823  | 532k  |     { | 
1824  | 532k  |         int md_type = EVP_MD_get_type(md);  | 
1825  |  |  | 
1826  |  |         /* Security bits: half digest bits */  | 
1827  | 532k  |         secbits = EVP_MD_get_size(md) * 4;  | 
1828  |  |         /*  | 
1829  |  |          * SHA1 and MD5 are known to be broken. Reduce security bits so that  | 
1830  |  |          * they're no longer accepted at security level 1. The real values don't  | 
1831  |  |          * really matter as long as they're lower than 80, which is our  | 
1832  |  |          * security level 1.  | 
1833  |  |          * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for  | 
1834  |  |          * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2  | 
1835  |  |          * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf  | 
1836  |  |          * puts a chosen-prefix attack for MD5 at 2^39.  | 
1837  |  |          */  | 
1838  | 532k  |         if (md_type == NID_sha1)  | 
1839  | 39.2k  |             secbits = 64;  | 
1840  | 493k  |         else if (md_type == NID_md5_sha1)  | 
1841  | 1.93k  |             secbits = 67;  | 
1842  | 491k  |         else if (md_type == NID_md5)  | 
1843  | 0  |             secbits = 39;  | 
1844  | 532k  |     } else { | 
1845  |  |         /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */  | 
1846  | 39.6k  |         if (lu->sigalg == TLSEXT_SIGALG_ed25519)  | 
1847  | 19.0k  |             secbits = 128;  | 
1848  | 20.5k  |         else if (lu->sigalg == TLSEXT_SIGALG_ed448)  | 
1849  | 20.5k  |             secbits = 224;  | 
1850  | 39.6k  |     }  | 
1851  |  |     /*  | 
1852  |  |      * For provider-based sigalgs we have secbits information available  | 
1853  |  |      * in the (provider-loaded) sigalg_list structure  | 
1854  |  |      */  | 
1855  | 572k  |     if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)  | 
1856  | 572k  |                && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) { | 
1857  | 0  |         secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;  | 
1858  | 0  |     }  | 
1859  | 572k  |     return secbits;  | 
1860  | 572k  | }  | 
1861  |  |  | 
1862  |  | /*  | 
1863  |  |  * Check signature algorithm is consistent with sent supported signature  | 
1864  |  |  * algorithms and if so set relevant digest and signature scheme in  | 
1865  |  |  * s.  | 
1866  |  |  */  | 
1867  |  | int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)  | 
1868  | 4.16k  | { | 
1869  | 4.16k  |     const uint16_t *sent_sigs;  | 
1870  | 4.16k  |     const EVP_MD *md = NULL;  | 
1871  | 4.16k  |     char sigalgstr[2];  | 
1872  | 4.16k  |     size_t sent_sigslen, i, cidx;  | 
1873  | 4.16k  |     int pkeyid = -1;  | 
1874  | 4.16k  |     const SIGALG_LOOKUP *lu;  | 
1875  | 4.16k  |     int secbits = 0;  | 
1876  |  |  | 
1877  | 4.16k  |     pkeyid = EVP_PKEY_get_id(pkey);  | 
1878  |  |  | 
1879  | 4.16k  |     if (SSL_CONNECTION_IS_TLS13(s)) { | 
1880  |  |         /* Disallow DSA for TLS 1.3 */  | 
1881  | 3.74k  |         if (pkeyid == EVP_PKEY_DSA) { | 
1882  | 0  |             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);  | 
1883  | 0  |             return 0;  | 
1884  | 0  |         }  | 
1885  |  |         /* Only allow PSS for TLS 1.3 */  | 
1886  | 3.74k  |         if (pkeyid == EVP_PKEY_RSA)  | 
1887  | 3.73k  |             pkeyid = EVP_PKEY_RSA_PSS;  | 
1888  | 3.74k  |     }  | 
1889  | 4.16k  |     lu = tls1_lookup_sigalg(s, sig);  | 
1890  |  |     /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */  | 
1891  | 4.16k  |     if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))  | 
1892  | 0  |         pkeyid = lu->sig;  | 
1893  |  |  | 
1894  |  |     /* Should never happen */  | 
1895  | 4.16k  |     if (pkeyid == -1)  | 
1896  | 0  |         return -1;  | 
1897  |  |  | 
1898  |  |     /*  | 
1899  |  |      * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type  | 
1900  |  |      * is consistent with signature: RSA keys can be used for RSA-PSS  | 
1901  |  |      */  | 
1902  | 4.16k  |     if (lu == NULL  | 
1903  | 4.16k  |         || (SSL_CONNECTION_IS_TLS13(s)  | 
1904  | 4.15k  |             && (lu->hash == NID_sha1 || lu->hash == NID_sha224))  | 
1905  | 4.16k  |         || (pkeyid != lu->sig  | 
1906  | 4.15k  |         && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) { | 
1907  | 25  |         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);  | 
1908  | 25  |         return 0;  | 
1909  | 25  |     }  | 
1910  |  |     /* Check the sigalg is consistent with the key OID */  | 
1911  | 4.14k  |     if (!ssl_cert_lookup_by_nid(  | 
1912  | 4.14k  |                  (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,  | 
1913  | 4.14k  |                  &cidx, SSL_CONNECTION_GET_CTX(s))  | 
1914  | 4.14k  |             || lu->sig_idx != (int)cidx) { | 
1915  | 2  |         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);  | 
1916  | 2  |         return 0;  | 
1917  | 2  |     }  | 
1918  |  |  | 
1919  | 4.14k  |     if (pkeyid == EVP_PKEY_EC) { | 
1920  |  |  | 
1921  |  |         /* Check point compression is permitted */  | 
1922  | 41  |         if (!tls1_check_pkey_comp(s, pkey)) { | 
1923  | 5  |             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,  | 
1924  | 5  |                      SSL_R_ILLEGAL_POINT_COMPRESSION);  | 
1925  | 5  |             return 0;  | 
1926  | 5  |         }  | 
1927  |  |  | 
1928  |  |         /* For TLS 1.3 or Suite B check curve matches signature algorithm */  | 
1929  | 36  |         if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) { | 
1930  | 0  |             int curve = ssl_get_EC_curve_nid(pkey);  | 
1931  |  | 
  | 
1932  | 0  |             if (lu->curve != NID_undef && curve != lu->curve) { | 
1933  | 0  |                 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);  | 
1934  | 0  |                 return 0;  | 
1935  | 0  |             }  | 
1936  | 0  |         }  | 
1937  | 36  |         if (!SSL_CONNECTION_IS_TLS13(s)) { | 
1938  |  |             /* Check curve matches extensions */  | 
1939  | 36  |             if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) { | 
1940  | 3  |                 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);  | 
1941  | 3  |                 return 0;  | 
1942  | 3  |             }  | 
1943  | 33  |             if (tls1_suiteb(s)) { | 
1944  |  |                 /* Check sigalg matches a permissible Suite B value */  | 
1945  | 0  |                 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256  | 
1946  | 0  |                     && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) { | 
1947  | 0  |                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,  | 
1948  | 0  |                              SSL_R_WRONG_SIGNATURE_TYPE);  | 
1949  | 0  |                     return 0;  | 
1950  | 0  |                 }  | 
1951  | 0  |             }  | 
1952  | 33  |         }  | 
1953  | 4.10k  |     } else if (tls1_suiteb(s)) { | 
1954  | 0  |         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);  | 
1955  | 0  |         return 0;  | 
1956  | 0  |     }  | 
1957  |  |  | 
1958  |  |     /* Check signature matches a type we sent */  | 
1959  | 4.13k  |     sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);  | 
1960  | 53.0k  |     for (i = 0; i < sent_sigslen; i++, sent_sigs++) { | 
1961  | 53.0k  |         if (sig == *sent_sigs)  | 
1962  | 4.13k  |             break;  | 
1963  | 53.0k  |     }  | 
1964  |  |     /* Allow fallback to SHA1 if not strict mode */  | 
1965  | 4.13k  |     if (i == sent_sigslen && (lu->hash != NID_sha1  | 
1966  | 0  |         || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { | 
1967  | 0  |         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);  | 
1968  | 0  |         return 0;  | 
1969  | 0  |     }  | 
1970  | 4.13k  |     if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) { | 
1971  | 0  |         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);  | 
1972  | 0  |         return 0;  | 
1973  | 0  |     }  | 
1974  |  |     /*  | 
1975  |  |      * Make sure security callback allows algorithm. For historical  | 
1976  |  |      * reasons we have to pass the sigalg as a two byte char array.  | 
1977  |  |      */  | 
1978  | 4.13k  |     sigalgstr[0] = (sig >> 8) & 0xff;  | 
1979  | 4.13k  |     sigalgstr[1] = sig & 0xff;  | 
1980  | 4.13k  |     secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);  | 
1981  | 4.13k  |     if (secbits == 0 ||  | 
1982  | 4.13k  |         !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,  | 
1983  | 4.13k  |                       md != NULL ? EVP_MD_get_type(md) : NID_undef,  | 
1984  | 4.13k  |                       (void *)sigalgstr)) { | 
1985  | 0  |         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);  | 
1986  | 0  |         return 0;  | 
1987  | 0  |     }  | 
1988  |  |     /* Store the sigalg the peer uses */  | 
1989  | 4.13k  |     s->s3.tmp.peer_sigalg = lu;  | 
1990  | 4.13k  |     return 1;  | 
1991  | 4.13k  | }  | 
1992  |  |  | 
1993  |  | int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)  | 
1994  | 0  | { | 
1995  | 0  |     const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);  | 
1996  |  | 
  | 
1997  | 0  |     if (sc == NULL)  | 
1998  | 0  |         return 0;  | 
1999  |  |  | 
2000  | 0  |     if (sc->s3.tmp.peer_sigalg == NULL)  | 
2001  | 0  |         return 0;  | 
2002  | 0  |     *pnid = sc->s3.tmp.peer_sigalg->sig;  | 
2003  | 0  |     return 1;  | 
2004  | 0  | }  | 
2005  |  |  | 
2006  |  | int SSL_get_signature_type_nid(const SSL *s, int *pnid)  | 
2007  | 0  | { | 
2008  | 0  |     const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);  | 
2009  |  | 
  | 
2010  | 0  |     if (sc == NULL)  | 
2011  | 0  |         return 0;  | 
2012  |  |  | 
2013  | 0  |     if (sc->s3.tmp.sigalg == NULL)  | 
2014  | 0  |         return 0;  | 
2015  | 0  |     *pnid = sc->s3.tmp.sigalg->sig;  | 
2016  | 0  |     return 1;  | 
2017  | 0  | }  | 
2018  |  |  | 
2019  |  | /*  | 
2020  |  |  * Set a mask of disabled algorithms: an algorithm is disabled if it isn't  | 
2021  |  |  * supported, doesn't appear in supported signature algorithms, isn't supported  | 
2022  |  |  * by the enabled protocol versions or by the security level.  | 
2023  |  |  *  | 
2024  |  |  * This function should only be used for checking which ciphers are supported  | 
2025  |  |  * by the client.  | 
2026  |  |  *  | 
2027  |  |  * Call ssl_cipher_disabled() to check that it's enabled or not.  | 
2028  |  |  */  | 
2029  |  | int ssl_set_client_disabled(SSL_CONNECTION *s)  | 
2030  | 166k  | { | 
2031  | 166k  |     s->s3.tmp.mask_a = 0;  | 
2032  | 166k  |     s->s3.tmp.mask_k = 0;  | 
2033  | 166k  |     ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);  | 
2034  | 166k  |     if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,  | 
2035  | 166k  |                                 &s->s3.tmp.max_ver, NULL) != 0)  | 
2036  | 0  |         return 0;  | 
2037  | 166k  | #ifndef OPENSSL_NO_PSK  | 
2038  |  |     /* with PSK there must be client callback set */  | 
2039  | 166k  |     if (!s->psk_client_callback) { | 
2040  | 166k  |         s->s3.tmp.mask_a |= SSL_aPSK;  | 
2041  | 166k  |         s->s3.tmp.mask_k |= SSL_PSK;  | 
2042  | 166k  |     }  | 
2043  | 166k  | #endif                          /* OPENSSL_NO_PSK */  | 
2044  | 166k  | #ifndef OPENSSL_NO_SRP  | 
2045  | 166k  |     if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { | 
2046  | 166k  |         s->s3.tmp.mask_a |= SSL_aSRP;  | 
2047  | 166k  |         s->s3.tmp.mask_k |= SSL_kSRP;  | 
2048  | 166k  |     }  | 
2049  | 166k  | #endif  | 
2050  | 166k  |     return 1;  | 
2051  | 166k  | }  | 
2052  |  |  | 
2053  |  | /*  | 
2054  |  |  * ssl_cipher_disabled - check that a cipher is disabled or not  | 
2055  |  |  * @s: SSL connection that you want to use the cipher on  | 
2056  |  |  * @c: cipher to check  | 
2057  |  |  * @op: Security check that you want to do  | 
2058  |  |  * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3  | 
2059  |  |  *  | 
2060  |  |  * Returns 1 when it's disabled, 0 when enabled.  | 
2061  |  |  */  | 
2062  |  | int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,  | 
2063  |  |                         int op, int ecdhe)  | 
2064  | 3.99M  | { | 
2065  | 3.99M  |     if (c->algorithm_mkey & s->s3.tmp.mask_k  | 
2066  | 3.99M  |         || c->algorithm_auth & s->s3.tmp.mask_a)  | 
2067  | 1.64M  |         return 1;  | 
2068  | 2.34M  |     if (s->s3.tmp.max_ver == 0)  | 
2069  | 0  |         return 1;  | 
2070  |  |  | 
2071  | 2.34M  |     if (SSL_IS_QUIC_HANDSHAKE(s))  | 
2072  |  |         /* For QUIC, only allow these ciphersuites. */  | 
2073  | 106k  |         switch (SSL_CIPHER_get_id(c)) { | 
2074  | 34.1k  |         case TLS1_3_CK_AES_128_GCM_SHA256:  | 
2075  | 72.5k  |         case TLS1_3_CK_AES_256_GCM_SHA384:  | 
2076  | 106k  |         case TLS1_3_CK_CHACHA20_POLY1305_SHA256:  | 
2077  | 106k  |             break;  | 
2078  | 9  |         default:  | 
2079  | 9  |             return 1;  | 
2080  | 106k  |         }  | 
2081  |  |  | 
2082  | 2.34M  |     if (!SSL_CONNECTION_IS_DTLS(s)) { | 
2083  | 2.34M  |         int min_tls = c->min_tls;  | 
2084  |  |  | 
2085  |  |         /*  | 
2086  |  |          * For historical reasons we will allow ECHDE to be selected by a server  | 
2087  |  |          * in SSLv3 if we are a client  | 
2088  |  |          */  | 
2089  | 2.34M  |         if (min_tls == TLS1_VERSION && ecdhe  | 
2090  | 2.34M  |                 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)  | 
