Coverage Report

Created: 2025-08-11 07:04

/src/openssl30/include/crypto/md32_common.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*-
11
 * This is a generic 32 bit "collector" for message digest algorithms.
12
 * Whenever needed it collects input character stream into chunks of
13
 * 32 bit values and invokes a block function that performs actual hash
14
 * calculations.
15
 *
16
 * Porting guide.
17
 *
18
 * Obligatory macros:
19
 *
20
 * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
21
 *      this macro defines byte order of input stream.
22
 * HASH_CBLOCK
23
 *      size of a unit chunk HASH_BLOCK operates on.
24
 * HASH_LONG
25
 *      has to be at least 32 bit wide.
26
 * HASH_CTX
27
 *      context structure that at least contains following
28
 *      members:
29
 *              typedef struct {
30
 *                      ...
31
 *                      HASH_LONG       Nl,Nh;
32
 *                      either {
33
 *                      HASH_LONG       data[HASH_LBLOCK];
34
 *                      unsigned char   data[HASH_CBLOCK];
35
 *                      };
36
 *                      unsigned int    num;
37
 *                      ...
38
 *                      } HASH_CTX;
39
 *      data[] vector is expected to be zeroed upon first call to
40
 *      HASH_UPDATE.
41
 * HASH_UPDATE
42
 *      name of "Update" function, implemented here.
43
 * HASH_TRANSFORM
44
 *      name of "Transform" function, implemented here.
45
 * HASH_FINAL
46
 *      name of "Final" function, implemented here.
47
 * HASH_BLOCK_DATA_ORDER
48
 *      name of "block" function capable of treating *unaligned* input
49
 *      message in original (data) byte order, implemented externally.
50
 * HASH_MAKE_STRING
51
 *      macro converting context variables to an ASCII hash string.
52
 *
53
 * MD5 example:
