Coverage Report

Created: 2025-06-13 06:58

/src/openssl32/ssl/t1_lib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <openssl/objects.h>
13
#include <openssl/evp.h>
14
#include <openssl/hmac.h>
15
#include <openssl/core_names.h>
16
#include <openssl/ocsp.h>
17
#include <openssl/conf.h>
18
#include <openssl/x509v3.h>
19
#include <openssl/dh.h>
20
#include <openssl/bn.h>
21
#include <openssl/provider.h>
22
#include <openssl/param_build.h>
23
#include "internal/nelem.h"
24
#include "internal/sizes.h"
25
#include "internal/tlsgroups.h"
26
#include "ssl_local.h"
27
#include "quic/quic_local.h"
28
#include <openssl/ct.h>
29
30
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
31
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
32
33
SSL3_ENC_METHOD const TLSv1_enc_data = {
34
    tls1_setup_key_block,
35
    tls1_generate_master_secret,
36
    tls1_change_cipher_state,
37
    tls1_final_finish_mac,
38
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40
    tls1_alert_code,
41
    tls1_export_keying_material,
42
    0,
43
    ssl3_set_handshake_header,
44
    tls_close_construct_packet,
45
    ssl3_handshake_write
46
};
47
48
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49
    tls1_setup_key_block,
50
    tls1_generate_master_secret,
51
    tls1_change_cipher_state,
52
    tls1_final_finish_mac,
53
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
54
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
55
    tls1_alert_code,
56
    tls1_export_keying_material,
57
    SSL_ENC_FLAG_EXPLICIT_IV,
58
    ssl3_set_handshake_header,
59
    tls_close_construct_packet,
60
    ssl3_handshake_write
61
};
62
63
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
64
    tls1_setup_key_block,
65
    tls1_generate_master_secret,
66
    tls1_change_cipher_state,
67
    tls1_final_finish_mac,
68
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
69
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
70
    tls1_alert_code,
71
    tls1_export_keying_material,
72
    SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
73
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
74
    ssl3_set_handshake_header,
75
    tls_close_construct_packet,
76
    ssl3_handshake_write
77
};
78
79
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
80
    tls13_setup_key_block,
81
    tls13_generate_master_secret,
82
    tls13_change_cipher_state,
83
    tls13_final_finish_mac,
84
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
85
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
86
    tls13_alert_code,
87
    tls13_export_keying_material,
88
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
89
    ssl3_set_handshake_header,
90
    tls_close_construct_packet,
91
    ssl3_handshake_write
92
};
93
94
OSSL_TIME tls1_default_timeout(void)
95
71.9k
{
96
    /*
97
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
98
     * http, the cache would over fill
99
     */
100
71.9k
    return ossl_seconds2time(60 * 60 * 2);
101
71.9k
}
102
103
int tls1_new(SSL *s)
104
71.8k
{
105
71.8k
    if (!ssl3_new(s))
106
0
        return 0;
107
71.8k
    if (!s->method->ssl_clear(s))
108
0
        return 0;
109
110
71.8k
    return 1;
111
71.8k
}
112
113
void tls1_free(SSL *s)
114
21.6k
{
115
21.6k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
116
117
21.6k
    if (sc == NULL)
118
0
        return;
119
120
21.6k
    OPENSSL_free(sc->ext.session_ticket);
121
21.6k
    ssl3_free(s);
122
21.6k
}
123
124
int tls1_clear(SSL *s)
125
95.2k
{
126
95.2k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
127
128
95.2k
    if (sc == NULL)
129
0
        return 0;
130
131
95.2k
    if (!ssl3_clear(s))
132
0
        return 0;
133
134
95.2k
    if (s->method->version == TLS_ANY_VERSION)
135
95.2k
        sc->version = TLS_MAX_VERSION_INTERNAL;
136
0
    else
137
0
        sc->version = s->method->version;
138
139
95.2k
    return 1;
140
95.2k
}
141
142
/* Legacy NID to group_id mapping. Only works for groups we know about */
143
static struct {
144
    int nid;
145
    uint16_t group_id;
146
} nid_to_group[] = {
147
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
148
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
149
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
150
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
151
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
152
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
153
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
154
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
155
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
156
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
157
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
158
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
159
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
160
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
161
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
162
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
163
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
164
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
165
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
166
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
167
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
168
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
169
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
170
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
171
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
172
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
173
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
174
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
175
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
176
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
177
    {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
178
    {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
179
    {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
180
    {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
181
    {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
182
    {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
183
    {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
184
    {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
185
    {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
186
    {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
187
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
188
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
189
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
190
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
191
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
192
};
193
194
static const unsigned char ecformats_default[] = {
195
    TLSEXT_ECPOINTFORMAT_uncompressed,
196
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
197
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
198
};
199
200
/* The default curves */
201
static const uint16_t supported_groups_default[] = {
202
    OSSL_TLS_GROUP_ID_x25519,        /* X25519 (29) */
203
    OSSL_TLS_GROUP_ID_secp256r1,     /* secp256r1 (23) */
204
    OSSL_TLS_GROUP_ID_x448,          /* X448 (30) */
205
    OSSL_TLS_GROUP_ID_secp521r1,     /* secp521r1 (25) */
206
    OSSL_TLS_GROUP_ID_secp384r1,     /* secp384r1 (24) */
207
    OSSL_TLS_GROUP_ID_gc256A,        /* GC256A (34) */
208
    OSSL_TLS_GROUP_ID_gc256B,        /* GC256B (35) */
209
    OSSL_TLS_GROUP_ID_gc256C,        /* GC256C (36) */
210
    OSSL_TLS_GROUP_ID_gc256D,        /* GC256D (37) */
211
    OSSL_TLS_GROUP_ID_gc512A,        /* GC512A (38) */
212
    OSSL_TLS_GROUP_ID_gc512B,        /* GC512B (39) */
213
    OSSL_TLS_GROUP_ID_gc512C,        /* GC512C (40) */
214
    OSSL_TLS_GROUP_ID_ffdhe2048,     /* ffdhe2048 (0x100) */
215
    OSSL_TLS_GROUP_ID_ffdhe3072,     /* ffdhe3072 (0x101) */
216
    OSSL_TLS_GROUP_ID_ffdhe4096,     /* ffdhe4096 (0x102) */
217
    OSSL_TLS_GROUP_ID_ffdhe6144,     /* ffdhe6144 (0x103) */
218
    OSSL_TLS_GROUP_ID_ffdhe8192,     /* ffdhe8192 (0x104) */
219
};
220
221
static const uint16_t suiteb_curves[] = {
222
    OSSL_TLS_GROUP_ID_secp256r1,
223
    OSSL_TLS_GROUP_ID_secp384r1,
224
};
225
226
struct provider_ctx_data_st {
227
    SSL_CTX *ctx;
228
    OSSL_PROVIDER *provider;
229
};
230
231
530k
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
232
static OSSL_CALLBACK add_provider_groups;
233
static int add_provider_groups(const OSSL_PARAM params[], void *data)
234
2.48M
{
235
2.48M
    struct provider_ctx_data_st *pgd = data;
236
2.48M
    SSL_CTX *ctx = pgd->ctx;
237
2.48M
    OSSL_PROVIDER *provider = pgd->provider;
238
2.48M
    const OSSL_PARAM *p;
239
2.48M
    TLS_GROUP_INFO *ginf = NULL;
240
2.48M
    EVP_KEYMGMT *keymgmt;
241
2.48M
    unsigned int gid;
242
2.48M
    unsigned int is_kem = 0;
243
2.48M
    int ret = 0;
244
245
2.48M
    if (ctx->group_list_max_len == ctx->group_list_len) {
246
265k
        TLS_GROUP_INFO *tmp = NULL;
247
248
265k
        if (ctx->group_list_max_len == 0)
249
48.2k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
250
265k
                                 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251
216k
        else
252
216k
            tmp = OPENSSL_realloc(ctx->group_list,
253
265k
                                  (ctx->group_list_max_len
254
265k
                                   + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
255
265k
                                  * sizeof(TLS_GROUP_INFO));
256
265k
        if (tmp == NULL)
257
0
            return 0;
258
265k
        ctx->group_list = tmp;
259
265k
        memset(tmp + ctx->group_list_max_len,
260
265k
               0,
261
265k
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
262
265k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
263
265k
    }
264
265
2.48M
    ginf = &ctx->group_list[ctx->group_list_len];
266
267
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
268
2.48M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
269
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
270
0
        goto err;
271
0
    }
272
2.48M
    ginf->tlsname = OPENSSL_strdup(p->data);
273
2.48M
    if (ginf->tlsname == NULL)
274
0
        goto err;
275
276
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
277
2.48M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
278
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
279
0
        goto err;
280
0
    }
281
2.48M
    ginf->realname = OPENSSL_strdup(p->data);
282
2.48M
    if (ginf->realname == NULL)
283
0
        goto err;
284
285
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286
2.48M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288
0
        goto err;
289
0
    }
290
2.48M
    ginf->group_id = (uint16_t)gid;
291
292
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293
2.48M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295
0
        goto err;
296
0
    }
297
2.48M
    ginf->algorithm = OPENSSL_strdup(p->data);
298
2.48M
    if (ginf->algorithm == NULL)
299
0
        goto err;
300
301
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
302
2.48M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
303
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
304
0
        goto err;
305
0
    }
306
307
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
308
2.48M
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
309
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310
0
        goto err;
311
0
    }
312
2.48M
    ginf->is_kem = 1 & is_kem;
313
314
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
315
2.48M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
316
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
317
0
        goto err;
318
0
    }
319
320
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
321
2.48M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
322
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
323
0
        goto err;
324
0
    }
325
326
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
327
2.48M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
328
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
329
0
        goto err;
330
0
    }
331
332
2.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
333
2.48M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
334
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
335
0
        goto err;
336
0
    }
337
    /*
338
     * Now check that the algorithm is actually usable for our property query
339
     * string. Regardless of the result we still return success because we have
340
     * successfully processed this group, even though we may decide not to use
341
     * it.
342
     */
343
2.48M
    ret = 1;
344
2.48M
    ERR_set_mark();
345
2.48M
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
346
2.48M
    if (keymgmt != NULL) {
347
        /*
348
         * We have successfully fetched the algorithm - however if the provider
349
         * doesn't match this one then we ignore it.
350
         *
351
         * Note: We're cheating a little here. Technically if the same algorithm
352
         * is available from more than one provider then it is undefined which
353
         * implementation you will get back. Theoretically this could be
354
         * different every time...we assume here that you'll always get the
355
         * same one back if you repeat the exact same fetch. Is this a reasonable
356
         * assumption to make (in which case perhaps we should document this
357
         * behaviour)?
358
         */
359
2.48M
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
360
            /* We have a match - so we will use this group */
361
2.48M
            ctx->group_list_len++;
362
2.48M
            ginf = NULL;
363
2.48M
        }
364
2.48M
        EVP_KEYMGMT_free(keymgmt);
365
2.48M
    }
366
2.48M
    ERR_pop_to_mark();
367
2.48M
 err:
368
2.48M
    if (ginf != NULL) {
369
0
        OPENSSL_free(ginf->tlsname);
370
0
        OPENSSL_free(ginf->realname);
371
0
        OPENSSL_free(ginf->algorithm);
372
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
373
0
    }
374
2.48M
    return ret;
375
2.48M
}
376
377
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
378
158k
{
379
158k
    struct provider_ctx_data_st pgd;
380
381
158k
    pgd.ctx = vctx;
382
158k
    pgd.provider = provider;
383
158k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
384
158k
                                          add_provider_groups, &pgd);
385
158k
}
386
387
int ssl_load_groups(SSL_CTX *ctx)
388
48.2k
{
389
48.2k
    size_t i, j, num_deflt_grps = 0;
390
48.2k
    uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
391
392
48.2k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
393
0
        return 0;
394
395
868k
    for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
396
39.3M
        for (j = 0; j < ctx->group_list_len; j++) {
397
38.9M
            if (ctx->group_list[j].group_id == supported_groups_default[i]) {
398
482k
                tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
399
482k
                break;
400
482k
            }
401
38.9M
        }
402
820k
    }
403
404
48.2k
    if (num_deflt_grps == 0)
405
0
        return 1;
406
407
48.2k
    ctx->ext.supported_groups_default
408
48.2k
        = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
409
410
48.2k
    if (ctx->ext.supported_groups_default == NULL)
411
0
        return 0;
412
413
48.2k
    memcpy(ctx->ext.supported_groups_default,
414
48.2k
           tmp_supp_groups,
415
48.2k
           num_deflt_grps * sizeof(tmp_supp_groups[0]));
416
48.2k
    ctx->ext.supported_groups_default_len = num_deflt_grps;
417
418
48.2k
    return 1;
419
48.2k
}
420
421
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10
422
static OSSL_CALLBACK add_provider_sigalgs;
423
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
424
{
425
    struct provider_ctx_data_st *pgd = data;
426
    SSL_CTX *ctx = pgd->ctx;
427
    OSSL_PROVIDER *provider = pgd->provider;
428
    const OSSL_PARAM *p;
429
    TLS_SIGALG_INFO *sinf = NULL;
430
    EVP_KEYMGMT *keymgmt;
431
    const char *keytype;
432
    unsigned int code_point = 0;
433
    int ret = 0;
434
435
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
436
        TLS_SIGALG_INFO *tmp = NULL;
437
438
        if (ctx->sigalg_list_max_len == 0)
439
            tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
440
                                 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
441
        else
442
            tmp = OPENSSL_realloc(ctx->sigalg_list,
443
                                  (ctx->sigalg_list_max_len
444
                                   + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
445
                                  * sizeof(TLS_SIGALG_INFO));
446
        if (tmp == NULL)
447
            return 0;
448
        ctx->sigalg_list = tmp;
449
        memset(tmp + ctx->sigalg_list_max_len, 0,
450
               sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
451
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
452
    }
453
454
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
455
456
    /* First, mandatory parameters */
457
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
458
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
459
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
460
        goto err;
461
    }
462
    OPENSSL_free(sinf->sigalg_name);
463
    sinf->sigalg_name = OPENSSL_strdup(p->data);
464
    if (sinf->sigalg_name == NULL)
465
        goto err;
466
467
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
468
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
469
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
470
        goto err;
471
    }
472
    OPENSSL_free(sinf->name);
473
    sinf->name = OPENSSL_strdup(p->data);
474
    if (sinf->name == NULL)
475
        goto err;
476
477
    p = OSSL_PARAM_locate_const(params,
478
                                OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
479
    if (p == NULL
480
        || !OSSL_PARAM_get_uint(p, &code_point)
481
        || code_point > UINT16_MAX) {
482
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
483
        goto err;
484
    }
485
    sinf->code_point = (uint16_t)code_point;
486
487
    p = OSSL_PARAM_locate_const(params,
488
                                OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
489
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
490
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
491
        goto err;
492
    }
493
494
    /* Now, optional parameters */
495
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
496
    if (p == NULL) {
497
        sinf->sigalg_oid = NULL;
498
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
499
        goto err;
500
    } else {
501
        OPENSSL_free(sinf->sigalg_oid);
502
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
503
        if (sinf->sigalg_oid == NULL)
504
            goto err;
505
    }
506
507
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
508
    if (p == NULL) {
509
        sinf->sig_name = NULL;
510
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
511
        goto err;
512
    } else {
513
        OPENSSL_free(sinf->sig_name);
514
        sinf->sig_name = OPENSSL_strdup(p->data);
515
        if (sinf->sig_name == NULL)
516
            goto err;
517
    }
518
519
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
520
    if (p == NULL) {
521
        sinf->sig_oid = NULL;
522
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
523
        goto err;
524
    } else {
525
        OPENSSL_free(sinf->sig_oid);
526
        sinf->sig_oid = OPENSSL_strdup(p->data);
527
        if (sinf->sig_oid == NULL)
528
            goto err;
529
    }
530
531
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
532
    if (p == NULL) {
533
        sinf->hash_name = NULL;
534
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
535
        goto err;
536
    } else {
537
        OPENSSL_free(sinf->hash_name);
538
        sinf->hash_name = OPENSSL_strdup(p->data);
539
        if (sinf->hash_name == NULL)
540
            goto err;
541
    }
542
543
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
544
    if (p == NULL) {
545
        sinf->hash_oid = NULL;
546
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
547
        goto err;
548
    } else {
549
        OPENSSL_free(sinf->hash_oid);
550
        sinf->hash_oid = OPENSSL_strdup(p->data);
551
        if (sinf->hash_oid == NULL)
552
            goto err;
553
    }
554
555
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
556
    if (p == NULL) {
557
        sinf->keytype = NULL;
558
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
559
        goto err;
560
    } else {
561
        OPENSSL_free(sinf->keytype);
562
        sinf->keytype = OPENSSL_strdup(p->data);
563
        if (sinf->keytype == NULL)
564
            goto err;
565
    }
566
567
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
568
    if (p == NULL) {
569
        sinf->keytype_oid = NULL;
570
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
571
        goto err;
572
    } else {
573
        OPENSSL_free(sinf->keytype_oid);
574
        sinf->keytype_oid = OPENSSL_strdup(p->data);
575
        if (sinf->keytype_oid == NULL)
576
            goto err;
577
    }
578
579
    /* The remaining parameters below are mandatory again */
580
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
581
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
582
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
583
        goto err;
584
    }
585
    if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
586
        ((sinf->mintls < TLS1_3_VERSION))) {
587
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
588
        ret = 1;
589
        goto err;
590
    }
591
592
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
593
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
594
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
595
        goto err;
596
    }
597
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
598
        ((sinf->maxtls < sinf->mintls))) {
599
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
600
        goto err;
601
    }
602
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
603
        ((sinf->maxtls < TLS1_3_VERSION))) {
604
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
605
        ret = 1;
606
        goto err;
607
    }
608
609
    /*
610
     * Now check that the algorithm is actually usable for our property query
611
     * string. Regardless of the result we still return success because we have
612
     * successfully processed this signature, even though we may decide not to
613
     * use it.