2091  | 1.86k  |             min_tls = SSL3_VERSION;  | 
2092  |  |  | 
2093  | 2.34M  |         if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))  | 
2094  | 27.5k  |             return 1;  | 
2095  | 2.34M  |     }  | 
2096  | 2.32M  |     if (SSL_CONNECTION_IS_DTLS(s)  | 
2097  | 2.32M  |             && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)  | 
2098  | 0  |                 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))  | 
2099  | 0  |         return 1;  | 
2100  |  |  | 
2101  | 2.32M  |     return !ssl_security(s, op, c->strength_bits, 0, (void *)c);  | 
2102  | 2.32M  | }  | 
2103  |  |  | 
2104  |  | int tls_use_ticket(SSL_CONNECTION *s)  | 
2105  | 74.5k  | { | 
2106  | 74.5k  |     if ((s->options & SSL_OP_NO_TICKET))  | 
2107  | 0  |         return 0;  | 
2108  | 74.5k  |     return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);  | 
2109  | 74.5k  | }  | 
2110  |  |  | 
2111  |  | int tls1_set_server_sigalgs(SSL_CONNECTION *s)  | 
2112  | 10.0k  | { | 
2113  | 10.0k  |     size_t i;  | 
2114  |  |  | 
2115  |  |     /* Clear any shared signature algorithms */  | 
2116  | 10.0k  |     OPENSSL_free(s->shared_sigalgs);  | 
2117  | 10.0k  |     s->shared_sigalgs = NULL;  | 
2118  | 10.0k  |     s->shared_sigalgslen = 0;  | 
2119  |  |  | 
2120  |  |     /* Clear certificate validity flags */  | 
2121  | 10.0k  |     if (s->s3.tmp.valid_flags)  | 
2122  | 81  |         memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));  | 
2123  | 9.99k  |     else  | 
2124  | 9.99k  |         s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));  | 
2125  | 10.0k  |     if (s->s3.tmp.valid_flags == NULL)  | 
2126  | 0  |         return 0;  | 
2127  |  |     /*  | 
2128  |  |      * If peer sent no signature algorithms check to see if we support  | 
2129  |  |      * the default algorithm for each certificate type  | 
2130  |  |      */  | 
2131  | 10.0k  |     if (s->s3.tmp.peer_cert_sigalgs == NULL  | 
2132  | 10.0k  |             && s->s3.tmp.peer_sigalgs == NULL) { | 
2133  | 7.27k  |         const uint16_t *sent_sigs;  | 
2134  | 7.27k  |         size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);  | 
2135  |  |  | 
2136  | 86.7k  |         for (i = 0; i < s->ssl_pkey_num; i++) { | 
2137  | 79.5k  |             const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);  | 
2138  | 79.5k  |             size_t j;  | 
2139  |  |  | 
2140  | 79.5k  |             if (lu == NULL)  | 
2141  | 57.6k  |                 continue;  | 
2142  |  |             /* Check default matches a type we sent */  | 
2143  | 501k  |             for (j = 0; j < sent_sigslen; j++) { | 
2144  | 498k  |                 if (lu->sigalg == sent_sigs[j]) { | 
2145  | 19.2k  |                         s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;  | 
2146  | 19.2k  |                         break;  | 
2147  | 19.2k  |                 }  | 
2148  | 498k  |             }  | 
2149  | 21.8k  |         }  | 
2150  | 7.27k  |         return 1;  | 
2151  | 7.27k  |     }  | 
2152  |  |  | 
2153  | 2.79k  |     if (!tls1_process_sigalgs(s)) { | 
2154  | 0  |         SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);  | 
2155  | 0  |         return 0;  | 
2156  | 0  |     }  | 
2157  | 2.79k  |     if (s->shared_sigalgs != NULL)  | 
2158  | 2.75k  |         return 1;  | 
2159  |  |  | 
2160  |  |     /* Fatal error if no shared signature algorithms */  | 
2161  | 2.79k  |     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,  | 
2162  | 43  |              SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);  | 
2163  | 43  |     return 0;  | 
2164  | 2.79k  | }  | 
2165  |  |  | 
2166  |  | /*-  | 
2167  |  |  * Gets the ticket information supplied by the client if any.  | 
2168  |  |  *  | 
2169  |  |  *   hello: The parsed ClientHello data  | 
2170  |  |  *   ret: (output) on return, if a ticket was decrypted, then this is set to  | 
2171  |  |  *       point to the resulting session.  | 
2172  |  |  */  | 
2173  |  | SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,  | 
2174  |  |                                              CLIENTHELLO_MSG *hello,  | 
2175  |  |                                              SSL_SESSION **ret)  | 
2176  | 12.0k  | { | 
2177  | 12.0k  |     size_t size;  | 
2178  | 12.0k  |     RAW_EXTENSION *ticketext;  | 
2179  |  |  | 
2180  | 12.0k  |     *ret = NULL;  | 
2181  | 12.0k  |     s->ext.ticket_expected = 0;  | 
2182  |  |  | 
2183  |  |     /*  | 
2184  |  |      * If tickets disabled or not supported by the protocol version  | 
2185  |  |      * (e.g. TLSv1.3) behave as if no ticket present to permit stateful  | 
2186  |  |      * resumption.  | 
2187  |  |      */  | 
2188  | 12.0k  |     if (s->version <= SSL3_VERSION || !tls_use_ticket(s))  | 
2189  | 81  |         return SSL_TICKET_NONE;  | 
2190  |  |  | 
2191  | 11.9k  |     ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];  | 
2192  | 11.9k  |     if (!ticketext->present)  | 
2193  | 10.3k  |         return SSL_TICKET_NONE;  | 
2194  |  |  | 
2195  | 1.60k  |     size = PACKET_remaining(&ticketext->data);  | 
2196  |  |  | 
2197  | 1.60k  |     return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,  | 
2198  | 1.60k  |                               hello->session_id, hello->session_id_len, ret);  | 
2199  | 11.9k  | }  | 
2200  |  |  | 
2201  |  | /*-  | 
2202  |  |  * tls_decrypt_ticket attempts to decrypt a session ticket.  | 
2203  |  |  *  | 
2204  |  |  * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are  | 
2205  |  |  * expecting a pre-shared key ciphersuite, in which case we have no use for  | 
2206  |  |  * session tickets and one will never be decrypted, nor will  | 
2207  |  |  * s->ext.ticket_expected be set to 1.  | 
2208  |  |  *  | 
2209  |  |  * Side effects:  | 
2210  |  |  *   Sets s->ext.ticket_expected to 1 if the server will have to issue  | 
2211  |  |  *   a new session ticket to the client because the client indicated support  | 
2212  |  |  *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have  | 
2213  |  |  *   a session ticket or we couldn't use the one it gave us, or if  | 
2214  |  |  *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.  | 
2215  |  |  *   Otherwise, s->ext.ticket_expected is set to 0.  | 
2216  |  |  *  | 
2217  |  |  *   etick: points to the body of the session ticket extension.  | 
2218  |  |  *   eticklen: the length of the session tickets extension.  | 
2219  |  |  *   sess_id: points at the session ID.  | 
2220  |  |  *   sesslen: the length of the session ID.  | 
2221  |  |  *   psess: (output) on return, if a ticket was decrypted, then this is set to  | 
2222  |  |  *       point to the resulting session.  | 
2223  |  |  */  | 
2224  |  | SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,  | 
2225  |  |                                      const unsigned char *etick,  | 
2226  |  |                                      size_t eticklen,  | 
2227  |  |                                      const unsigned char *sess_id,  | 
2228  |  |                                      size_t sesslen, SSL_SESSION **psess)  | 
2229  | 2.28k  | { | 
2230  | 2.28k  |     SSL_SESSION *sess = NULL;  | 
2231  | 2.28k  |     unsigned char *sdec;  | 
2232  | 2.28k  |     const unsigned char *p;  | 
2233  | 2.28k  |     int slen, ivlen, renew_ticket = 0, declen;  | 
2234  | 2.28k  |     SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
2235  | 2.28k  |     size_t mlen;  | 
2236  | 2.28k  |     unsigned char tick_hmac[EVP_MAX_MD_SIZE];  | 
2237  | 2.28k  |     SSL_HMAC *hctx = NULL;  | 
2238  | 2.28k  |     EVP_CIPHER_CTX *ctx = NULL;  | 
2239  | 2.28k  |     SSL_CTX *tctx = s->session_ctx;  | 
2240  | 2.28k  |     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);  | 
2241  |  |  | 
2242  | 2.28k  |     if (eticklen == 0) { | 
2243  |  |         /*  | 
2244  |  |          * The client will accept a ticket but doesn't currently have  | 
2245  |  |          * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3  | 
2246  |  |          */  | 
2247  | 682  |         ret = SSL_TICKET_EMPTY;  | 
2248  | 682  |         goto end;  | 
2249  | 682  |     }  | 
2250  | 1.59k  |     if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) { | 
2251  |  |         /*  | 
2252  |  |          * Indicate that the ticket couldn't be decrypted rather than  | 
2253  |  |          * generating the session from ticket now, trigger  | 
2254  |  |          * abbreviated handshake based on external mechanism to  | 
2255  |  |          * calculate the master secret later.  | 
2256  |  |          */  | 
2257  | 0  |         ret = SSL_TICKET_NO_DECRYPT;  | 
2258  | 0  |         goto end;  | 
2259  | 0  |     }  | 
2260  |  |  | 
2261  |  |     /* Need at least keyname + iv */  | 
2262  | 1.59k  |     if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) { | 
2263  | 487  |         ret = SSL_TICKET_NO_DECRYPT;  | 
2264  | 487  |         goto end;  | 
2265  | 487  |     }  | 
2266  |  |  | 
2267  |  |     /* Initialize session ticket encryption and HMAC contexts */  | 
2268  | 1.11k  |     hctx = ssl_hmac_new(tctx);  | 
2269  | 1.11k  |     if (hctx == NULL) { | 
2270  | 0  |         ret = SSL_TICKET_FATAL_ERR_MALLOC;  | 
2271  | 0  |         goto end;  | 
2272  | 0  |     }  | 
2273  | 1.11k  |     ctx = EVP_CIPHER_CTX_new();  | 
2274  | 1.11k  |     if (ctx == NULL) { | 
2275  | 0  |         ret = SSL_TICKET_FATAL_ERR_MALLOC;  | 
2276  | 0  |         goto end;  | 
2277  | 0  |     }  | 
2278  | 1.11k  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
2279  | 1.11k  |     if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)  | 
2280  |  | #else  | 
2281  |  |     if (tctx->ext.ticket_key_evp_cb != NULL)  | 
2282  |  | #endif  | 
2283  | 0  |     { | 
2284  | 0  |         unsigned char *nctick = (unsigned char *)etick;  | 
2285  | 0  |         int rv = 0;  | 
2286  |  | 
  | 
2287  | 0  |         if (tctx->ext.ticket_key_evp_cb != NULL)  | 
2288  | 0  |             rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),  | 
2289  | 0  |                                              nctick,  | 
2290  | 0  |                                              nctick + TLSEXT_KEYNAME_LENGTH,  | 
2291  | 0  |                                              ctx,  | 
2292  | 0  |                                              ssl_hmac_get0_EVP_MAC_CTX(hctx),  | 
2293  | 0  |                                              0);  | 
2294  | 0  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
2295  | 0  |         else if (tctx->ext.ticket_key_cb != NULL)  | 
2296  |  |             /* if 0 is returned, write an empty ticket */  | 
2297  | 0  |             rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,  | 
2298  | 0  |                                          nctick + TLSEXT_KEYNAME_LENGTH,  | 
2299  | 0  |                                          ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);  | 
2300  | 0  | #endif  | 
2301  | 0  |         if (rv < 0) { | 
2302  | 0  |             ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
2303  | 0  |             goto end;  | 
2304  | 0  |         }  | 
2305  | 0  |         if (rv == 0) { | 
2306  | 0  |             ret = SSL_TICKET_NO_DECRYPT;  | 
2307  | 0  |             goto end;  | 
2308  | 0  |         }  | 
2309  | 0  |         if (rv == 2)  | 
2310  | 0  |             renew_ticket = 1;  | 
2311  | 1.11k  |     } else { | 
2312  | 1.11k  |         EVP_CIPHER *aes256cbc = NULL;  | 
2313  |  |  | 
2314  |  |         /* Check key name matches */  | 
2315  | 1.11k  |         if (memcmp(etick, tctx->ext.tick_key_name,  | 
2316  | 1.11k  |                    TLSEXT_KEYNAME_LENGTH) != 0) { | 
2317  | 225  |             ret = SSL_TICKET_NO_DECRYPT;  | 
2318  | 225  |             goto end;  | 
2319  | 225  |         }  | 
2320  |  |  | 
2321  | 887  |         aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",  | 
2322  | 887  |                                      sctx->propq);  | 
2323  | 887  |         if (aes256cbc == NULL  | 
2324  | 887  |             || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,  | 
2325  | 887  |                              sizeof(tctx->ext.secure->tick_hmac_key),  | 
2326  | 887  |                              "SHA256") <= 0  | 
2327  | 887  |             || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,  | 
2328  | 887  |                                   tctx->ext.secure->tick_aes_key,  | 
2329  | 887  |                                   etick + TLSEXT_KEYNAME_LENGTH) <= 0) { | 
2330  | 0  |             EVP_CIPHER_free(aes256cbc);  | 
2331  | 0  |             ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
2332  | 0  |             goto end;  | 
2333  | 0  |         }  | 
2334  | 887  |         EVP_CIPHER_free(aes256cbc);  | 
2335  | 887  |         if (SSL_CONNECTION_IS_TLS13(s))  | 
2336  | 432  |             renew_ticket = 1;  | 
2337  | 887  |     }  | 
2338  |  |     /*  | 
2339  |  |      * Attempt to process session ticket, first conduct sanity and integrity  | 
2340  |  |      * checks on ticket.  | 
2341  |  |      */  | 
2342  | 887  |     mlen = ssl_hmac_size(hctx);  | 
2343  | 887  |     if (mlen == 0) { | 
2344  | 0  |         ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
2345  | 0  |         goto end;  | 
2346  | 0  |     }  | 
2347  |  |  | 
2348  | 887  |     ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);  | 
2349  | 887  |     if (ivlen < 0) { | 
2350  | 0  |         ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
2351  | 0  |         goto end;  | 
2352  | 0  |     }  | 
2353  |  |  | 
2354  |  |     /* Sanity check ticket length: must exceed keyname + IV + HMAC */  | 
