Coverage Report

Created: 2025-08-11 07:04

/src/openssl30/crypto/ec/ecp_nistp224.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
34
 *
35
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
36
 * and Adam Langley's public domain 64-bit C implementation of curve25519
37
 */
38
39
#include <openssl/opensslconf.h>
40
41
#include <stdint.h>
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/******************************************************************************/
56
/*-
57
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
58
 *
59
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
60
 * using 64-bit coefficients called 'limbs',
61
 * and sometimes (for multiplication results) as
62
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
63
 * using 128-bit coefficients called 'widelimbs'.
64
 * A 4-limb representation is an 'felem';
65
 * a 7-widelimb representation is a 'widefelem'.
66
 * Even within felems, bits of adjacent limbs overlap, and we don't always
67
 * reduce the representations: we ensure that inputs to each felem
68
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
69
 * and fit into a 128-bit word without overflow. The coefficients are then
70
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
71
 * We only reduce to the unique minimal representation at the end of the
72
 * computation.
73
 */
74
75
typedef uint64_t limb;
76
typedef uint64_t limb_aX __attribute((__aligned__(1)));
77
typedef uint128_t widelimb;
78
79
typedef limb felem[4];
80
typedef widelimb widefelem[7];
81
82
/*
83
 * Field element represented as a byte array. 28*8 = 224 bits is also the
84
 * group order size for the elliptic curve, and we also use this type for
85
 * scalars for point multiplication.
86
 */
87
typedef u8 felem_bytearray[28];
88
89
static const felem_bytearray nistp224_curve_params[5] = {
90
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
91
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
92
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
93
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
94
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
95
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
96
    {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
97
     0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
98
     0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
99
    {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
100
     0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
101
     0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
102
    {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
103
     0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
104
     0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
105
};
106
107
/*-
108
 * Precomputed multiples of the standard generator
109
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
110
 * (0 for the point at infinity).
111
 * For each field element, slice a_0 is word 0, etc.
112
 *
113
 * The table has 2 * 16 elements, starting with the following:
114
 * index | bits    | point
115
 * ------+---------+------------------------------
116
 *     0 | 0 0 0 0 | 0G
117
 *     1 | 0 0 0 1 | 1G
118
 *     2 | 0 0 1 0 | 2^56G
119
 *     3 | 0 0 1 1 | (2^56 + 1)G
120
 *     4 | 0 1 0 0 | 2^112G
121
 *     5 | 0 1 0 1 | (2^112 + 1)G
122
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
123
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
124
 *     8 | 1 0 0 0 | 2^168G
125
 *     9 | 1 0 0 1 | (2^168 + 1)G
126
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
127
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
128
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
129
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
130
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
131
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
132
 * followed by a copy of this with each element multiplied by 2^28.
133
 *
134
 * The reason for this is so that we can clock bits into four different
135
 * locations when doing simple scalar multiplies against the base point,
136
 * and then another four locations using the second 16 elements.
137
 */
138
static const felem gmul[2][16][3] = {
139
{{{0, 0, 0, 0},
140
  {0, 0, 0, 0},
141
  {0, 0, 0, 0}},
142
 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
143
  {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
144
  {1, 0, 0, 0}},
145
 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
146
  {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
147
  {1, 0, 0, 0}},
148
 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
149
  {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
150
  {1, 0, 0, 0}},
151
 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
152
  {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
153
  {1, 0, 0, 0}},
154
 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
155
  {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
156
  {1, 0, 0, 0}},
157
 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
158
  {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
159
  {1, 0, 0, 0}},
160
 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
161
  {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
162
  {1, 0, 0, 0}},
163
 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
164
  {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
165
  {1, 0, 0, 0}},
166
 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
167
  {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
168
  {1, 0, 0, 0}},
169
 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
170
  {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
171
  {1, 0, 0, 0}},
172
 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
173
  {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
174
  {1, 0, 0, 0}},
175
 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
176
  {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
177
  {1, 0, 0, 0}},
178
 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
179
  {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
180
  {1, 0, 0, 0}},
181
 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
182
  {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
183
  {1, 0, 0, 0}},
184
 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
185
  {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
186
  {1, 0, 0, 0}}},
187
{{{0, 0, 0, 0},
188
  {0, 0, 0, 0},
189
  {0, 0, 0, 0}},
190
 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
191
  {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
192
  {1, 0, 0, 0}},
193
 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
194
  {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
195
  {1, 0, 0, 0}},
196
 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
197
  {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
198
  {1, 0, 0, 0}},
199
 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
200
  {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
201
  {1, 0, 0, 0}},
202
 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
203
  {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
204
  {1, 0, 0, 0}},
205
 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
206
  {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
207
  {1, 0, 0, 0}},
208
 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
209
  {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
210
  {1, 0, 0, 0}},
211
 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
212
  {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
213
  {1, 0, 0, 0}},
214
 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
215
  {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
216
  {1, 0, 0, 0}},
217
 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
218
  {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
219
  {1, 0, 0, 0}},
220
 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
221
  {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
222
  {1, 0, 0, 0}},
223
 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
224
  {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
225
  {1, 0, 0, 0}},
226
 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
227
  {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