54
 *
55
 *      #define DATA_ORDER_IS_LITTLE_ENDIAN
56
 *
57
 *      #define HASH_LONG               MD5_LONG
58
 *      #define HASH_CTX                MD5_CTX
59
 *      #define HASH_CBLOCK             MD5_CBLOCK
60
 *      #define HASH_UPDATE             MD5_Update
61
 *      #define HASH_TRANSFORM          MD5_Transform
62
 *      #define HASH_FINAL              MD5_Final
63
 *      #define HASH_BLOCK_DATA_ORDER   md5_block_data_order
64
 */
65
66
#include <openssl/crypto.h>
67
68
#if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
69
# error "DATA_ORDER must be defined!"
70
#endif
71
72
#ifndef HASH_CBLOCK
73
# error "HASH_CBLOCK must be defined!"
74
#endif
75
#ifndef HASH_LONG
76
# error "HASH_LONG must be defined!"
77
#endif
78
#ifndef HASH_CTX
79
# error "HASH_CTX must be defined!"
80
#endif
81
82
#ifndef HASH_UPDATE
83
# error "HASH_UPDATE must be defined!"
84
#endif
85
#ifndef HASH_TRANSFORM
86
# error "HASH_TRANSFORM must be defined!"
87
#endif
88
#ifndef HASH_FINAL
89
# error "HASH_FINAL must be defined!"
90
#endif
91
92
#ifndef HASH_BLOCK_DATA_ORDER
93
# error "HASH_BLOCK_DATA_ORDER must be defined!"
94
#endif
95
96
464M
#define ROTATE(a,n)     (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
97
98
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
99
100
293k
# define HOST_c2l(c,l)  (l =(((unsigned long)(*((c)++)))<<24),          \
101
293k
                         l|=(((unsigned long)(*((c)++)))<<16),          \
102
293k
                         l|=(((unsigned long)(*((c)++)))<< 8),          \
103
293k
                         l|=(((unsigned long)(*((c)++)))    )           )
104
9.73M
# define HOST_l2c(l,c)  (*((c)++)=(unsigned char)(((l)>>24)&0xff),      \
105
9.73M
                         *((c)++)=(unsigned char)(((l)>>16)&0xff),      \
106
9.73M
                         *((c)++)=(unsigned char)(((l)>> 8)&0xff),      \
107
9.73M
                         *((c)++)=(unsigned char)(((l)    )&0xff),      \
108
9.73M
                         l)
109
110
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
111
112
22.7M
# define HOST_c2l(c,l)  (l =(((unsigned long)(*((c)++)))    ),          \
113
22.7M
                         l|=(((unsigned long)(*((c)++)))<< 8),          \
114
22.7M
                         l|=(((unsigned long)(*((c)++)))<<16),          \
115
22.7M
                         l|=(((unsigned long)(*((c)++)))<<24)           )
116
13.0M
# define HOST_l2c(l,c)  (*((c)++)=(unsigned char)(((l)    )&0xff),      \
117
13.0M
                         *((c)++)=(unsigned char)(((l)>> 8)&0xff),      \
118
13.0M
                         *((c)++)=(unsigned char)(((l)>>16)&0xff),      \
119
13.0M
                         *((c)++)=(unsigned char)(((l)>>24)&0xff),      \
120
13.0M
                         l)
121
122
#endif
123
124
/*
125
 * Time for some action :-)
126
 */
127
128
int HASH_UPDATE(HASH_CTX *c, const void *data_, size_t len)
129
840M
{
130
840M
    const unsigned char *data = data_;
131
840M
    unsigned char *p;
132
840M
    HASH_LONG l;
133
840M
    size_t n;
134
135
840M
    if (len == 0)
136
0
        return 1;
137
138
840M
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
840M
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
840M
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
840M
    c->Nl = l;
144
145
840M
    n = c->num;
146
840M
    if (n != 0) {
147
418M
        p = (unsigned char *)c->data;
148
149
418M
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
209M
            memcpy(p + n, data, HASH_CBLOCK - n);
151
209M
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
209M
            n = HASH_CBLOCK - n;
153
209M
            data += n;
154
209M
            len -= n;
155
209M
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
209M
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
209M
        } else {
164
209M
            memcpy(p + n, data, len);
165
209M
            c->num += (unsigned int)len;
166
209M
            return 1;
167
209M
        }
168
418M
    }
169
170
631M
    n = len / HASH_CBLOCK;
171
631M
    if (n > 0) {
172
1.60M
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
1.60M
        n *= HASH_CBLOCK;
174
1.60M
        data += n;
175
1.60M
        len -= n;
176
1.60M
    }
177
178
631M
    if (len != 0) {
179
421M
        p = (unsigned char *)c->data;
180
421M
        c->num = (unsigned int)len;
181
421M
        memcpy(p, data, len);
182
421M
    }
183
631M
    return 1;
184
840M
}
Unexecuted instantiation: MD4_Update
MD5_Update
Line
Count
Source
129
573k
{
130
573k
    const unsigned char *data = data_;
131
573k
    unsigned char *p;
132
573k
    HASH_LONG l;
133
573k
    size_t n;
134
135
573k
    if (len == 0)
136
0
        return 1;
137
138
573k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
573k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
573k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
573k
    c->Nl = l;
144
145
573k
    n = c->num;
146
573k
    if (n != 0) {
147
191k
        p = (unsigned char *)c->data;
148
149
191k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