614
     */
615
    ret = 1;
616
    ERR_set_mark();
617
    keytype = (sinf->keytype != NULL
618
               ? sinf->keytype
619
               : (sinf->sig_name != NULL
620
                  ? sinf->sig_name
621
                  : sinf->sigalg_name));
622
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
623
    if (keymgmt != NULL) {
624
        /*
625
         * We have successfully fetched the algorithm - however if the provider
626
         * doesn't match this one then we ignore it.
627
         *
628
         * Note: We're cheating a little here. Technically if the same algorithm
629
         * is available from more than one provider then it is undefined which
630
         * implementation you will get back. Theoretically this could be
631
         * different every time...we assume here that you'll always get the
632
         * same one back if you repeat the exact same fetch. Is this a reasonable
633
         * assumption to make (in which case perhaps we should document this
634
         * behaviour)?
635
         */
636
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
637
            /*
638
             * We have a match - so we could use this signature;
639
             * Check proper object registration first, though. 
640
             * Don't care about return value as this may have been
641
             * done within providers or previous calls to
642
             * add_provider_sigalgs.
643
             */
644
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
645
            /* sanity check: Without successful registration don't use alg */
646
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
647
                (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
648
                    ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
649
                    goto err;
650
            }
651
            if (sinf->sig_name != NULL)
652
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
653
            if (sinf->keytype != NULL)
654
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
655
            if (sinf->hash_name != NULL)
656
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
657
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
658
                          (sinf->hash_name != NULL
659
                           ? OBJ_txt2nid(sinf->hash_name)
660
                           : NID_undef),
661
                          OBJ_txt2nid(keytype));
662
            ctx->sigalg_list_len++;
663
            sinf = NULL;
664
        }
665
        EVP_KEYMGMT_free(keymgmt);
666
    }
667
    ERR_pop_to_mark();
668
 err:
669
    if (sinf != NULL) {
670
        OPENSSL_free(sinf->name);
671
        sinf->name = NULL;
672
        OPENSSL_free(sinf->sigalg_name);
673
        sinf->sigalg_name = NULL;
674
        OPENSSL_free(sinf->sigalg_oid);
675
        sinf->sigalg_oid = NULL;
676
        OPENSSL_free(sinf->sig_name);
677
        sinf->sig_name = NULL;
678
        OPENSSL_free(sinf->sig_oid);
679
        sinf->sig_oid = NULL;
680
        OPENSSL_free(sinf->hash_name);
681
        sinf->hash_name = NULL;
682
        OPENSSL_free(sinf->hash_oid);
683
        sinf->hash_oid = NULL;
684
        OPENSSL_free(sinf->keytype);
685
        sinf->keytype = NULL;
686
        OPENSSL_free(sinf->keytype_oid);
687
        sinf->keytype_oid = NULL;
688
    }
689
    return ret;
690
}
691
692
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
693
109k
{
694
109k
    struct provider_ctx_data_st pgd;
695
696
109k
    pgd.ctx = vctx;
697
109k
    pgd.provider = provider;
698
109k
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
699
109k
                                   add_provider_sigalgs, &pgd);
700
    /*
701
     * Always OK, even if provider doesn't support the capability:
702
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
703
     */
704
109k
    return 1;
705
109k
}
706
707
int ssl_load_sigalgs(SSL_CTX *ctx)
708
54.8k
{
709
54.8k
    size_t i;
710
54.8k
    SSL_CERT_LOOKUP lu;
711
712
54.8k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
713
0
        return 0;
714
715
    /* now populate ctx->ssl_cert_info */
716
54.8k
    if (ctx->sigalg_list_len > 0) {
717
31.0k
        OPENSSL_free(ctx->ssl_cert_info);
718
31.0k
        ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
719
31.0k
        if (ctx->ssl_cert_info == NULL)
720
0
            return 0;
721
124k
        for(i = 0; i < ctx->sigalg_list_len; i++) {
722
93.1k
            ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
723
93.1k
            ctx->ssl_cert_info[i].amask = SSL_aANY;
724
93.1k
        }
725
31.0k
    }
726
727
    /* 
728
     * For now, leave it at this: legacy sigalgs stay in their own
729
     * data structures until "legacy cleanup" occurs.
730
     */
731
732
54.8k
    return 1;
733
54.8k
}
734
735
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
736
248k
{
737
248k
    size_t i;
738
739
1.39M
    for (i = 0; i < ctx->group_list_len; i++) {
740
1.39M
        if (strcmp(ctx->group_list[i].tlsname, name) == 0
741
1.39M
                || strcmp(ctx->group_list[i].realname, name) == 0)
742
248k
            return ctx->group_list[i].group_id;
743
1.39M
    }
744
745
0
    return 0;
746
248k
}
747
748
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
749
1.57M
{
750
1.57M
    size_t i;
751
752
44.7M
    for (i = 0; i < ctx->group_list_len; i++) {
753
44.7M
        if (ctx->group_list[i].group_id == group_id)
754
1.57M
            return &ctx->group_list[i];
755
44.7M
    }
756
757
0
    return NULL;
758
1.57M
}
759
760
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
761
0
{
762
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
763
764
0
    if (tls_group_info == NULL)
765
0
        return NULL;
766
767
0
    return tls_group_info->tlsname;
768
0
}
769
770
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
771
724k
{
772
724k
    size_t i;
773
774
724k
    if (group_id == 0)
775
0
        return NID_undef;
776
777
    /*
778
     * Return well known Group NIDs - for backwards compatibility. This won't
779
     * work for groups we don't know about.
780
     */
781
23.3M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
782
23.3M
    {
783
23.3M
        if (nid_to_group[i].group_id == group_id)
784
686k
            return nid_to_group[i].nid;
785
23.3M
    }
786
37.2k
    if (!include_unknown)
787
37.2k
        return NID_undef;
788
0
    return TLSEXT_nid_unknown | (int)group_id;
789
37.2k
}
790
791
uint16_t tls1_nid2group_id(int nid)
792
13.7k
{
793
13.7k
    size_t i;
794
795
    /*
796
     * Return well known Group ids - for backwards compatibility. This won't
797
     * work for groups we don't know about.
798
     */
799
317k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
800
317k
    {
801
317k
        if (nid_to_group[i].nid == nid)
802
13.7k
            return nid_to_group[i].group_id;
803
317k
    }
804
805
4
    return 0;
806
13.7k
}
807
808
/*
809
 * Set *pgroups to the supported groups list and *pgroupslen to
810
 * the number of groups supported.
811
 */
812
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
813
                               size_t *pgroupslen)
814
230k
{
815
230k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
816
817
    /* For Suite B mode only include P-256, P-384 */
818
230k
    switch (tls1_suiteb(s)) {
819
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
820
0
        *pgroups = suiteb_curves;
821
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
822
0
        break;
823
824
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
825
0
        *pgroups = suiteb_curves;
826
0
        *pgroupslen = 1;
827
0
        break;
828
829
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
830
0
        *pgroups = suiteb_curves + 1;
831
0
        *pgroupslen = 1;
832
0
        break;
833
834
230k
    default:
835
230k
        if (s->ext.supportedgroups == NULL) {
836
154k
            *pgroups = sctx->ext.supported_groups_default;
837
154k
            *pgroupslen = sctx->ext.supported_groups_default_len;
838
154k
        } else {
839
75.8k
            *pgroups = s->ext.supportedgroups;
840
75.8k
            *pgroupslen = s->ext.supportedgroups_len;
841
75.8k
        }
842
230k
        break;
843
230k
    }
844
230k
}
845
846
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
847
                    int minversion, int maxversion,
848
                    int isec, int *okfortls13)
849
435k
{
850
435k
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
851
435k
                                                       group_id);
852
435k
    int ret;
853
854
435k
    if (okfortls13 != NULL)
855
332k
        *okfortls13 = 0;
856
857
435k
    if (ginfo == NULL)
858
0
        return 0;
859
860
435k
    if (SSL_CONNECTION_IS_DTLS(s)) {
861
0
        if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
862
0
            return 0;
863
0
        if (ginfo->maxdtls == 0)
864
0
            ret = 1;
865
0
        else
866
0
            ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
867
0
        if (ginfo->mindtls > 0)
868
0
            ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
869
435k
    } else {
870
435k
        if (ginfo->mintls < 0 || ginfo->maxtls < 0)
871
0
            return 0;
872
435k
        if (ginfo->maxtls == 0)
873
435k
            ret = 1;
874
0
        else
875
0
            ret = (minversion <= ginfo->maxtls);
876
435k
        if (ginfo->mintls > 0)
877
435k
            ret &= (maxversion >= ginfo->mintls);
878
435k
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
879
330k
            *okfortls13 = (ginfo->maxtls == 0)
880
330k
                          || (ginfo->maxtls >= TLS1_3_VERSION);
881
435k
    }
882
435k
    ret &= !isec
883
435k
           || strcmp(ginfo->algorithm, "EC") == 0
884
435k
           || strcmp(ginfo->algorithm, "X25519") == 0
885
435k
           || strcmp(ginfo->algorithm, "X448") == 0;
886
887
435k
    return ret;
888
435k
}
889
890
/* See if group is allowed by security callback */
891
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
892
724k
{
893
724k
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
894
724k
                                                       group);
895
724k
    unsigned char gtmp[2];
896
897
724k
    if (ginfo == NULL)
898
0
        return 0;
899
900
724k
    gtmp[0] = group >> 8;
901
724k
    gtmp[1] = group & 0xff;
902
724k
    return ssl_security(s, op, ginfo->secbits,
903
724k
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
904
724k
}
905
906
/* Return 1 if "id" is in "list" */
907
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
908
47.7k
{
909
47.7k
    size_t i;
910
307k
    for (i = 0; i < listlen; i++)
911
284k
        if (list[i] == id)
912
23.8k
            return 1;
913
23.8k
    return 0;
914
47.7k
}
915
916
/*-
917
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
918
 * if there is no match.
919
 * For nmatch == -1, return number of matches
920
 * For nmatch == -2, return the id of the group to use for
921
 * a tmp key, or 0 if there is no match.
922
 */
923
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
924
12.3k
{
925
12.3k
    const uint16_t *pref, *supp;
926
12.3k
    size_t num_pref, num_supp, i;
927
12.3k
    int k;
928
12.3k
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
929
930
    /* Can't do anything on client side */
931
12.3k
    if (s->server == 0)
932
0
        return 0;
933
12.3k
    if (nmatch == -2) {
934
2.87k
        if (tls1_suiteb(s)) {
935
            /*
936
             * For Suite B ciphersuite determines curve: we already know
937
             * these are acceptable due to previous checks.
938
             */
939
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
940
941
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
942
0
                return OSSL_TLS_GROUP_ID_secp256r1;
943
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
944
0
                return OSSL_TLS_GROUP_ID_secp384r1;
945
            /* Should never happen */
946
0
            return 0;
947
0
        }
948
        /* If not Suite B just return first preference shared curve */
949
2.87k
        nmatch = 0;
950
2.87k
    }
951
    /*
952
     * If server preference set, our groups are the preference order
953
     * otherwise peer decides.
954
     */
955
12.3k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
956
0
        tls1_get_supported_groups(s, &pref, &num_pref);
957
0
        tls1_get_peer_groups(s, &supp, &num_supp);
958
12.3k
    } else {
959
12.3k
        tls1_get_peer_groups(s, &pref, &num_pref);
960
12.3k
        tls1_get_supported_groups(s, &supp, &num_supp);
961
12.3k
    }
962
963
27.5k
    for (k = 0, i = 0; i < num_pref; i++) {
964
21.2k
        uint16_t id = pref[i];
965
21.2k
        const TLS_GROUP_INFO *inf;
966
967
21.2k
        if (!tls1_in_list(id, supp, num_supp)
968
21.2k
                || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
969
13.0k
            continue;
970
8.21k
        inf = tls1_group_id_lookup(ctx, id);
971
8.21k
        if (!ossl_assert(inf != NULL))
972
0
            return 0;
973
8.21k
        if (SSL_CONNECTION_IS_DTLS(s)) {
974
0
            if (inf->maxdtls == -1)
975
0
                continue;
976
0
            if ((inf->mindtls != 0 && DTLS_VERSION_LT(s->version, inf->mindtls))
977
0
                    || (inf->maxdtls != 0
978
0
                        && DTLS_VERSION_GT(s->version, inf->maxdtls)))
979
0
                continue;
980
8.21k
        } else {
981
8.21k
            if (inf->maxtls == -1)
982
0
                continue;
983
8.21k
            if ((inf->mintls != 0 && s->version < inf->mintls)
984
8.21k
                    || (inf->maxtls != 0 && s->version > inf->maxtls))
985
2.23k
                continue;
986
8.21k
        }
987
988
5.98k
        if (nmatch == k)
989
5.98k
            return id;
990
0
         k++;
991
0
    }
992
6.32k
    if (nmatch == -1)
993
0
        return k;
994
    /* Out of range (nmatch > k). */
995
6.32k
    return 0;
996
6.32k
}
997
998
int tls1_set_groups(uint16_t **pext, size_t *pextlen,
999
                    int *groups, size_t ngroups)
1000
0
{
1001
0
    uint16_t *glist;
1002
0
    size_t i;
1003
    /*
1004
     * Bitmap of groups included to detect duplicates: two variables are added
1005
     * to detect duplicates as some values are more than 32.