228
  {1, 0, 0, 0}},
229
 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
230
  {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
231
  {1, 0, 0, 0}},
232
 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
233
  {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
234
  {1, 0, 0, 0}}}
235
};
236
237
/* Precomputation for the group generator. */
238
struct nistp224_pre_comp_st {
239
    felem g_pre_comp[2][16][3];
240
    CRYPTO_REF_COUNT references;
241
    CRYPTO_RWLOCK *lock;
242
};
243
244
const EC_METHOD *EC_GFp_nistp224_method(void)
245
29.3k
{
246
29.3k
    static const EC_METHOD ret = {
247
29.3k
        EC_FLAGS_DEFAULT_OCT,
248
29.3k
        NID_X9_62_prime_field,
249
29.3k
        ossl_ec_GFp_nistp224_group_init,
250
29.3k
        ossl_ec_GFp_simple_group_finish,
251
29.3k
        ossl_ec_GFp_simple_group_clear_finish,
252
29.3k
        ossl_ec_GFp_nist_group_copy,
253
29.3k
        ossl_ec_GFp_nistp224_group_set_curve,
254
29.3k
        ossl_ec_GFp_simple_group_get_curve,
255
29.3k
        ossl_ec_GFp_simple_group_get_degree,
256
29.3k
        ossl_ec_group_simple_order_bits,
257
29.3k
        ossl_ec_GFp_simple_group_check_discriminant,
258
29.3k
        ossl_ec_GFp_simple_point_init,
259
29.3k
        ossl_ec_GFp_simple_point_finish,
260
29.3k
        ossl_ec_GFp_simple_point_clear_finish,
261
29.3k
        ossl_ec_GFp_simple_point_copy,
262
29.3k
        ossl_ec_GFp_simple_point_set_to_infinity,
263
29.3k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
264
29.3k
        ossl_ec_GFp_nistp224_point_get_affine_coordinates,
265
29.3k
        0 /* point_set_compressed_coordinates */ ,
266
29.3k
        0 /* point2oct */ ,
267
29.3k
        0 /* oct2point */ ,
268
29.3k
        ossl_ec_GFp_simple_add,
269
29.3k
        ossl_ec_GFp_simple_dbl,
270
29.3k
        ossl_ec_GFp_simple_invert,
271
29.3k
        ossl_ec_GFp_simple_is_at_infinity,
272
29.3k
        ossl_ec_GFp_simple_is_on_curve,
273
29.3k
        ossl_ec_GFp_simple_cmp,
274
29.3k
        ossl_ec_GFp_simple_make_affine,
275
29.3k
        ossl_ec_GFp_simple_points_make_affine,
276
29.3k
        ossl_ec_GFp_nistp224_points_mul,
277
29.3k
        ossl_ec_GFp_nistp224_precompute_mult,
278
29.3k
        ossl_ec_GFp_nistp224_have_precompute_mult,
279
29.3k
        ossl_ec_GFp_nist_field_mul,
280
29.3k
        ossl_ec_GFp_nist_field_sqr,
281
29.3k
        0 /* field_div */ ,
282
29.3k
        ossl_ec_GFp_simple_field_inv,
283
29.3k
        0 /* field_encode */ ,
284
29.3k
        0 /* field_decode */ ,
285
29.3k
        0,                      /* field_set_to_one */
286
29.3k
        ossl_ec_key_simple_priv2oct,
287
29.3k
        ossl_ec_key_simple_oct2priv,
288
29.3k
        0, /* set private */
289
29.3k
        ossl_ec_key_simple_generate_key,
290
29.3k
        ossl_ec_key_simple_check_key,
291
29.3k
        ossl_ec_key_simple_generate_public_key,
292
29.3k
        0, /* keycopy */
293
29.3k
        0, /* keyfinish */
294
29.3k
        ossl_ecdh_simple_compute_key,
295
29.3k
        ossl_ecdsa_simple_sign_setup,
296
29.3k
        ossl_ecdsa_simple_sign_sig,
297
29.3k
        ossl_ecdsa_simple_verify_sig,
298
29.3k
        0, /* field_inverse_mod_ord */
299
29.3k
        0, /* blind_coordinates */
300
29.3k
        0, /* ladder_pre */
301
29.3k
        0, /* ladder_step */
302
29.3k
        0  /* ladder_post */
303
29.3k
    };
304
305
29.3k
    return &ret;
306
29.3k
}
307
308
/*
309
 * Helper functions to convert field elements to/from internal representation
310
 */
311
static void bin28_to_felem(felem out, const u8 in[28])
312
18.4k
{
313
18.4k
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
314
18.4k
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
315
18.4k
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
316
18.4k
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
317
18.4k
}
318
319
static void felem_to_bin28(u8 out[28], const felem in)
320
27.7k
{
321
27.7k
    unsigned i;
322
221k
    for (i = 0; i < 7; ++i) {
323
194k
        out[i] = in[0] >> (8 * i);
324
194k
        out[i + 7] = in[1] >> (8 * i);
325
194k
        out[i + 14] = in[2] >> (8 * i);
326
194k
        out[i + 21] = in[3] >> (8 * i);
327
194k
    }
328
27.7k
}
329
330
/* From OpenSSL BIGNUM to internal representation */
331
static int BN_to_felem(felem out, const BIGNUM *bn)
332
18.4k
{
333
18.4k
    felem_bytearray b_out;
334
18.4k
    int num_bytes;
335
336
18.4k
    if (BN_is_negative(bn)) {
337
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
338
0
        return 0;
339
0
    }
340
18.4k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
341
18.4k
    if (num_bytes < 0) {
342
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
343
0
        return 0;
344
0
    }
345
18.4k
    bin28_to_felem(out, b_out);
346
18.4k
    return 1;
347
18.4k
}
348
349
/* From internal representation to OpenSSL BIGNUM */
350
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
351
27.7k
{
352
27.7k
    felem_bytearray b_out;
353
27.7k
    felem_to_bin28(b_out, in);
354
27.7k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
355
27.7k
}
356
357
/******************************************************************************/
358
/*-
359
 *                              FIELD OPERATIONS
360
 *
361
 * Field operations, using the internal representation of field elements.
362
 * NB! These operations are specific to our point multiplication and cannot be
363
 * expected to be correct in general - e.g., multiplication with a large scalar
364
 * will cause an overflow.
365
 *
366
 */
367
368
static void felem_one(felem out)
369
0
{
370
0
    out[0] = 1;
371
0
    out[1] = 0;
372
0
    out[2] = 0;
373
0
    out[3] = 0;
374
0
}
375
376
static void felem_assign(felem out, const felem in)
377
2.01M
{
378
2.01M
    out[0] = in[0];
379
2.01M
    out[1] = in[1];
380
2.01M
    out[2] = in[2];
381
2.01M
    out[3] = in[3];
382
2.01M
}
383
384
/* Sum two field elements: out += in */
385
static void felem_sum(felem out, const felem in)
386
580k
{
387
580k
    out[0] += in[0];
388
580k
    out[1] += in[1];
389
580k
    out[2] += in[2];
390
580k
    out[3] += in[3];
391
580k
}
392
393
/* Subtract field elements: out -= in */
394
/* Assumes in[i] < 2^57 */
395
static void felem_diff(felem out, const felem in)
396
551k
{
397
551k
    static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
398
551k
    static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
399
551k
    static const limb two58m42m2 = (((limb) 1) << 58) -
400
551k
        (((limb) 1) << 42) - (((limb) 1) << 2);
401
402
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
403
551k
    out[0] += two58p2;
404
551k
    out[1] += two58m42m2;
405
551k
    out[2] += two58m2;
406
551k
    out[3] += two58m2;
407
408
551k
    out[0] -= in[0];
409
551k
    out[1] -= in[1];
410
551k
    out[2] -= in[2];
411
551k
    out[3] -= in[3];
412
551k
}
413
414
/* Subtract in unreduced 128-bit mode: out -= in */
415
/* Assumes in[i] < 2^119 */
416
static void widefelem_diff(widefelem out, const widefelem in)
417
358k
{
418
358k
    static const widelimb two120 = ((widelimb) 1) << 120;
419
358k
    static const widelimb two120m64 = (((widelimb) 1) << 120) -
420
358k
        (((widelimb) 1) << 64);
421
358k
    static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
422
358k
        (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
423
424
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
425
358k
    out[0] += two120;
426
358k
    out[1] += two120m64;
427
358k
    out[2] += two120m64;
428
358k
    out[3] += two120;
429
358k
    out[4] += two120m104m64;
430
358k
    out[5] += two120m64;
431
358k
    out[6] += two120m64;
432
433
358k
    out[0] -= in[0];
434
358k
    out[1] -= in[1];
435
358k
    out[2] -= in[2];
436
358k
    out[3] -= in[3];
437
358k
    out[4] -= in[4];
438
358k
    out[5] -= in[5];
439
358k
    out[6] -= in[6];
440
358k
}
441
442
/* Subtract in mixed mode: out128 -= in64 */
443
/* in[i] < 2^63 */
444
static void felem_diff_128_64(widefelem out, const felem in)
445
1.07M
{
446
1.07M
    static const widelimb two64p8 = (((widelimb) 1) << 64) +
447
1.07M
        (((widelimb) 1) << 8);
448
1.07M
    static const widelimb two64m8 = (((widelimb) 1) << 64) -