2355  | 887  |     if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) { | 
2356  | 74  |         ret = SSL_TICKET_NO_DECRYPT;  | 
2357  | 74  |         goto end;  | 
2358  | 74  |     }  | 
2359  | 813  |     eticklen -= mlen;  | 
2360  |  |     /* Check HMAC of encrypted ticket */  | 
2361  | 813  |     if (ssl_hmac_update(hctx, etick, eticklen) <= 0  | 
2362  | 813  |         || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) { | 
2363  | 0  |         ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
2364  | 0  |         goto end;  | 
2365  | 0  |     }  | 
2366  |  |  | 
2367  | 813  |     if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { | 
2368  | 99  |         ret = SSL_TICKET_NO_DECRYPT;  | 
2369  | 99  |         goto end;  | 
2370  | 99  |     }  | 
2371  |  |     /* Attempt to decrypt session data */  | 
2372  |  |     /* Move p after IV to start of encrypted ticket, update length */  | 
2373  | 714  |     p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;  | 
2374  | 714  |     eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;  | 
2375  | 714  |     sdec = OPENSSL_malloc(eticklen);  | 
2376  | 714  |     if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,  | 
2377  | 714  |                                           (int)eticklen) <= 0) { | 
2378  | 0  |         OPENSSL_free(sdec);  | 
2379  | 0  |         ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
2380  | 0  |         goto end;  | 
2381  | 0  |     }  | 
2382  | 714  |     if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) { | 
2383  | 54  |         OPENSSL_free(sdec);  | 
2384  | 54  |         ret = SSL_TICKET_NO_DECRYPT;  | 
2385  | 54  |         goto end;  | 
2386  | 54  |     }  | 
2387  | 660  |     slen += declen;  | 
2388  | 660  |     p = sdec;  | 
2389  |  |  | 
2390  | 660  |     sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);  | 
2391  | 660  |     slen -= p - sdec;  | 
2392  | 660  |     OPENSSL_free(sdec);  | 
2393  | 660  |     if (sess) { | 
2394  |  |         /* Some additional consistency checks */  | 
2395  | 526  |         if (slen != 0) { | 
2396  | 8  |             SSL_SESSION_free(sess);  | 
2397  | 8  |             sess = NULL;  | 
2398  | 8  |             ret = SSL_TICKET_NO_DECRYPT;  | 
2399  | 8  |             goto end;  | 
2400  | 8  |         }  | 
2401  |  |         /*  | 
2402  |  |          * The session ID, if non-empty, is used by some clients to detect  | 
2403  |  |          * that the ticket has been accepted. So we copy it to the session  | 
2404  |  |          * structure. If it is empty set length to zero as required by  | 
2405  |  |          * standard.  | 
2406  |  |          */  | 
2407  | 518  |         if (sesslen) { | 
2408  | 206  |             memcpy(sess->session_id, sess_id, sesslen);  | 
2409  | 206  |             sess->session_id_length = sesslen;  | 
2410  | 206  |         }  | 
2411  | 518  |         if (renew_ticket)  | 
2412  | 299  |             ret = SSL_TICKET_SUCCESS_RENEW;  | 
2413  | 219  |         else  | 
2414  | 219  |             ret = SSL_TICKET_SUCCESS;  | 
2415  | 518  |         goto end;  | 
2416  | 526  |     }  | 
2417  | 134  |     ERR_clear_error();  | 
2418  |  |     /*  | 
2419  |  |      * For session parse failure, indicate that we need to send a new ticket.  | 
2420  |  |      */  | 
2421  | 134  |     ret = SSL_TICKET_NO_DECRYPT;  | 
2422  |  |  | 
2423  | 2.28k  |  end:  | 
2424  | 2.28k  |     EVP_CIPHER_CTX_free(ctx);  | 
2425  | 2.28k  |     ssl_hmac_free(hctx);  | 
2426  |  |  | 
2427  |  |     /*  | 
2428  |  |      * If set, the decrypt_ticket_cb() is called unless a fatal error was  | 
2429  |  |      * detected above. The callback is responsible for checking |ret| before it  | 
2430  |  |      * performs any action  | 
2431  |  |      */  | 
2432  | 2.28k  |     if (s->session_ctx->decrypt_ticket_cb != NULL  | 
2433  | 2.28k  |             && (ret == SSL_TICKET_EMPTY  | 
2434  | 0  |                 || ret == SSL_TICKET_NO_DECRYPT  | 
2435  | 0  |                 || ret == SSL_TICKET_SUCCESS  | 
2436  | 0  |                 || ret == SSL_TICKET_SUCCESS_RENEW)) { | 
2437  | 0  |         size_t keyname_len = eticklen;  | 
2438  | 0  |         int retcb;  | 
2439  |  | 
  | 
2440  | 0  |         if (keyname_len > TLSEXT_KEYNAME_LENGTH)  | 
2441  | 0  |             keyname_len = TLSEXT_KEYNAME_LENGTH;  | 
2442  | 0  |         retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),  | 
2443  | 0  |                                                   sess, etick, keyname_len,  | 
2444  | 0  |                                                   ret,  | 
2445  | 0  |                                                   s->session_ctx->ticket_cb_data);  | 
2446  | 0  |         switch (retcb) { | 
2447  | 0  |         case SSL_TICKET_RETURN_ABORT:  | 
2448  | 0  |             ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
2449  | 0  |             break;  | 
2450  |  |  | 
2451  | 0  |         case SSL_TICKET_RETURN_IGNORE:  | 
2452  | 0  |             ret = SSL_TICKET_NONE;  | 
2453  | 0  |             SSL_SESSION_free(sess);  | 
2454  | 0  |             sess = NULL;  | 
2455  | 0  |             break;  | 
2456  |  |  | 
2457  | 0  |         case SSL_TICKET_RETURN_IGNORE_RENEW:  | 
2458  | 0  |             if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)  | 
2459  | 0  |                 ret = SSL_TICKET_NO_DECRYPT;  | 
2460  |  |             /* else the value of |ret| will already do the right thing */  | 
2461  | 0  |             SSL_SESSION_free(sess);  | 
2462  | 0  |             sess = NULL;  | 
2463  | 0  |             break;  | 
2464  |  |  | 
2465  | 0  |         case SSL_TICKET_RETURN_USE:  | 
2466  | 0  |         case SSL_TICKET_RETURN_USE_RENEW:  | 
2467  | 0  |             if (ret != SSL_TICKET_SUCCESS  | 
2468  | 0  |                     && ret != SSL_TICKET_SUCCESS_RENEW)  | 
2469  | 0  |                 ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
2470  | 0  |             else if (retcb == SSL_TICKET_RETURN_USE)  | 
2471  | 0  |                 ret = SSL_TICKET_SUCCESS;  | 
2472  | 0  |             else  | 
2473  | 0  |                 ret = SSL_TICKET_SUCCESS_RENEW;  | 
2474  | 0  |             break;  | 
2475  |  |  | 
2476  | 0  |         default:  | 
2477  | 0  |             ret = SSL_TICKET_FATAL_ERR_OTHER;  | 
2478  | 0  |         }  | 
2479  | 0  |     }  | 
2480  |  |  | 
2481  | 2.28k  |     if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) { | 
2482  | 2.28k  |         switch (ret) { | 
2483  | 1.08k  |         case SSL_TICKET_NO_DECRYPT:  | 
2484  | 1.38k  |         case SSL_TICKET_SUCCESS_RENEW:  | 
2485  | 2.06k  |         case SSL_TICKET_EMPTY:  | 
2486  | 2.06k  |             s->ext.ticket_expected = 1;  | 
2487  | 2.28k  |         }  | 
2488  | 2.28k  |     }  | 
2489  |  |  | 
2490  | 2.28k  |     *psess = sess;  | 
2491  |  |  | 
2492  | 2.28k  |     return ret;  | 
2493  | 2.28k  | }  | 
2494  |  |  | 
2495  |  | /* Check to see if a signature algorithm is allowed */  | 
2496  |  | static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,  | 
2497  |  |                                 const SIGALG_LOOKUP *lu)  | 
2498  | 2.20M  | { | 
2499  | 2.20M  |     unsigned char sigalgstr[2];  | 
2500  | 2.20M  |     int secbits;  | 
2501  |  |  | 
2502  | 2.20M  |     if (lu == NULL || !lu->enabled)  | 
2503  | 0  |         return 0;  | 
2504  |  |     /* DSA is not allowed in TLS 1.3 */  | 
2505  | 2.20M  |     if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)  | 
2506  | 2.71k  |         return 0;  | 
2507  |  |     /*  | 
2508  |  |      * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3  | 
2509  |  |      * spec  | 
2510  |  |      */  | 
2511  | 2.20M  |     if (!s->server && !SSL_CONNECTION_IS_DTLS(s)  | 
2512  | 2.20M  |         && s->s3.tmp.min_ver >= TLS1_3_VERSION  | 
2513  | 2.20M  |         && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX  | 
2514  | 823k  |             || lu->hash_idx == SSL_MD_MD5_IDX  | 
2515  | 823k  |             || lu->hash_idx == SSL_MD_SHA224_IDX))  | 
2516  | 322k  |         return 0;  | 
2517  |  |  | 
2518  |  |     /* See if public key algorithm allowed */  | 
2519  | 1.88M  |     if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))  | 
2520  | 0  |         return 0;  | 
2521  |  |  | 
2522  | 1.88M  |     if (lu->sig == NID_id_GostR3410_2012_256  | 
2523  | 1.88M  |             || lu->sig == NID_id_GostR3410_2012_512  | 
2524  | 1.88M  |             || lu->sig == NID_id_GostR3410_2001) { | 
2525  |  |         /* We never allow GOST sig algs on the server with TLSv1.3 */  | 
2526  | 0  |         if (s->server && SSL_CONNECTION_IS_TLS13(s))  | 
2527  | 0  |             return 0;  | 
2528  | 0  |         if (!s->server  | 
2529  | 0  |                 && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION  | 
2530  | 0  |                 && s->s3.tmp.max_ver >= TLS1_3_VERSION) { | 
2531  | 0  |             int i, num;  | 
2532  | 0  |             STACK_OF(SSL_CIPHER) *sk;  | 
2533  |  |  | 
2534  |  |             /*  | 
2535  |  |              * We're a client that could negotiate TLSv1.3. We only allow GOST  | 
2536  |  |              * sig algs if we could negotiate TLSv1.2 or below and we have GOST  | 
2537  |  |              * ciphersuites enabled.  | 
2538  |  |              */  | 
2539  |  | 
  | 
2540  | 0  |             if (s->s3.tmp.min_ver >= TLS1_3_VERSION)  | 
2541  | 0  |                 return 0;  | 
2542  |  |  | 
2543  | 0  |             sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));  | 
2544  | 0  |             num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;  | 
2545  | 0  |             for (i = 0; i < num; i++) { | 
2546  | 0  |                 const SSL_CIPHER *c;  | 
2547  |  | 
  | 
2548  | 0  |                 c = sk_SSL_CIPHER_value(sk, i);  | 
2549  |  |                 /* Skip disabled ciphers */  | 
2550  | 0  |                 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))  | 
2551  | 0  |                     continue;  | 
2552  |  |  | 
2553  | 0  |                 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)  | 
2554  | 0  |                     break;  | 
2555  | 0  |             }  | 
2556  | 0  |             if (i == num)  | 
2557  | 0  |                 return 0;  | 
2558  | 0  |         }  | 
2559  | 0  |     }  | 
2560  |  |  | 
2561  |  |     /* Finally see if security callback allows it */  | 
2562  | 1.88M  |     secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);  | 
2563  | 1.88M  |     sigalgstr[0] = (lu->sigalg >> 8) & 0xff;  | 
2564  | 1.88M  |     sigalgstr[1] = lu->sigalg & 0xff;  | 
2565  | 1.88M  |     return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);  | 
2566  | 1.88M  | }  | 
2567  |  |  | 
2568  |  | /*  | 
2569  |  |  * Get a mask of disabled public key algorithms based on supported signature  | 
2570  |  |  * algorithms. For example if no signature algorithm supports RSA then RSA is  | 
2571  |  |  * disabled.  | 
2572  |  |  */  | 
2573  |  |  | 
2574  |  | void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)  | 
2575  | 166k  | { | 
2576  | 166k  |     const uint16_t *sigalgs;  | 
2577  | 166k  |     size_t i, sigalgslen;  | 
2578  | 166k  |     uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;  | 
2579  |  |     /*  | 
2580  |  |      * Go through all signature algorithms seeing if we support any  | 
2581  |  |      * in disabled_mask.  | 
2582  |  |      */  | 
2583  | 166k  |     sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);  | 
2584  | 5.02M  |     for (i = 0; i < sigalgslen; i++, sigalgs++) { | 
2585  | 4.85M  |         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);  | 
2586  | 4.85M  |         const SSL_CERT_LOOKUP *clu;  | 
2587  |  |  | 
2588  | 4.85M  |         if (lu == NULL)  | 
2589  | 499k  |             continue;  | 
2590  |  |  | 
2591  | 4.36M  |         clu = ssl_cert_lookup_by_idx(lu->sig_idx,  | 
2592  | 4.36M  |                                      SSL_CONNECTION_GET_CTX(s));  | 
2593  | 4.36M  |         if (clu == NULL)  | 
2594  | 0  |                 continue;  | 
2595  |  |  | 
2596  |  |         /* If algorithm is disabled see if we can enable it */  | 
2597  | 4.36M  |         if ((clu->amask & disabled_mask) != 0  | 
2598  | 4.36M  |                 && tls12_sigalg_allowed(s, op, lu))  | 
2599  | 454k  |             disabled_mask &= ~clu->amask;  | 
2600  | 4.36M  |     }  | 
2601  | 166k  |     *pmask_a |= disabled_mask;  | 
2602  | 166k  | }  | 
2603  |  |  | 
2604  |  | int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,  | 
2605  |  |                        const uint16_t *psig, size_t psiglen)  | 
2606  | 55.0k  | { | 
2607  | 55.0k  |     size_t i;  | 
2608  | 55.0k  |     int rv = 0;  | 
2609  |  |  | 
2610  | 1.66M  |     for (i = 0; i < psiglen; i++, psig++) { | 
2611  | 1.60M  |         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);  | 
2612  |  |  | 
2613  | 1.60M  |         if (lu == NULL  | 
2614  | 1.60M  |                 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))  | 
2615  | 376k  |             continue;  | 
2616  | 1.23M  |         if (!WPACKET_put_bytes_u16(pkt, *psig))  | 
2617  | 0  |             return 0;  | 
2618  |  |         /*  | 
2619  |  |          * If TLS 1.3 must have at least one valid TLS 1.3 message  | 
2620  |  |          * signing algorithm: i.e. neither RSA nor SHA1/SHA224  | 
2621  |  |          */  | 
2622  | 1.23M  |         if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)  | 
2623  | 55.0k  |             || (lu->sig != EVP_PKEY_RSA  | 
2624  | 0  |                 && lu->hash != NID_sha1  | 
2625  | 0  |                 && lu->hash != NID_sha224)))  | 