1006
     */
1007
0
    unsigned long *dup_list = NULL;
1008
0
    unsigned long dup_list_egrp = 0;
1009
0
    unsigned long dup_list_dhgrp = 0;
1010
1011
0
    if (ngroups == 0) {
1012
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1013
0
        return 0;
1014
0
    }
1015
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1016
0
        return 0;
1017
0
    for (i = 0; i < ngroups; i++) {
1018
0
        unsigned long idmask;
1019
0
        uint16_t id;
1020
0
        id = tls1_nid2group_id(groups[i]);
1021
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1022
0
            goto err;
1023
0
        idmask = 1L << (id & 0x00FF);
1024
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1025
0
        if (!id || ((*dup_list) & idmask))
1026
0
            goto err;
1027
0
        *dup_list |= idmask;
1028
0
        glist[i] = id;
1029
0
    }
1030
0
    OPENSSL_free(*pext);
1031
0
    *pext = glist;
1032
0
    *pextlen = ngroups;
1033
0
    return 1;
1034
0
err:
1035
0
    OPENSSL_free(glist);
1036
0
    return 0;
1037
0
}
1038
1039
# define GROUPLIST_INCREMENT   40
1040
# define GROUP_NAME_BUFFER_LENGTH 64
1041
typedef struct {
1042
    SSL_CTX *ctx;
1043
    size_t gidcnt;
1044
    size_t gidmax;
1045
    uint16_t *gid_arr;
1046
} gid_cb_st;
1047
1048
static int gid_cb(const char *elem, int len, void *arg)
1049
{
1050
    gid_cb_st *garg = arg;
1051
    size_t i;
1052
    uint16_t gid = 0;
1053
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1054
1055
    if (elem == NULL)
1056
        return 0;
1057
    if (garg->gidcnt == garg->gidmax) {
1058
        uint16_t *tmp =
1059
            OPENSSL_realloc(garg->gid_arr,
1060
                            (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1061
        if (tmp == NULL)
1062
            return 0;
1063
        garg->gidmax += GROUPLIST_INCREMENT;
1064
        garg->gid_arr = tmp;
1065
    }
1066
    if (len > (int)(sizeof(etmp) - 1))
1067
        return 0;
1068
    memcpy(etmp, elem, len);
1069
    etmp[len] = 0;
1070
1071
    gid = tls1_group_name2id(garg->ctx, etmp);
1072
    if (gid == 0) {
1073
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1074
                       "group '%s' cannot be set", etmp);
1075
        return 0;
1076
    }
1077
    for (i = 0; i < garg->gidcnt; i++)
1078
        if (garg->gid_arr[i] == gid)
1079
            return 0;
1080
    garg->gid_arr[garg->gidcnt++] = gid;
1081
    return 1;
1082
}
1083
1084
/* Set groups based on a colon separated list */
1085
int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
1086
                         const char *str)
1087
{
1088
    gid_cb_st gcb;
1089
    uint16_t *tmparr;
1090
    int ret = 0;
1091
1092
    gcb.gidcnt = 0;
1093
    gcb.gidmax = GROUPLIST_INCREMENT;
1094
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1095
    if (gcb.gid_arr == NULL)
1096
        return 0;
1097
    gcb.ctx = ctx;
1098
    if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
1099
        goto end;
1100
    if (pext == NULL) {
1101
        ret = 1;
1102
        goto end;
1103
    }
1104
1105
    /*
1106
     * gid_cb ensurse there are no duplicates so we can just go ahead and set
1107
     * the result
1108
     */
1109
    tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
1110
    if (tmparr == NULL)
1111
        goto end;
1112
    OPENSSL_free(*pext);
1113
    *pext = tmparr;
1114
    *pextlen = gcb.gidcnt;
1115
    ret = 1;
1116
 end:
1117
    OPENSSL_free(gcb.gid_arr);
1118
    return ret;
1119
}
1120
1121
/* Check a group id matches preferences */
1122
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1123
                        int check_own_groups)
1124
20.5k
    {
1125
20.5k
    const uint16_t *groups;
1126
20.5k
    size_t groups_len;
1127
1128
20.5k
    if (group_id == 0)
1129
9
        return 0;
1130
1131
    /* Check for Suite B compliance */
1132
20.5k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1133
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1134
1135
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1136
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1137
0
                return 0;
1138
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1139
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1140
0
                return 0;
1141
0
        } else {
1142
            /* Should never happen */
1143
0
            return 0;
1144
0
        }
1145
0
    }
1146
1147
20.5k
    if (check_own_groups) {
1148
        /* Check group is one of our preferences */
1149
7.13k
        tls1_get_supported_groups(s, &groups, &groups_len);
1150
7.13k
        if (!tls1_in_list(group_id, groups, groups_len))
1151
62
            return 0;
1152
7.13k
    }
1153
1154
20.5k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1155
0
        return 0;
1156
1157
    /* For clients, nothing more to check */
1158
20.5k
    if (!s->server)
1159
7.06k
        return 1;
1160
1161
    /* Check group is one of peers preferences */
1162
13.4k
    tls1_get_peer_groups(s, &groups, &groups_len);
1163
1164
    /*
1165
     * RFC 4492 does not require the supported elliptic curves extension
1166
     * so if it is not sent we can just choose any curve.
1167
     * It is invalid to send an empty list in the supported groups
1168
     * extension, so groups_len == 0 always means no extension.
1169
     */
1170
13.4k
    if (groups_len == 0)
1171
7.97k
            return 1;
1172
5.47k
    return tls1_in_list(group_id, groups, groups_len);
1173
13.4k
}
1174
1175
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1176
                         size_t *num_formats)
1177
33.8k
{
1178
    /*
1179
     * If we have a custom point format list use it otherwise use default
1180
     */
1181
33.8k
    if (s->ext.ecpointformats) {
1182
0
        *pformats = s->ext.ecpointformats;
1183
0
        *num_formats = s->ext.ecpointformats_len;
1184
33.8k
    } else {
1185
33.8k
        *pformats = ecformats_default;
1186
        /* For Suite B we don't support char2 fields */
1187
33.8k
        if (tls1_suiteb(s))
1188
0
            *num_formats = sizeof(ecformats_default) - 1;
1189
33.8k
        else
1190
33.8k
            *num_formats = sizeof(ecformats_default);
1191
33.8k
    }
1192
33.8k
}
1193
1194
/* Check a key is compatible with compression extension */
1195
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1196
14.0k
{
1197
14.0k
    unsigned char comp_id;
1198
14.0k
    size_t i;
1199
14.0k
    int point_conv;
1200
1201
    /* If not an EC key nothing to check */
1202
14.0k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1203
0
        return 1;
1204
1205
1206
    /* Get required compression id */
1207
14.0k
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1208
14.0k
    if (point_conv == 0)
1209
0
        return 0;
1210
14.0k
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1211
14.0k
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1212
14.0k
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1213
        /*
1214
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1215
         * this check.
1216
         */
1217
0
        return 1;
1218
58
    } else {
1219
58
        int field_type = EVP_PKEY_get_field_type(pkey);
1220
1221
58
        if (field_type == NID_X9_62_prime_field)
1222
54
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1223
4
        else if (field_type == NID_X9_62_characteristic_two_field)
1224
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1225
4
        else
1226
4
            return 0;
1227
58
    }
1228
    /*
1229
     * If point formats extension present check it, otherwise everything is
1230
     * supported (see RFC4492).
1231
     */
1232
14.0k
    if (s->ext.peer_ecpointformats == NULL)
1233
12.2k
        return 1;
1234
1235
3.50k
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1236
3.18k
        if (s->ext.peer_ecpointformats[i] == comp_id)
1237
1.52k
            return 1;
1238
3.18k
    }
1239
321
    return 0;
1240
1.84k
}
1241
1242
/* Return group id of a key */
1243
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1244
13.7k
{
1245
13.7k
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1246
1247
13.7k
    if (curve_nid == NID_undef)
1248
0
        return 0;
1249
13.7k
    return tls1_nid2group_id(curve_nid);
1250
13.7k
}
1251
1252
/*
1253
 * Check cert parameters compatible with extensions: currently just checks EC
1254
 * certificates have compatible curves and compression.
1255
 */
1256
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1257
41.2k
{
1258
41.2k
    uint16_t group_id;
1259
41.2k
    EVP_PKEY *pkey;
1260
41.2k
    pkey = X509_get0_pubkey(x);
1261
41.2k
    if (pkey == NULL)
1262
0
        return 0;
1263
    /* If not EC nothing to do */
1264
41.2k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1265
27.5k
        return 1;
1266
    /* Check compression */
1267
13.7k
    if (!tls1_check_pkey_comp(s, pkey))
1268
305
        return 0;
1269
13.4k
    group_id = tls1_get_group_id(pkey);
1270
    /*
1271
     * For a server we allow the certificate to not be in our list of supported
1272
     * groups.
1273
     */
1274
13.4k
    if (!tls1_check_group_id(s, group_id, !s->server))
1275
2.75k
        return 0;
1276
    /*
1277
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1278
     * SHA384+P-384.
1279
     */
1280
10.6k
    if (check_ee_md && tls1_suiteb(s)) {
1281
0
        int check_md;
1282
0
        size_t i;
1283
1284
        /* Check to see we have necessary signing algorithm */
1285
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1286
0
            check_md = NID_ecdsa_with_SHA256;
1287
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1288
0
            check_md = NID_ecdsa_with_SHA384;
1289
0
        else
1290
0
            return 0;           /* Should never happen */
1291
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1292
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1293
0
                return 1;
1294
0
        }
1295
0
        return 0;
1296
0
    }
1297
10.6k
    return 1;
1298
10.6k
}
1299
1300
/*
1301
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1302
 * @s: SSL connection
1303
 * @cid: Cipher ID we're considering using
1304
 *
1305
 * Checks that the kECDHE cipher suite we're considering using
1306
 * is compatible with the client extensions.
1307
 *
1308
 * Returns 0 when the cipher can't be used or 1 when it can.
1309
 */
1310
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1311
13.4k
{
1312
    /* If not Suite B just need a shared group */
1313
13.4k
    if (!tls1_suiteb(s))
1314
13.4k
        return tls1_shared_group(s, 0) != 0;
1315
    /*
1316
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1317
     * curves permitted.
1318
     */
1319
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1320
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1321
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1322
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1323
1324
0
    return 0;
1325
0
}
1326
1327
/* Default sigalg schemes */
1328
static const uint16_t tls12_sigalgs[] = {
1329
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1330
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1331
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1332
    TLSEXT_SIGALG_ed25519,
1333
    TLSEXT_SIGALG_ed448,
1334
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1335
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1336
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1337
1338
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1339
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1340
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1341
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1342
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1343
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1344
1345
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1346
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1347
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1348
1349
    TLSEXT_SIGALG_ecdsa_sha224,
1350
    TLSEXT_SIGALG_ecdsa_sha1,
1351
1352
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1353
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1354
1355
    TLSEXT_SIGALG_dsa_sha224,
1356
    TLSEXT_SIGALG_dsa_sha1,
1357
1358
    TLSEXT_SIGALG_dsa_sha256,
1359
    TLSEXT_SIGALG_dsa_sha384,
1360
    TLSEXT_SIGALG_dsa_sha512,
1361
1362
#ifndef OPENSSL_NO_GOST
1363
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1364
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1365
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1366
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1367
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1368
#endif
1369
};
1370
1371
1372
static const uint16_t suiteb_sigalgs[] = {
1373
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1374
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1375
};
1376
1377
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1378
    {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1379
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1380
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1381
    {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1382
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1383
     NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1384
    {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1385
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1386
     NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1387
    {"ed25519", TLSEXT_SIGALG_ed25519,
1388
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1389
     NID_undef, NID_undef, 1},
1390
    {"ed448", TLSEXT_SIGALG_ed448,
1391
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1392
     NID_undef, NID_undef, 1},
1393
    {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1394
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1395
     NID_ecdsa_with_SHA224, NID_undef, 1},
1396
    {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1397
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1398
     NID_ecdsa_with_SHA1, NID_undef, 1},
1399
    {"ecdsa_brainpoolP256r1_sha256", TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1400
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1401
     NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
1402
    {"ecdsa_brainpoolP384r1_sha384", TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1403
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1404
     NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
1405
    {"ecdsa_brainpoolP512r1_sha512", TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1406
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1407
     NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
1408
    {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1409
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1410
     NID_undef, NID_undef, 1},
1411
    {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1412
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1413
     NID_undef, NID_undef, 1},
1414
    {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1415
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1416
     NID_undef, NID_undef, 1},
1417
    {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1418
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1419
     NID_undef, NID_undef, 1},
1420
    {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1421
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1422
     NID_undef, NID_undef, 1},
1423
    {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1424
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1425
     NID_undef, NID_undef, 1},
1426
    {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1427
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1428
     NID_sha256WithRSAEncryption, NID_undef, 1},
1429
    {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1430
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1431
     NID_sha384WithRSAEncryption, NID_undef, 1},
1432
    {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1433
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1434
     NID_sha512WithRSAEncryption, NID_undef, 1},
1435
    {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1436
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1437
     NID_sha224WithRSAEncryption, NID_undef, 1},
1438
    {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1439
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1440
     NID_sha1WithRSAEncryption, NID_undef, 1},
1441
    {NULL, TLSEXT_SIGALG_dsa_sha256,
1442
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1443
     NID_dsa_with_SHA256, NID_undef, 1},
1444
    {NULL, TLSEXT_SIGALG_dsa_sha384,
1445
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1446
     NID_undef, NID_undef, 1},
1447
    {NULL, TLSEXT_SIGALG_dsa_sha512,
1448
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1449
     NID_undef, NID_undef, 1},
1450
    {NULL, TLSEXT_SIGALG_dsa_sha224,
1451
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1452
     NID_undef, NID_undef, 1},
1453
    {NULL, TLSEXT_SIGALG_dsa_sha1,
1454
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1455
     NID_dsaWithSHA1, NID_undef, 1},
1456
#ifndef OPENSSL_NO_GOST
1457
    {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1458
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1459
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1460
     NID_undef, NID_undef, 1},
1461
    {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1462
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1463
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1464
     NID_undef, NID_undef, 1},
1465
    {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1466
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1467
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1468
     NID_undef, NID_undef, 1},
1469
    {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1470
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1471
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1472
     NID_undef, NID_undef, 1},
1473
    {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1474
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1475
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1476
     NID_undef, NID_undef, 1}
1477
#endif
1478
};
1479
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1480
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1481
    "rsa_pkcs1_md5_sha1", 0,
1482
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1483
     EVP_PKEY_RSA, SSL_PKEY_RSA,
1484
     NID_undef, NID_undef, 1
1485
};
1486
1487
/*
1488
 * Default signature algorithm values used if signature algorithms not present.
1489
 * From RFC5246. Note: order must match certificate index order.
1490
 */
1491
static const uint16_t tls_default_sigalg[] = {
1492
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1493
    0, /* SSL_PKEY_RSA_PSS_SIGN */
1494
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1495
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1496
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1497
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1498
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1499
    0, /* SSL_PKEY_ED25519 */
1500
    0, /* SSL_PKEY_ED448 */
1501
};
1502
1503
int ssl_setup_sigalgs(SSL_CTX *ctx)
1504
23.8k
{
1505
23.8k
    size_t i, cache_idx, sigalgs_len;
1506
23.8k
    const SIGALG_LOOKUP *lu;
1507
23.8k
    SIGALG_LOOKUP *cache = NULL;
1508
23.8k
    uint16_t *tls12_sigalgs_list = NULL;
1509
23.8k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1510
23.8k
    int ret = 0;
1511
1512
23.8k
    if (ctx == NULL)
1513
0
        goto err;
1514
1515
23.8k
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
1516
1517
23.8k
    cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
1518
23.8k
    if (cache == NULL || tmpkey == NULL)
1519
0
        goto err;
1520
1521
23.8k
    tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
1522
23.8k
    if (tls12_sigalgs_list == NULL)
1523
0
        goto err;
1524
1525
23.8k
    ERR_set_mark();
1526
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
1527
23.8k
    for (i = 0, lu = sigalg_lookup_tbl;
1528
762k
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1529
738k
        EVP_PKEY_CTX *pctx;
1530
1531
738k
        cache[i] = *lu;
1532
738k
        tls12_sigalgs_list[i] = tls12_sigalgs[i];
1533
1534
        /*
1535
         * Check hash is available.
1536
         * This test is not perfect. A provider could have support
1537
         * for a signature scheme, but not a particular hash. However the hash
1538
         * could be available from some other loaded provider. In that case it
1539
         * could be that the signature is available, and the hash is available
1540
         * independently - but not as a combination. We ignore this for now.
1541
         */
1542
738k
        if (lu->hash != NID_undef
1543
738k
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1544
119k
            cache[i].enabled = 0;
1545
119k
            continue;
1546
119k
        }
1547
1548
619k
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1549
0
            cache[i].enabled = 0;
1550
0
            continue;
1551
0
        }
1552
619k
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1553
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1554
619k
        if (pctx == NULL)
1555
0
            cache[i].enabled = 0;
1556
619k
        EVP_PKEY_CTX_free(pctx);
1557
619k
    }
1558
1559
    /* Now complete cache and tls12_sigalgs list with provider sig information */
1560
23.8k
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
1561
23.8k
    for (i = 0; i < ctx->sigalg_list_len; i++) {
1562
0
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
1563
0
        cache[cache_idx].name = si.name;
1564
0
        cache[cache_idx].sigalg = si.code_point;
1565
0
        tls12_sigalgs_list[cache_idx] = si.code_point;
1566
0
        cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
1567
0
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
1568
0
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
1569
0
        cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
1570
0
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
1571
0
        cache[cache_idx].curve = NID_undef;
1572
        /* all provided sigalgs are enabled by load */
1573
0
        cache[cache_idx].enabled = 1;
1574
0
        cache_idx++;
1575
0
    }
1576
23.8k
    ERR_pop_to_mark();
1577
23.8k
    ctx->sigalg_lookup_cache = cache;
1578
23.8k
    ctx->tls12_sigalgs = tls12_sigalgs_list;
1579
23.8k
    ctx->tls12_sigalgs_len = sigalgs_len;
1580
23.8k
    cache = NULL;
1581
23.8k
    tls12_sigalgs_list = NULL;
1582
1583
23.8k
    ret = 1;
1584
23.8k
 err:
1585
23.8k
    OPENSSL_free(cache);
1586
23.8k
    OPENSSL_free(tls12_sigalgs_list);
1587
23.8k
    EVP_PKEY_free(tmpkey);
1588
23.8k
    return ret;
1589
23.8k
}
1590
1591
/* Lookup TLS signature algorithm */
1592
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
1593
                                               uint16_t sigalg)
1594
6.97M
{
1595
6.97M
    size_t i;
1596
6.97M
    const SIGALG_LOOKUP *lu;
1597
1598
6.97M
    for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
1599
111M
         i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1600
110M
         lu++, i++) {
1601
110M
        if (lu->sigalg == sigalg) {
1602
6.73M
            if (!lu->enabled)
1603
712k
                return NULL;
1604
6.01M
            return lu;
1605
6.73M
        }
1606
110M
    }
1607
244k
    return NULL;
1608
6.97M
}
1609
/* Lookup hash: return 0 if invalid or not enabled */
1610
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1611
1.96M
{
1612
1.96M
    const EVP_MD *md;
1613
1614
1.96M
    if (lu == NULL)
1615
0
        return 0;
1616
    /* lu->hash == NID_undef means no associated digest */
1617
1.96M
    if (lu->hash == NID_undef) {
1618
176k
        md = NULL;
1619
1.78M
    } else {
1620
1.78M
        md = ssl_md(ctx, lu->hash_idx);
1621
1.78M
        if (md == NULL)
1622
0
            return 0;
1623
1.78M
    }
1624
1.96M
    if (pmd)
1625
1.91M
        *pmd = md;
1626
1.96M
    return 1;
1627
1.96M
}
1628
1629
/*
1630
 * Check if key is large enough to generate RSA-PSS signature.