449
1.07M
        (((widelimb) 1) << 8);
450
1.07M
    static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
451
1.07M
        (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
452
453
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
454
1.07M
    out[0] += two64p8;
455
1.07M
    out[1] += two64m48m8;
456
1.07M
    out[2] += two64m8;
457
1.07M
    out[3] += two64m8;
458
459
1.07M
    out[0] -= in[0];
460
1.07M
    out[1] -= in[1];
461
1.07M
    out[2] -= in[2];
462
1.07M
    out[3] -= in[3];
463
1.07M
}
464
465
/*
466
 * Multiply a field element by a scalar: out = out * scalar The scalars we
467
 * actually use are small, so results fit without overflow
468
 */
469
static void felem_scalar(felem out, const limb scalar)
470
745k
{
471
745k
    out[0] *= scalar;
472
745k
    out[1] *= scalar;
473
745k
    out[2] *= scalar;
474
745k
    out[3] *= scalar;
475
745k
}
476
477
/*
478
 * Multiply an unreduced field element by a scalar: out = out * scalar The
479
 * scalars we actually use are small, so results fit without overflow
480
 */
481
static void widefelem_scalar(widefelem out, const widelimb scalar)
482
193k
{
483
193k
    out[0] *= scalar;
484
193k
    out[1] *= scalar;
485
193k
    out[2] *= scalar;
486
193k
    out[3] *= scalar;
487
193k
    out[4] *= scalar;
488
193k
    out[5] *= scalar;
489
193k
    out[6] *= scalar;
490
193k
}
491
492
/* Square a field element: out = in^2 */
493
static void felem_square(widefelem out, const felem in)
494
2.74M
{
495
2.74M
    limb tmp0, tmp1, tmp2;
496
2.74M
    tmp0 = 2 * in[0];
497
2.74M
    tmp1 = 2 * in[1];
498
2.74M
    tmp2 = 2 * in[2];
499
2.74M
    out[0] = ((widelimb) in[0]) * in[0];
500
2.74M
    out[1] = ((widelimb) in[0]) * tmp1;
501
2.74M
    out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
502
2.74M
    out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
503
2.74M
    out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
504
2.74M
    out[5] = ((widelimb) in[3]) * tmp2;
505
2.74M
    out[6] = ((widelimb) in[3]) * in[3];
506
2.74M
}
507
508
/* Multiply two field elements: out = in1 * in2 */
509
static void felem_mul(widefelem out, const felem in1, const felem in2)
510
2.08M
{
511
2.08M
    out[0] = ((widelimb) in1[0]) * in2[0];
512
2.08M
    out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
513
2.08M
    out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
514
2.08M
             ((widelimb) in1[2]) * in2[0];
515
2.08M
    out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
516
2.08M
             ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
517
2.08M
    out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
518
2.08M
             ((widelimb) in1[3]) * in2[1];
519
2.08M
    out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
520
2.08M
    out[6] = ((widelimb) in1[3]) * in2[3];
521
2.08M
}
522
523
/*-
524
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
525
 * Requires in[i] < 2^126,
526
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
527
static void felem_reduce(felem out, const widefelem in)
528
4.50M
{
529
4.50M
    static const widelimb two127p15 = (((widelimb) 1) << 127) +
530
4.50M
        (((widelimb) 1) << 15);
531
4.50M
    static const widelimb two127m71 = (((widelimb) 1) << 127) -
532
4.50M
        (((widelimb) 1) << 71);
533
4.50M
    static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
534
4.50M
        (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
535
4.50M
    widelimb output[5];
536
537
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
538
4.50M
    output[0] = in[0] + two127p15;
539
4.50M
    output[1] = in[1] + two127m71m55;
540
4.50M
    output[2] = in[2] + two127m71;
541
4.50M
    output[3] = in[3];
542
4.50M
    output[4] = in[4];
543
544
    /* Eliminate in[4], in[5], in[6] */
545
4.50M
    output[4] += in[6] >> 16;
546
4.50M
    output[3] += (in[6] & 0xffff) << 40;
547
4.50M
    output[2] -= in[6];
548
549
4.50M
    output[3] += in[5] >> 16;
550
4.50M
    output[2] += (in[5] & 0xffff) << 40;
551
4.50M
    output[1] -= in[5];
552
553
4.50M
    output[2] += output[4] >> 16;
554
4.50M
    output[1] += (output[4] & 0xffff) << 40;
555
4.50M
    output[0] -= output[4];
556
557
    /* Carry 2 -> 3 -> 4 */
558
4.50M
    output[3] += output[2] >> 56;
559
4.50M
    output[2] &= 0x00ffffffffffffff;
560
561
4.50M
    output[4] = output[3] >> 56;
562
4.50M
    output[3] &= 0x00ffffffffffffff;
563
564
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
565
566
    /* Eliminate output[4] */
567
4.50M
    output[2] += output[4] >> 16;
568
    /* output[2] < 2^56 + 2^56 = 2^57 */
569
4.50M
    output[1] += (output[4] & 0xffff) << 40;
570
4.50M
    output[0] -= output[4];
571
572
    /* Carry 0 -> 1 -> 2 -> 3 */
573
4.50M
    output[1] += output[0] >> 56;
574
4.50M
    out[0] = output[0] & 0x00ffffffffffffff;
575
576
4.50M
    output[2] += output[1] >> 56;
577
    /* output[2] < 2^57 + 2^72 */
578
4.50M
    out[1] = output[1] & 0x00ffffffffffffff;
579
4.50M
    output[3] += output[2] >> 56;
580
    /* output[3] <= 2^56 + 2^16 */
581
4.50M
    out[2] = output[2] & 0x00ffffffffffffff;
582
583
    /*-
584
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
585
     * out[3] <= 2^56 + 2^16 (due to final carry),
586
     * so out < 2*p
587
     */
588
4.50M
    out[3] = output[3];
589
4.50M
}
590
591
static void felem_square_reduce(felem out, const felem in)
592
0
{
593
0
    widefelem tmp;
594
0
    felem_square(tmp, in);
595
0
    felem_reduce(out, tmp);
596
0
}
597
598
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
599
0
{
600
0
    widefelem tmp;
601
0
    felem_mul(tmp, in1, in2);
602
0
    felem_reduce(out, tmp);
603
0
}
604
605
/*
606
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
607
 * call felem_reduce first)
608
 */
609
static void felem_contract(felem out, const felem in)
610
20.3k
{
611
20.3k
    static const int64_t two56 = ((limb) 1) << 56;
612
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
613
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
614
20.3k
    int64_t tmp[4], a;
615
20.3k
    tmp[0] = in[0];
616
20.3k
    tmp[1] = in[1];
617
20.3k
    tmp[2] = in[2];
618
20.3k
    tmp[3] = in[3];
619
    /* Case 1: a = 1 iff in >= 2^224 */
620
20.3k
    a = (in[3] >> 56);
621
20.3k
    tmp[0] -= a;
622
20.3k
    tmp[1] += a << 40;
623
20.3k
    tmp[3] &= 0x00ffffffffffffff;
624
    /*
625
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
626
     * and the lower part is non-zero
627
     */
628
20.3k
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
629
20.3k
        (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
630
20.3k
    a &= 0x00ffffffffffffff;
631
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
632
20.3k
    a = (a - 1) >> 63;
633
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
634
20.3k
    tmp[3] &= a ^ 0xffffffffffffffff;
635
20.3k
    tmp[2] &= a ^ 0xffffffffffffffff;
636
20.3k
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
637
20.3k
    tmp[0] -= 1 & a;
638
639
    /*
640
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
641
     * non-zero, so we only need one step
642
     */
643
20.3k
    a = tmp[0] >> 63;
644
20.3k
    tmp[0] += two56 & a;
645
20.3k
    tmp[1] -= 1 & a;
646
647
    /* carry 1 -> 2 -> 3 */
648
20.3k
    tmp[2] += tmp[1] >> 56;
649
20.3k
    tmp[1] &= 0x00ffffffffffffff;
650
651
20.3k
    tmp[3] += tmp[2] >> 56;
652
20.3k
    tmp[2] &= 0x00ffffffffffffff;
653
654
    /* Now 0 <= out < p */
655
20.3k
    out[0] = tmp[0];
656
20.3k
    out[1] = tmp[1];
657
20.3k
    out[2] = tmp[2];
658
20.3k
    out[3] = tmp[3];
659
20.3k
}
660
661
/*
662
 * Get negative value: out = -in
663
 * Requires in[i] < 2^63,
664
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
665
 */
666
static void felem_neg(felem out, const felem in)
667
25.0k
{
668
25.0k
    widefelem tmp;
669
670
25.0k
    memset(tmp, 0, sizeof(tmp));
671
25.0k
    felem_diff_128_64(tmp, in);
672
25.0k
    felem_reduce(out, tmp);
673
25.0k
}
674
675
/*
676
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
677
 * elements are reduced to in < 2^225, so we only need to check three cases:
678
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
679
 */
680