88.3k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
88.3k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
88.3k
            n = HASH_CBLOCK - n;
153
88.3k
            data += n;
154
88.3k
            len -= n;
155
88.3k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
88.3k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
103k
        } else {
164
103k
            memcpy(p + n, data, len);
165
103k
            c->num += (unsigned int)len;
166
103k
            return 1;
167
103k
        }
168
191k
    }
169
170
469k
    n = len / HASH_CBLOCK;
171
469k
    if (n > 0) {
172
56.0k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
56.0k
        n *= HASH_CBLOCK;
174
56.0k
        data += n;
175
56.0k
        len -= n;
176
56.0k
    }
177
178
469k
    if (len != 0) {
179
432k
        p = (unsigned char *)c->data;
180
432k
        c->num = (unsigned int)len;
181
432k
        memcpy(p, data, len);
182
432k
    }
183
469k
    return 1;
184
573k
}
RIPEMD160_Update
Line
Count
Source
129
1.14M
{
130
1.14M
    const unsigned char *data = data_;
131
1.14M
    unsigned char *p;
132
1.14M
    HASH_LONG l;
133
1.14M
    size_t n;
134
135
1.14M
    if (len == 0)
136
0
        return 1;
137
138
1.14M
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
1.14M
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
1.14M
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
1.14M
    c->Nl = l;
144
145
1.14M
    n = c->num;
146
1.14M
    if (n != 0) {
147
371
        p = (unsigned char *)c->data;
148
149
371
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
128
            memcpy(p + n, data, HASH_CBLOCK - n);
151
128
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
128
            n = HASH_CBLOCK - n;
153
128
            data += n;
154
128
            len -= n;
155
128
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
128
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
243
        } else {
164
243
            memcpy(p + n, data, len);
165
243
            c->num += (unsigned int)len;
166
243
            return 1;
167
243
        }
168
371
    }
169
170
1.14M
    n = len / HASH_CBLOCK;
171
1.14M
    if (n > 0) {
172
1.45k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
1.45k
        n *= HASH_CBLOCK;
174
1.45k
        data += n;
175
1.45k
        len -= n;
176
1.45k
    }
177
178
1.14M
    if (len != 0) {
179
1.14M
        p = (unsigned char *)c->data;
180
1.14M
        c->num = (unsigned int)len;
181
1.14M
        memcpy(p, data, len);
182
1.14M
    }
183
1.14M
    return 1;
184
1.14M
}
SHA1_Update
Line
Count
Source
129
1.22M
{
130
1.22M
    const unsigned char *data = data_;
131
1.22M
    unsigned char *p;
132
1.22M
    HASH_LONG l;
133
1.22M
    size_t n;
134
135
1.22M
    if (len == 0)
136
0
        return 1;
137
138
1.22M
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
1.22M
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
1.22M
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
1.22M
    c->Nl = l;
144
145
1.22M
    n = c->num;
146
1.22M
    if (n != 0) {
147
234k
        p = (unsigned char *)c->data;
148
149
234k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
101k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
101k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
101k
            n = HASH_CBLOCK - n;
153
101k
            data += n;
154
101k
            len -= n;
155
101k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
101k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
133k
        } else {
164
133k
            memcpy(p + n, data, len);
165
133k
            c->num += (unsigned int)len;
166
133k
            return 1;
167
133k
        }
168
234k
    }
169
170
1.09M
    n = len / HASH_CBLOCK;
171
1.09M
    if (n > 0) {
172
358k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
358k
        n *= HASH_CBLOCK;
174
358k
        data += n;
175
358k
        len -= n;
176
358k
    }
177
178
1.09M
    if (len != 0) {
179
984k
        p = (unsigned char *)c->data;
180
984k
        c->num = (unsigned int)len;
181
984k
        memcpy(p, data, len);
182
984k
    }
183
1.09M
    return 1;
184
1.22M
}
SHA256_Update
Line
Count
Source
129
838M
{
130
838M
    const unsigned char *data = data_;
131
838M
    unsigned char *p;
132
838M
    HASH_LONG l;
133
838M
    size_t n;
134
135
838M
    if (len == 0)
136
0
        return 1;
137
138
838M
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
838M
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
838M
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
838M
    c->Nl = l;
144
145
838M
    n = c->num;
146
838M
    if (n != 0) {
147
417M
        p = (unsigned char *)c->data;
148
149
417M
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
209M
            memcpy(p + n, data, HASH_CBLOCK - n);
151
209M
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
209M
            n = HASH_CBLOCK - n;
153
209M
            data += n;
154
209M
            len -= n;
155
209M
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
209M