1631
 *
1632
 * The key must greater than or equal to 2 * hash length + 2.
1633
 * SHA512 has a hash length of 64 bytes, which is incompatible
1634
 * with a 128 byte (1024 bit) key.
1635
 */
1636
484
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1637
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1638
                                      const SIGALG_LOOKUP *lu)
1639
484
{
1640
484
    const EVP_MD *md;
1641
1642
484
    if (pkey == NULL)
1643
0
        return 0;
1644
484
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1645
0
        return 0;
1646
484
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1647
0
        return 0;
1648
484
    return 1;
1649
484
}
1650
1651
/*
1652
 * Returns a signature algorithm when the peer did not send a list of supported
1653
 * signature algorithms. The signature algorithm is fixed for the certificate
1654
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1655
 * certificate type from |s| will be used.
1656
 * Returns the signature algorithm to use, or NULL on error.
1657
 */
1658
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
1659
                                                   int idx)
1660
129k
{
1661
129k
    if (idx == -1) {
1662
10.0k
        if (s->server) {
1663
10.0k
            size_t i;
1664
1665
            /* Work out index corresponding to ciphersuite */
1666
13.2k
            for (i = 0; i < s->ssl_pkey_num; i++) {
1667
13.2k
                const SSL_CERT_LOOKUP *clu
1668
13.2k
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
1669
1670
13.2k
                if (clu == NULL)
1671
0
                    continue;
1672
13.2k
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1673
10.0k
                    idx = i;
1674
10.0k
                    break;
1675
10.0k
                }
1676
13.2k
            }
1677
1678
            /*
1679
             * Some GOST ciphersuites allow more than one signature algorithms
1680
             * */
1681
10.0k
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1682
0
                int real_idx;
1683
1684
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1685
0
                     real_idx--) {
1686
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1687
0
                        idx = real_idx;
1688
0
                        break;
1689
0
                    }
1690
0
                }
1691
0
            }
1692
            /*
1693
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1694
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1695
             */
1696
10.0k
            else if (idx == SSL_PKEY_GOST12_256) {
1697
0
                int real_idx;
1698
1699
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1700
0
                     real_idx--) {
1701
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
1702
0
                         idx = real_idx;
1703
0
                         break;
1704
0
                     }
1705
0
                }
1706
0
            }
1707
10.0k
        } else {
1708
0
            idx = s->cert->key - s->cert->pkeys;
1709
0
        }
1710
10.0k
    }
1711
129k
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1712
14.0k
        return NULL;
1713
1714
115k
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1715
106k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1716
1717
106k
        if (lu == NULL)
1718
69.3k
            return NULL;
1719
36.9k
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
1720
0
            return NULL;
1721
36.9k
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1722
0
            return NULL;
1723
36.9k
        return lu;
1724
36.9k
    }
1725
8.85k
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1726
0
        return NULL;
1727
8.85k
    return &legacy_rsa_sigalg;
1728
8.85k
}
1729
/* Set peer sigalg based key type */
1730
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
1731
1.14k
{
1732
1.14k
    size_t idx;
1733
1.14k
    const SIGALG_LOOKUP *lu;
1734
1735
1.14k
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
1736
0
        return 0;
1737
1.14k
    lu = tls1_get_legacy_sigalg(s, idx);
1738
1.14k
    if (lu == NULL)
1739
7
        return 0;
1740
1.14k
    s->s3.tmp.peer_sigalg = lu;
1741
1.14k
    return 1;
1742
1.14k
}
1743
1744
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
1745
252k
{
1746
    /*
1747
     * If Suite B mode use Suite B sigalgs only, ignore any other
1748
     * preferences.
1749
     */
1750
252k
    switch (tls1_suiteb(s)) {
1751
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
1752
0
        *psigs = suiteb_sigalgs;
1753
0
        return OSSL_NELEM(suiteb_sigalgs);
1754
1755
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1756
0
        *psigs = suiteb_sigalgs;
1757
0
        return 1;
1758
1759
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
1760
0
        *psigs = suiteb_sigalgs + 1;
1761
0
        return 1;
1762
252k
    }
1763
    /*
1764
     *  We use client_sigalgs (if not NULL) if we're a server
1765
     *  and sending a certificate request or if we're a client and
1766
     *  determining which shared algorithm to use.
1767
     */
1768
252k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1769
0
        *psigs = s->cert->client_sigalgs;
1770
0
        return s->cert->client_sigalgslen;
1771
252k
    } else if (s->cert->conf_sigalgs) {
1772
0
        *psigs = s->cert->conf_sigalgs;
1773
0
        return s->cert->conf_sigalgslen;
1774
252k
    } else {
1775
252k
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1776
252k
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1777
252k
    }
1778
252k
}
1779
1780
/*
1781
 * Called by servers only. Checks that we have a sig alg that supports the
1782
 * specified EC curve.
1783
 */
1784
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
1785
0
{
1786
0
   const uint16_t *sigs;
1787
0
   size_t siglen, i;
1788
1789
0
    if (s->cert->conf_sigalgs) {
1790
0
        sigs = s->cert->conf_sigalgs;
1791
0
        siglen = s->cert->conf_sigalgslen;
1792
0
    } else {
1793
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1794
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1795
0
    }
1796
1797
0
    for (i = 0; i < siglen; i++) {
1798
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1799
1800
0
        if (lu == NULL)
1801
0
            continue;
1802
0
        if (lu->sig == EVP_PKEY_EC
1803
0
                && lu->curve != NID_undef
1804
0
                && curve == lu->curve)
1805
0
            return 1;
1806
0
    }
1807
1808
0
    return 0;
1809
0
}
1810
1811
/*
1812
 * Return the number of security bits for the signature algorithm, or 0 on
1813
 * error.
1814
 */
1815
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1816
572k
{
1817
572k
    const EVP_MD *md = NULL;
1818
572k
    int secbits = 0;
1819
1820
572k
    if (!tls1_lookup_md(ctx, lu, &md))
1821
0
        return 0;
1822
572k
    if (md != NULL)
1823
532k
    {
1824
532k
        int md_type = EVP_MD_get_type(md);
1825
1826
        /* Security bits: half digest bits */
1827
532k
        secbits = EVP_MD_get_size(md) * 4;
1828
        /*
1829
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
1830
         * they're no longer accepted at security level 1. The real values don't
1831
         * really matter as long as they're lower than 80, which is our
1832
         * security level 1.
1833
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1834
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1835
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1836
         * puts a chosen-prefix attack for MD5 at 2^39.
1837
         */
1838
532k
        if (md_type == NID_sha1)
1839
39.2k
            secbits = 64;
1840
493k
        else if (md_type == NID_md5_sha1)
1841
1.93k
            secbits = 67;
1842
491k
        else if (md_type == NID_md5)
1843
0
            secbits = 39;
1844
532k
    } else {
1845
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1846
39.6k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1847
19.0k
            secbits = 128;
1848
20.5k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1849
20.5k
            secbits = 224;
1850
39.6k
    }
1851
    /*
1852
     * For provider-based sigalgs we have secbits information available
1853
     * in the (provider-loaded) sigalg_list structure
1854
     */
1855
572k
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
1856
572k
               && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
1857
0
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
1858
0
    }
1859
572k
    return secbits;
1860
572k
}
1861
1862
/*
1863
 * Check signature algorithm is consistent with sent supported signature
1864
 * algorithms and if so set relevant digest and signature scheme in
1865
 * s.
1866
 */
1867
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
1868
4.16k
{
1869
4.16k
    const uint16_t *sent_sigs;
1870
4.16k
    const EVP_MD *md = NULL;
1871
4.16k
    char sigalgstr[2];
1872
4.16k
    size_t sent_sigslen, i, cidx;
1873
4.16k
    int pkeyid = -1;
1874
4.16k
    const SIGALG_LOOKUP *lu;
1875
4.16k
    int secbits = 0;
1876
1877
4.16k
    pkeyid = EVP_PKEY_get_id(pkey);
1878
1879
4.16k
    if (SSL_CONNECTION_IS_TLS13(s)) {
1880
        /* Disallow DSA for TLS 1.3 */
1881
3.74k
        if (pkeyid == EVP_PKEY_DSA) {
1882
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1883
0
            return 0;
1884
0
        }
1885
        /* Only allow PSS for TLS 1.3 */
1886
3.74k
        if (pkeyid == EVP_PKEY_RSA)
1887
3.73k
            pkeyid = EVP_PKEY_RSA_PSS;
1888
3.74k
    }
1889
4.16k
    lu = tls1_lookup_sigalg(s, sig);
1890
    /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
1891
4.16k
    if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
1892
0
        pkeyid = lu->sig;
1893
1894
    /* Should never happen */
1895
4.16k
    if (pkeyid == -1)
1896
0
        return -1;
1897
1898
    /*
1899
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1900
     * is consistent with signature: RSA keys can be used for RSA-PSS
1901
     */
1902
4.16k
    if (lu == NULL
1903
4.16k
        || (SSL_CONNECTION_IS_TLS13(s)
1904
4.15k
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1905
4.16k
        || (pkeyid != lu->sig
1906
4.15k
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1907
25
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1908
25
        return 0;
1909
25
    }
1910
    /* Check the sigalg is consistent with the key OID */
1911
4.14k
    if (!ssl_cert_lookup_by_nid(
1912
4.14k
                 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
1913
4.14k
                 &cidx, SSL_CONNECTION_GET_CTX(s))
1914
4.14k
            || lu->sig_idx != (int)cidx) {
1915
2
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1916
2
        return 0;
1917
2
    }
1918
1919
4.14k
    if (pkeyid == EVP_PKEY_EC) {
1920
1921
        /* Check point compression is permitted */
1922
41
        if (!tls1_check_pkey_comp(s, pkey)) {
1923
5
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1924
5
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
1925
5
            return 0;
1926
5
        }
1927
1928
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1929
36
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
1930
0
            int curve = ssl_get_EC_curve_nid(pkey);
1931
1932
0
            if (lu->curve != NID_undef && curve != lu->curve) {
1933
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1934
0
                return 0;
1935
0
            }
1936
0
        }
1937
36
        if (!SSL_CONNECTION_IS_TLS13(s)) {
1938
            /* Check curve matches extensions */
1939
36
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1940
3
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1941
3
                return 0;
1942
3
            }
1943
33
            if (tls1_suiteb(s)) {
1944
                /* Check sigalg matches a permissible Suite B value */
1945
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1946
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1947
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1948
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
1949
0
                    return 0;
1950
0
                }
1951
0
            }
1952
33
        }
1953
4.10k
    } else if (tls1_suiteb(s)) {
1954
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1955
0
        return 0;
1956
0
    }
1957
1958
    /* Check signature matches a type we sent */
1959
4.13k
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1960
53.0k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1961
53.0k
        if (sig == *sent_sigs)
1962
4.13k
            break;
1963
53.0k
    }
1964
    /* Allow fallback to SHA1 if not strict mode */
1965
4.13k
    if (i == sent_sigslen && (lu->hash != NID_sha1
1966
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1967
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1968
0
        return 0;
1969
0
    }
1970
4.13k
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
1971
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1972
0
        return 0;
1973
0
    }
1974
    /*
1975
     * Make sure security callback allows algorithm. For historical
1976
     * reasons we have to pass the sigalg as a two byte char array.
1977
     */
1978
4.13k
    sigalgstr[0] = (sig >> 8) & 0xff;
1979
4.13k
    sigalgstr[1] = sig & 0xff;
1980
4.13k
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
1981
4.13k
    if (secbits == 0 ||
1982
4.13k
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1983
4.13k
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
1984
4.13k
                      (void *)sigalgstr)) {
1985
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1986
0
        return 0;
1987
0
    }
1988
    /* Store the sigalg the peer uses */
1989
4.13k
    s->s3.tmp.peer_sigalg = lu;
1990
4.13k
    return 1;
1991
4.13k
}
1992
1993
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1994
0
{
1995
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
1996
1997
0
    if (sc == NULL)
1998
0
        return 0;
1999
2000
0
    if (sc->s3.tmp.peer_sigalg == NULL)
2001
0
        return 0;
2002
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2003
0
    return 1;
2004
0
}
2005
2006
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2007
0
{
2008
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2009
2010
0
    if (sc == NULL)
2011
0
        return 0;
2012
2013
0
    if (sc->s3.tmp.sigalg == NULL)
2014
0
        return 0;
2015
0
    *pnid = sc->s3.tmp.sigalg->sig;
2016
0
    return 1;
2017
0
}
2018
2019
/*
2020
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2021
 * supported, doesn't appear in supported signature algorithms, isn't supported
2022
 * by the enabled protocol versions or by the security level.
2023
 *
2024
 * This function should only be used for checking which ciphers are supported
2025
 * by the client.
2026
 *
2027
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2028
 */
2029
int ssl_set_client_disabled(SSL_CONNECTION *s)
2030
166k
{
2031
166k
    s->s3.tmp.mask_a = 0;
2032
166k
    s->s3.tmp.mask_k = 0;
2033
166k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2034
166k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2035
166k
                                &s->s3.tmp.max_ver, NULL) != 0)
2036
0
        return 0;
2037
166k
#ifndef OPENSSL_NO_PSK
2038
    /* with PSK there must be client callback set */
2039
166k
    if (!s->psk_client_callback) {
2040
166k
        s->s3.tmp.mask_a |= SSL_aPSK;
2041
166k
        s->s3.tmp.mask_k |= SSL_PSK;
2042
166k
    }
2043
166k
#endif                          /* OPENSSL_NO_PSK */
2044
166k
#ifndef OPENSSL_NO_SRP
2045
166k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2046
166k
        s->s3.tmp.mask_a |= SSL_aSRP;
2047
166k
        s->s3.tmp.mask_k |= SSL_kSRP;
2048
166k
    }
2049
166k
#endif
2050
166k
    return 1;
2051
166k
}
2052
2053
/*
2054
 * ssl_cipher_disabled - check that a cipher is disabled or not
2055
 * @s: SSL connection that you want to use the cipher on
2056
 * @c: cipher to check
2057
 * @op: Security check that you want to do
2058
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2059
 *
2060
 * Returns 1 when it's disabled, 0 when enabled.