static limb felem_is_zero(const felem in)
681
658k
{
682
658k
    limb zero, two224m96p1, two225m97p2;
683
684
658k
    zero = in[0] | in[1] | in[2] | in[3];
685
658k
    zero = (((int64_t) (zero) - 1) >> 63) & 1;
686
658k
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
687
658k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
688
658k
    two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
689
658k
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
690
658k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
691
658k
    two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
692
658k
    return (zero | two224m96p1 | two225m97p2);
693
658k
}
694
695
static int felem_is_zero_int(const void *in)
696
0
{
697
0
    return (int)(felem_is_zero(in) & ((limb) 1));
698
0
}
699
700
/* Invert a field element */
701
/* Computation chain copied from djb's code */
702
static void felem_inv(felem out, const felem in)
703
5.60k
{
704
5.60k
    felem ftmp, ftmp2, ftmp3, ftmp4;
705
5.60k
    widefelem tmp;
706
5.60k
    unsigned i;
707
708
5.60k
    felem_square(tmp, in);
709
5.60k
    felem_reduce(ftmp, tmp);    /* 2 */
710
5.60k
    felem_mul(tmp, in, ftmp);
711
5.60k
    felem_reduce(ftmp, tmp);    /* 2^2 - 1 */
712
5.60k
    felem_square(tmp, ftmp);
713
5.60k
    felem_reduce(ftmp, tmp);    /* 2^3 - 2 */
714
5.60k
    felem_mul(tmp, in, ftmp);
715
5.60k
    felem_reduce(ftmp, tmp);    /* 2^3 - 1 */
716
5.60k
    felem_square(tmp, ftmp);
717
5.60k
    felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */
718
5.60k
    felem_square(tmp, ftmp2);
719
5.60k
    felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */
720
5.60k
    felem_square(tmp, ftmp2);
721
5.60k
    felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */
722
5.60k
    felem_mul(tmp, ftmp2, ftmp);
723
5.60k
    felem_reduce(ftmp, tmp);    /* 2^6 - 1 */
724
5.60k
    felem_square(tmp, ftmp);
725
5.60k
    felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */
726
33.6k
    for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */
727
28.0k
        felem_square(tmp, ftmp2);
728
28.0k
        felem_reduce(ftmp2, tmp);
729
28.0k
    }
730
5.60k
    felem_mul(tmp, ftmp2, ftmp);
731
5.60k
    felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */
732
5.60k
    felem_square(tmp, ftmp2);
733
5.60k
    felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */
734
67.2k
    for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */
735
61.6k
        felem_square(tmp, ftmp3);
736
61.6k
        felem_reduce(ftmp3, tmp);
737
61.6k
    }
738
5.60k
    felem_mul(tmp, ftmp3, ftmp2);
739
5.60k
    felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */
740
5.60k
    felem_square(tmp, ftmp2);
741
5.60k
    felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */
742
134k
    for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */
743
128k
        felem_square(tmp, ftmp3);
744
128k
        felem_reduce(ftmp3, tmp);
745
128k
    }
746
5.60k
    felem_mul(tmp, ftmp3, ftmp2);
747
5.60k
    felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */
748
5.60k
    felem_square(tmp, ftmp3);
749
5.60k
    felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */
750
269k
    for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */
751
263k
        felem_square(tmp, ftmp4);
752
263k
        felem_reduce(ftmp4, tmp);
753
263k
    }
754
5.60k
    felem_mul(tmp, ftmp3, ftmp4);
755
5.60k
    felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */
756
5.60k
    felem_square(tmp, ftmp3);
757
5.60k
    felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */
758
134k
    for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */
759
128k
        felem_square(tmp, ftmp4);
760
128k
        felem_reduce(ftmp4, tmp);
761
128k
    }
762
5.60k
    felem_mul(tmp, ftmp2, ftmp4);
763
5.60k
    felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */
764
39.2k
    for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */
765
33.6k
        felem_square(tmp, ftmp2);
766
33.6k
        felem_reduce(ftmp2, tmp);
767
33.6k
    }
768
5.60k
    felem_mul(tmp, ftmp2, ftmp);
769
5.60k
    felem_reduce(ftmp, tmp);    /* 2^126 - 1 */
770
5.60k
    felem_square(tmp, ftmp);
771
5.60k
    felem_reduce(ftmp, tmp);    /* 2^127 - 2 */
772
5.60k
    felem_mul(tmp, ftmp, in);
773
5.60k
    felem_reduce(ftmp, tmp);    /* 2^127 - 1 */
774
549k
    for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */
775
543k
        felem_square(tmp, ftmp);
776
543k
        felem_reduce(ftmp, tmp);
777
543k
    }
778
5.60k
    felem_mul(tmp, ftmp, ftmp3);
779
5.60k
    felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */
780
5.60k
}
781
782
/*
783
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
784
 * out to itself.
785
 */
786
static void copy_conditional(felem out, const felem in, limb icopy)
787
1.01M
{
788
1.01M
    unsigned i;
789
    /*
790
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
791
     */
792
1.01M
    const limb copy = -icopy;
793
5.06M
    for (i = 0; i < 4; ++i) {
794
4.04M
        const limb tmp = copy & (in[i] ^ out[i]);
795
4.04M
        out[i] ^= tmp;
796
4.04M
    }
797
1.01M
}
798
799
/******************************************************************************/
800
/*-
801
 *                       ELLIPTIC CURVE POINT OPERATIONS
802
 *
803
 * Points are represented in Jacobian projective coordinates:
804
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
805
 * or to the point at infinity if Z == 0.
806
 *
807
 */
808
809
/*-
810
 * Double an elliptic curve point:
811
 * (X', Y', Z') = 2 * (X, Y, Z), where
812
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
813
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
814
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
815
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
816
 * while x_out == y_in is not (maybe this works, but it's not tested).
817
 */
818
static void
819
point_double(felem x_out, felem y_out, felem z_out,
820
             const felem x_in, const felem y_in, const felem z_in)
821
193k
{
822
193k
    widefelem tmp, tmp2;
823
193k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
824
825
193k
    felem_assign(ftmp, x_in);
826
193k
    felem_assign(ftmp2, x_in);
827
828
    /* delta = z^2 */
829
193k
    felem_square(tmp, z_in);
830
193k
    felem_reduce(delta, tmp);
831
832
    /* gamma = y^2 */
833
193k
    felem_square(tmp, y_in);
834
193k
    felem_reduce(gamma, tmp);
835
836
    /* beta = x*gamma */
837
193k
    felem_mul(tmp, x_in, gamma);
838
193k
    felem_reduce(beta, tmp);
839
840
    /* alpha = 3*(x-delta)*(x+delta) */
841
193k
    felem_diff(ftmp, delta);
842
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
843
193k
    felem_sum(ftmp2, delta);
844
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
845
193k
    felem_scalar(ftmp2, 3);
846
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
847
193k
    felem_mul(tmp, ftmp, ftmp2);
848
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
849
193k
    felem_reduce(alpha, tmp);
850
851
    /* x' = alpha^2 - 8*beta */
852
193k
    felem_square(tmp, alpha);
853
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
854
193k
    felem_assign(ftmp, beta);
855
193k
    felem_scalar(ftmp, 8);
856
    /* ftmp[i] < 8 * 2^57 = 2^60 */
857
193k
    felem_diff_128_64(tmp, ftmp);
858
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
859
193k
    felem_reduce(x_out, tmp);
860
861
    /* z' = (y + z)^2 - gamma - delta */
862
193k
    felem_sum(delta, gamma);
863
    /* delta[i] < 2^57 + 2^57 = 2^58 */
864
193k
    felem_assign(ftmp, y_in);
865
193k
    felem_sum(ftmp, z_in);
866
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
867
193k
    felem_square(tmp, ftmp);
868
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
869
193k
    felem_diff_128_64(tmp, delta);
870
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
871
193k
    felem_reduce(z_out, tmp);
872
873
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
874
193k
    felem_scalar(beta, 4);
875
    /* beta[i] < 4 * 2^57 = 2^59 */
876
193k
    felem_diff(beta, x_out);
877
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
878
193k
    felem_mul(tmp, alpha, beta);
879
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