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
209M
        } else {
164
208M
            memcpy(p + n, data, len);
165
208M
            c->num += (unsigned int)len;
166
208M
            return 1;
167
208M
        }
168
417M
    }
169
170
629M
    n = len / HASH_CBLOCK;
171
629M
    if (n > 0) {
172
1.18M
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
1.18M
        n *= HASH_CBLOCK;
174
1.18M
        data += n;
175
1.18M
        len -= n;
176
1.18M
    }
177
178
629M
    if (len != 0) {
179
419M
        p = (unsigned char *)c->data;
180
419M
        c->num = (unsigned int)len;
181
419M
        memcpy(p, data, len);
182
419M
    }
183
629M
    return 1;
184
838M
}
ossl_sm3_update
Line
Count
Source
129
3.54k
{
130
3.54k
    const unsigned char *data = data_;
131
3.54k
    unsigned char *p;
132
3.54k
    HASH_LONG l;
133
3.54k
    size_t n;
134
135
3.54k
    if (len == 0)
136
0
        return 1;
137
138
3.54k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
3.54k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
3.54k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
3.54k
    c->Nl = l;
144
145
3.54k
    n = c->num;
146
3.54k
    if (n != 0) {
147
345
        p = (unsigned char *)c->data;
148
149
345
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
124
            memcpy(p + n, data, HASH_CBLOCK - n);
151
124
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
124
            n = HASH_CBLOCK - n;
153
124
            data += n;
154
124
            len -= n;
155
124
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
124
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
221
        } else {
164
221
            memcpy(p + n, data, len);
165
221
            c->num += (unsigned int)len;
166
221
            return 1;
167
221
        }
168
345
    }
169
170
3.31k
    n = len / HASH_CBLOCK;
171
3.31k
    if (n > 0) {
172
1.56k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
1.56k
        n *= HASH_CBLOCK;
174
1.56k
        data += n;
175
1.56k
        len -= n;
176
1.56k
    }
177
178
3.31k
    if (len != 0) {
179
1.83k
        p = (unsigned char *)c->data;
180
1.83k
        c->num = (unsigned int)len;
181
1.83k
        memcpy(p, data, len);
182
1.83k
    }
183
3.31k
    return 1;
184
3.54k
}
185
186
void HASH_TRANSFORM(HASH_CTX *c, const unsigned char *data)
187
925k
{
188
925k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
925k
}
Unexecuted instantiation: MD4_Transform
Unexecuted instantiation: MD5_Transform
Unexecuted instantiation: RIPEMD160_Transform
SHA1_Transform
Line
Count
Source
187
786k
{
188
786k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
786k
}
SHA256_Transform
Line
Count
Source
187
139k
{
188
139k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
139k
}
Unexecuted instantiation: ossl_sm3_transform
190
191
int HASH_FINAL(unsigned char *md, HASH_CTX *c)
192
3.29M
{
193
3.29M
    unsigned char *p = (unsigned char *)c->data;
194
3.29M
    size_t n = c->num;
195
196
3.29M
    p[n] = 0x80;                /* there is always room for one */
197
3.29M
    n++;
198
199
3.29M
    if (n > (HASH_CBLOCK - 8)) {
200
72.7k
        memset(p + n, 0, HASH_CBLOCK - n);
201
72.7k
        n = 0;
202
72.7k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
72.7k
    }
204
3.29M
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
3.29M
    p += HASH_CBLOCK - 8;
207
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
1.35M
    (void)HOST_l2c(c->Nh, p);
209
1.35M
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
1.93M
    (void)HOST_l2c(c->Nl, p);
212
1.93M
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
3.29M
    p -= HASH_CBLOCK;
215
3.29M
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
3.29M
    c->num = 0;
217
3.29M
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
3.29M
    HASH_MAKE_STRING(c, md);
223
80.3k
#endif
224
225
80.3k
    return 1;
226
3.29M
}
Unexecuted instantiation: MD4_Final
MD5_Final
Line
Count
Source
192
536k
{
193
536k
    unsigned char *p = (unsigned char *)c->data;
194
536k
    size_t n = c->num;
195
196
536k
    p[n] = 0x80;                /* there is always room for one */
197
536k
    n++;
198
199
536k
    if (n > (HASH_CBLOCK - 8)) {
200
5.73k
        memset(p + n, 0, HASH_CBLOCK - n);
201
5.73k
        n = 0;
202
5.73k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
5.73k
    }
204
536k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
536k
    p += HASH_CBLOCK - 8;
207
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
    (void)HOST_l2c(c->Nh, p);
209
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
536k
    (void)HOST_l2c(c->Nl, p);
212
536k
    (void)HOST_l2c(c->Nh, p);
213
536k
#endif
214
536k
    p -= HASH_CBLOCK;
215
536k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
536k
    c->num = 0;
217
536k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
536k
    HASH_MAKE_STRING(c, md);
223
536k
#endif
224
225
536k
    return 1;
226
536k
}
RIPEMD160_Final
Line
Count
Source
192
1.40M
{
193
1.40M
    unsigned char *p = (unsigned char *)c->data;
194
1.40M