2061
 */
2062
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2063
                        int op, int ecdhe)
2064
3.99M
{
2065
3.99M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2066
3.99M
        || c->algorithm_auth & s->s3.tmp.mask_a)
2067
1.64M
        return 1;
2068
2.34M
    if (s->s3.tmp.max_ver == 0)
2069
0
        return 1;
2070
2071
2.34M
    if (SSL_IS_QUIC_HANDSHAKE(s))
2072
        /* For QUIC, only allow these ciphersuites. */
2073
106k
        switch (SSL_CIPHER_get_id(c)) {
2074
34.1k
        case TLS1_3_CK_AES_128_GCM_SHA256:
2075
72.5k
        case TLS1_3_CK_AES_256_GCM_SHA384:
2076
106k
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2077
106k
            break;
2078
9
        default:
2079
9
            return 1;
2080
106k
        }
2081
2082
2.34M
    if (!SSL_CONNECTION_IS_DTLS(s)) {
2083
2.34M
        int min_tls = c->min_tls;
2084
2085
        /*
2086
         * For historical reasons we will allow ECHDE to be selected by a server
2087
         * in SSLv3 if we are a client
2088
         */
2089
2.34M
        if (min_tls == TLS1_VERSION && ecdhe
2090
2.34M
                && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2091
1.86k
            min_tls = SSL3_VERSION;
2092
2093
2.34M
        if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
2094
27.5k
            return 1;
2095
2.34M
    }
2096
2.32M
    if (SSL_CONNECTION_IS_DTLS(s)
2097
2.32M
            && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
2098
0
                || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
2099
0
        return 1;
2100
2101
2.32M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2102
2.32M
}
2103
2104
int tls_use_ticket(SSL_CONNECTION *s)
2105
74.5k
{
2106
74.5k
    if ((s->options & SSL_OP_NO_TICKET))
2107
0
        return 0;
2108
74.5k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2109
74.5k
}
2110
2111
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2112
10.0k
{
2113
10.0k
    size_t i;
2114
2115
    /* Clear any shared signature algorithms */
2116
10.0k
    OPENSSL_free(s->shared_sigalgs);
2117
10.0k
    s->shared_sigalgs = NULL;
2118
10.0k
    s->shared_sigalgslen = 0;
2119
2120
    /* Clear certificate validity flags */
2121
10.0k
    if (s->s3.tmp.valid_flags)
2122
81
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2123
9.99k
    else
2124
9.99k
        s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2125
10.0k
    if (s->s3.tmp.valid_flags == NULL)
2126
0
        return 0;
2127
    /*
2128
     * If peer sent no signature algorithms check to see if we support
2129
     * the default algorithm for each certificate type
2130
     */
2131
10.0k
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2132
10.0k
            && s->s3.tmp.peer_sigalgs == NULL) {
2133
7.27k
        const uint16_t *sent_sigs;
2134
7.27k
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2135
2136
86.7k
        for (i = 0; i < s->ssl_pkey_num; i++) {
2137
79.5k
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2138
79.5k
            size_t j;
2139
2140
79.5k
            if (lu == NULL)
2141
57.6k
                continue;
2142
            /* Check default matches a type we sent */
2143
501k
            for (j = 0; j < sent_sigslen; j++) {
2144
498k
                if (lu->sigalg == sent_sigs[j]) {
2145
19.2k
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2146
19.2k
                        break;
2147
19.2k
                }
2148
498k
            }
2149
21.8k
        }
2150
7.27k
        return 1;
2151
7.27k
    }
2152
2153
2.79k
    if (!tls1_process_sigalgs(s)) {
2154
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2155
0
        return 0;
2156
0
    }
2157
2.79k
    if (s->shared_sigalgs != NULL)
2158
2.75k
        return 1;
2159
2160
    /* Fatal error if no shared signature algorithms */
2161
2.79k
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2162
43
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2163
43
    return 0;
2164
2.79k
}
2165
2166
/*-
2167
 * Gets the ticket information supplied by the client if any.
2168
 *
2169
 *   hello: The parsed ClientHello data
2170
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
2171
 *       point to the resulting session.
2172
 */
2173
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2174
                                             CLIENTHELLO_MSG *hello,
2175
                                             SSL_SESSION **ret)
2176
12.0k
{
2177
12.0k
    size_t size;
2178
12.0k
    RAW_EXTENSION *ticketext;
2179
2180
12.0k
    *ret = NULL;
2181
12.0k
    s->ext.ticket_expected = 0;
2182
2183
    /*
2184
     * If tickets disabled or not supported by the protocol version
2185
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
2186
     * resumption.
2187
     */
2188
12.0k
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
2189
81
        return SSL_TICKET_NONE;
2190
2191
11.9k
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
2192
11.9k
    if (!ticketext->present)
2193
10.3k
        return SSL_TICKET_NONE;
2194
2195
1.60k
    size = PACKET_remaining(&ticketext->data);
2196
2197
1.60k
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
2198
1.60k
                              hello->session_id, hello->session_id_len, ret);
2199
11.9k
}
2200
2201
/*-
2202
 * tls_decrypt_ticket attempts to decrypt a session ticket.
2203
 *
2204
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
2205
 * expecting a pre-shared key ciphersuite, in which case we have no use for
2206
 * session tickets and one will never be decrypted, nor will
2207
 * s->ext.ticket_expected be set to 1.
2208
 *
2209
 * Side effects:
2210
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
2211
 *   a new session ticket to the client because the client indicated support
2212
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2213
 *   a session ticket or we couldn't use the one it gave us, or if
2214
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
2215
 *   Otherwise, s->ext.ticket_expected is set to 0.
2216
 *
2217
 *   etick: points to the body of the session ticket extension.
2218
 *   eticklen: the length of the session tickets extension.
2219
 *   sess_id: points at the session ID.
2220
 *   sesslen: the length of the session ID.
2221
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
2222
 *       point to the resulting session.
2223
 */
2224
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
2225
                                     const unsigned char *etick,
2226
                                     size_t eticklen,
2227
                                     const unsigned char *sess_id,
2228
                                     size_t sesslen, SSL_SESSION **psess)
2229
2.28k
{
2230
2.28k
    SSL_SESSION *sess = NULL;
2231
2.28k
    unsigned char *sdec;
2232
2.28k
    const unsigned char *p;
2233
2.28k
    int slen, ivlen, renew_ticket = 0, declen;
2234
2.28k
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
2235
2.28k
    size_t mlen;
2236
2.28k
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
2237
2.28k
    SSL_HMAC *hctx = NULL;
2238
2.28k
    EVP_CIPHER_CTX *ctx = NULL;
2239
2.28k
    SSL_CTX *tctx = s->session_ctx;
2240
2.28k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
2241
2242
2.28k
    if (eticklen == 0) {
2243
        /*
2244
         * The client will accept a ticket but doesn't currently have
2245
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
2246
         */
2247
682
        ret = SSL_TICKET_EMPTY;
2248
682
        goto end;
2249
682
    }
2250
1.59k
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
2251
        /*
2252
         * Indicate that the ticket couldn't be decrypted rather than
2253
         * generating the session from ticket now, trigger
2254
         * abbreviated handshake based on external mechanism to
2255
         * calculate the master secret later.
2256
         */
2257
0
        ret = SSL_TICKET_NO_DECRYPT;
2258
0
        goto end;
2259
0
    }
2260
2261
    /* Need at least keyname + iv */
2262
1.59k
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
2263
487
        ret = SSL_TICKET_NO_DECRYPT;
2264
487
        goto end;
2265
487
    }
2266
2267
    /* Initialize session ticket encryption and HMAC contexts */
2268
1.11k
    hctx = ssl_hmac_new(tctx);
2269
1.11k
    if (hctx == NULL) {
2270
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2271
0
        goto end;
2272
0
    }
2273
1.11k
    ctx = EVP_CIPHER_CTX_new();
2274
1.11k
    if (ctx == NULL) {
2275
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2276
0
        goto end;
2277
0
    }
2278
1.11k
#ifndef OPENSSL_NO_DEPRECATED_3_0
2279
1.11k
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
2280
#else
2281
    if (tctx->ext.ticket_key_evp_cb != NULL)
2282
#endif
2283
0
    {
2284
0
        unsigned char *nctick = (unsigned char *)etick;
2285
0
        int rv = 0;
2286
2287
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
2288
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
2289
0
                                             nctick,
2290
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
2291
0
                                             ctx,
2292
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
2293
0
                                             0);
2294
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
2295
0
        else if (tctx->ext.ticket_key_cb != NULL)
2296
            /* if 0 is returned, write an empty ticket */
2297
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
2298
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
2299
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
2300
0
#endif
2301
0
        if (rv < 0) {
2302
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2303
0
            goto end;
2304
0
        }
2305
0
        if (rv == 0) {
2306
0
            ret = SSL_TICKET_NO_DECRYPT;
2307
0
            goto end;
2308
0
        }
2309
0
        if (rv == 2)
2310
0
            renew_ticket = 1;
2311
1.11k
    } else {
2312
1.11k
        EVP_CIPHER *aes256cbc = NULL;
2313
2314
        /* Check key name matches */
2315
1.11k
        if (memcmp(etick, tctx->ext.tick_key_name,
2316
1.11k
                   TLSEXT_KEYNAME_LENGTH) != 0) {
2317
225
            ret = SSL_TICKET_NO_DECRYPT;
2318
225
            goto end;
2319
225
        }
2320
2321
887
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
2322
887
                                     sctx->propq);
2323
887
        if (aes256cbc == NULL
2324
887
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
2325
887
                             sizeof(tctx->ext.secure->tick_hmac_key),
2326
887
                             "SHA256") <= 0
2327
887
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
2328
887
                                  tctx->ext.secure->tick_aes_key,
2329
887
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
2330
0
            EVP_CIPHER_free(aes256cbc);
2331
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2332
0
            goto end;
2333
0
        }
2334
887
        EVP_CIPHER_free(aes256cbc);
2335
887
        if (SSL_CONNECTION_IS_TLS13(s))
2336
432
            renew_ticket = 1;
2337
887
    }
2338
    /*
2339
     * Attempt to process session ticket, first conduct sanity and integrity
2340
     * checks on ticket.
2341
     */
2342
887
    mlen = ssl_hmac_size(hctx);
2343
887
    if (mlen == 0) {
2344
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2345
0
        goto end;
2346
0
    }
2347
2348
887
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
2349
887
    if (ivlen < 0) {
2350
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2351
0
        goto end;
2352
0
    }
2353
2354
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
2355
887
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
2356
74
        ret = SSL_TICKET_NO_DECRYPT;
2357
74
        goto end;
2358
74
    }
2359
813
    eticklen -= mlen;
2360
    /* Check HMAC of encrypted ticket */
2361
813
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
2362
813
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
2363
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2364
0
        goto end;
2365
0
    }
2366
2367
813
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2368
99
        ret = SSL_TICKET_NO_DECRYPT;
2369
99
        goto end;
2370
99
    }
2371
    /* Attempt to decrypt session data */
2372
    /* Move p after IV to start of encrypted ticket, update length */
2373
714
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
2374
714
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
2375
714
    sdec = OPENSSL_malloc(eticklen);
2376
714
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
2377
714
                                          (int)eticklen) <= 0) {
2378
0
        OPENSSL_free(sdec);
2379
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2380
0
        goto end;
2381
0
    }
2382
714
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
2383
54
        OPENSSL_free(sdec);
2384
54
        ret = SSL_TICKET_NO_DECRYPT;
2385
54
        goto end;
2386
54
    }
2387
660
    slen += declen;
2388
660
    p = sdec;
2389
2390
660
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
2391
660
    slen -= p - sdec;
2392
660
    OPENSSL_free(sdec);
2393
660
    if (sess) {
2394
        /* Some additional consistency checks */
2395
526
        if (slen != 0) {
2396
8
            SSL_SESSION_free(sess);
2397
8
            sess = NULL;
2398
8
            ret = SSL_TICKET_NO_DECRYPT;
2399
8
            goto end;
2400
8
        }
2401
        /*
2402
         * The session ID, if non-empty, is used by some clients to detect
2403
         * that the ticket has been accepted. So we copy it to the session
2404
         * structure. If it is empty set length to zero as required by
2405
         * standard.
2406
         */
2407
518
        if (sesslen) {
2408
206
            memcpy(sess->session_id, sess_id, sesslen);
2409
206
            sess->session_id_length = sesslen;
2410
206
        }
2411
518
        if (renew_ticket)
2412
299
            ret = SSL_TICKET_SUCCESS_RENEW;
2413
219
        else
2414
219
            ret = SSL_TICKET_SUCCESS;
2415
518
        goto end;
2416
526
    }
2417
134
    ERR_clear_error();
2418
    /*
2419
     * For session parse failure, indicate that we need to send a new ticket.
2420
     */
2421
134
    ret = SSL_TICKET_NO_DECRYPT;
2422
2423
2.28k
 end:
2424
2.28k
    EVP_CIPHER_CTX_free(ctx);
2425
2.28k
    ssl_hmac_free(hctx);
2426
2427
    /*
2428
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
2429
     * detected above. The callback is responsible for checking |ret| before it
2430
     * performs any action
2431
     */
2432
2.28k
    if (s->session_ctx->decrypt_ticket_cb != NULL
2433
2.28k
            && (ret == SSL_TICKET_EMPTY
2434
0
                || ret == SSL_TICKET_NO_DECRYPT
2435
0
                || ret == SSL_TICKET_SUCCESS
2436
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
2437
0
        size_t keyname_len = eticklen;
2438
0
        int retcb;
2439
2440
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2441
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
2442
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
2443
0
                                                  sess, etick, keyname_len,
2444
0
                                                  ret,
2445
0
                                                  s->session_ctx->ticket_cb_data);
2446
0
        switch (retcb) {
2447
0
        case SSL_TICKET_RETURN_ABORT:
2448
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2449
0
            break;
2450
2451
0
        case SSL_TICKET_RETURN_IGNORE:
2452
0
            ret = SSL_TICKET_NONE;
2453
0
            SSL_SESSION_free(sess);
2454
0
            sess = NULL;
2455
0
            break;
2456
2457
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
2458
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2459
0
                ret = SSL_TICKET_NO_DECRYPT;
2460
            /* else the value of |ret| will already do the right thing */
2461
0
            SSL_SESSION_free(sess);
2462
0
            sess = NULL;
2463
0
            break;
2464
2465
0
        case SSL_TICKET_RETURN_USE:
2466
0
        case SSL_TICKET_RETURN_USE_RENEW:
2467
0
            if (ret != SSL_TICKET_SUCCESS
2468
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
2469
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
2470
0
            else if (retcb == SSL_TICKET_RETURN_USE)
2471
0
                ret = SSL_TICKET_SUCCESS;
2472
0
            else
2473
0
                ret = SSL_TICKET_SUCCESS_RENEW;
2474
0
            break;
2475
2476
0
        default:
2477
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2478
0
        }
2479
0
    }
2480
2481
2.28k
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
2482
2.28k
        switch (ret) {
2483
1.08k
        case SSL_TICKET_NO_DECRYPT:
2484
1.38k
        case SSL_TICKET_SUCCESS_RENEW:
2485
2.06k
        case SSL_TICKET_EMPTY:
2486
2.06k
            s->ext.ticket_expected = 1;
2487
2.28k
        }
2488
2.28k
    }
2489
2490
2.28k
    *psess = sess;
2491
2492
2.28k
    return ret;
2493
2.28k
}
2494
2495
/* Check to see if a signature algorithm is allowed */
2496
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
2497
                                const SIGALG_LOOKUP *lu)
2498
2.20M
{
2499
2.20M
    unsigned char sigalgstr[2];
2500
2.20M
    int secbits;
2501
2502
2.20M
    if (lu == NULL || !lu->enabled)
2503
0
        return 0;
2504
    /* DSA is not allowed in TLS 1.3 */
2505
2.20M
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2506
2.71k
        return 0;
2507
    /*
2508
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2509
     * spec
2510
     */
2511
2.20M
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
2512
2.20M
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
2513
2.20M
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2514
823k
            || lu->hash_idx == SSL_MD_MD5_IDX
2515
823k
            || lu->hash_idx == SSL_MD_SHA224_IDX))
2516
322k
        return 0;
2517
2518
    /* See if public key algorithm allowed */
2519
1.88M
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
2520
0
        return 0;
2521
2522
1.88M
    if (lu->sig == NID_id_GostR3410_2012_256
2523
1.88M
            || lu->sig == NID_id_GostR3410_2012_512
2524
1.88M
            || lu->sig == NID_id_GostR3410_2001) {
2525
        /* We never allow GOST sig algs on the server with TLSv1.3 */
2526
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
2527
0
            return 0;
2528
0
        if (!s->server
2529
0
                && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
2530
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2531
0
            int i, num;
2532
0
            STACK_OF(SSL_CIPHER) *sk;
2533
2534
            /*
2535
             * We're a client that could negotiate TLSv1.3. We only allow GOST
2536
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2537
             * ciphersuites enabled.
2538
             */
2539
2540
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2541
0
                return 0;
2542
2543
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
2544
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2545
0
            for (i = 0; i < num; i++) {
2546
0
                const SSL_CIPHER *c;
2547
2548
0
                c = sk_SSL_CIPHER_value(sk, i);
2549
                /* Skip disabled ciphers */
2550
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2551
0
                    continue;
2552
2553
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2554
0
                    break;
2555
0
            }
2556
0
            if (i == num)
2557
0
                return 0;
2558
0
        }
2559
0
    }
2560
2561
    /* Finally see if security callback allows it */
2562
1.88M
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2563
1.88M
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2564
1.88M
    sigalgstr[1] = lu->sigalg & 0xff;
2565
1.88M
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2566
1.88M
}
2567
2568
/*
2569
 * Get a mask of disabled public key algorithms based on supported signature
2570
 * algorithms. For example if no signature algorithm supports RSA then RSA is
2571
 * disabled.
2572
 */
2573
2574
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
2575
166k
{
2576
166k
    const uint16_t *sigalgs;
2577
166k
    size_t i, sigalgslen;
2578
166k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2579
    /*
2580
     * Go through all signature algorithms seeing if we support any
2581
     * in disabled_mask.