2626  | 55.0k  |             rv = 1;  | 
2627  | 1.23M  |     }  | 
2628  | 55.0k  |     if (rv == 0)  | 
2629  | 55.0k  |         ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);  | 
2630  | 55.0k  |     return rv;  | 
2631  | 55.0k  | }  | 
2632  |  |  | 
2633  |  | /* Given preference and allowed sigalgs set shared sigalgs */  | 
2634  |  | static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,  | 
2635  |  |                                    const SIGALG_LOOKUP **shsig,  | 
2636  |  |                                    const uint16_t *pref, size_t preflen,  | 
2637  |  |                                    const uint16_t *allow, size_t allowlen)  | 
2638  | 10.3k  | { | 
2639  | 10.3k  |     const uint16_t *ptmp, *atmp;  | 
2640  | 10.3k  |     size_t i, j, nmatch = 0;  | 
2641  | 298k  |     for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) { | 
2642  | 288k  |         const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);  | 
2643  |  |  | 
2644  |  |         /* Skip disabled hashes or signature algorithms */  | 
2645  | 288k  |         if (lu == NULL  | 
2646  | 288k  |                 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))  | 
2647  | 152k  |             continue;  | 
2648  | 1.91M  |         for (j = 0, atmp = allow; j < allowlen; j++, atmp++) { | 
2649  | 1.91M  |             if (*ptmp == *atmp) { | 
2650  | 135k  |                 nmatch++;  | 
2651  | 135k  |                 if (shsig)  | 
2652  | 67.8k  |                     *shsig++ = lu;  | 
2653  | 135k  |                 break;  | 
2654  | 135k  |             }  | 
2655  | 1.91M  |         }  | 
2656  | 135k  |     }  | 
2657  | 10.3k  |     return nmatch;  | 
2658  | 10.3k  | }  | 
2659  |  |  | 
2660  |  | /* Set shared signature algorithms for SSL structures */  | 
2661  |  | static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)  | 
2662  | 5.21k  | { | 
2663  | 5.21k  |     const uint16_t *pref, *allow, *conf;  | 
2664  | 5.21k  |     size_t preflen, allowlen, conflen;  | 
2665  | 5.21k  |     size_t nmatch;  | 
2666  | 5.21k  |     const SIGALG_LOOKUP **salgs = NULL;  | 
2667  | 5.21k  |     CERT *c = s->cert;  | 
2668  | 5.21k  |     unsigned int is_suiteb = tls1_suiteb(s);  | 
2669  |  |  | 
2670  | 5.21k  |     OPENSSL_free(s->shared_sigalgs);  | 
2671  | 5.21k  |     s->shared_sigalgs = NULL;  | 
2672  | 5.21k  |     s->shared_sigalgslen = 0;  | 
2673  |  |     /* If client use client signature algorithms if not NULL */  | 
2674  | 5.21k  |     if (!s->server && c->client_sigalgs && !is_suiteb) { | 
2675  | 0  |         conf = c->client_sigalgs;  | 
2676  | 0  |         conflen = c->client_sigalgslen;  | 
2677  | 5.21k  |     } else if (c->conf_sigalgs && !is_suiteb) { | 
2678  | 0  |         conf = c->conf_sigalgs;  | 
2679  | 0  |         conflen = c->conf_sigalgslen;  | 
2680  | 0  |     } else  | 
2681  | 5.21k  |         conflen = tls12_get_psigalgs(s, 0, &conf);  | 
2682  | 5.21k  |     if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { | 
2683  | 0  |         pref = conf;  | 
2684  | 0  |         preflen = conflen;  | 
2685  | 0  |         allow = s->s3.tmp.peer_sigalgs;  | 
2686  | 0  |         allowlen = s->s3.tmp.peer_sigalgslen;  | 
2687  | 5.21k  |     } else { | 
2688  | 5.21k  |         allow = conf;  | 
2689  | 5.21k  |         allowlen = conflen;  | 
2690  | 5.21k  |         pref = s->s3.tmp.peer_sigalgs;  | 
2691  | 5.21k  |         preflen = s->s3.tmp.peer_sigalgslen;  | 
2692  | 5.21k  |     }  | 
2693  | 5.21k  |     nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);  | 
2694  | 5.21k  |     if (nmatch) { | 
2695  | 5.10k  |         if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)  | 
2696  | 0  |             return 0;  | 
2697  | 5.10k  |         nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);  | 
2698  | 5.10k  |     } else { | 
2699  | 114  |         salgs = NULL;  | 
2700  | 114  |     }  | 
2701  | 5.21k  |     s->shared_sigalgs = salgs;  | 
2702  | 5.21k  |     s->shared_sigalgslen = nmatch;  | 
2703  | 5.21k  |     return 1;  | 
2704  | 5.21k  | }  | 
2705  |  |  | 
2706  |  | int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)  | 
2707  | 15.2k  | { | 
2708  | 15.2k  |     unsigned int stmp;  | 
2709  | 15.2k  |     size_t size, i;  | 
2710  | 15.2k  |     uint16_t *buf;  | 
2711  |  |  | 
2712  | 15.2k  |     size = PACKET_remaining(pkt);  | 
2713  |  |  | 
2714  |  |     /* Invalid data length */  | 
2715  | 15.2k  |     if (size == 0 || (size & 1) != 0)  | 
2716  | 28  |         return 0;  | 
2717  |  |  | 
2718  | 15.2k  |     size >>= 1;  | 
2719  |  |  | 
2720  | 15.2k  |     if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)  | 
2721  | 0  |         return 0;  | 
2722  | 191k  |     for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)  | 
2723  | 175k  |         buf[i] = stmp;  | 
2724  |  |  | 
2725  | 15.2k  |     if (i != size) { | 
2726  | 0  |         OPENSSL_free(buf);  | 
2727  | 0  |         return 0;  | 
2728  | 0  |     }  | 
2729  |  |  | 
2730  | 15.2k  |     OPENSSL_free(*pdest);  | 
2731  | 15.2k  |     *pdest = buf;  | 
2732  | 15.2k  |     *pdestlen = size;  | 
2733  |  |  | 
2734  | 15.2k  |     return 1;  | 
2735  | 15.2k  | }  | 
2736  |  |  | 
2737  |  | int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)  | 
2738  | 6.54k  | { | 
2739  |  |     /* Extension ignored for inappropriate versions */  | 
2740  | 6.54k  |     if (!SSL_USE_SIGALGS(s))  | 
2741  | 131  |         return 1;  | 
2742  |  |     /* Should never happen */  | 
2743  | 6.41k  |     if (s->cert == NULL)  | 
2744  | 0  |         return 0;  | 
2745  |  |  | 
2746  | 6.41k  |     if (cert)  | 
2747  | 763  |         return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,  | 
2748  | 763  |                              &s->s3.tmp.peer_cert_sigalgslen);  | 
2749  | 5.65k  |     else  | 
2750  | 5.65k  |         return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,  | 
2751  | 5.65k  |                              &s->s3.tmp.peer_sigalgslen);  | 
2752  |  |  | 
2753  | 6.41k  | }  | 
2754  |  |  | 
2755  |  | /* Set preferred digest for each key type */  | 
2756  |  |  | 
2757  |  | int tls1_process_sigalgs(SSL_CONNECTION *s)  | 
2758  | 5.21k  | { | 
2759  | 5.21k  |     size_t i;  | 
2760  | 5.21k  |     uint32_t *pvalid = s->s3.tmp.valid_flags;  | 
2761  |  |  | 
2762  | 5.21k  |     if (!tls1_set_shared_sigalgs(s))  | 
2763  | 0  |         return 0;  | 
2764  |  |  | 
2765  | 57.8k  |     for (i = 0; i < s->ssl_pkey_num; i++)  | 
2766  | 52.6k  |         pvalid[i] = 0;  | 
2767  |  |  | 
2768  | 73.0k  |     for (i = 0; i < s->shared_sigalgslen; i++) { | 
2769  | 67.8k  |         const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];  | 
2770  | 67.8k  |         int idx = sigptr->sig_idx;  | 
2771  |  |  | 
2772  |  |         /* Ignore PKCS1 based sig algs in TLSv1.3 */  | 
2773  | 67.8k  |         if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)  | 
2774  | 1.12k  |             continue;  | 
2775  |  |         /* If not disabled indicate we can explicitly sign */  | 
2776  | 66.7k  |         if (pvalid[idx] == 0  | 
2777  | 66.7k  |             && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))  | 
2778  | 8.86k  |             pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;  | 
2779  | 66.7k  |     }  | 
2780  | 5.21k  |     return 1;  | 
2781  | 5.21k  | }  | 
2782  |  |  | 
2783  |  | int SSL_get_sigalgs(SSL *s, int idx,  | 
2784  |  |                     int *psign, int *phash, int *psignhash,  | 
2785  |  |                     unsigned char *rsig, unsigned char *rhash)  | 
2786  | 0  | { | 
2787  | 0  |     uint16_t *psig;  | 
2788  | 0  |     size_t numsigalgs;  | 
2789  | 0  |     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);  | 
2790  |  | 
  | 
2791  | 0  |     if (sc == NULL)  | 
2792  | 0  |         return 0;  | 
2793  |  |  | 
2794  | 0  |     psig = sc->s3.tmp.peer_sigalgs;  | 
2795  | 0  |     numsigalgs = sc->s3.tmp.peer_sigalgslen;  | 
2796  |  | 
  | 
2797  | 0  |     if (psig == NULL || numsigalgs > INT_MAX)  | 
2798  | 0  |         return 0;  | 
2799  | 0  |     if (idx >= 0) { | 
2800  | 0  |         const SIGALG_LOOKUP *lu;  | 
2801  |  | 
  | 
2802  | 0  |         if (idx >= (int)numsigalgs)  | 
2803  | 0  |             return 0;  | 
2804  | 0  |         psig += idx;  | 
2805  | 0  |         if (rhash != NULL)  | 
2806  | 0  |             *rhash = (unsigned char)((*psig >> 8) & 0xff);  | 
2807  | 0  |         if (rsig != NULL)  | 
2808  | 0  |             *rsig = (unsigned char)(*psig & 0xff);  | 
2809  | 0  |         lu = tls1_lookup_sigalg(sc, *psig);  | 
2810  | 0  |         if (psign != NULL)  | 
2811  | 0  |             *psign = lu != NULL ? lu->sig : NID_undef;  | 
2812  | 0  |         if (phash != NULL)  | 
2813  | 0  |             *phash = lu != NULL ? lu->hash : NID_undef;  | 
2814  | 0  |         if (psignhash != NULL)  | 
2815  | 0  |             *psignhash = lu != NULL ? lu->sigandhash : NID_undef;  | 
2816  | 0  |     }  | 
2817  | 0  |     return (int)numsigalgs;  | 
2818  | 0  | }  | 
2819  |  |  | 
2820  |  | int SSL_get_shared_sigalgs(SSL *s, int idx,  | 
2821  |  |                            int *psign, int *phash, int *psignhash,  | 
2822  |  |                            unsigned char *rsig, unsigned char *rhash)  | 
2823  | 0  | { | 
2824  | 0  |     const SIGALG_LOOKUP *shsigalgs;  | 
2825  | 0  |     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);  | 
2826  |  | 
  | 
2827  | 0  |     if (sc == NULL)  | 
2828  | 0  |         return 0;  | 
2829  |  |  | 
2830  | 0  |     if (sc->shared_sigalgs == NULL  | 
2831  | 0  |         || idx < 0  | 
2832  | 0  |         || idx >= (int)sc->shared_sigalgslen  | 
2833  | 0  |         || sc->shared_sigalgslen > INT_MAX)  | 
2834  | 0  |         return 0;  | 
2835  | 0  |     shsigalgs = sc->shared_sigalgs[idx];  | 
2836  | 0  |     if (phash != NULL)  | 
2837  | 0  |         *phash = shsigalgs->hash;  | 
2838  | 0  |     if (psign != NULL)  | 
2839  | 0  |         *psign = shsigalgs->sig;  | 
2840  | 0  |     if (psignhash != NULL)  | 
2841  | 0  |         *psignhash = shsigalgs->sigandhash;  | 
2842  | 0  |     if (rsig != NULL)  | 
2843  | 0  |         *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);  | 
2844  | 0  |     if (rhash != NULL)  | 
2845  | 0  |         *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);  | 
2846  | 0  |     return (int)sc->shared_sigalgslen;  | 
2847  | 0  | }  | 
2848  |  |  | 
2849  |  | /* Maximum possible number of unique entries in sigalgs array */  | 
2850  | 0  | #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)  | 
2851  |  |  | 
2852  |  | typedef struct { | 
2853  |  |     size_t sigalgcnt;  | 
2854  |  |     /* TLSEXT_SIGALG_XXX values */  | 
2855  |  |     uint16_t sigalgs[TLS_MAX_SIGALGCNT];  | 
2856  |  |     SSL_CTX *ctx;  | 
2857  |  | } sig_cb_st;  | 
2858  |  |  | 
2859  |  | static void get_sigorhash(int *psig, int *phash, const char *str)  | 
2860  | 0  | { | 
2861  | 0  |     if (strcmp(str, "RSA") == 0) { | 
2862  | 0  |         *psig = EVP_PKEY_RSA;  | 
2863  | 0  |     } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) { | 
2864  | 0  |         *psig = EVP_PKEY_RSA_PSS;  | 
2865  | 0  |     } else if (strcmp(str, "DSA") == 0) { | 
2866  | 0  |         *psig = EVP_PKEY_DSA;  | 
2867  | 0  |     } else if (strcmp(str, "ECDSA") == 0) { | 
2868  | 0  |         *psig = EVP_PKEY_EC;  | 
2869  | 0  |     } else { | 
2870  | 0  |         *phash = OBJ_sn2nid(str);  | 
2871  | 0  |         if (*phash == NID_undef)  | 
2872  | 0  |             *phash = OBJ_ln2nid(str);  | 
2873  | 0  |     }  | 
2874  | 0  | }  | 
2875  |  | /* Maximum length of a signature algorithm string component */  | 
2876  |  | #define TLS_MAX_SIGSTRING_LEN   40  | 
2877  |  |  | 
2878  |  | static int sig_cb(const char *elem, int len, void *arg)  | 
2879  | 0  | { | 
2880  | 0  |     sig_cb_st *sarg = arg;  | 
2881  | 0  |     size_t i = 0;  | 
2882  | 0  |     const SIGALG_LOOKUP *s;  | 
2883  | 0  |     char etmp[TLS_MAX_SIGSTRING_LEN], *p;  | 
2884  | 0  |     int sig_alg = NID_undef, hash_alg = NID_undef;  | 
2885  | 0  |     if (elem == NULL)  | 
2886  | 0  |         return 0;  | 
2887  | 0  |     if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)  | 
2888  | 0  |         return 0;  | 
2889  | 0  |     if (len > (int)(sizeof(etmp) - 1))  | 
2890  | 0  |         return 0;  | 
2891  | 0  |     memcpy(etmp, elem, len);  | 
2892  | 0  |     etmp[len] = 0;  | 
2893  | 0  |     p = strchr(etmp, '+');  | 
2894  |  |     /*  | 
2895  |  |      * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;  | 
2896  |  |      * if there's no '+' in the provided name, look for the new-style combined  | 
2897  |  |      * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.  | 
2898  |  |      * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and  | 
2899  |  |      * rsa_pss_rsae_* that differ only by public key OID; in such cases  | 
2900  |  |      * we will pick the _rsae_ variant, by virtue of them appearing earlier  | 
2901  |  |      * in the table.  | 
2902  |  |      */  | 
2903  | 0  |     if (p == NULL) { | 
2904  |  |         /* Load provider sigalgs */  | 
2905  | 0  |         if (sarg->ctx != NULL) { | 
2906  |  |             /* Check if a provider supports the sigalg */  | 
2907  | 0  |             for (i = 0; i < sarg->ctx->sigalg_list_len; i++) { | 
2908  | 0  |                 if (sarg->ctx->sigalg_list[i].sigalg_name != NULL  | 
2909  | 0  |                     && strcmp(etmp,  | 
2910  | 0  |                               sarg->ctx->sigalg_list[i].sigalg_name) == 0) { | 