880
193k
    felem_square(tmp2, gamma);
881
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
882
193k
    widefelem_scalar(tmp2, 8);
883
    /* tmp2[i] < 8 * 2^116 = 2^119 */
884
193k
    widefelem_diff(tmp, tmp2);
885
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
886
193k
    felem_reduce(y_out, tmp);
887
193k
}
888
889
/*-
890
 * Add two elliptic curve points:
891
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
892
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
893
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
894
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
895
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
896
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
897
 *
898
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
899
 */
900
901
/*
902
 * This function is not entirely constant-time: it includes a branch for
903
 * checking whether the two input points are equal, (while not equal to the
904
 * point at infinity). This case never happens during single point
905
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
906
 */
907
static void point_add(felem x3, felem y3, felem z3,
908
                      const felem x1, const felem y1, const felem z1,
909
                      const int mixed, const felem x2, const felem y2,
910
                      const felem z2)
911
164k
{
912
164k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
913
164k
    widefelem tmp, tmp2;
914
164k
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
915
164k
    limb points_equal;
916
917
164k
    if (!mixed) {
918
        /* ftmp2 = z2^2 */
919
28.3k
        felem_square(tmp, z2);
920
28.3k
        felem_reduce(ftmp2, tmp);
921
922
        /* ftmp4 = z2^3 */
923
28.3k
        felem_mul(tmp, ftmp2, z2);
924
28.3k
        felem_reduce(ftmp4, tmp);
925
926
        /* ftmp4 = z2^3*y1 */
927
28.3k
        felem_mul(tmp2, ftmp4, y1);
928
28.3k
        felem_reduce(ftmp4, tmp2);
929
930
        /* ftmp2 = z2^2*x1 */
931
28.3k
        felem_mul(tmp2, ftmp2, x1);
932
28.3k
        felem_reduce(ftmp2, tmp2);
933
136k
    } else {
934
        /*
935
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
936
         */
937
938
        /* ftmp4 = z2^3*y1 */
939
136k
        felem_assign(ftmp4, y1);
940
941
        /* ftmp2 = z2^2*x1 */
942
136k
        felem_assign(ftmp2, x1);
943
136k
    }
944
945
    /* ftmp = z1^2 */
946
164k
    felem_square(tmp, z1);
947
164k
    felem_reduce(ftmp, tmp);
948
949
    /* ftmp3 = z1^3 */
950
164k
    felem_mul(tmp, ftmp, z1);
951
164k
    felem_reduce(ftmp3, tmp);
952
953
    /* tmp = z1^3*y2 */
954
164k
    felem_mul(tmp, ftmp3, y2);
955
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
956
957
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
958
164k
    felem_diff_128_64(tmp, ftmp4);
959
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
960
164k
    felem_reduce(ftmp3, tmp);
961
962
    /* tmp = z1^2*x2 */
963
164k
    felem_mul(tmp, ftmp, x2);
964
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
965
966
    /* ftmp = z1^2*x2 - z2^2*x1 */
967
164k
    felem_diff_128_64(tmp, ftmp2);
968
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
969
164k
    felem_reduce(ftmp, tmp);
970
971
    /*
972
     * The formulae are incorrect if the points are equal, in affine coordinates
973
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
974
     * happens.
975
     *
976
     * We use bitwise operations to avoid potential side-channels introduced by
977
     * the short-circuiting behaviour of boolean operators.
978
     */
979
164k
    x_equal = felem_is_zero(ftmp);
980
164k
    y_equal = felem_is_zero(ftmp3);
981
    /*
982
     * The special case of either point being the point at infinity (z1 and/or
983
     * z2 are zero), is handled separately later on in this function, so we
984
     * avoid jumping to point_double here in those special cases.
985
     */
986
164k
    z1_is_zero = felem_is_zero(z1);
987
164k
    z2_is_zero = felem_is_zero(z2);
988
989
    /*
990
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
991
     * specific implementation `felem_is_zero()` returns truth as `0x1`
992
     * (rather than `0xff..ff`).
993
     *
994
     * This implies that `~true` in this implementation becomes
995
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
996
     * the if expression, we mask out only the last bit in the next
997
     * line.
998
     */
999
164k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
1000
1001
164k
    if (points_equal) {
1002
        /*
1003
         * This is obviously not constant-time but, as mentioned before, this
1004
         * case never happens during single point multiplication, so there is no
1005
         * timing leak for ECDH or ECDSA signing.
1006
         */
1007
0
        point_double(x3, y3, z3, x1, y1, z1);
1008
0
        return;
1009
0
    }
1010
1011
    /* ftmp5 = z1*z2 */
1012
164k
    if (!mixed) {
1013
28.3k
        felem_mul(tmp, z1, z2);
1014
28.3k
        felem_reduce(ftmp5, tmp);
1015
136k
    } else {
1016
        /* special case z2 = 0 is handled later */
1017
136k
        felem_assign(ftmp5, z1);
1018
136k
    }
1019
1020
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1021
164k
    felem_mul(tmp, ftmp, ftmp5);
1022
164k
    felem_reduce(z_out, tmp);
1023
1024
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1025
164k
    felem_assign(ftmp5, ftmp);
1026
164k
    felem_square(tmp, ftmp);
1027
164k
    felem_reduce(ftmp, tmp);
1028
1029
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1030
164k
    felem_mul(tmp, ftmp, ftmp5);
1031
164k
    felem_reduce(ftmp5, tmp);
1032
1033
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1034
164k
    felem_mul(tmp, ftmp2, ftmp);
1035
164k
    felem_reduce(ftmp2, tmp);
1036
1037
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1038
164k
    felem_mul(tmp, ftmp4, ftmp5);
1039
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1040
1041
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1042
164k
    felem_square(tmp2, ftmp3);
1043
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1044
1045
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1046
164k
    felem_diff_128_64(tmp2, ftmp5);
1047
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1048
1049
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1050
164k
    felem_assign(ftmp5, ftmp2);
1051
164k
    felem_scalar(ftmp5, 2);
1052
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1053
1054
    /*-
1055
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1056
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1057
     */
1058
164k
    felem_diff_128_64(tmp2, ftmp5);
1059
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1060
164k
    felem_reduce(x_out, tmp2);
1061
1062
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1063
164k
    felem_diff(ftmp2, x_out);
1064
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1065
1066
    /*
1067
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1068
     */
1069
164k
    felem_mul(tmp2, ftmp3, ftmp2);
1070
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1071
1072
    /*-
1073
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1074
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1075
     */
1076
164k
    widefelem_diff(tmp2, tmp);
1077
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1078
164k
    felem_reduce(y_out, tmp2);
1079
1080
    /*
1081
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1082
     * the point at infinity, so we need to check for this separately
1083
     */
1084
1085
    /*
1086
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1087
     */
1088
164k
    copy_conditional(x_out, x2, z1_is_zero);
1089
164k
    copy_conditional(x_out, x1, z2_is_zero);
1090
164k
    copy_conditional(y_out, y2, z1_is_zero);
1091
164k
    copy_conditional(y_out, y1, z2_is_zero);
1092
164k
    copy_conditional(z_out, z2, z1_is_zero);
1093
164k
    copy_conditional(z_out, z1, z2_is_zero);
1094
164k
    felem_assign(x3, x_out);
1095
164k
    felem_assign(y3, y_out);
1096
164k
    felem_assign(z3, z_out);
1097
164k
}
1098
1099
/*
1100
 * select_point selects the |idx|th point from a precomputation table and
1101
 * copies it to out.