2582
     */
2583
166k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2584
5.02M
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
2585
4.85M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2586
4.85M
        const SSL_CERT_LOOKUP *clu;
2587
2588
4.85M
        if (lu == NULL)
2589
499k
            continue;
2590
2591
4.36M
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
2592
4.36M
                                     SSL_CONNECTION_GET_CTX(s));
2593
4.36M
        if (clu == NULL)
2594
0
                continue;
2595
2596
        /* If algorithm is disabled see if we can enable it */
2597
4.36M
        if ((clu->amask & disabled_mask) != 0
2598
4.36M
                && tls12_sigalg_allowed(s, op, lu))
2599
454k
            disabled_mask &= ~clu->amask;
2600
4.36M
    }
2601
166k
    *pmask_a |= disabled_mask;
2602
166k
}
2603
2604
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
2605
                       const uint16_t *psig, size_t psiglen)
2606
55.0k
{
2607
55.0k
    size_t i;
2608
55.0k
    int rv = 0;
2609
2610
1.66M
    for (i = 0; i < psiglen; i++, psig++) {
2611
1.60M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2612
2613
1.60M
        if (lu == NULL
2614
1.60M
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2615
376k
            continue;
2616
1.23M
        if (!WPACKET_put_bytes_u16(pkt, *psig))
2617
0
            return 0;
2618
        /*
2619
         * If TLS 1.3 must have at least one valid TLS 1.3 message
2620
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2621
         */
2622
1.23M
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
2623
55.0k
            || (lu->sig != EVP_PKEY_RSA
2624
0
                && lu->hash != NID_sha1
2625
0
                && lu->hash != NID_sha224)))
2626
55.0k
            rv = 1;
2627
1.23M
    }
2628
55.0k
    if (rv == 0)
2629
55.0k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2630
55.0k
    return rv;
2631
55.0k
}
2632
2633
/* Given preference and allowed sigalgs set shared sigalgs */
2634
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
2635
                                   const SIGALG_LOOKUP **shsig,
2636
                                   const uint16_t *pref, size_t preflen,
2637
                                   const uint16_t *allow, size_t allowlen)
2638
10.3k
{
2639
10.3k
    const uint16_t *ptmp, *atmp;
2640
10.3k
    size_t i, j, nmatch = 0;
2641
298k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2642
288k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2643
2644
        /* Skip disabled hashes or signature algorithms */
2645
288k
        if (lu == NULL
2646
288k
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2647
152k
            continue;
2648
1.91M
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2649
1.91M
            if (*ptmp == *atmp) {
2650
135k
                nmatch++;
2651
135k
                if (shsig)
2652
67.8k
                    *shsig++ = lu;
2653
135k
                break;
2654
135k
            }
2655
1.91M
        }
2656
135k
    }
2657
10.3k
    return nmatch;
2658
10.3k
}
2659
2660
/* Set shared signature algorithms for SSL structures */
2661
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
2662
5.21k
{
2663
5.21k
    const uint16_t *pref, *allow, *conf;
2664
5.21k
    size_t preflen, allowlen, conflen;
2665
5.21k
    size_t nmatch;
2666
5.21k
    const SIGALG_LOOKUP **salgs = NULL;
2667
5.21k
    CERT *c = s->cert;
2668
5.21k
    unsigned int is_suiteb = tls1_suiteb(s);
2669
2670
5.21k
    OPENSSL_free(s->shared_sigalgs);
2671
5.21k
    s->shared_sigalgs = NULL;
2672
5.21k
    s->shared_sigalgslen = 0;
2673
    /* If client use client signature algorithms if not NULL */
2674
5.21k
    if (!s->server && c->client_sigalgs && !is_suiteb) {
2675
0
        conf = c->client_sigalgs;
2676
0
        conflen = c->client_sigalgslen;
2677
5.21k
    } else if (c->conf_sigalgs && !is_suiteb) {
2678
0
        conf = c->conf_sigalgs;
2679
0
        conflen = c->conf_sigalgslen;
2680
0
    } else
2681
5.21k
        conflen = tls12_get_psigalgs(s, 0, &conf);
2682
5.21k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2683
0
        pref = conf;
2684
0
        preflen = conflen;
2685
0
        allow = s->s3.tmp.peer_sigalgs;
2686
0
        allowlen = s->s3.tmp.peer_sigalgslen;
2687
5.21k
    } else {
2688
5.21k
        allow = conf;
2689
5.21k
        allowlen = conflen;
2690
5.21k
        pref = s->s3.tmp.peer_sigalgs;
2691
5.21k
        preflen = s->s3.tmp.peer_sigalgslen;
2692
5.21k
    }
2693
5.21k
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2694
5.21k
    if (nmatch) {
2695
5.10k
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
2696
0
            return 0;
2697
5.10k
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2698
5.10k
    } else {
2699
114
        salgs = NULL;
2700
114
    }
2701
5.21k
    s->shared_sigalgs = salgs;
2702
5.21k
    s->shared_sigalgslen = nmatch;
2703
5.21k
    return 1;
2704
5.21k
}
2705
2706
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2707
15.2k
{
2708
15.2k
    unsigned int stmp;
2709
15.2k
    size_t size, i;
2710
15.2k
    uint16_t *buf;
2711
2712
15.2k
    size = PACKET_remaining(pkt);
2713
2714
    /* Invalid data length */
2715
15.2k
    if (size == 0 || (size & 1) != 0)
2716
28
        return 0;
2717
2718
15.2k
    size >>= 1;
2719
2720
15.2k
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
2721
0
        return 0;
2722
191k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2723
175k
        buf[i] = stmp;
2724
2725
15.2k
    if (i != size) {
2726
0
        OPENSSL_free(buf);
2727
0
        return 0;
2728
0
    }
2729
2730
15.2k
    OPENSSL_free(*pdest);
2731
15.2k
    *pdest = buf;
2732
15.2k
    *pdestlen = size;
2733
2734
15.2k
    return 1;
2735
15.2k
}
2736
2737
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
2738
6.54k
{
2739
    /* Extension ignored for inappropriate versions */
2740
6.54k
    if (!SSL_USE_SIGALGS(s))
2741
131
        return 1;
2742
    /* Should never happen */
2743
6.41k
    if (s->cert == NULL)
2744
0
        return 0;
2745
2746
6.41k
    if (cert)
2747
763
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2748
763
                             &s->s3.tmp.peer_cert_sigalgslen);
2749
5.65k
    else
2750
5.65k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2751
5.65k
                             &s->s3.tmp.peer_sigalgslen);
2752
2753
6.41k
}
2754
2755
/* Set preferred digest for each key type */
2756
2757
int tls1_process_sigalgs(SSL_CONNECTION *s)
2758
5.21k
{
2759
5.21k
    size_t i;
2760
5.21k
    uint32_t *pvalid = s->s3.tmp.valid_flags;
2761
2762
5.21k
    if (!tls1_set_shared_sigalgs(s))
2763
0
        return 0;
2764
2765
57.8k
    for (i = 0; i < s->ssl_pkey_num; i++)
2766
52.6k
        pvalid[i] = 0;
2767
2768
73.0k
    for (i = 0; i < s->shared_sigalgslen; i++) {
2769
67.8k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2770
67.8k
        int idx = sigptr->sig_idx;
2771
2772
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
2773
67.8k
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2774
1.12k
            continue;
2775
        /* If not disabled indicate we can explicitly sign */
2776
66.7k
        if (pvalid[idx] == 0
2777
66.7k
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
2778
8.86k
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2779
66.7k
    }
2780
5.21k
    return 1;
2781
5.21k
}
2782
2783
int SSL_get_sigalgs(SSL *s, int idx,
2784
                    int *psign, int *phash, int *psignhash,
2785
                    unsigned char *rsig, unsigned char *rhash)
2786
0
{
2787
0
    uint16_t *psig;
2788
0
    size_t numsigalgs;
2789
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2790
2791
0
    if (sc == NULL)
2792
0
        return 0;
2793
2794
0
    psig = sc->s3.tmp.peer_sigalgs;
2795
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
2796
2797
0
    if (psig == NULL || numsigalgs > INT_MAX)
2798
0
        return 0;
2799
0
    if (idx >= 0) {
2800
0
        const SIGALG_LOOKUP *lu;
2801
2802
0
        if (idx >= (int)numsigalgs)
2803
0
            return 0;
2804
0
        psig += idx;
2805
0
        if (rhash != NULL)
2806
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
2807
0
        if (rsig != NULL)
2808
0
            *rsig = (unsigned char)(*psig & 0xff);
2809
0
        lu = tls1_lookup_sigalg(sc, *psig);
2810
0
        if (psign != NULL)
2811
0
            *psign = lu != NULL ? lu->sig : NID_undef;
2812
0
        if (phash != NULL)
2813
0
            *phash = lu != NULL ? lu->hash : NID_undef;
2814
0
        if (psignhash != NULL)
2815
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2816
0
    }
2817
0
    return (int)numsigalgs;
2818
0
}
2819
2820
int SSL_get_shared_sigalgs(SSL *s, int idx,
2821
                           int *psign, int *phash, int *psignhash,
2822
                           unsigned char *rsig, unsigned char *rhash)
2823
0
{
2824
0
    const SIGALG_LOOKUP *shsigalgs;
2825
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2826
2827
0
    if (sc == NULL)
2828
0
        return 0;
2829
2830
0
    if (sc->shared_sigalgs == NULL
2831
0
        || idx < 0
2832
0
        || idx >= (int)sc->shared_sigalgslen
2833
0
        || sc->shared_sigalgslen > INT_MAX)
2834
0
        return 0;
2835
0
    shsigalgs = sc->shared_sigalgs[idx];
2836
0
    if (phash != NULL)
2837
0
        *phash = shsigalgs->hash;
2838
0
    if (psign != NULL)
2839
0
        *psign = shsigalgs->sig;
2840
0
    if (psignhash != NULL)
2841
0
        *psignhash = shsigalgs->sigandhash;
2842
0
    if (rsig != NULL)
2843
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2844
0
    if (rhash != NULL)
2845
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2846
0
    return (int)sc->shared_sigalgslen;
2847
0
}
2848
2849
/* Maximum possible number of unique entries in sigalgs array */
2850
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2851
2852
typedef struct {
2853
    size_t sigalgcnt;
2854
    /* TLSEXT_SIGALG_XXX values */
2855
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2856
    SSL_CTX *ctx;
2857
} sig_cb_st;
2858
2859
static void get_sigorhash(int *psig, int *phash, const char *str)
2860
0
{
2861
0
    if (strcmp(str, "RSA") == 0) {
2862
0
        *psig = EVP_PKEY_RSA;
2863
0
    } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2864
0
        *psig = EVP_PKEY_RSA_PSS;
2865
0
    } else if (strcmp(str, "DSA") == 0) {
2866
0
        *psig = EVP_PKEY_DSA;
2867
0
    } else if (strcmp(str, "ECDSA") == 0) {
2868
0
        *psig = EVP_PKEY_EC;
2869
0
    } else {
2870
0
        *phash = OBJ_sn2nid(str);
2871
0
        if (*phash == NID_undef)
2872
0
            *phash = OBJ_ln2nid(str);
2873
0
    }
2874
0
}
2875
/* Maximum length of a signature algorithm string component */
2876
#define TLS_MAX_SIGSTRING_LEN   40
2877
2878
static int sig_cb(const char *elem, int len, void *arg)
2879
0
{
2880
0
    sig_cb_st *sarg = arg;
2881
0
    size_t i = 0;
2882
0
    const SIGALG_LOOKUP *s;
2883
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2884
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
2885
0
    if (elem == NULL)
2886
0
        return 0;
2887
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2888
0
        return 0;
2889
0
    if (len > (int)(sizeof(etmp) - 1))
2890
0
        return 0;
2891
0
    memcpy(etmp, elem, len);
2892
0
    etmp[len] = 0;
2893
0
    p = strchr(etmp, '+');
2894
    /*
2895
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2896
     * if there's no '+' in the provided name, look for the new-style combined
2897
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2898
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2899
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
2900
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
2901
     * in the table.
2902
     */
2903
0
    if (p == NULL) {
2904
        /* Load provider sigalgs */
2905
0
        if (sarg->ctx != NULL) {
2906
            /* Check if a provider supports the sigalg */
2907
0
            for (i = 0; i < sarg->ctx->sigalg_list_len; i++) {
2908
0
                if (sarg->ctx->sigalg_list[i].sigalg_name != NULL
2909
0
                    && strcmp(etmp,
2910
0
                              sarg->ctx->sigalg_list[i].sigalg_name) == 0) {
2911
0
                    sarg->sigalgs[sarg->sigalgcnt++] =
2912
0
                        sarg->ctx->sigalg_list[i].code_point;
2913
0
                    break;
2914
0
                }
2915
0
            }
2916
0
        }
2917
        /* Check the built-in sigalgs */
2918
0
        if (sarg->ctx == NULL || i == sarg->ctx->sigalg_list_len) {
2919
0
            for (i = 0, s = sigalg_lookup_tbl;
2920
0
                 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
2921
0
                if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2922
0
                    sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2923
0
                    break;
2924
0
                }
2925
0
            }
2926
0
            if (i == OSSL_NELEM(sigalg_lookup_tbl))
2927
0
                return 0;
2928
0
        }
2929
0
    } else {
2930
0
        *p = 0;
2931
0
        p++;
2932
0
        if (*p == 0)
2933
0
            return 0;
2934
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
2935
0
        get_sigorhash(&sig_alg, &hash_alg, p);
2936
0
        if (sig_alg == NID_undef || hash_alg == NID_undef)
2937
0
            return 0;
2938
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2939
0
             i++, s++) {
2940
0
            if (s->hash == hash_alg && s->sig == sig_alg) {
2941
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2942
0
                break;
2943
0
            }
2944
0
        }
2945
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl))
2946
0
            return 0;
2947
0
    }
2948
2949
    /* Reject duplicates */
2950
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2951
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2952
0
            sarg->sigalgcnt--;
2953
0
            return 0;
2954
0
        }
2955
0
    }
2956
0
    return 1;
2957
0
}
2958
2959
/*
2960
 * Set supported signature algorithms based on a colon separated list of the
2961
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2962
 */
2963
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
2964
0
{
2965
0
    sig_cb_st sig;
2966
0
    sig.sigalgcnt = 0;
2967
2968
0
    if (ctx != NULL)
2969
0
        sig.ctx = ctx;
2970
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2971
0
        return 0;
2972
0
    if (c == NULL)
2973
0
        return 1;
2974
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2975
0
}
2976
2977
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2978
                     int client)
2979
0
{
2980
0
    uint16_t *sigalgs;
2981
2982
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
2983
0
        return 0;
2984
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2985
2986
0
    if (client) {
2987
0
        OPENSSL_free(c->client_sigalgs);
2988
0
        c->client_sigalgs = sigalgs;
2989
0
        c->client_sigalgslen = salglen;
2990
0
    } else {
2991
0
        OPENSSL_free(c->conf_sigalgs);
2992
0
        c->conf_sigalgs = sigalgs;
2993
0
        c->conf_sigalgslen = salglen;
2994
0
    }
2995
2996
0
    return 1;
2997
0
}
2998
2999
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3000
0
{
3001
0
    uint16_t *sigalgs, *sptr;
3002
0
    size_t i;
3003
3004
0
    if (salglen & 1)
3005
0
        return 0;
3006
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3007
0
        return 0;
3008
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3009
0
        size_t j;
3010
0
        const SIGALG_LOOKUP *curr;
3011
0
        int md_id = *psig_nids++;
3012
0
        int sig_id = *psig_nids++;
3013
3014
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3015
0
             j++, curr++) {
3016
0
            if (curr->hash == md_id && curr->sig == sig_id) {
3017
0
                *sptr++ = curr->sigalg;
3018
0
                break;
3019
0
            }
3020
0
        }
3021
3022
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3023
0
            goto err;
3024
0
    }
3025
3026
0
    if (client) {
3027
0
        OPENSSL_free(c->client_sigalgs);
3028
0
        c->client_sigalgs = sigalgs;
3029
0
        c->client_sigalgslen = salglen / 2;
3030
0
    } else {
3031
0
        OPENSSL_free(c->conf_sigalgs);
3032
0
        c->conf_sigalgs = sigalgs;
3033
0
        c->conf_sigalgslen = salglen / 2;
3034
0
    }
3035
3036
0
    return 1;
3037
3038
0
 err:
3039
0
    OPENSSL_free(sigalgs);
3040
0
    return 0;
3041
0
}
3042
3043
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3044
0
{
3045
0
    int sig_nid, use_pc_sigalgs = 0;
3046
0
    size_t i;
3047
0
    const SIGALG_LOOKUP *sigalg;
3048
0
    size_t sigalgslen;
3049
3050
0
    if (default_nid == -1)
3051
0
        return 1;
3052
0
    sig_nid = X509_get_signature_nid(x);
3053
0
    if (default_nid)
3054
0
        return sig_nid == default_nid ? 1 : 0;
3055
3056
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3057
        /*
3058
         * If we're in TLSv1.3 then we only get here if we're checking the
3059
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3060
         * otherwise we default to normal sigalgs.