2911  | 0  |                     sarg->sigalgs[sarg->sigalgcnt++] =  | 
2912  | 0  |                         sarg->ctx->sigalg_list[i].code_point;  | 
2913  | 0  |                     break;  | 
2914  | 0  |                 }  | 
2915  | 0  |             }  | 
2916  | 0  |         }  | 
2917  |  |         /* Check the built-in sigalgs */  | 
2918  | 0  |         if (sarg->ctx == NULL || i == sarg->ctx->sigalg_list_len) { | 
2919  | 0  |             for (i = 0, s = sigalg_lookup_tbl;  | 
2920  | 0  |                  i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) { | 
2921  | 0  |                 if (s->name != NULL && strcmp(etmp, s->name) == 0) { | 
2922  | 0  |                     sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;  | 
2923  | 0  |                     break;  | 
2924  | 0  |                 }  | 
2925  | 0  |             }  | 
2926  | 0  |             if (i == OSSL_NELEM(sigalg_lookup_tbl))  | 
2927  | 0  |                 return 0;  | 
2928  | 0  |         }  | 
2929  | 0  |     } else { | 
2930  | 0  |         *p = 0;  | 
2931  | 0  |         p++;  | 
2932  | 0  |         if (*p == 0)  | 
2933  | 0  |             return 0;  | 
2934  | 0  |         get_sigorhash(&sig_alg, &hash_alg, etmp);  | 
2935  | 0  |         get_sigorhash(&sig_alg, &hash_alg, p);  | 
2936  | 0  |         if (sig_alg == NID_undef || hash_alg == NID_undef)  | 
2937  | 0  |             return 0;  | 
2938  | 0  |         for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);  | 
2939  | 0  |              i++, s++) { | 
2940  | 0  |             if (s->hash == hash_alg && s->sig == sig_alg) { | 
2941  | 0  |                 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;  | 
2942  | 0  |                 break;  | 
2943  | 0  |             }  | 
2944  | 0  |         }  | 
2945  | 0  |         if (i == OSSL_NELEM(sigalg_lookup_tbl))  | 
2946  | 0  |             return 0;  | 
2947  | 0  |     }  | 
2948  |  |  | 
2949  |  |     /* Reject duplicates */  | 
2950  | 0  |     for (i = 0; i < sarg->sigalgcnt - 1; i++) { | 
2951  | 0  |         if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) { | 
2952  | 0  |             sarg->sigalgcnt--;  | 
2953  | 0  |             return 0;  | 
2954  | 0  |         }  | 
2955  | 0  |     }  | 
2956  | 0  |     return 1;  | 
2957  | 0  | }  | 
2958  |  |  | 
2959  |  | /*  | 
2960  |  |  * Set supported signature algorithms based on a colon separated list of the  | 
2961  |  |  * form sig+hash e.g. RSA+SHA512:DSA+SHA512  | 
2962  |  |  */  | 
2963  |  | int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)  | 
2964  | 0  | { | 
2965  | 0  |     sig_cb_st sig;  | 
2966  | 0  |     sig.sigalgcnt = 0;  | 
2967  |  | 
  | 
2968  | 0  |     if (ctx != NULL)  | 
2969  | 0  |         sig.ctx = ctx;  | 
2970  | 0  |     if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))  | 
2971  | 0  |         return 0;  | 
2972  | 0  |     if (c == NULL)  | 
2973  | 0  |         return 1;  | 
2974  | 0  |     return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);  | 
2975  | 0  | }  | 
2976  |  |  | 
2977  |  | int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,  | 
2978  |  |                      int client)  | 
2979  | 0  | { | 
2980  | 0  |     uint16_t *sigalgs;  | 
2981  |  | 
  | 
2982  | 0  |     if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)  | 
2983  | 0  |         return 0;  | 
2984  | 0  |     memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));  | 
2985  |  | 
  | 
2986  | 0  |     if (client) { | 
2987  | 0  |         OPENSSL_free(c->client_sigalgs);  | 
2988  | 0  |         c->client_sigalgs = sigalgs;  | 
2989  | 0  |         c->client_sigalgslen = salglen;  | 
2990  | 0  |     } else { | 
2991  | 0  |         OPENSSL_free(c->conf_sigalgs);  | 
2992  | 0  |         c->conf_sigalgs = sigalgs;  | 
2993  | 0  |         c->conf_sigalgslen = salglen;  | 
2994  | 0  |     }  | 
2995  |  | 
  | 
2996  | 0  |     return 1;  | 
2997  | 0  | }  | 
2998  |  |  | 
2999  |  | int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)  | 
3000  | 0  | { | 
3001  | 0  |     uint16_t *sigalgs, *sptr;  | 
3002  | 0  |     size_t i;  | 
3003  |  | 
  | 
3004  | 0  |     if (salglen & 1)  | 
3005  | 0  |         return 0;  | 
3006  | 0  |     if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)  | 
3007  | 0  |         return 0;  | 
3008  | 0  |     for (i = 0, sptr = sigalgs; i < salglen; i += 2) { | 
3009  | 0  |         size_t j;  | 
3010  | 0  |         const SIGALG_LOOKUP *curr;  | 
3011  | 0  |         int md_id = *psig_nids++;  | 
3012  | 0  |         int sig_id = *psig_nids++;  | 
3013  |  | 
  | 
3014  | 0  |         for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);  | 
3015  | 0  |              j++, curr++) { | 
3016  | 0  |             if (curr->hash == md_id && curr->sig == sig_id) { | 
3017  | 0  |                 *sptr++ = curr->sigalg;  | 
3018  | 0  |                 break;  | 
3019  | 0  |             }  | 
3020  | 0  |         }  | 
3021  |  | 
  | 
3022  | 0  |         if (j == OSSL_NELEM(sigalg_lookup_tbl))  | 
3023  | 0  |             goto err;  | 
3024  | 0  |     }  | 
3025  |  |  | 
3026  | 0  |     if (client) { | 
3027  | 0  |         OPENSSL_free(c->client_sigalgs);  | 
3028  | 0  |         c->client_sigalgs = sigalgs;  | 
3029  | 0  |         c->client_sigalgslen = salglen / 2;  | 
3030  | 0  |     } else { | 
3031  | 0  |         OPENSSL_free(c->conf_sigalgs);  | 
3032  | 0  |         c->conf_sigalgs = sigalgs;  | 
3033  | 0  |         c->conf_sigalgslen = salglen / 2;  | 
3034  | 0  |     }  | 
3035  |  | 
  | 
3036  | 0  |     return 1;  | 
3037  |  |  | 
3038  | 0  |  err:  | 
3039  | 0  |     OPENSSL_free(sigalgs);  | 
3040  | 0  |     return 0;  | 
3041  | 0  | }  | 
3042  |  |  | 
3043  |  | static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)  | 
3044  | 0  | { | 
3045  | 0  |     int sig_nid, use_pc_sigalgs = 0;  | 
3046  | 0  |     size_t i;  | 
3047  | 0  |     const SIGALG_LOOKUP *sigalg;  | 
3048  | 0  |     size_t sigalgslen;  | 
3049  |  | 
  | 
3050  | 0  |     if (default_nid == -1)  | 
3051  | 0  |         return 1;  | 
3052  | 0  |     sig_nid = X509_get_signature_nid(x);  | 
3053  | 0  |     if (default_nid)  | 
3054  | 0  |         return sig_nid == default_nid ? 1 : 0;  | 
3055  |  |  | 
3056  | 0  |     if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) { | 
3057  |  |         /*  | 
3058  |  |          * If we're in TLSv1.3 then we only get here if we're checking the  | 
3059  |  |          * chain. If the peer has specified peer_cert_sigalgs then we use them  | 
3060  |  |          * otherwise we default to normal sigalgs.  | 
3061  |  |          */  | 
3062  | 0  |         sigalgslen = s->s3.tmp.peer_cert_sigalgslen;  | 
3063  | 0  |         use_pc_sigalgs = 1;  | 
3064  | 0  |     } else { | 
3065  | 0  |         sigalgslen = s->shared_sigalgslen;  | 
3066  | 0  |     }  | 
3067  | 0  |     for (i = 0; i < sigalgslen; i++) { | 
3068  | 0  |         sigalg = use_pc_sigalgs  | 
3069  | 0  |                  ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])  | 
3070  | 0  |                  : s->shared_sigalgs[i];  | 
3071  | 0  |         if (sigalg != NULL && sig_nid == sigalg->sigandhash)  | 
3072  | 0  |             return 1;  | 
3073  | 0  |     }  | 
3074  | 0  |     return 0;  | 
3075  | 0  | }  | 
3076  |  |  | 
3077  |  | /* Check to see if a certificate issuer name matches list of CA names */  | 
3078  |  | static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)  | 
3079  | 0  | { | 
3080  | 0  |     const X509_NAME *nm;  | 
3081  | 0  |     int i;  | 
3082  | 0  |     nm = X509_get_issuer_name(x);  | 
3083  | 0  |     for (i = 0; i < sk_X509_NAME_num(names); i++) { | 
3084  | 0  |         if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))  | 
3085  | 0  |             return 1;  | 
3086  | 0  |     }  | 
3087  | 0  |     return 0;  | 
3088  | 0  | }  | 
3089  |  |  | 
3090  |  | /*  | 
3091  |  |  * Check certificate chain is consistent with TLS extensions and is usable by  | 
3092  |  |  * server. This servers two purposes: it allows users to check chains before  | 
3093  |  |  * passing them to the server and it allows the server to check chains before  | 
3094  |  |  * attempting to use them.  | 
3095  |  |  */  | 
3096  |  |  | 
3097  |  | /* Flags which need to be set for a certificate when strict mode not set */  | 
3098  |  |  | 
3099  |  | #define CERT_PKEY_VALID_FLAGS \  | 
3100  | 0  |         (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)  | 
3101  |  | /* Strict mode flags */  | 
3102  |  | #define CERT_PKEY_STRICT_FLAGS \  | 
3103  | 0  |          (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \  | 
3104  | 0  |          | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)  | 
3105  |  |  | 
3106  |  | int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,  | 
3107  |  |                      STACK_OF(X509) *chain, int idx)  | 
3108  | 77.7k  | { | 
3109  | 77.7k  |     int i;  | 
3110  | 77.7k  |     int rv = 0;  | 
3111  | 77.7k  |     int check_flags = 0, strict_mode;  | 
3112  | 77.7k  |     CERT_PKEY *cpk = NULL;  | 
3113  | 77.7k  |     CERT *c = s->cert;  | 
3114  | 77.7k  |     uint32_t *pvalid;  | 
3115  | 77.7k  |     unsigned int suiteb_flags = tls1_suiteb(s);  | 
3116  |  |  | 
3117  |  |     /*  | 
3118  |  |      * Meaning of idx:  | 
3119  |  |      * idx == -1 means SSL_check_chain() invocation  | 
3120  |  |      * idx == -2 means checking client certificate chains  | 
3121  |  |      * idx >= 0 means checking SSL_PKEY index  | 
3122  |  |      *  | 
3123  |  |      * For RPK, where there may be no cert, we ignore -1  | 
3124  |  |      */  | 
3125  | 77.7k  |     if (idx != -1) { | 
3126  | 77.7k  |         if (idx == -2) { | 
3127  | 0  |             cpk = c->key;  | 
3128  | 0  |             idx = (int)(cpk - c->pkeys);  | 
3129  | 0  |         } else  | 
3130  | 77.7k  |             cpk = c->pkeys + idx;  | 
3131  | 77.7k  |         pvalid = s->s3.tmp.valid_flags + idx;  | 
3132  | 77.7k  |         x = cpk->x509;  | 
3133  | 77.7k  |         pk = cpk->privatekey;  | 
3134  | 77.7k  |         chain = cpk->chain;  | 
3135  | 77.7k  |         strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;  | 
3136  | 77.7k  |         if (tls12_rpk_and_privkey(s, idx)) { | 
3137  | 0  |             if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))  | 
3138  | 0  |                 return 0;  | 
3139  | 0  |             *pvalid = rv = CERT_PKEY_RPK;  | 
3140  | 0  |             return rv;  | 
3141  | 0  |         }  | 
3142  |  |         /* If no cert or key, forget it */  | 
3143  | 77.7k  |         if (x == NULL || pk == NULL)  | 
3144  | 51.8k  |             goto end;  | 
3145  | 77.7k  |     } else { | 
3146  | 0  |         size_t certidx;  | 
3147  |  | 
  | 
3148  | 0  |         if (x == NULL || pk == NULL)  | 
3149  | 0  |             return 0;  | 
3150  |  |  | 
3151  | 0  |         if (ssl_cert_lookup_by_pkey(pk, &certidx,  | 
3152  | 0  |                                     SSL_CONNECTION_GET_CTX(s)) == NULL)  | 
3153  | 0  |             return 0;  | 
3154  | 0  |         idx = certidx;  | 
3155  | 0  |         pvalid = s->s3.tmp.valid_flags + idx;  | 
3156  |  | 
  | 
3157  | 0  |         if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)  | 
3158  | 0  |             check_flags = CERT_PKEY_STRICT_FLAGS;  | 
3159  | 0  |         else  | 
3160  | 0  |             check_flags = CERT_PKEY_VALID_FLAGS;  | 
3161  | 0  |         strict_mode = 1;  | 
3162  | 0  |     }  | 
3163  |  |  | 
3164  | 25.9k  |     if (suiteb_flags) { | 
3165  | 0  |         int ok;  | 
3166  | 0  |         if (check_flags)  | 
3167  | 0  |             check_flags |= CERT_PKEY_SUITEB;  | 
3168  | 0  |         ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);  | 
3169  | 0  |         if (ok == X509_V_OK)  | 
3170  | 0  |             rv |= CERT_PKEY_SUITEB;  | 
3171  | 0  |         else if (!check_flags)  | 
3172  | 0  |             goto end;  | 
3173  | 0  |     }  | 
3174  |  |  | 
3175  |  |     /*  | 
3176  |  |      * Check all signature algorithms are consistent with signature  | 
3177  |  |      * algorithms extension if TLS 1.2 or later and strict mode.  | 
3178  |  |      */  | 
3179  | 25.9k  |     if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION  | 
3180  | 25.9k  |         && strict_mode) { | 
3181  | 0  |         int default_nid;  | 
3182  | 0  |         int rsign = 0;  | 
3183  |  | 
  | 
3184  | 0  |         if (s->s3.tmp.peer_cert_sigalgs != NULL  | 
3185  | 0  |                 || s->s3.tmp.peer_sigalgs != NULL) { | 
3186  | 0  |             default_nid = 0;  | 
3187  |  |         /* If no sigalgs extension use defaults from RFC5246 */  | 
3188  | 0  |         } else { | 
3189  | 0  |             switch (idx) { | 
3190  | 0  |             case SSL_PKEY_RSA:  | 
3191  | 0  |                 rsign = EVP_PKEY_RSA;  | 
3192  | 0  |                 default_nid = NID_sha1WithRSAEncryption;  | 
3193  | 0  |                 break;  | 
3194  |  |  | 
3195  | 0  |             case SSL_PKEY_DSA_SIGN:  | 
3196  | 0  |                 rsign = EVP_PKEY_DSA;  | 
3197  | 0  |                 default_nid = NID_dsaWithSHA1;  | 
3198  | 0  |                 break;  | 
3199  |  |  | 
3200  | 0  |             case SSL_PKEY_ECC:  | 
3201  | 0  |                 rsign = EVP_PKEY_EC;  | 
3202  | 0  |                 default_nid = NID_ecdsa_with_SHA1;  | 
3203  | 0  |                 break;  | 
3204  |  |  | 
3205  | 0  |             case SSL_PKEY_GOST01:  | 
3206  | 0  |                 rsign = NID_id_GostR3410_2001;  | 
3207  | 0  |                 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;  | 