    size_t n = c->num;
195
196
1.40M
    p[n] = 0x80;                /* there is always room for one */
197
1.40M
    n++;
198
199
1.40M
    if (n > (HASH_CBLOCK - 8)) {
200
133
        memset(p + n, 0, HASH_CBLOCK - n);
201
133
        n = 0;
202
133
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
133
    }
204
1.40M
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
1.40M
    p += HASH_CBLOCK - 8;
207
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
    (void)HOST_l2c(c->Nh, p);
209
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
1.40M
    (void)HOST_l2c(c->Nl, p);
212
1.40M
    (void)HOST_l2c(c->Nh, p);
213
1.40M
#endif
214
1.40M
    p -= HASH_CBLOCK;
215
1.40M
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
1.40M
    c->num = 0;
217
1.40M
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
1.40M
    HASH_MAKE_STRING(c, md);
223
1.40M
#endif
224
225
1.40M
    return 1;
226
1.40M
}
SHA1_Final
Line
Count
Source
192
1.27M
{
193
1.27M
    unsigned char *p = (unsigned char *)c->data;
194
1.27M
    size_t n = c->num;
195
196
1.27M
    p[n] = 0x80;                /* there is always room for one */
197
1.27M
    n++;
198
199
1.27M
    if (n > (HASH_CBLOCK - 8)) {
200
66.4k
        memset(p + n, 0, HASH_CBLOCK - n);
201
66.4k
        n = 0;
202
66.4k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
66.4k
    }
204
1.27M
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
1.27M
    p += HASH_CBLOCK - 8;
207
1.27M
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
1.27M
    (void)HOST_l2c(c->Nh, p);
209
1.27M
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
1.27M
    p -= HASH_CBLOCK;
215
1.27M
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
1.27M
    c->num = 0;
217
1.27M
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
1.27M
    HASH_MAKE_STRING(c, md);
223
1.27M
#endif
224
225
1.27M
    return 1;
226
1.27M
}
SHA256_Final
Line
Count
Source
192
80.3k
{
193
80.3k
    unsigned char *p = (unsigned char *)c->data;
194
80.3k
    size_t n = c->num;
195
196
80.3k
    p[n] = 0x80;                /* there is always room for one */
197
80.3k
    n++;
198
199
80.3k
    if (n > (HASH_CBLOCK - 8)) {
200
378
        memset(p + n, 0, HASH_CBLOCK - n);
201
378
        n = 0;
202
378
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
378
    }
204
80.3k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
80.3k
    p += HASH_CBLOCK - 8;
207
80.3k
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
80.3k
    (void)HOST_l2c(c->Nh, p);
209
80.3k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
80.3k
    p -= HASH_CBLOCK;
215
80.3k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
80.3k
    c->num = 0;
217
80.3k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
80.3k
    HASH_MAKE_STRING(c, md);
223
80.3k
#endif
224
225
80.3k
    return 1;
226
80.3k
}
ossl_sm3_final
Line
Count
Source
192
1.73k
{
193
1.73k
    unsigned char *p = (unsigned char *)c->data;
194
1.73k
    size_t n = c->num;
195
196
1.73k
    p[n] = 0x80;                /* there is always room for one */
197
1.73k
    n++;
198
199
1.73k
    if (n > (HASH_CBLOCK - 8)) {
200
44
        memset(p + n, 0, HASH_CBLOCK - n);
201
44
        n = 0;
202
44
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
44
    }
204
1.73k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
1.73k
    p += HASH_CBLOCK - 8;
207
1.73k
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
1.73k
    (void)HOST_l2c(c->Nh, p);
209
1.73k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
1.73k
    p -= HASH_CBLOCK;
215
1.73k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
1.73k
    c->num = 0;
217
1.73k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
1.73k
    HASH_MAKE_STRING(c, md);
223
1.73k
#endif
224
225
1.73k
    return 1;
226
1.73k
}
227
228
#ifndef MD32_REG_T
229
# if defined(__alpha) || defined(__sparcv9) || defined(__mips)
230
#  define MD32_REG_T long
231
/*
232
 * This comment was originally written for MD5, which is why it
233
 * discusses A-D. But it basically applies to all 32-bit digests,
234
 * which is why it was moved to common header file.
235
 *
236
 * In case you wonder why A-D are declared as long and not
237
 * as MD5_LONG. Doing so results in slight performance
238
 * boost on LP64 architectures. The catch is we don't
239
 * really care if 32 MSBs of a 64-bit register get polluted
240
 * with eventual overflows as we *save* only 32 LSBs in
241
 * *either* case. Now declaring 'em long excuses the compiler
242
 * from keeping 32 MSBs zeroed resulting in 13% performance
243
 * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
244
 * Well, to be honest it should say that this *prevents*
245
 * performance degradation.
246
 */
247
# else
248
/*
249
 * Above is not absolute and there are LP64 compilers that
250
 * generate better code if MD32_REG_T is defined int. The above
251
 * pre-processor condition reflects the circumstances under which
252
 * the conclusion was made and is subject to further extension.
253
 */
254
#  define MD32_REG_T int
255
# endif
256
#endif