3061
         */
3062
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3063
0
        use_pc_sigalgs = 1;
3064
0
    } else {
3065
0
        sigalgslen = s->shared_sigalgslen;
3066
0
    }
3067
0
    for (i = 0; i < sigalgslen; i++) {
3068
0
        sigalg = use_pc_sigalgs
3069
0
                 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
3070
0
                 : s->shared_sigalgs[i];
3071
0
        if (sigalg != NULL && sig_nid == sigalg->sigandhash)
3072
0
            return 1;
3073
0
    }
3074
0
    return 0;
3075
0
}
3076
3077
/* Check to see if a certificate issuer name matches list of CA names */
3078
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3079
0
{
3080
0
    const X509_NAME *nm;
3081
0
    int i;
3082
0
    nm = X509_get_issuer_name(x);
3083
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
3084
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3085
0
            return 1;
3086
0
    }
3087
0
    return 0;
3088
0
}
3089
3090
/*
3091
 * Check certificate chain is consistent with TLS extensions and is usable by
3092
 * server. This servers two purposes: it allows users to check chains before
3093
 * passing them to the server and it allows the server to check chains before
3094
 * attempting to use them.
3095
 */
3096
3097
/* Flags which need to be set for a certificate when strict mode not set */
3098
3099
#define CERT_PKEY_VALID_FLAGS \
3100
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3101
/* Strict mode flags */
3102
#define CERT_PKEY_STRICT_FLAGS \
3103
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3104
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3105
3106
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3107
                     STACK_OF(X509) *chain, int idx)
3108
77.7k
{
3109
77.7k
    int i;
3110
77.7k
    int rv = 0;
3111
77.7k
    int check_flags = 0, strict_mode;
3112
77.7k
    CERT_PKEY *cpk = NULL;
3113
77.7k
    CERT *c = s->cert;
3114
77.7k
    uint32_t *pvalid;
3115
77.7k
    unsigned int suiteb_flags = tls1_suiteb(s);
3116
3117
    /*
3118
     * Meaning of idx:
3119
     * idx == -1 means SSL_check_chain() invocation
3120
     * idx == -2 means checking client certificate chains
3121
     * idx >= 0 means checking SSL_PKEY index
3122
     *
3123
     * For RPK, where there may be no cert, we ignore -1
3124
     */
3125
77.7k
    if (idx != -1) {
3126
77.7k
        if (idx == -2) {
3127
0
            cpk = c->key;
3128
0
            idx = (int)(cpk - c->pkeys);
3129
0
        } else
3130
77.7k
            cpk = c->pkeys + idx;
3131
77.7k
        pvalid = s->s3.tmp.valid_flags + idx;
3132
77.7k
        x = cpk->x509;
3133
77.7k
        pk = cpk->privatekey;
3134
77.7k
        chain = cpk->chain;
3135
77.7k
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3136
77.7k
        if (tls12_rpk_and_privkey(s, idx)) {
3137
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
3138
0
                return 0;
3139
0
            *pvalid = rv = CERT_PKEY_RPK;
3140
0
            return rv;
3141
0
        }
3142
        /* If no cert or key, forget it */
3143
77.7k
        if (x == NULL || pk == NULL)
3144
51.8k
            goto end;
3145
77.7k
    } else {
3146
0
        size_t certidx;
3147
3148
0
        if (x == NULL || pk == NULL)
3149
0
            return 0;
3150
3151
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
3152
0
                                    SSL_CONNECTION_GET_CTX(s)) == NULL)
3153
0
            return 0;
3154
0
        idx = certidx;
3155
0
        pvalid = s->s3.tmp.valid_flags + idx;
3156
3157
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3158
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
3159
0
        else
3160
0
            check_flags = CERT_PKEY_VALID_FLAGS;
3161
0
        strict_mode = 1;
3162
0
    }
3163
3164
25.9k
    if (suiteb_flags) {
3165
0
        int ok;
3166
0
        if (check_flags)
3167
0
            check_flags |= CERT_PKEY_SUITEB;
3168
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3169
0
        if (ok == X509_V_OK)
3170
0
            rv |= CERT_PKEY_SUITEB;
3171
0
        else if (!check_flags)
3172
0
            goto end;
3173
0
    }
3174
3175
    /*
3176
     * Check all signature algorithms are consistent with signature
3177
     * algorithms extension if TLS 1.2 or later and strict mode.
3178
     */
3179
25.9k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
3180
25.9k
        && strict_mode) {
3181
0
        int default_nid;
3182
0
        int rsign = 0;
3183
3184
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
3185
0
                || s->s3.tmp.peer_sigalgs != NULL) {
3186
0
            default_nid = 0;
3187
        /* If no sigalgs extension use defaults from RFC5246 */
3188
0
        } else {
3189
0
            switch (idx) {
3190
0
            case SSL_PKEY_RSA:
3191
0
                rsign = EVP_PKEY_RSA;
3192
0
                default_nid = NID_sha1WithRSAEncryption;
3193
0
                break;
3194
3195
0
            case SSL_PKEY_DSA_SIGN:
3196
0
                rsign = EVP_PKEY_DSA;
3197
0
                default_nid = NID_dsaWithSHA1;
3198
0
                break;
3199
3200
0
            case SSL_PKEY_ECC:
3201
0
                rsign = EVP_PKEY_EC;
3202
0
                default_nid = NID_ecdsa_with_SHA1;
3203
0
                break;
3204
3205
0
            case SSL_PKEY_GOST01:
3206
0
                rsign = NID_id_GostR3410_2001;
3207
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
3208
0
                break;
3209
3210
0
            case SSL_PKEY_GOST12_256:
3211
0
                rsign = NID_id_GostR3410_2012_256;
3212
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
3213
0
                break;
3214
3215
0
            case SSL_PKEY_GOST12_512:
3216
0
                rsign = NID_id_GostR3410_2012_512;
3217
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
3218
0
                break;
3219
3220
0
            default:
3221
0
                default_nid = -1;
3222
0
                break;
3223
0
            }
3224
0
        }
3225
        /*
3226
         * If peer sent no signature algorithms extension and we have set
3227
         * preferred signature algorithms check we support sha1.
3228
         */
3229
0
        if (default_nid > 0 && c->conf_sigalgs) {
3230
0
            size_t j;
3231
0
            const uint16_t *p = c->conf_sigalgs;
3232
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
3233
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
3234
3235
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
3236
0
                    break;
3237
0
            }
3238
0
            if (j == c->conf_sigalgslen) {
3239
0
                if (check_flags)
3240
0
                    goto skip_sigs;
3241
0
                else
3242
0
                    goto end;
3243
0
            }
3244
0
        }
3245
        /* Check signature algorithm of each cert in chain */
3246
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
3247
            /*
3248
             * We only get here if the application has called SSL_check_chain(),
3249
             * so check_flags is always set.
3250
             */
3251
0
            if (find_sig_alg(s, x, pk) != NULL)
3252
0
                rv |= CERT_PKEY_EE_SIGNATURE;
3253
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
3254
0
            if (!check_flags)
3255
0
                goto end;
3256
0
        } else
3257
0
            rv |= CERT_PKEY_EE_SIGNATURE;
3258
0
        rv |= CERT_PKEY_CA_SIGNATURE;
3259
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3260
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
3261
0
                if (check_flags) {
3262
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
3263
0
                    break;
3264
0
                } else
3265
0
                    goto end;
3266
0
            }
3267
0
        }
3268
0
    }
3269
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
3270
25.9k
    else if (check_flags)
3271
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
3272
25.9k
 skip_sigs:
3273
    /* Check cert parameters are consistent */
3274
25.9k
    if (tls1_check_cert_param(s, x, 1))
3275
23.9k
        rv |= CERT_PKEY_EE_PARAM;
3276
1.91k
    else if (!check_flags)
3277
1.91k
        goto end;
3278
23.9k
    if (!s->server)
3279
0
        rv |= CERT_PKEY_CA_PARAM;
3280
    /* In strict mode check rest of chain too */
3281
23.9k
    else if (strict_mode) {
3282
0
        rv |= CERT_PKEY_CA_PARAM;
3283
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3284
0
            X509 *ca = sk_X509_value(chain, i);
3285
0
            if (!tls1_check_cert_param(s, ca, 0)) {
3286
0
                if (check_flags) {
3287
0
                    rv &= ~CERT_PKEY_CA_PARAM;
3288
0
                    break;
3289
0
                } else
3290
0
                    goto end;
3291
0
            }
3292
0
        }
3293
0
    }
3294
23.9k
    if (!s->server && strict_mode) {
3295
0
        STACK_OF(X509_NAME) *ca_dn;
3296
0
        int check_type = 0;
3297
3298
0
        if (EVP_PKEY_is_a(pk, "RSA"))
3299
0
            check_type = TLS_CT_RSA_SIGN;
3300
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
3301
0
            check_type = TLS_CT_DSS_SIGN;
3302
0
        else if (EVP_PKEY_is_a(pk, "EC"))
3303
0
            check_type = TLS_CT_ECDSA_SIGN;
3304
3305
0
        if (check_type) {
3306
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
3307
0
            size_t j;
3308
3309
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
3310
0
                if (*ctypes == check_type) {
3311
0
                    rv |= CERT_PKEY_CERT_TYPE;
3312
0
                    break;
3313
0
                }
3314
0
            }
3315
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
3316
0
                goto end;
3317
0
        } else {
3318
0
            rv |= CERT_PKEY_CERT_TYPE;
3319
0
        }
3320
3321
0
        ca_dn = s->s3.tmp.peer_ca_names;
3322
3323
0
        if (ca_dn == NULL
3324
0
            || sk_X509_NAME_num(ca_dn) == 0
3325
0
            || ssl_check_ca_name(ca_dn, x))
3326
0
            rv |= CERT_PKEY_ISSUER_NAME;
3327
0
        else
3328
0
            for (i = 0; i < sk_X509_num(chain); i++) {
3329
0
                X509 *xtmp = sk_X509_value(chain, i);
3330
3331
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
3332
0
                    rv |= CERT_PKEY_ISSUER_NAME;
3333
0
                    break;
3334
0
                }
3335
0
            }
3336
3337
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
3338
0
            goto end;
3339
0
    } else
3340
23.9k
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
3341
3342
23.9k
    if (!check_flags || (rv & check_flags) == check_flags)
3343
23.9k
        rv |= CERT_PKEY_VALID;
3344
3345
77.7k
 end:
3346
3347
77.7k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
3348
36.0k
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
3349
41.6k
    else
3350
41.6k
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
3351
3352
    /*
3353
     * When checking a CERT_PKEY structure all flags are irrelevant if the
3354
     * chain is invalid.
3355
     */
3356
77.7k
    if (!check_flags) {
3357
77.7k
        if (rv & CERT_PKEY_VALID) {
3358
23.9k
            *pvalid = rv;
3359
53.7k
        } else {
3360
            /* Preserve sign and explicit sign flag, clear rest */
3361
53.7k
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3362
53.7k
            return 0;
3363
53.7k
        }
3364
77.7k
    }
3365
23.9k
    return rv;
3366
77.7k
}
3367
3368
/* Set validity of certificates in an SSL structure */
3369
void tls1_set_cert_validity(SSL_CONNECTION *s)
3370
13.7k
{
3371
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
3372
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
3373
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
3374
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
3375
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
3376
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
3377
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
3378
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
3379
13.7k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
3380
13.7k
}
3381
3382
/* User level utility function to check a chain is suitable */
3383
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
3384
0
{
3385
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3386
3387
0
    if (sc == NULL)
3388
0
        return 0;
3389
3390
0
    return tls1_check_chain(sc, x, pk, chain, -1);
3391
0
}
3392
3393
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
3394
0
{
3395
0
    EVP_PKEY *dhp = NULL;
3396
0
    BIGNUM *p;
3397
0
    int dh_secbits = 80, sec_level_bits;
3398
0
    EVP_PKEY_CTX *pctx = NULL;
3399
0
    OSSL_PARAM_BLD *tmpl = NULL;
3400
0
    OSSL_PARAM *params = NULL;
3401
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3402
3403
0
    if (s->cert->dh_tmp_auto != 2) {
3404
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
3405
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
3406
0
                dh_secbits = 128;
3407
0
            else
3408
0
                dh_secbits = 80;
3409
0
        } else {
3410
0
            if (s->s3.tmp.cert == NULL)
3411
0
                return NULL;
3412
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
3413
0
        }
3414
0
    }
3415
3416
    /* Do not pick a prime that is too weak for the current security level */
3417
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
3418
0
                                                 NULL, NULL);
3419
0
    if (dh_secbits < sec_level_bits)
3420
0
        dh_secbits = sec_level_bits;
3421
3422
0
    if (dh_secbits >= 192)
3423
0
        p = BN_get_rfc3526_prime_8192(NULL);
3424
0
    else if (dh_secbits >= 152)
3425
0
        p = BN_get_rfc3526_prime_4096(NULL);
3426
0
    else if (dh_secbits >= 128)
3427
0
        p = BN_get_rfc3526_prime_3072(NULL);
3428
0
    else if (dh_secbits >= 112)
3429
0
        p = BN_get_rfc3526_prime_2048(NULL);
3430
0
    else
3431
0
        p = BN_get_rfc2409_prime_1024(NULL);
3432
0
    if (p == NULL)
3433
0
        goto err;
3434
3435
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
3436
0
    if (pctx == NULL
3437
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
3438
0
        goto err;
3439
3440
0
    tmpl = OSSL_PARAM_BLD_new();
3441
0
    if (tmpl == NULL
3442
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
3443
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
3444
0
        goto err;
3445
3446
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
3447
0
    if (params == NULL
3448
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
3449
0
        goto err;
3450
3451
0
err:
3452
0
    OSSL_PARAM_free(params);
3453
0
    OSSL_PARAM_BLD_free(tmpl);
3454
0
    EVP_PKEY_CTX_free(pctx);
3455
0
    BN_free(p);
3456
0
    return dhp;
3457
0
}
3458
3459
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3460
                                 int op)
3461
54.4k
{
3462
54.4k
    int secbits = -1;
3463
54.4k
    EVP_PKEY *pkey = X509_get0_pubkey(x);
3464
3465
54.4k
    if (pkey) {
3466
        /*
3467
         * If no parameters this will return -1 and fail using the default
3468
         * security callback for any non-zero security level. This will
3469
         * reject keys which omit parameters but this only affects DSA and
3470
         * omission of parameters is never (?) done in practice.
3471
         */
3472
54.4k
        secbits = EVP_PKEY_get_security_bits(pkey);
3473
54.4k
    }
3474
54.4k
    if (s != NULL)
3475
8.35k
        return ssl_security(s, op, secbits, 0, x);
3476
46.0k
    else
3477
46.0k
        return ssl_ctx_security(ctx, op, secbits, 0, x);
3478
54.4k
}
3479
3480
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3481
                                 int op)
3482
54.4k
{
3483
    /* Lookup signature algorithm digest */
3484
54.4k
    int secbits, nid, pknid;
3485
3486
    /* Don't check signature if self signed */
3487
54.4k
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3488
54.4k
        return 1;
3489
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3490
0
        secbits = -1;
3491
    /* If digest NID not defined use signature NID */
3492
0
    if (nid == NID_undef)
3493
0
        nid = pknid;
3494
0
    if (s != NULL)
3495
0
        return ssl_security(s, op, secbits, nid, x);
3496
0
    else
3497
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
3498
0
}
3499
3500
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
3501
                      int is_ee)
3502
89.5k
{
3503
89.5k
    if (vfy)
3504
0
        vfy = SSL_SECOP_PEER;
3505
89.5k
    if (is_ee) {
3506
89.5k
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3507
0
            return SSL_R_EE_KEY_TOO_SMALL;
3508
89.5k
    } else {
3509
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3510
0
            return SSL_R_CA_KEY_TOO_SMALL;
3511
0
    }
3512
89.5k
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3513
0
        return SSL_R_CA_MD_TOO_WEAK;
3514
89.5k
    return 1;
3515
89.5k
}
3516
3517
/*
3518
 * Check security of a chain, if |sk| includes the end entity certificate then
3519
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3520
 * one to the peer. Return values: 1 if ok otherwise error code to use
3521
 */
3522
3523
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
3524
                            X509 *x, int vfy)
3525
13.2k
{
3526
13.2k
    int rv, start_idx, i;
3527
3528
13.2k
    if (x == NULL) {
3529
13.2k
        x = sk_X509_value(sk, 0);
3530
13.2k
        if (x == NULL)
3531
0
            return ERR_R_INTERNAL_ERROR;
3532
13.2k
        start_idx = 1;
3533
13.2k
    } else
3534
0
        start_idx = 0;
3535
3536
13.2k
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
3537
13.2k
    if (rv != 1)
3538
0
        return rv;
3539
3540
13.2k
    for (i = start_idx; i < sk_X509_num(sk); i++) {
3541
0
        x = sk_X509_value(sk, i);
3542
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
3543
0
        if (rv != 1)
3544
0
            return rv;
3545
0
    }
3546
13.2k
    return 1;
3547
13.2k
}
3548
3549
/*
3550
 * For TLS 1.2 servers check if we have a certificate which can be used
3551
 * with the signature algorithm "lu" and return index of certificate.