1102
 * The pre_comp array argument should be size of |size| argument
1103
 */
1104
static void select_point(const u64 idx, unsigned int size,
1105
                         const felem pre_comp[][3], felem out[3])
1106
163k
{
1107
163k
    unsigned i, j;
1108
163k
    limb *outlimbs = &out[0][0];
1109
1110
163k
    memset(out, 0, sizeof(*out) * 3);
1111
2.80M
    for (i = 0; i < size; i++) {
1112
2.64M
        const limb *inlimbs = &pre_comp[i][0][0];
1113
2.64M
        u64 mask = i ^ idx;
1114
2.64M
        mask |= mask >> 4;
1115
2.64M
        mask |= mask >> 2;
1116
2.64M
        mask |= mask >> 1;
1117
2.64M
        mask &= 1;
1118
2.64M
        mask--;
1119
34.3M
        for (j = 0; j < 4 * 3; j++)
1120
31.7M
            outlimbs[j] |= inlimbs[j] & mask;
1121
2.64M
    }
1122
163k
}
1123
1124
/* get_bit returns the |i|th bit in |in| */
1125
static char get_bit(const felem_bytearray in, unsigned i)
1126
704k
{
1127
704k
    if (i >= 224)
1128
1.11k
        return 0;
1129
703k
    return (in[i >> 3] >> (i & 7)) & 1;
1130
704k
}
1131
1132
/*
1133
 * Interleaved point multiplication using precomputed point multiples: The
1134
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1135
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1136
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1137
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1138
 */
1139
static void batch_mul(felem x_out, felem y_out, felem z_out,
1140
                      const felem_bytearray scalars[],
1141
                      const unsigned num_points, const u8 *g_scalar,
1142
                      const int mixed, const felem pre_comp[][17][3],
1143
                      const felem g_pre_comp[2][16][3])
1144
3.03k
{
1145
3.03k
    int i, skip;
1146
3.03k
    unsigned num;
1147
3.03k
    unsigned gen_mul = (g_scalar != NULL);
1148
3.03k
    felem nq[3], tmp[4];
1149
3.03k
    u64 bits;
1150
3.03k
    u8 sign, digit;
1151
1152
    /* set nq to the point at infinity */
1153
3.03k
    memset(nq, 0, sizeof(nq));
1154
1155
    /*
1156
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1157
     * of the generator (two in each of the last 28 rounds) and additions of
1158
     * other points multiples (every 5th round).
1159
     */
1160
3.03k
    skip = 1;                   /* save two point operations in the first
1161
                                 * round */
1162
195k
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1163
        /* double */
1164
192k
        if (!skip)
1165
189k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1166
1167
        /* add multiples of the generator */
1168
192k
        if (gen_mul && (i <= 27)) {
1169
            /* first, look 28 bits upwards */
1170
69.3k
            bits = get_bit(g_scalar, i + 196) << 3;
1171
69.3k
            bits |= get_bit(g_scalar, i + 140) << 2;
1172
69.3k
            bits |= get_bit(g_scalar, i + 84) << 1;
1173
69.3k
            bits |= get_bit(g_scalar, i + 28);
1174
            /* select the point to add, in constant time */
1175
69.3k
            select_point(bits, 16, g_pre_comp[1], tmp);
1176
1177
69.3k
            if (!skip) {
1178
                /* value 1 below is argument for "mixed" */
1179
66.8k
                point_add(nq[0], nq[1], nq[2],
1180
66.8k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1181
66.8k
            } else {
1182
2.47k
                memcpy(nq, tmp, 3 * sizeof(felem));
1183
2.47k
                skip = 0;
1184
2.47k
            }
1185
1186
            /* second, look at the current position */
1187
69.3k
            bits = get_bit(g_scalar, i + 168) << 3;
1188
69.3k
            bits |= get_bit(g_scalar, i + 112) << 2;
1189
69.3k
            bits |= get_bit(g_scalar, i + 56) << 1;
1190
69.3k
            bits |= get_bit(g_scalar, i);
1191
            /* select the point to add, in constant time */
1192
69.3k
            select_point(bits, 16, g_pre_comp[0], tmp);
1193
69.3k
            point_add(nq[0], nq[1], nq[2],
1194
69.3k
                      nq[0], nq[1], nq[2],
1195
69.3k
                      1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1196
69.3k
        }
1197
1198
        /* do other additions every 5 doublings */
1199
192k
        if (num_points && (i % 5 == 0)) {
1200
            /* loop over all scalars */
1201
50.0k
            for (num = 0; num < num_points; ++num) {
1202
25.0k
                bits = get_bit(scalars[num], i + 4) << 5;
1203
25.0k
                bits |= get_bit(scalars[num], i + 3) << 4;
1204
25.0k
                bits |= get_bit(scalars[num], i + 2) << 3;
1205
25.0k
                bits |= get_bit(scalars[num], i + 1) << 2;
1206
25.0k
                bits |= get_bit(scalars[num], i) << 1;
1207
25.0k
                bits |= get_bit(scalars[num], i - 1);
1208
25.0k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1209
1210
                /* select the point to add or subtract */
1211
25.0k
                select_point(digit, 17, pre_comp[num], tmp);
1212
25.0k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1213
                                            * point */
1214
25.0k
                copy_conditional(tmp[1], tmp[3], sign);
1215
1216
25.0k
                if (!skip) {
1217
24.4k
                    point_add(nq[0], nq[1], nq[2],
1218
24.4k
                              nq[0], nq[1], nq[2],
1219
24.4k
                              mixed, tmp[0], tmp[1], tmp[2]);
1220
24.4k
                } else {
1221
556
                    memcpy(nq, tmp, 3 * sizeof(felem));
1222
556
                    skip = 0;
1223
556
                }
1224
25.0k
            }
1225
25.0k
        }
1226
192k
    }
1227
3.03k
    felem_assign(x_out, nq[0]);
1228
3.03k
    felem_assign(y_out, nq[1]);
1229
3.03k
    felem_assign(z_out, nq[2]);
1230
3.03k
}
1231
1232
/******************************************************************************/
1233
/*
1234
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1235
 */
1236
1237
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1238
0
{
1239
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1240
1241
0
    if (!ret) {
1242
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1243
0
        return ret;
1244
0
    }
1245
1246
0
    ret->references = 1;
1247
1248
0
    ret->lock = CRYPTO_THREAD_lock_new();
1249
0
    if (ret->lock == NULL) {
1250
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1251
0
        OPENSSL_free(ret);
1252
0
        return NULL;
1253
0
    }
1254
0
    return ret;
1255
0
}
1256
1257
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1258
0
{
1259
0
    int i;
1260
0
    if (p != NULL)
1261
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1262
0
    return p;
1263
0
}
1264
1265
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1266
0
{
1267
0
    int i;
1268
1269
0
    if (p == NULL)
1270
0
        return;
1271
1272
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1273
0
    REF_PRINT_COUNT("EC_nistp224", p);
1274
0
    if (i > 0)
1275
0
        return;
1276
0
    REF_ASSERT_ISNT(i < 0);
1277
1278
0
    CRYPTO_THREAD_lock_free(p->lock);
1279
0
    OPENSSL_free(p);
1280
0
}
1281
1282
/******************************************************************************/
1283
/*
1284
 * OPENSSL EC_METHOD FUNCTIONS
1285
 */
1286
1287
int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)
1288
54.6k
{
1289
54.6k
    int ret;
1290
54.6k
    ret = ossl_ec_GFp_simple_group_init(group);
1291
54.6k
    group->a_is_minus3 = 1;
1292
54.6k
    return ret;
1293
54.6k
}
1294
1295
int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1296
                                         const BIGNUM *a, const BIGNUM *b,
1297
                                         BN_CTX *ctx)
1298
29.3k
{
1299
29.3k
    int ret = 0;
1300
29.3k
    BIGNUM *curve_p, *curve_a, *curve_b;
1301
29.3k
#ifndef FIPS_MODULE
1302
29.3k
    BN_CTX *new_ctx = NULL;
1303
1304
29.3k
    if (ctx == NULL)
1305
0
        ctx = new_ctx = BN_CTX_new();
1306
29.3k
#endif
1307
29.3k
    if (ctx == NULL)
1308
0
        return 0;
1309
1310
29.3k
    BN_CTX_start(ctx);
1311
29.3k
    curve_p = BN_CTX_get(ctx);
1312
29.3k
    curve_a = BN_CTX_get(ctx);
1313
29.3k
    curve_b = BN_CTX_get(ctx);
1314
29.3k
    if (curve_b == NULL)
1315
0
        goto err;
1316
29.3k
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1317
29.3k
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1318
29.3k
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1319
29.3k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1320
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1321
0
        goto err;
1322
0
    }
1323
29.3k
    group->field_mod_func = BN_nist_mod_224;
1324
29.3k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1325
29.3k
 err:
1326
29.3k
    BN_CTX_end(ctx);
1327
29.3k
#ifndef FIPS_MODULE
1328
29.3k
    BN_CTX_free(new_ctx);
1329
29.3k
#endif
1330
29.3k
    return ret;
1331
29.3k
}
1332
1333
/*
1334
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1335
 * (X/Z^2, Y/Z^3)
1336
 */
1337
int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1338
                                                      const EC_POINT *point,
1339
                                                      BIGNUM *x, BIGNUM *y,
1340