3208  | 0  |                 break;  | 
3209  |  |  | 
3210  | 0  |             case SSL_PKEY_GOST12_256:  | 
3211  | 0  |                 rsign = NID_id_GostR3410_2012_256;  | 
3212  | 0  |                 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;  | 
3213  | 0  |                 break;  | 
3214  |  |  | 
3215  | 0  |             case SSL_PKEY_GOST12_512:  | 
3216  | 0  |                 rsign = NID_id_GostR3410_2012_512;  | 
3217  | 0  |                 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;  | 
3218  | 0  |                 break;  | 
3219  |  |  | 
3220  | 0  |             default:  | 
3221  | 0  |                 default_nid = -1;  | 
3222  | 0  |                 break;  | 
3223  | 0  |             }  | 
3224  | 0  |         }  | 
3225  |  |         /*  | 
3226  |  |          * If peer sent no signature algorithms extension and we have set  | 
3227  |  |          * preferred signature algorithms check we support sha1.  | 
3228  |  |          */  | 
3229  | 0  |         if (default_nid > 0 && c->conf_sigalgs) { | 
3230  | 0  |             size_t j;  | 
3231  | 0  |             const uint16_t *p = c->conf_sigalgs;  | 
3232  | 0  |             for (j = 0; j < c->conf_sigalgslen; j++, p++) { | 
3233  | 0  |                 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);  | 
3234  |  | 
  | 
3235  | 0  |                 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)  | 
3236  | 0  |                     break;  | 
3237  | 0  |             }  | 
3238  | 0  |             if (j == c->conf_sigalgslen) { | 
3239  | 0  |                 if (check_flags)  | 
3240  | 0  |                     goto skip_sigs;  | 
3241  | 0  |                 else  | 
3242  | 0  |                     goto end;  | 
3243  | 0  |             }  | 
3244  | 0  |         }  | 
3245  |  |         /* Check signature algorithm of each cert in chain */  | 
3246  | 0  |         if (SSL_CONNECTION_IS_TLS13(s)) { | 
3247  |  |             /*  | 
3248  |  |              * We only get here if the application has called SSL_check_chain(),  | 
3249  |  |              * so check_flags is always set.  | 
3250  |  |              */  | 
3251  | 0  |             if (find_sig_alg(s, x, pk) != NULL)  | 
3252  | 0  |                 rv |= CERT_PKEY_EE_SIGNATURE;  | 
3253  | 0  |         } else if (!tls1_check_sig_alg(s, x, default_nid)) { | 
3254  | 0  |             if (!check_flags)  | 
3255  | 0  |                 goto end;  | 
3256  | 0  |         } else  | 
3257  | 0  |             rv |= CERT_PKEY_EE_SIGNATURE;  | 
3258  | 0  |         rv |= CERT_PKEY_CA_SIGNATURE;  | 
3259  | 0  |         for (i = 0; i < sk_X509_num(chain); i++) { | 
3260  | 0  |             if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) { | 
3261  | 0  |                 if (check_flags) { | 
3262  | 0  |                     rv &= ~CERT_PKEY_CA_SIGNATURE;  | 
3263  | 0  |                     break;  | 
3264  | 0  |                 } else  | 
3265  | 0  |                     goto end;  | 
3266  | 0  |             }  | 
3267  | 0  |         }  | 
3268  | 0  |     }  | 
3269  |  |     /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */  | 
3270  | 25.9k  |     else if (check_flags)  | 
3271  | 0  |         rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;  | 
3272  | 25.9k  |  skip_sigs:  | 
3273  |  |     /* Check cert parameters are consistent */  | 
3274  | 25.9k  |     if (tls1_check_cert_param(s, x, 1))  | 
3275  | 23.9k  |         rv |= CERT_PKEY_EE_PARAM;  | 
3276  | 1.91k  |     else if (!check_flags)  | 
3277  | 1.91k  |         goto end;  | 
3278  | 23.9k  |     if (!s->server)  | 
3279  | 0  |         rv |= CERT_PKEY_CA_PARAM;  | 
3280  |  |     /* In strict mode check rest of chain too */  | 
3281  | 23.9k  |     else if (strict_mode) { | 
3282  | 0  |         rv |= CERT_PKEY_CA_PARAM;  | 
3283  | 0  |         for (i = 0; i < sk_X509_num(chain); i++) { | 
3284  | 0  |             X509 *ca = sk_X509_value(chain, i);  | 
3285  | 0  |             if (!tls1_check_cert_param(s, ca, 0)) { | 
3286  | 0  |                 if (check_flags) { | 
3287  | 0  |                     rv &= ~CERT_PKEY_CA_PARAM;  | 
3288  | 0  |                     break;  | 
3289  | 0  |                 } else  | 
3290  | 0  |                     goto end;  | 
3291  | 0  |             }  | 
3292  | 0  |         }  | 
3293  | 0  |     }  | 
3294  | 23.9k  |     if (!s->server && strict_mode) { | 
3295  | 0  |         STACK_OF(X509_NAME) *ca_dn;  | 
3296  | 0  |         int check_type = 0;  | 
3297  |  | 
  | 
3298  | 0  |         if (EVP_PKEY_is_a(pk, "RSA"))  | 
3299  | 0  |             check_type = TLS_CT_RSA_SIGN;  | 
3300  | 0  |         else if (EVP_PKEY_is_a(pk, "DSA"))  | 
3301  | 0  |             check_type = TLS_CT_DSS_SIGN;  | 
3302  | 0  |         else if (EVP_PKEY_is_a(pk, "EC"))  | 
3303  | 0  |             check_type = TLS_CT_ECDSA_SIGN;  | 
3304  |  | 
  | 
3305  | 0  |         if (check_type) { | 
3306  | 0  |             const uint8_t *ctypes = s->s3.tmp.ctype;  | 
3307  | 0  |             size_t j;  | 
3308  |  | 
  | 
3309  | 0  |             for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) { | 
3310  | 0  |                 if (*ctypes == check_type) { | 
3311  | 0  |                     rv |= CERT_PKEY_CERT_TYPE;  | 
3312  | 0  |                     break;  | 
3313  | 0  |                 }  | 
3314  | 0  |             }  | 
3315  | 0  |             if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)  | 
3316  | 0  |                 goto end;  | 
3317  | 0  |         } else { | 
3318  | 0  |             rv |= CERT_PKEY_CERT_TYPE;  | 
3319  | 0  |         }  | 
3320  |  |  | 
3321  | 0  |         ca_dn = s->s3.tmp.peer_ca_names;  | 
3322  |  | 
  | 
3323  | 0  |         if (ca_dn == NULL  | 
3324  | 0  |             || sk_X509_NAME_num(ca_dn) == 0  | 
3325  | 0  |             || ssl_check_ca_name(ca_dn, x))  | 
3326  | 0  |             rv |= CERT_PKEY_ISSUER_NAME;  | 
3327  | 0  |         else  | 
3328  | 0  |             for (i = 0; i < sk_X509_num(chain); i++) { | 
3329  | 0  |                 X509 *xtmp = sk_X509_value(chain, i);  | 
3330  |  | 
  | 
3331  | 0  |                 if (ssl_check_ca_name(ca_dn, xtmp)) { | 
3332  | 0  |                     rv |= CERT_PKEY_ISSUER_NAME;  | 
3333  | 0  |                     break;  | 
3334  | 0  |                 }  | 
3335  | 0  |             }  | 
3336  |  | 
  | 
3337  | 0  |         if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))  | 
3338  | 0  |             goto end;  | 
3339  | 0  |     } else  | 
3340  | 23.9k  |         rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;  | 
3341  |  |  | 
3342  | 23.9k  |     if (!check_flags || (rv & check_flags) == check_flags)  | 
3343  | 23.9k  |         rv |= CERT_PKEY_VALID;  | 
3344  |  |  | 
3345  | 77.7k  |  end:  | 
3346  |  |  | 
3347  | 77.7k  |     if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)  | 
3348  | 36.0k  |         rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);  | 
3349  | 41.6k  |     else  | 
3350  | 41.6k  |         rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;  | 
3351  |  |  | 
3352  |  |     /*  | 
3353  |  |      * When checking a CERT_PKEY structure all flags are irrelevant if the  | 
3354  |  |      * chain is invalid.  | 
3355  |  |      */  | 
3356  | 77.7k  |     if (!check_flags) { | 
3357  | 77.7k  |         if (rv & CERT_PKEY_VALID) { | 
3358  | 23.9k  |             *pvalid = rv;  | 
3359  | 53.7k  |         } else { | 
3360  |  |             /* Preserve sign and explicit sign flag, clear rest */  | 
3361  | 53.7k  |             *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;  | 
3362  | 53.7k  |             return 0;  | 
3363  | 53.7k  |         }  | 
3364  | 77.7k  |     }  | 
3365  | 23.9k  |     return rv;  | 
3366  | 77.7k  | }  | 
3367  |  |  | 
3368  |  | /* Set validity of certificates in an SSL structure */  | 
3369  |  | void tls1_set_cert_validity(SSL_CONNECTION *s)  | 
3370  | 13.7k  | { | 
3371  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);  | 
3372  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);  | 
3373  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);  | 
3374  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);  | 
3375  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);  | 
3376  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);  | 
3377  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);  | 
3378  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);  | 
3379  | 13.7k  |     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);  | 
3380  | 13.7k  | }  | 
3381  |  |  | 
3382  |  | /* User level utility function to check a chain is suitable */  | 
3383  |  | int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)  | 
3384  | 0  | { | 
3385  | 0  |     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);  | 
3386  |  | 
  | 
3387  | 0  |     if (sc == NULL)  | 
3388  | 0  |         return 0;  | 
3389  |  |  | 
3390  | 0  |     return tls1_check_chain(sc, x, pk, chain, -1);  | 
3391  | 0  | }  | 
3392  |  |  | 
3393  |  | EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)  | 
3394  | 0  | { | 
3395  | 0  |     EVP_PKEY *dhp = NULL;  | 
3396  | 0  |     BIGNUM *p;  | 
3397  | 0  |     int dh_secbits = 80, sec_level_bits;  | 
3398  | 0  |     EVP_PKEY_CTX *pctx = NULL;  | 
3399  | 0  |     OSSL_PARAM_BLD *tmpl = NULL;  | 
3400  | 0  |     OSSL_PARAM *params = NULL;  | 
3401  | 0  |     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);  | 
3402  |  | 
  | 
3403  | 0  |     if (s->cert->dh_tmp_auto != 2) { | 
3404  | 0  |         if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) { | 
3405  | 0  |             if (s->s3.tmp.new_cipher->strength_bits == 256)  | 
3406  | 0  |                 dh_secbits = 128;  | 
3407  | 0  |             else  | 
3408  | 0  |                 dh_secbits = 80;  | 
3409  | 0  |         } else { | 
3410  | 0  |             if (s->s3.tmp.cert == NULL)  | 
3411  | 0  |                 return NULL;  | 
3412  | 0  |             dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);  | 
3413  | 0  |         }  | 
3414  | 0  |     }  | 
3415  |  |  | 
3416  |  |     /* Do not pick a prime that is too weak for the current security level */  | 
3417  | 0  |     sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),  | 
3418  | 0  |                                                  NULL, NULL);  | 
3419  | 0  |     if (dh_secbits < sec_level_bits)  | 
3420  | 0  |         dh_secbits = sec_level_bits;  | 
3421  |  | 
  | 
3422  | 0  |     if (dh_secbits >= 192)  | 
3423  | 0  |         p = BN_get_rfc3526_prime_8192(NULL);  | 
3424  | 0  |     else if (dh_secbits >= 152)  | 
3425  | 0  |         p = BN_get_rfc3526_prime_4096(NULL);  | 
3426  | 0  |     else if (dh_secbits >= 128)  | 
3427  | 0  |         p = BN_get_rfc3526_prime_3072(NULL);  | 
3428  | 0  |     else if (dh_secbits >= 112)  | 
3429  | 0  |         p = BN_get_rfc3526_prime_2048(NULL);  | 
3430  | 0  |     else  | 
3431  | 0  |         p = BN_get_rfc2409_prime_1024(NULL);  | 
3432  | 0  |     if (p == NULL)  | 
3433  | 0  |         goto err;  | 
3434  |  |  | 
3435  | 0  |     pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);  | 
3436  | 0  |     if (pctx == NULL  | 
3437  | 0  |             || EVP_PKEY_fromdata_init(pctx) != 1)  | 
3438  | 0  |         goto err;  | 
3439  |  |  | 
3440  | 0  |     tmpl = OSSL_PARAM_BLD_new();  | 
3441  | 0  |     if (tmpl == NULL  | 
3442  | 0  |             || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)  | 
3443  | 0  |             || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))  | 
3444  | 0  |         goto err;  | 
3445  |  |  | 
3446  | 0  |     params = OSSL_PARAM_BLD_to_param(tmpl);  | 
3447  | 0  |     if (params == NULL  | 
3448  | 0  |             || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)  | 
3449  | 0  |         goto err;  | 
3450  |  |  | 
3451  | 0  | err:  | 
3452  | 0  |     OSSL_PARAM_free(params);  | 
3453  | 0  |     OSSL_PARAM_BLD_free(tmpl);  | 
3454  | 0  |     EVP_PKEY_CTX_free(pctx);  | 
3455  | 0  |     BN_free(p);  | 
3456  | 0  |     return dhp;  | 
3457  | 0  | }  | 
3458  |  |  | 
3459  |  | static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,  | 
3460  |  |                                  int op)  | 
3461  | 54.4k  | { | 
3462  | 54.4k  |     int secbits = -1;  | 
3463  | 54.4k  |     EVP_PKEY *pkey = X509_get0_pubkey(x);  | 
3464  |  |  | 
3465  | 54.4k  |     if (pkey) { | 
3466  |  |         /*  | 
3467  |  |          * If no parameters this will return -1 and fail using the default  | 
3468  |  |          * security callback for any non-zero security level. This will  | 
3469  |  |          * reject keys which omit parameters but this only affects DSA and  | 
3470  |  |          * omission of parameters is never (?) done in practice.  | 
3471  |  |          */  | 
3472  | 54.4k  |         secbits = EVP_PKEY_get_security_bits(pkey);  | 
3473  | 54.4k  |     }  | 
3474  | 54.4k  |     if (s != NULL)  | 
3475  | 8.35k  |         return ssl_security(s, op, secbits, 0, x);  | 
3476  | 46.0k  |     else  | 
3477  | 46.0k  |         return ssl_ctx_security(ctx, op, secbits, 0, x);  | 
3478  | 54.4k  | }  | 
3479  |  |  | 
3480  |  | static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,  | 
3481  |  |                                  int op)  | 
3482  | 54.4k  | { | 
3483  |  |     /* Lookup signature algorithm digest */  | 
3484  | 54.4k  |     int secbits, nid, pknid;  | 
3485  |  |  | 
3486  |  |     /* Don't check signature if self signed */  | 
3487  | 54.4k  |     if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)  | 