3552
 */
3553
3554
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
3555
                                     const SIGALG_LOOKUP *lu)
3556
16.6k
{
3557
16.6k
    int sig_idx = lu->sig_idx;
3558
16.6k
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
3559
16.6k
                                                        SSL_CONNECTION_GET_CTX(s));
3560
3561
    /* If not recognised or not supported by cipher mask it is not suitable */
3562
16.6k
    if (clu == NULL
3563
16.6k
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3564
16.6k
            || (clu->nid == EVP_PKEY_RSA_PSS
3565
13.2k
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3566
4.06k
        return -1;
3567
3568
    /* If doing RPK, the CERT_PKEY won't be "valid" */
3569
12.5k
    if (tls12_rpk_and_privkey(s, sig_idx))
3570
0
        return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
3571
3572
12.5k
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3573
12.5k
}
3574
3575
/*
3576
 * Checks the given cert against signature_algorithm_cert restrictions sent by
3577
 * the peer (if any) as well as whether the hash from the sigalg is usable with
3578
 * the key.
3579
 * Returns true if the cert is usable and false otherwise.
3580
 */
3581
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
3582
                             X509 *x, EVP_PKEY *pkey)
3583
39.8k
{
3584
39.8k
    const SIGALG_LOOKUP *lu;
3585
39.8k
    int mdnid, pknid, supported;
3586
39.8k
    size_t i;
3587
39.8k
    const char *mdname = NULL;
3588
39.8k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3589
3590
    /*
3591
     * If the given EVP_PKEY cannot support signing with this digest,
3592
     * the answer is simply 'no'.
3593
     */
3594
39.8k
    if (sig->hash != NID_undef)
3595
39.8k
        mdname = OBJ_nid2sn(sig->hash);
3596
39.8k
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
3597
39.8k
                                                    mdname,
3598
39.8k
                                                    sctx->propq);
3599
39.8k
    if (supported <= 0)
3600
0
        return 0;
3601
3602
    /*
3603
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
3604
     * on the sigalg with which the certificate was signed (by its issuer).
3605
     */
3606
39.8k
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3607
27.1k
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3608
0
            return 0;
3609
131k
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3610
104k
            lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3611
104k
            if (lu == NULL)
3612
71.8k
                continue;
3613
3614
            /*
3615
             * This does not differentiate between the
3616
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3617
             * have a chain here that lets us look at the key OID in the
3618
             * signing certificate.
3619
             */
3620
32.7k
            if (mdnid == lu->hash && pknid == lu->sig)
3621
27
                return 1;
3622
32.7k
        }
3623
27.0k
        return 0;
3624
27.1k
    }
3625
3626
    /*
3627
     * Without signat_algorithms_cert, any certificate for which we have
3628
     * a viable public key is permitted.
3629
     */
3630
12.7k
    return 1;
3631
39.8k
}
3632
3633
/*
3634
 * Returns true if |s| has a usable certificate configured for use
3635
 * with signature scheme |sig|.
3636
 * "Usable" includes a check for presence as well as applying
3637
 * the signature_algorithm_cert restrictions sent by the peer (if any).
3638
 * Returns false if no usable certificate is found.
3639
 */
3640
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
3641
40.0k
{
3642
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3643
40.0k
    if (idx == -1)
3644
6.02k
        idx = sig->sig_idx;
3645
40.0k
    if (!ssl_has_cert(s, idx))
3646
186
        return 0;
3647
3648
39.8k
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3649
39.8k
                             s->cert->pkeys[idx].privatekey);
3650
40.0k
}
3651
3652
/*
3653
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3654
 * specified signature scheme |sig|, or false otherwise.
3655
 */
3656
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
3657
                          EVP_PKEY *pkey)
3658
0
{
3659
0
    size_t idx;
3660
3661
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
3662
0
        return 0;
3663
3664
    /* Check the key is consistent with the sig alg */
3665
0
    if ((int)idx != sig->sig_idx)
3666
0
        return 0;
3667
3668
0
    return check_cert_usable(s, sig, x, pkey);
3669
0
}
3670
3671
/*
3672
 * Find a signature scheme that works with the supplied certificate |x| and key
3673
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3674
 * available certs/keys to find one that works.
3675
 */
3676
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
3677
                                         EVP_PKEY *pkey)
3678
1.84k
{
3679
1.84k
    const SIGALG_LOOKUP *lu = NULL;
3680
1.84k
    size_t i;
3681
1.84k
    int curve = -1;
3682
1.84k
    EVP_PKEY *tmppkey;
3683
1.84k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3684
3685
    /* Look for a shared sigalgs matching possible certificates */
3686
5.61k
    for (i = 0; i < s->shared_sigalgslen; i++) {
3687
5.51k
        lu = s->shared_sigalgs[i];
3688
3689
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3690
5.51k
        if (lu->hash == NID_sha1
3691
5.51k
            || lu->hash == NID_sha224
3692
5.51k
            || lu->sig == EVP_PKEY_DSA
3693
5.51k
            || lu->sig == EVP_PKEY_RSA)
3694
1.23k
            continue;
3695
        /* Check that we have a cert, and signature_algorithms_cert */
3696
4.27k
        if (!tls1_lookup_md(sctx, lu, NULL))
3697
0
            continue;
3698
4.27k
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3699
4.27k
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3700
177
            continue;
3701
3702
4.10k
        tmppkey = (pkey != NULL) ? pkey
3703
4.10k
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
3704
3705
4.10k
        if (lu->sig == EVP_PKEY_EC) {
3706
3.77k
            if (curve == -1)
3707
1.56k
                curve = ssl_get_EC_curve_nid(tmppkey);
3708
3.77k
            if (lu->curve != NID_undef && curve != lu->curve)
3709
2.36k
                continue;
3710
3.77k
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3711
            /* validate that key is large enough for the signature algorithm */
3712
327
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
3713
0
                continue;
3714
327
        }
3715
1.73k
        break;
3716
4.10k
    }
3717
3718
1.84k
    if (i == s->shared_sigalgslen)
3719
103
        return NULL;
3720
3721
1.73k
    return lu;
3722
1.84k
}
3723
3724
/*
3725
 * Choose an appropriate signature algorithm based on available certificates
3726
 * Sets chosen certificate and signature algorithm.
3727
 *
3728
 * For servers if we fail to find a required certificate it is a fatal error,
3729
 * an appropriate error code is set and a TLS alert is sent.
3730
 *
3731
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3732
 * a fatal error: we will either try another certificate or not present one
3733
 * to the server. In this case no error is set.
3734
 */
3735
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
3736
3.40k
{
3737
3.40k
    const SIGALG_LOOKUP *lu = NULL;
3738
3.40k
    int sig_idx = -1;
3739
3740
3.40k
    s->s3.tmp.cert = NULL;
3741
3.40k
    s->s3.tmp.sigalg = NULL;
3742
3743
3.40k
    if (SSL_CONNECTION_IS_TLS13(s)) {
3744
600
        lu = find_sig_alg(s, NULL, NULL);
3745
600
        if (lu == NULL) {
3746
41
            if (!fatalerrs)
3747
0
                return 1;
3748
41
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3749
41
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3750
41
            return 0;
3751
41
        }
3752
2.80k
    } else {
3753
        /* If ciphersuite doesn't require a cert nothing to do */
3754
2.80k
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3755
196
            return 1;
3756
2.60k
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3757
8
                return 1;
3758
3759
2.59k
        if (SSL_USE_SIGALGS(s)) {
3760
1.68k
            size_t i;
3761
1.68k
            if (s->s3.tmp.peer_sigalgs != NULL) {
3762
320
                int curve = -1;
3763
320
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3764
3765
                /* For Suite B need to match signature algorithm to curve */
3766
320
                if (tls1_suiteb(s))
3767
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3768
0
                                                 .privatekey);
3769
3770
                /*
3771
                 * Find highest preference signature algorithm matching
3772
                 * cert type
3773
                 */
3774
7.21k
                for (i = 0; i < s->shared_sigalgslen; i++) {
3775
7.03k
                    lu = s->shared_sigalgs[i];
3776
3777
7.03k
                    if (s->server) {
3778
7.03k
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3779
1.44k
                            continue;
3780
7.03k
                    } else {
3781
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
3782
3783
0
                        sig_idx = lu->sig_idx;
3784
0
                        if (cc_idx != sig_idx)
3785
0
                            continue;
3786
0
                    }
3787
                    /* Check that we have a cert, and sig_algs_cert */
3788
5.59k
                    if (!has_usable_cert(s, lu, sig_idx))
3789
5.45k
                        continue;
3790
139
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
3791
                        /* validate that key is large enough for the signature algorithm */
3792
45
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3793
3794
45
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
3795
0
                            continue;
3796
45
                    }
3797
139
                    if (curve == -1 || lu->curve == curve)
3798
139
                        break;
3799
139
                }
3800
320
#ifndef OPENSSL_NO_GOST
3801
                /*
3802
                 * Some Windows-based implementations do not send GOST algorithms indication
3803
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3804
                 * we have to assume GOST support.
3805
                 */
3806
320
                if (i == s->shared_sigalgslen
3807
320
                    && (s->s3.tmp.new_cipher->algorithm_auth
3808
181
                        & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
3809
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3810
0
                    if (!fatalerrs)
3811
0
                      return 1;
3812
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3813
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3814
0
                    return 0;
3815
0
                  } else {
3816
0
                    i = 0;
3817
0
                    sig_idx = lu->sig_idx;
3818
0
                  }
3819
0
                }
3820
320
#endif
3821
320
                if (i == s->shared_sigalgslen) {
3822
181
                    if (!fatalerrs)
3823
0
                        return 1;
3824
181
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3825
181
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3826
181
                    return 0;
3827
181
                }
3828
1.36k
            } else {
3829
                /*
3830
                 * If we have no sigalg use defaults
3831
                 */
3832
1.36k
                const uint16_t *sent_sigs;
3833
1.36k
                size_t sent_sigslen;
3834
3835
1.36k
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3836
0
                    if (!fatalerrs)
3837
0
                        return 1;
3838
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3839
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3840
0
                    return 0;
3841
0
                }
3842
3843
                /* Check signature matches a type we sent */
3844
1.36k
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3845
28.2k
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3846
28.2k
                    if (lu->sigalg == *sent_sigs
3847
28.2k
                            && has_usable_cert(s, lu, lu->sig_idx))
3848
1.36k
                        break;
3849
28.2k
                }
3850
1.36k
                if (i == sent_sigslen) {
3851
0
                    if (!fatalerrs)
3852
0
                        return 1;
3853
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3854
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
3855
0
                    return 0;
3856
0
                }
3857
1.36k
            }
3858
1.68k
        } else {
3859
910
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3860
0
                if (!fatalerrs)
3861
0
                    return 1;
3862
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3863
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3864
0
                return 0;
3865
0
            }
3866
910
        }
3867
2.59k
    }
3868
2.97k
    if (sig_idx == -1)
3869
2.83k
        sig_idx = lu->sig_idx;
3870
2.97k
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3871
2.97k
    s->cert->key = s->s3.tmp.cert;
3872
2.97k
    s->s3.tmp.sigalg = lu;
3873
2.97k
    return 1;
3874
3.40k
}
3875
3876
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3877
0
{
3878
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3879
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3880
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3881
0
        return 0;
3882
0
    }
3883
3884
0
    ctx->ext.max_fragment_len_mode = mode;
3885
0
    return 1;
3886
0
}
3887
3888
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3889
0
{
3890
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
3891
3892
0
    if (sc == NULL
3893
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
3894
0
        return 0;
3895
3896
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3897
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3898
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3899
0
        return 0;
3900
0
    }
3901
3902
0
    sc->ext.max_fragment_len_mode = mode;
3903
0
    return 1;
3904
0
}
3905
3906
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3907
0
{
3908
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
3909
0
        return TLSEXT_max_fragment_length_DISABLED;
3910
0
    return session->ext.max_fragment_len_mode;
3911
0
}
3912
3913
/*
3914
 * Helper functions for HMAC access with legacy support included.
3915
 */
3916
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3917
1.20k
{
3918
1.20k
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3919
1.20k
    EVP_MAC *mac = NULL;
3920
3921
1.20k
    if (ret == NULL)
3922
0
        return NULL;
3923
1.20k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3924
1.20k
    if (ctx->ext.ticket_key_evp_cb == NULL
3925
1.20k
            && ctx->ext.ticket_key_cb != NULL) {
3926
0
        if (!ssl_hmac_old_new(ret))
3927
0
            goto err;
3928
0
        return ret;
3929
0
    }
3930
1.20k
#endif
3931
1.20k
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3932
1.20k
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3933
0
        goto err;
3934
1.20k
    EVP_MAC_free(mac);
3935
1.20k
    return ret;
3936
0
 err:
3937
0
    EVP_MAC_CTX_free(ret->ctx);
3938
0
    EVP_MAC_free(mac);
3939
0
    OPENSSL_free(ret);
3940
0
    return NULL;
3941
1.20k
}
3942
3943
void ssl_hmac_free(SSL_HMAC *ctx)
3944
2.37k
{
3945
2.37k
    if (ctx != NULL) {
3946
1.20k
        EVP_MAC_CTX_free(ctx->ctx);
3947
1.20k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3948
1.20k
        ssl_hmac_old_free(ctx);
3949
1.20k
#endif
3950
1.20k
        OPENSSL_free(ctx);
3951
1.20k
    }
3952
2.37k
}
3953
3954
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3955
0
{
3956
0
    return ctx->ctx;
3957
0
}
3958
3959
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3960
983
{
3961
983
    OSSL_PARAM params[2], *p = params;
3962
3963
983
    if (ctx->ctx != NULL) {
3964
983
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3965
983
        *p = OSSL_PARAM_construct_end();
3966
983
        if (EVP_MAC_init(ctx->ctx, key, len, params))
3967
983
            return 1;
3968
983
    }
3969
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3970
0
    if (ctx->old_ctx != NULL)
3971
0
        return ssl_hmac_old_init(ctx, key, len, md);
3972
0
#endif
3973
0
    return 0;
3974
0
}
3975
3976
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3977
909
{
3978
909
    if (ctx->ctx != NULL)
3979
909
        return EVP_MAC_update(ctx->ctx, data, len);
3980
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3981
0
    if (ctx->old_ctx != NULL)
3982
0
        return ssl_hmac_old_update(ctx, data, len);
3983
0
#endif
3984
0
    return 0;
3985
0
}
3986
3987
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3988
                   size_t max_size)
3989
909
{
3990
909
    if (ctx->ctx != NULL)
3991
909
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
3992
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3993
0
    if (ctx->old_ctx != NULL)
3994
0
        return ssl_hmac_old_final(ctx, md, len);
3995
0
#endif
3996
0
    return 0;
3997
0
}
3998
3999
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4000
887
{
4001
887
    if (ctx->ctx != NULL)
4002
887
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4003
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4004
0
    if (ctx->old_ctx != NULL)
4005
0
        return ssl_hmac_old_size(ctx);
4006
0
#endif
4007
0
    return 0;
4008
0
}
4009
4010
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4011
15.7k
{
4012
15.7k
    char gname[OSSL_MAX_NAME_SIZE];
4013
4014
15.7k
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4015
15.7k
        return OBJ_txt2nid(gname);
4016
4017
0
    return NID_undef;
4018
15.7k
}
4019
4020
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4021
                                     const unsigned char *enckey,
4022
                                     size_t enckeylen)
4023
13.5k
{
4024
13.5k
    if (EVP_PKEY_is_a(pkey, "DH")) {
4025
188
        int bits = EVP_PKEY_get_bits(pkey);
4026
4027
188
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4028
            /* the encoded key must be padded to the length of the p */
4029
9
            return 0;
4030
13.3k
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4031
128
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4032
128
            || enckey[0] != 0x04)
4033
28
            return 0;
4034
128
    }
4035
4036
13.5k
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4037
13.5k
}