                                                      BN_CTX *ctx)
1341
5.60k
{
1342
5.60k
    felem z1, z2, x_in, y_in, x_out, y_out;
1343
5.60k
    widefelem tmp;
1344
1345
5.60k
    if (EC_POINT_is_at_infinity(group, point)) {
1346
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1347
0
        return 0;
1348
0
    }
1349
5.60k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1350
5.60k
        (!BN_to_felem(z1, point->Z)))
1351
0
        return 0;
1352
5.60k
    felem_inv(z2, z1);
1353
5.60k
    felem_square(tmp, z2);
1354
5.60k
    felem_reduce(z1, tmp);
1355
5.60k
    felem_mul(tmp, x_in, z1);
1356
5.60k
    felem_reduce(x_in, tmp);
1357
5.60k
    felem_contract(x_out, x_in);
1358
5.60k
    if (x != NULL) {
1359
5.60k
        if (!felem_to_BN(x, x_out)) {
1360
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1361
0
            return 0;
1362
0
        }
1363
5.60k
    }
1364
5.60k
    felem_mul(tmp, z1, z2);
1365
5.60k
    felem_reduce(z1, tmp);
1366
5.60k
    felem_mul(tmp, y_in, z1);
1367
5.60k
    felem_reduce(y_in, tmp);
1368
5.60k
    felem_contract(y_out, y_in);
1369
5.60k
    if (y != NULL) {
1370
5.60k
        if (!felem_to_BN(y, y_out)) {
1371
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1372
0
            return 0;
1373
0
        }
1374
5.60k
    }
1375
5.60k
    return 1;
1376
5.60k
}
1377
1378
static void make_points_affine(size_t num, felem points[ /* num */ ][3],
1379
                               felem tmp_felems[ /* num+1 */ ])
1380
0
{
1381
    /*
1382
     * Runs in constant time, unless an input is the point at infinity (which
1383
     * normally shouldn't happen).
1384
     */
1385
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1386
0
                                                  points,
1387
0
                                                  sizeof(felem),
1388
0
                                                  tmp_felems,
1389
0
                                                  (void (*)(void *))felem_one,
1390
0
                                                  felem_is_zero_int,
1391
0
                                                  (void (*)(void *, const void *))
1392
0
                                                  felem_assign,
1393
0
                                                  (void (*)(void *, const void *))
1394
0
                                                  felem_square_reduce, (void (*)
1395
0
                                                                        (void *,
1396
0
                                                                         const void
1397
0
                                                                         *,
1398
0
                                                                         const void
1399
0
                                                                         *))
1400
0
                                                  felem_mul_reduce,
1401
0
                                                  (void (*)(void *, const void *))
1402
0
                                                  felem_inv,
1403
0
                                                  (void (*)(void *, const void *))
1404
0
                                                  felem_contract);
1405
0
}
1406
1407
/*
1408
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1409
 * values Result is stored in r (r can equal one of the inputs).
1410
 */
1411
int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1412
                                    const BIGNUM *scalar, size_t num,
1413
                                    const EC_POINT *points[],
1414
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1415
3.03k
{
1416
3.03k
    int ret = 0;
1417
3.03k
    int j;
1418
3.03k
    unsigned i;
1419
3.03k
    int mixed = 0;
1420
3.03k
    BIGNUM *x, *y, *z, *tmp_scalar;
1421
3.03k
    felem_bytearray g_secret;
1422
3.03k
    felem_bytearray *secrets = NULL;
1423
3.03k
    felem (*pre_comp)[17][3] = NULL;
1424
3.03k
    felem *tmp_felems = NULL;
1425
3.03k
    int num_bytes;
1426
3.03k
    int have_pre_comp = 0;
1427
3.03k
    size_t num_points = num;
1428
3.03k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1429
3.03k
    NISTP224_PRE_COMP *pre = NULL;
1430
3.03k
    const felem(*g_pre_comp)[16][3] = NULL;
1431
3.03k
    EC_POINT *generator = NULL;
1432
3.03k
    const EC_POINT *p = NULL;
1433
3.03k
    const BIGNUM *p_scalar = NULL;
1434
1435
3.03k
    BN_CTX_start(ctx);
1436
3.03k
    x = BN_CTX_get(ctx);
1437
3.03k
    y = BN_CTX_get(ctx);
1438
3.03k
    z = BN_CTX_get(ctx);
1439
3.03k
    tmp_scalar = BN_CTX_get(ctx);
1440
3.03k
    if (tmp_scalar == NULL)
1441
0
        goto err;
1442
1443
3.03k
    if (scalar != NULL) {
1444
2.47k
        pre = group->pre_comp.nistp224;
1445
2.47k
        if (pre)
1446
            /* we have precomputation, try to use it */
1447
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1448
2.47k
        else
1449
            /* try to use the standard precomputation */
1450
2.47k
            g_pre_comp = &gmul[0];
1451
2.47k
        generator = EC_POINT_new(group);
1452
2.47k
        if (generator == NULL)
1453
0
            goto err;
1454
        /* get the generator from precomputation */
1455
2.47k
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1456
2.47k
            !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1457
2.47k
            !felem_to_BN(z, g_pre_comp[0][1][2])) {
1458
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1459
0
            goto err;
1460
0
        }
1461
2.47k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1462
2.47k
                                                                generator,
1463
2.47k
                                                                x, y, z, ctx))
1464
0
            goto err;
1465
2.47k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1466
            /* precomputation matches generator */
1467
2.47k
            have_pre_comp = 1;
1468
0
        else
1469
            /*
1470
             * we don't have valid precomputation: treat the generator as a
1471
             * random point
1472
             */
1473
0
            num_points = num_points + 1;
1474
2.47k
    }
1475
1476
3.03k
    if (num_points > 0) {
1477
556
        if (num_points >= 3) {
1478
            /*
1479
             * unless we precompute multiples for just one or two points,
1480
             * converting those into affine form is time well spent
1481
             */
1482
0
            mixed = 1;
1483
0
        }
1484
556
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1485
556
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1486
556
        if (mixed)
1487
0
            tmp_felems =
1488
0
                OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1489
556
        if ((secrets == NULL) || (pre_comp == NULL)
1490
556
            || (mixed && (tmp_felems == NULL))) {
1491
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1492
0
            goto err;
1493
0
        }
1494
1495
        /*
1496
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1497
         * i.e., they contribute nothing to the linear combination
1498
         */
1499
1.11k
        for (i = 0; i < num_points; ++i) {
1500
556
            if (i == num) {
1501
                /* the generator */
1502
0
                p = EC_GROUP_get0_generator(group);
1503
0
                p_scalar = scalar;
1504
556
            } else {
1505
                /* the i^th point */
1506
556
                p = points[i];
1507
556
                p_scalar = scalars[i];
1508
556
            }
1509
556
            if ((p_scalar != NULL) && (p != NULL)) {
1510
                /* reduce scalar to 0 <= scalar < 2^224 */
1511
556
                if ((BN_num_bits(p_scalar) > 224)
1512
556
                    || (BN_is_negative(p_scalar))) {
1513
                    /*
1514
                     * this is an unusual input, and we don't guarantee
1515
                     * constant-timeness
1516
                     */
1517
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1518
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1519
0
                        goto err;
1520
0
                    }
1521
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1522
0
                                               secrets[i], sizeof(secrets[i]));
1523
556
                } else {
1524
556
                    num_bytes = BN_bn2lebinpad(p_scalar,
1525
556
                                               secrets[i], sizeof(secrets[i]));
1526
556
                }
1527
556
                if (num_bytes < 0) {
1528
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1529
0
                    goto err;
1530
0
                }
1531
                /* precompute multiples */
1532
556
                if ((!BN_to_felem(x_out, p->X)) ||
1533
556
                    (!BN_to_felem(y_out, p->Y)) ||
1534
556
                    (!BN_to_felem(z_out, p->Z)))
1535
0
                    goto err;
1536
556
                felem_assign(pre_comp[i][1][0], x_out);
1537
556
                felem_assign(pre_comp[i][1][1], y_out);
1538
556
                felem_assign(pre_comp[i][1][2], z_out);
1539
8.89k
                for (j = 2; j <= 16; ++j) {