3488  | 54.4k  |         return 1;  | 
3489  | 0  |     if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))  | 
3490  | 0  |         secbits = -1;  | 
3491  |  |     /* If digest NID not defined use signature NID */  | 
3492  | 0  |     if (nid == NID_undef)  | 
3493  | 0  |         nid = pknid;  | 
3494  | 0  |     if (s != NULL)  | 
3495  | 0  |         return ssl_security(s, op, secbits, nid, x);  | 
3496  | 0  |     else  | 
3497  | 0  |         return ssl_ctx_security(ctx, op, secbits, nid, x);  | 
3498  | 0  | }  | 
3499  |  |  | 
3500  |  | int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,  | 
3501  |  |                       int is_ee)  | 
3502  | 89.5k  | { | 
3503  | 89.5k  |     if (vfy)  | 
3504  | 0  |         vfy = SSL_SECOP_PEER;  | 
3505  | 89.5k  |     if (is_ee) { | 
3506  | 89.5k  |         if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))  | 
3507  | 0  |             return SSL_R_EE_KEY_TOO_SMALL;  | 
3508  | 89.5k  |     } else { | 
3509  | 0  |         if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))  | 
3510  | 0  |             return SSL_R_CA_KEY_TOO_SMALL;  | 
3511  | 0  |     }  | 
3512  | 89.5k  |     if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))  | 
3513  | 0  |         return SSL_R_CA_MD_TOO_WEAK;  | 
3514  | 89.5k  |     return 1;  | 
3515  | 89.5k  | }  | 
3516  |  |  | 
3517  |  | /*  | 
3518  |  |  * Check security of a chain, if |sk| includes the end entity certificate then  | 
3519  |  |  * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending  | 
3520  |  |  * one to the peer. Return values: 1 if ok otherwise error code to use  | 
3521  |  |  */  | 
3522  |  |  | 
3523  |  | int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,  | 
3524  |  |                             X509 *x, int vfy)  | 
3525  | 13.2k  | { | 
3526  | 13.2k  |     int rv, start_idx, i;  | 
3527  |  |  | 
3528  | 13.2k  |     if (x == NULL) { | 
3529  | 13.2k  |         x = sk_X509_value(sk, 0);  | 
3530  | 13.2k  |         if (x == NULL)  | 
3531  | 0  |             return ERR_R_INTERNAL_ERROR;  | 
3532  | 13.2k  |         start_idx = 1;  | 
3533  | 13.2k  |     } else  | 
3534  | 0  |         start_idx = 0;  | 
3535  |  |  | 
3536  | 13.2k  |     rv = ssl_security_cert(s, NULL, x, vfy, 1);  | 
3537  | 13.2k  |     if (rv != 1)  | 
3538  | 0  |         return rv;  | 
3539  |  |  | 
3540  | 13.2k  |     for (i = start_idx; i < sk_X509_num(sk); i++) { | 
3541  | 0  |         x = sk_X509_value(sk, i);  | 
3542  | 0  |         rv = ssl_security_cert(s, NULL, x, vfy, 0);  | 
3543  | 0  |         if (rv != 1)  | 
3544  | 0  |             return rv;  | 
3545  | 0  |     }  | 
3546  | 13.2k  |     return 1;  | 
3547  | 13.2k  | }  | 
3548  |  |  | 
3549  |  | /*  | 
3550  |  |  * For TLS 1.2 servers check if we have a certificate which can be used  | 
3551  |  |  * with the signature algorithm "lu" and return index of certificate.  | 
3552  |  |  */  | 
3553  |  |  | 
3554  |  | static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,  | 
3555  |  |                                      const SIGALG_LOOKUP *lu)  | 
3556  | 16.6k  | { | 
3557  | 16.6k  |     int sig_idx = lu->sig_idx;  | 
3558  | 16.6k  |     const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,  | 
3559  | 16.6k  |                                                         SSL_CONNECTION_GET_CTX(s));  | 
3560  |  |  | 
3561  |  |     /* If not recognised or not supported by cipher mask it is not suitable */  | 
3562  | 16.6k  |     if (clu == NULL  | 
3563  | 16.6k  |             || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0  | 
3564  | 16.6k  |             || (clu->nid == EVP_PKEY_RSA_PSS  | 
3565  | 13.2k  |                 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))  | 
3566  | 4.06k  |         return -1;  | 
3567  |  |  | 
3568  |  |     /* If doing RPK, the CERT_PKEY won't be "valid" */  | 
3569  | 12.5k  |     if (tls12_rpk_and_privkey(s, sig_idx))  | 
3570  | 0  |         return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;  | 
3571  |  |  | 
3572  | 12.5k  |     return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;  | 
3573  | 12.5k  | }  | 
3574  |  |  | 
3575  |  | /*  | 
3576  |  |  * Checks the given cert against signature_algorithm_cert restrictions sent by  | 
3577  |  |  * the peer (if any) as well as whether the hash from the sigalg is usable with  | 
3578  |  |  * the key.  | 
3579  |  |  * Returns true if the cert is usable and false otherwise.  | 
3580  |  |  */  | 
3581  |  | static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,  | 
3582  |  |                              X509 *x, EVP_PKEY *pkey)  | 
3583  | 39.8k  | { | 
3584  | 39.8k  |     const SIGALG_LOOKUP *lu;  | 
3585  | 39.8k  |     int mdnid, pknid, supported;  | 
3586  | 39.8k  |     size_t i;  | 
3587  | 39.8k  |     const char *mdname = NULL;  | 
3588  | 39.8k  |     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);  | 
3589  |  |  | 
3590  |  |     /*  | 
3591  |  |      * If the given EVP_PKEY cannot support signing with this digest,  | 
3592  |  |      * the answer is simply 'no'.  | 
3593  |  |      */  | 
3594  | 39.8k  |     if (sig->hash != NID_undef)  | 
3595  | 39.8k  |         mdname = OBJ_nid2sn(sig->hash);  | 
3596  | 39.8k  |     supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,  | 
3597  | 39.8k  |                                                     mdname,  | 
3598  | 39.8k  |                                                     sctx->propq);  | 
3599  | 39.8k  |     if (supported <= 0)  | 
3600  | 0  |         return 0;  | 
3601  |  |  | 
3602  |  |     /*  | 
3603  |  |      * The TLS 1.3 signature_algorithms_cert extension places restrictions  | 
3604  |  |      * on the sigalg with which the certificate was signed (by its issuer).  | 
3605  |  |      */  | 
3606  | 39.8k  |     if (s->s3.tmp.peer_cert_sigalgs != NULL) { | 
3607  | 27.1k  |         if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))  | 
3608  | 0  |             return 0;  | 
3609  | 131k  |         for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) { | 
3610  | 104k  |             lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);  | 
3611  | 104k  |             if (lu == NULL)  | 
3612  | 71.8k  |                 continue;  | 
3613  |  |  | 
3614  |  |             /*  | 
3615  |  |              * This does not differentiate between the  | 
3616  |  |              * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not  | 
3617  |  |              * have a chain here that lets us look at the key OID in the  | 
3618  |  |              * signing certificate.  | 
3619  |  |              */  | 
3620  | 32.7k  |             if (mdnid == lu->hash && pknid == lu->sig)  | 
3621  | 27  |                 return 1;  | 
3622  | 32.7k  |         }  | 
3623  | 27.0k  |         return 0;  | 
3624  | 27.1k  |     }  | 
3625  |  |  | 
3626  |  |     /*  | 
3627  |  |      * Without signat_algorithms_cert, any certificate for which we have  | 
3628  |  |      * a viable public key is permitted.  | 
3629  |  |      */  | 
3630  | 12.7k  |     return 1;  | 
3631  | 39.8k  | }  | 
3632  |  |  | 
3633  |  | /*  | 
3634  |  |  * Returns true if |s| has a usable certificate configured for use  | 
3635  |  |  * with signature scheme |sig|.  | 
3636  |  |  * "Usable" includes a check for presence as well as applying  | 
3637  |  |  * the signature_algorithm_cert restrictions sent by the peer (if any).  | 
3638  |  |  * Returns false if no usable certificate is found.  | 
3639  |  |  */  | 
3640  |  | static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)  | 
3641  | 40.0k  | { | 
3642  |  |     /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */  | 
3643  | 40.0k  |     if (idx == -1)  | 
3644  | 6.02k  |         idx = sig->sig_idx;  | 
3645  | 40.0k  |     if (!ssl_has_cert(s, idx))  | 
3646  | 186  |         return 0;  | 
3647  |  |  | 
3648  | 39.8k  |     return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,  | 
3649  | 39.8k  |                              s->cert->pkeys[idx].privatekey);  | 
3650  | 40.0k  | }  | 
3651  |  |  | 
3652  |  | /*  | 
3653  |  |  * Returns true if the supplied cert |x| and key |pkey| is usable with the  | 
3654  |  |  * specified signature scheme |sig|, or false otherwise.  | 
3655  |  |  */  | 
3656  |  | static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,  | 
3657  |  |                           EVP_PKEY *pkey)  | 
3658  | 0  | { | 
3659  | 0  |     size_t idx;  | 
3660  |  | 
  | 
3661  | 0  |     if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)  | 
3662  | 0  |         return 0;  | 
3663  |  |  | 
3664  |  |     /* Check the key is consistent with the sig alg */  | 
3665  | 0  |     if ((int)idx != sig->sig_idx)  | 
3666  | 0  |         return 0;  | 
3667  |  |  | 
3668  | 0  |     return check_cert_usable(s, sig, x, pkey);  | 
3669  | 0  | }  | 
3670  |  |  | 
3671  |  | /*  | 
3672  |  |  * Find a signature scheme that works with the supplied certificate |x| and key  | 
3673  |  |  * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our  | 
3674  |  |  * available certs/keys to find one that works.  | 
3675  |  |  */  | 
3676  |  | static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,  | 
3677  |  |                                          EVP_PKEY *pkey)  | 
3678  | 1.84k  | { | 
3679  | 1.84k  |     const SIGALG_LOOKUP *lu = NULL;  | 
3680  | 1.84k  |     size_t i;  | 
3681  | 1.84k  |     int curve = -1;  | 
3682  | 1.84k  |     EVP_PKEY *tmppkey;  | 
3683  | 1.84k  |     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);  | 
3684  |  |  | 
3685  |  |     /* Look for a shared sigalgs matching possible certificates */  | 
3686  | 5.61k  |     for (i = 0; i < s->shared_sigalgslen; i++) { | 
3687  | 5.51k  |         lu = s->shared_sigalgs[i];  | 
3688  |  |  | 
3689  |  |         /* Skip SHA1, SHA224, DSA and RSA if not PSS */  | 
3690  | 5.51k  |         if (lu->hash == NID_sha1  | 
3691  | 5.51k  |             || lu->hash == NID_sha224  | 
3692  | 5.51k  |             || lu->sig == EVP_PKEY_DSA  | 
3693  | 5.51k  |             || lu->sig == EVP_PKEY_RSA)  | 
3694  | 1.23k  |             continue;  | 
3695  |  |         /* Check that we have a cert, and signature_algorithms_cert */  | 
3696  | 4.27k  |         if (!tls1_lookup_md(sctx, lu, NULL))  | 
3697  | 0  |             continue;  | 
3698  | 4.27k  |         if ((pkey == NULL && !has_usable_cert(s, lu, -1))  | 
3699  | 4.27k  |                 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))  | 
3700  | 177  |             continue;  | 
3701  |  |  | 
3702  | 4.10k  |         tmppkey = (pkey != NULL) ? pkey  | 
3703  | 4.10k  |                                  : s->cert->pkeys[lu->sig_idx].privatekey;  | 
3704  |  |  | 
3705  | 4.10k  |         if (lu->sig == EVP_PKEY_EC) { | 
3706  | 3.77k  |             if (curve == -1)  | 
3707  | 1.56k  |                 curve = ssl_get_EC_curve_nid(tmppkey);  | 
3708  | 3.77k  |             if (lu->curve != NID_undef && curve != lu->curve)  | 
3709  | 2.36k  |                 continue;  | 
3710  | 3.77k  |         } else if (lu->sig == EVP_PKEY_RSA_PSS) { | 
3711  |  |             /* validate that key is large enough for the signature algorithm */  | 
3712  | 327  |             if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))  | 
3713  | 0  |                 continue;  | 
3714  | 327  |         }  | 
3715  | 1.73k  |         break;  | 
3716  | 4.10k  |     }  | 
3717  |  |  | 
3718  | 1.84k  |     if (i == s->shared_sigalgslen)  | 
3719  | 103  |         return NULL;  | 
3720  |  |  | 
3721  | 1.73k  |     return lu;  | 
3722  | 1.84k  | }  | 
3723  |  |  | 
3724  |  | /*  | 
3725  |  |  * Choose an appropriate signature algorithm based on available certificates  | 
3726  |  |  * Sets chosen certificate and signature algorithm.  | 
3727  |  |  *  | 
3728  |  |  * For servers if we fail to find a required certificate it is a fatal error,  | 
3729  |  |  * an appropriate error code is set and a TLS alert is sent.  | 
3730  |  |  *  | 
3731  |  |  * For clients fatalerrs is set to 0. If a certificate is not suitable it is not  | 
3732  |  |  * a fatal error: we will either try another certificate or not present one  | 
3733  |  |  * to the server. In this case no error is set.  | 
3734  |  |  */  | 
3735  |  | int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)  | 
3736  | 3.40k  | { | 
3737  | 3.40k  |     const SIGALG_LOOKUP *lu = NULL;  | 
3738  | 3.40k  |     int sig_idx = -1;  | 
3739  |  |  | 
3740  | 3.40k  |     s->s3.tmp.cert = NULL;  | 
3741  | 3.40k  |     s->s3.tmp.sigalg = NULL;  | 
3742  |  |  | 
3743  | 3.40k  |     if (SSL_CONNECTION_IS_TLS13(s)) { | 
3744  | 600  |         lu = find_sig_alg(s, NULL, NULL);  | 
3745  | 600  |         if (lu == NULL) { | 
3746  | 41  |             if (!fatalerrs)  | 
3747  | 0  |                 return 1;  | 
3748  | 41  |             SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,  | 
3749  | 41  |                      SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);  | 
3750  | 41  |             return 0;  | 
3751  | 41  |         }  | 
3752  | 2.80k  |     } else { | 
3753  |  |         /* If ciphersuite doesn't require a cert nothing to do */  | 
3754  | 2.80k  |         if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))  | 
3755  | 196  |             return 1;  | 
3756  | 2.60k  |         if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))  | 
3757  | 8  |                 return 1;  | 
3758  |  |  | 
3759  | 2.59k  |         if (SSL_USE_SIGALGS(s)) { | 
3760  | 1.68k  |             size_t i;  | 
3761  | 1.68k  |             if (s->s3.tmp.peer_sigalgs != NULL) { | 