1540
8.34k
                    if (j & 1) {
1541
3.89k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1542
3.89k
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1543
3.89k
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1544
3.89k
                                  pre_comp[i][j - 1][0],
1545
3.89k
                                  pre_comp[i][j - 1][1],
1546
3.89k
                                  pre_comp[i][j - 1][2]);
1547
4.44k
                    } else {
1548
4.44k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1549
4.44k
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1550
4.44k
                                     pre_comp[i][j / 2][1],
1551
4.44k
                                     pre_comp[i][j / 2][2]);
1552
4.44k
                    }
1553
8.34k
                }
1554
556
            }
1555
556
        }
1556
556
        if (mixed)
1557
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1558
556
    }
1559
1560
    /* the scalar for the generator */
1561
3.03k
    if ((scalar != NULL) && (have_pre_comp)) {
1562
2.47k
        memset(g_secret, 0, sizeof(g_secret));
1563
        /* reduce scalar to 0 <= scalar < 2^224 */
1564
2.47k
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1565
            /*
1566
             * this is an unusual input, and we don't guarantee
1567
             * constant-timeness
1568
             */
1569
546
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1570
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1571
0
                goto err;
1572
0
            }
1573
546
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1574
1.93k
        } else {
1575
1.93k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1576
1.93k
        }
1577
        /* do the multiplication with generator precomputation */
1578
2.47k
        batch_mul(x_out, y_out, z_out,
1579
2.47k
                  (const felem_bytearray(*))secrets, num_points,
1580
2.47k
                  g_secret,
1581
2.47k
                  mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1582
2.47k
    } else {
1583
        /* do the multiplication without generator precomputation */
1584
556
        batch_mul(x_out, y_out, z_out,
1585
556
                  (const felem_bytearray(*))secrets, num_points,
1586
556
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1587
556
    }
1588
    /* reduce the output to its unique minimal representation */
1589
3.03k
    felem_contract(x_in, x_out);
1590
3.03k
    felem_contract(y_in, y_out);
1591
3.03k
    felem_contract(z_in, z_out);
1592
3.03k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1593
3.03k
        (!felem_to_BN(z, z_in))) {
1594
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1595
0
        goto err;
1596
0
    }
1597
3.03k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1598
3.03k
                                                             ctx);
1599
1600
3.03k
 err:
1601
3.03k
    BN_CTX_end(ctx);
1602
3.03k
    EC_POINT_free(generator);
1603
3.03k
    OPENSSL_free(secrets);
1604
3.03k
    OPENSSL_free(pre_comp);
1605
3.03k
    OPENSSL_free(tmp_felems);
1606
3.03k
    return ret;
1607
3.03k
}
1608
1609
int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1610
0
{
1611
0
    int ret = 0;
1612
0
    NISTP224_PRE_COMP *pre = NULL;
1613
0
    int i, j;
1614
0
    BIGNUM *x, *y;
1615
0
    EC_POINT *generator = NULL;
1616
0
    felem tmp_felems[32];
1617
0
#ifndef FIPS_MODULE
1618
0
    BN_CTX *new_ctx = NULL;
1619
0
#endif
1620
1621
    /* throw away old precomputation */
1622
0
    EC_pre_comp_free(group);
1623
1624
0
#ifndef FIPS_MODULE
1625
0
    if (ctx == NULL)
1626
0
        ctx = new_ctx = BN_CTX_new();
1627
0
#endif
1628
0
    if (ctx == NULL)
1629
0
        return 0;
1630
1631
0
    BN_CTX_start(ctx);
1632
0
    x = BN_CTX_get(ctx);
1633
0
    y = BN_CTX_get(ctx);
1634
0
    if (y == NULL)
1635
0
        goto err;
1636
    /* get the generator */
1637
0
    if (group->generator == NULL)
1638
0
        goto err;
1639
0
    generator = EC_POINT_new(group);
1640
0
    if (generator == NULL)
1641
0
        goto err;
1642
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1643
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1644
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1645
0
        goto err;
1646
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1647
0
        goto err;
1648
    /*
1649
     * if the generator is the standard one, use built-in precomputation
1650
     */
1651
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1652
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1653
0
        goto done;
1654
0
    }
1655
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1656
0
        (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1657
0
        (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1658
0
        goto err;
1659
    /*
1660
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1661
     * 2^140*G, 2^196*G for the second one
1662
     */
1663
0
    for (i = 1; i <= 8; i <<= 1) {
1664
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1665
0
                     pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1666
0
                     pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1667
0
        for (j = 0; j < 27; ++j) {
1668
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1669
0
                         pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1670
0
                         pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1671
0
        }
1672
0
        if (i == 8)
1673
0
            break;
1674
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1675
0
                     pre->g_pre_comp[0][2 * i][1],
1676
0
                     pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1677
0
                     pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1678
0
        for (j = 0; j < 27; ++j) {
1679
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1680
0
                         pre->g_pre_comp[0][2 * i][1],
1681
0
                         pre->g_pre_comp[0][2 * i][2],
1682
0
                         pre->g_pre_comp[0][2 * i][0],
1683
0
                         pre->g_pre_comp[0][2 * i][1],
1684
0
                         pre->g_pre_comp[0][2 * i][2]);
1685
0
        }
1686
0
    }
1687
0
    for (i = 0; i < 2; i++) {
1688
        /* g_pre_comp[i][0] is the point at infinity */
1689
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1690
        /* the remaining multiples */
1691
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1692
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1693
0
                  pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1694
0
                  pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1695
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1696
0
                  pre->g_pre_comp[i][2][2]);
1697
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1698
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1699
0
                  pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1700
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1701
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1702
0
                  pre->g_pre_comp[i][2][2]);
1703
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1704
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1705
0
                  pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1706
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1707
0
                  0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1708
0
                  pre->g_pre_comp[i][4][2]);
1709
        /*
1710
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1711
         */
1712
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1713
0
                  pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1714
0
                  pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1715
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1716
0
                  pre->g_pre_comp[i][2][2]);
1717
0
        for (j = 1; j < 8; ++j) {
1718
            /* odd multiples: add G resp. 2^28*G */
1719
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1720
0
                      pre->g_pre_comp[i][2 * j + 1][1],
1721
0
                      pre->g_pre_comp[i][2 * j + 1][2],
1722
0
                      pre->g_pre_comp[i][2 * j][0],
1723
0
                      pre->g_pre_comp[i][2 * j][1],
1724
0
                      pre->g_pre_comp[i][2 * j][2], 0,
1725
0
                      pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1726
0
                      pre->g_pre_comp[i][1][2]);
1727
0
        }
1728
0
    }
1729
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1730
1731
0
 done:
1732
0
    SETPRECOMP(group, nistp224, pre);
1733
0
    pre = NULL;
1734
0
    ret = 1;
1735
0
 err:
1736
0
    BN_CTX_end(ctx);
1737
0
    EC_POINT_free(generator);
1738
0
#ifndef FIPS_MODULE
1739
0
    BN_CTX_free(new_ctx);
1740
0
#endif
1741
0
    EC_nistp224_pre_comp_free(pre);
1742
0
    return ret;
1743
0
}
1744
1745
int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1746
0
{
1747
0
    return HAVEPRECOMP(group, nistp224);
1748
0
}