3762  | 320  |                 int curve = -1;  | 
3763  | 320  |                 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);  | 
3764  |  |  | 
3765  |  |                 /* For Suite B need to match signature algorithm to curve */  | 
3766  | 320  |                 if (tls1_suiteb(s))  | 
3767  | 0  |                     curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]  | 
3768  | 0  |                                                  .privatekey);  | 
3769  |  |  | 
3770  |  |                 /*  | 
3771  |  |                  * Find highest preference signature algorithm matching  | 
3772  |  |                  * cert type  | 
3773  |  |                  */  | 
3774  | 7.21k  |                 for (i = 0; i < s->shared_sigalgslen; i++) { | 
3775  | 7.03k  |                     lu = s->shared_sigalgs[i];  | 
3776  |  |  | 
3777  | 7.03k  |                     if (s->server) { | 
3778  | 7.03k  |                         if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)  | 
3779  | 1.44k  |                             continue;  | 
3780  | 7.03k  |                     } else { | 
3781  | 0  |                         int cc_idx = s->cert->key - s->cert->pkeys;  | 
3782  |  | 
  | 
3783  | 0  |                         sig_idx = lu->sig_idx;  | 
3784  | 0  |                         if (cc_idx != sig_idx)  | 
3785  | 0  |                             continue;  | 
3786  | 0  |                     }  | 
3787  |  |                     /* Check that we have a cert, and sig_algs_cert */  | 
3788  | 5.59k  |                     if (!has_usable_cert(s, lu, sig_idx))  | 
3789  | 5.45k  |                         continue;  | 
3790  | 139  |                     if (lu->sig == EVP_PKEY_RSA_PSS) { | 
3791  |  |                         /* validate that key is large enough for the signature algorithm */  | 
3792  | 45  |                         EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;  | 
3793  |  |  | 
3794  | 45  |                         if (!rsa_pss_check_min_key_size(sctx, pkey, lu))  | 
3795  | 0  |                             continue;  | 
3796  | 45  |                     }  | 
3797  | 139  |                     if (curve == -1 || lu->curve == curve)  | 
3798  | 139  |                         break;  | 
3799  | 139  |                 }  | 
3800  | 320  | #ifndef OPENSSL_NO_GOST  | 
3801  |  |                 /*  | 
3802  |  |                  * Some Windows-based implementations do not send GOST algorithms indication  | 
3803  |  |                  * in supported_algorithms extension, so when we have GOST-based ciphersuite,  | 
3804  |  |                  * we have to assume GOST support.  | 
3805  |  |                  */  | 
3806  | 320  |                 if (i == s->shared_sigalgslen  | 
3807  | 320  |                     && (s->s3.tmp.new_cipher->algorithm_auth  | 
3808  | 181  |                         & (SSL_aGOST01 | SSL_aGOST12)) != 0) { | 
3809  | 0  |                   if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { | 
3810  | 0  |                     if (!fatalerrs)  | 
3811  | 0  |                       return 1;  | 
3812  | 0  |                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,  | 
3813  | 0  |                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);  | 
3814  | 0  |                     return 0;  | 
3815  | 0  |                   } else { | 
3816  | 0  |                     i = 0;  | 
3817  | 0  |                     sig_idx = lu->sig_idx;  | 
3818  | 0  |                   }  | 
3819  | 0  |                 }  | 
3820  | 320  | #endif  | 
3821  | 320  |                 if (i == s->shared_sigalgslen) { | 
3822  | 181  |                     if (!fatalerrs)  | 
3823  | 0  |                         return 1;  | 
3824  | 181  |                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,  | 
3825  | 181  |                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);  | 
3826  | 181  |                     return 0;  | 
3827  | 181  |                 }  | 
3828  | 1.36k  |             } else { | 
3829  |  |                 /*  | 
3830  |  |                  * If we have no sigalg use defaults  | 
3831  |  |                  */  | 
3832  | 1.36k  |                 const uint16_t *sent_sigs;  | 
3833  | 1.36k  |                 size_t sent_sigslen;  | 
3834  |  |  | 
3835  | 1.36k  |                 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { | 
3836  | 0  |                     if (!fatalerrs)  | 
3837  | 0  |                         return 1;  | 
3838  | 0  |                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,  | 
3839  | 0  |                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);  | 
3840  | 0  |                     return 0;  | 
3841  | 0  |                 }  | 
3842  |  |  | 
3843  |  |                 /* Check signature matches a type we sent */  | 
3844  | 1.36k  |                 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);  | 
3845  | 28.2k  |                 for (i = 0; i < sent_sigslen; i++, sent_sigs++) { | 
3846  | 28.2k  |                     if (lu->sigalg == *sent_sigs  | 
3847  | 28.2k  |                             && has_usable_cert(s, lu, lu->sig_idx))  | 
3848  | 1.36k  |                         break;  | 
3849  | 28.2k  |                 }  | 
3850  | 1.36k  |                 if (i == sent_sigslen) { | 
3851  | 0  |                     if (!fatalerrs)  | 
3852  | 0  |                         return 1;  | 
3853  | 0  |                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,  | 
3854  | 0  |                              SSL_R_WRONG_SIGNATURE_TYPE);  | 
3855  | 0  |                     return 0;  | 
3856  | 0  |                 }  | 
3857  | 1.36k  |             }  | 
3858  | 1.68k  |         } else { | 
3859  | 910  |             if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { | 
3860  | 0  |                 if (!fatalerrs)  | 
3861  | 0  |                     return 1;  | 
3862  | 0  |                 SSLfatal(s, SSL_AD_INTERNAL_ERROR,  | 
3863  | 0  |                          SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);  | 
3864  | 0  |                 return 0;  | 
3865  | 0  |             }  | 
3866  | 910  |         }  | 
3867  | 2.59k  |     }  | 
3868  | 2.97k  |     if (sig_idx == -1)  | 
3869  | 2.83k  |         sig_idx = lu->sig_idx;  | 
3870  | 2.97k  |     s->s3.tmp.cert = &s->cert->pkeys[sig_idx];  | 
3871  | 2.97k  |     s->cert->key = s->s3.tmp.cert;  | 
3872  | 2.97k  |     s->s3.tmp.sigalg = lu;  | 
3873  | 2.97k  |     return 1;  | 
3874  | 3.40k  | }  | 
3875  |  |  | 
3876  |  | int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)  | 
3877  | 0  | { | 
3878  | 0  |     if (mode != TLSEXT_max_fragment_length_DISABLED  | 
3879  | 0  |             && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { | 
3880  | 0  |         ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);  | 
3881  | 0  |         return 0;  | 
3882  | 0  |     }  | 
3883  |  |  | 
3884  | 0  |     ctx->ext.max_fragment_len_mode = mode;  | 
3885  | 0  |     return 1;  | 
3886  | 0  | }  | 
3887  |  |  | 
3888  |  | int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)  | 
3889  | 0  | { | 
3890  | 0  |     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);  | 
3891  |  | 
  | 
3892  | 0  |     if (sc == NULL  | 
3893  | 0  |         || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))  | 
3894  | 0  |         return 0;  | 
3895  |  |  | 
3896  | 0  |     if (mode != TLSEXT_max_fragment_length_DISABLED  | 
3897  | 0  |             && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { | 
3898  | 0  |         ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);  | 
3899  | 0  |         return 0;  | 
3900  | 0  |     }  | 
3901  |  |  | 
3902  | 0  |     sc->ext.max_fragment_len_mode = mode;  | 
3903  | 0  |     return 1;  | 
3904  | 0  | }  | 
3905  |  |  | 
3906  |  | uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)  | 
3907  | 0  | { | 
3908  | 0  |     if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)  | 
3909  | 0  |         return TLSEXT_max_fragment_length_DISABLED;  | 
3910  | 0  |     return session->ext.max_fragment_len_mode;  | 
3911  | 0  | }  | 
3912  |  |  | 
3913  |  | /*  | 
3914  |  |  * Helper functions for HMAC access with legacy support included.  | 
3915  |  |  */  | 
3916  |  | SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)  | 
3917  | 1.20k  | { | 
3918  | 1.20k  |     SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));  | 
3919  | 1.20k  |     EVP_MAC *mac = NULL;  | 
3920  |  |  | 
3921  | 1.20k  |     if (ret == NULL)  | 
3922  | 0  |         return NULL;  | 
3923  | 1.20k  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
3924  | 1.20k  |     if (ctx->ext.ticket_key_evp_cb == NULL  | 
3925  | 1.20k  |             && ctx->ext.ticket_key_cb != NULL) { | 
3926  | 0  |         if (!ssl_hmac_old_new(ret))  | 
3927  | 0  |             goto err;  | 
3928  | 0  |         return ret;  | 
3929  | 0  |     }  | 
3930  | 1.20k  | #endif  | 
3931  | 1.20k  |     mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);  | 
3932  | 1.20k  |     if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)  | 
3933  | 0  |         goto err;  | 
3934  | 1.20k  |     EVP_MAC_free(mac);  | 
3935  | 1.20k  |     return ret;  | 
3936  | 0  |  err:  | 
3937  | 0  |     EVP_MAC_CTX_free(ret->ctx);  | 
3938  | 0  |     EVP_MAC_free(mac);  | 
3939  | 0  |     OPENSSL_free(ret);  | 
3940  | 0  |     return NULL;  | 
3941  | 1.20k  | }  | 
3942  |  |  | 
3943  |  | void ssl_hmac_free(SSL_HMAC *ctx)  | 
3944  | 2.37k  | { | 
3945  | 2.37k  |     if (ctx != NULL) { | 
3946  | 1.20k  |         EVP_MAC_CTX_free(ctx->ctx);  | 
3947  | 1.20k  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
3948  | 1.20k  |         ssl_hmac_old_free(ctx);  | 
3949  | 1.20k  | #endif  | 
3950  | 1.20k  |         OPENSSL_free(ctx);  | 
3951  | 1.20k  |     }  | 
3952  | 2.37k  | }  | 
3953  |  |  | 
3954  |  | EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)  | 
3955  | 0  | { | 
3956  | 0  |     return ctx->ctx;  | 
3957  | 0  | }  | 
3958  |  |  | 
3959  |  | int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)  | 
3960  | 983  | { | 
3961  | 983  |     OSSL_PARAM params[2], *p = params;  | 
3962  |  |  | 
3963  | 983  |     if (ctx->ctx != NULL) { | 
3964  | 983  |         *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);  | 
3965  | 983  |         *p = OSSL_PARAM_construct_end();  | 
3966  | 983  |         if (EVP_MAC_init(ctx->ctx, key, len, params))  | 
3967  | 983  |             return 1;  | 
3968  | 983  |     }  | 
3969  | 0  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
3970  | 0  |     if (ctx->old_ctx != NULL)  | 
3971  | 0  |         return ssl_hmac_old_init(ctx, key, len, md);  | 
3972  | 0  | #endif  | 
3973  | 0  |     return 0;  | 
3974  | 0  | }  | 
3975  |  |  | 
3976  |  | int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)  | 
3977  | 909  | { | 
3978  | 909  |     if (ctx->ctx != NULL)  | 
3979  | 909  |         return EVP_MAC_update(ctx->ctx, data, len);  | 
3980  | 0  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
3981  | 0  |     if (ctx->old_ctx != NULL)  | 
3982  | 0  |         return ssl_hmac_old_update(ctx, data, len);  | 
3983  | 0  | #endif  | 
3984  | 0  |     return 0;  | 
3985  | 0  | }  | 
3986  |  |  | 
3987  |  | int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,  | 
3988  |  |                    size_t max_size)  | 
3989  | 909  | { | 
3990  | 909  |     if (ctx->ctx != NULL)  | 
3991  | 909  |         return EVP_MAC_final(ctx->ctx, md, len, max_size);  | 
3992  | 0  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
3993  | 0  |     if (ctx->old_ctx != NULL)  | 
3994  | 0  |         return ssl_hmac_old_final(ctx, md, len);  | 
3995  | 0  | #endif  | 
3996  | 0  |     return 0;  | 
3997  | 0  | }  | 
3998  |  |  | 
3999  |  | size_t ssl_hmac_size(const SSL_HMAC *ctx)  | 
4000  | 887  | { | 
4001  | 887  |     if (ctx->ctx != NULL)  | 
4002  | 887  |         return EVP_MAC_CTX_get_mac_size(ctx->ctx);  | 
4003  | 0  | #ifndef OPENSSL_NO_DEPRECATED_3_0  | 
4004  | 0  |     if (ctx->old_ctx != NULL)  | 
4005  | 0  |         return ssl_hmac_old_size(ctx);  | 
4006  | 0  | #endif  | 
4007  | 0  |     return 0;  | 
4008  | 0  | }  | 
4009  |  |  | 
4010  |  | int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)  | 
4011  | 15.7k  | { | 
4012  | 15.7k  |     char gname[OSSL_MAX_NAME_SIZE];  | 
4013  |  |  | 
4014  | 15.7k  |     if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)  | 
4015  | 15.7k  |         return OBJ_txt2nid(gname);  | 
4016  |  |  | 
4017  | 0  |     return NID_undef;  | 
4018  | 15.7k  | }  | 
4019  |  |  | 
4020  |  | __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,  | 
4021  |  |                                      const unsigned char *enckey,  | 
4022  |  |                                      size_t enckeylen)  | 
4023  | 13.5k  | { | 
4024  | 13.5k  |     if (EVP_PKEY_is_a(pkey, "DH")) { | 
4025  | 188  |         int bits = EVP_PKEY_get_bits(pkey);  | 
4026  |  |  | 
4027  | 188  |         if (bits <= 0 || enckeylen != (size_t)bits / 8)  | 
4028  |  |             /* the encoded key must be padded to the length of the p */  | 
4029  | 9  |             return 0;  | 
4030  | 13.3k  |     } else if (EVP_PKEY_is_a(pkey, "EC")) { | 
4031  | 128  |         if (enckeylen < 3 /* point format and at least 1 byte for x and y */  | 
4032  | 128  |             || enckey[0] != 0x04)  | 
4033  | 28  |             return 0;  | 
4034  | 128  |     }  | 
4035  |  |  | 
4036  | 13.5k  |     return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);  | 
4037  | 13.5k  | }  |