Coverage Report

Created: 2025-08-11 07:04

/src/openssl32/crypto/evp/encode.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <limits.h>
12
#include "internal/cryptlib.h"
13
#include <openssl/evp.h>
14
#include "crypto/evp.h"
15
#include "evp_local.h"
16
17
static unsigned char conv_ascii2bin(unsigned char a,
18
                                    const unsigned char *table);
19
static int evp_encodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
20
                               const unsigned char *f, int dlen);
21
static int evp_decodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
22
                               const unsigned char *f, int n);
23
24
#ifndef CHARSET_EBCDIC
25
15.4k
# define conv_bin2ascii(a, table)       ((table)[(a)&0x3f])
26
#else
27
/*
28
 * We assume that PEM encoded files are EBCDIC files (i.e., printable text
29
 * files). Convert them here while decoding. When encoding, output is EBCDIC
30
 * (text) format again. (No need for conversion in the conv_bin2ascii macro,
31
 * as the underlying textstring data_bin2ascii[] is already EBCDIC)
32
 */
33
# define conv_bin2ascii(a, table)       ((table)[(a)&0x3f])
34
#endif
35
36
/*-
37
 * 64 char lines
38
 * pad input with 0
39
 * left over chars are set to =
40
 * 1 byte  => xx==
41
 * 2 bytes => xxx=
42
 * 3 bytes => xxxx
43
 */
44
#define BIN_PER_LINE    (64/4*3)
45
#define CHUNKS_PER_LINE (64/4)
46
#define CHAR_PER_LINE   (64+1)
47
48
static const unsigned char data_bin2ascii[65] =
49
    "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
50
51
/* SRP uses a different base64 alphabet */
52
static const unsigned char srpdata_bin2ascii[65] =
53
    "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz./";
54
55
56
/*-
57
 * 0xF0 is a EOLN
58
 * 0xF1 is ignore but next needs to be 0xF0 (for \r\n processing).
59
 * 0xF2 is EOF
60
 * 0xE0 is ignore at start of line.
61
 * 0xFF is error
62
 */
63
64
#define B64_EOLN                0xF0
65
#define B64_CR                  0xF1
66
187M
#define B64_EOF                 0xF2
67
2.08M
#define B64_WS                  0xE0
68
187M
#define B64_ERROR               0xFF
69
194M
#define B64_NOT_BASE64(a)       (((a)|0x13) == 0xF3)
70
192M
#define B64_BASE64(a)           (!B64_NOT_BASE64(a))
71
72
static const unsigned char data_ascii2bin[128] = {
73
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
74
    0xFF, 0xE0, 0xF0, 0xFF, 0xFF, 0xF1, 0xFF, 0xFF,
75
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
76
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
77
    0xE0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
78
    0xFF, 0xFF, 0xFF, 0x3E, 0xFF, 0xF2, 0xFF, 0x3F,
79
    0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B,
80
    0x3C, 0x3D, 0xFF, 0xFF, 0xFF, 0x00, 0xFF, 0xFF,
81
    0xFF, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
82
    0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E,
83
    0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16,
84
    0x17, 0x18, 0x19, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
85
    0xFF, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20,
86
    0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28,
87
    0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30,
88
    0x31, 0x32, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
89
};
90
91
static const unsigned char srpdata_ascii2bin[128] = {
92
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
93
    0xFF, 0xE0, 0xF0, 0xFF, 0xFF, 0xF1, 0xFF, 0xFF,
94
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
95
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
96
    0xE0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
97
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF2, 0x3E, 0x3F,
98
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
99
    0x08, 0x09, 0xFF, 0xFF, 0xFF, 0x00, 0xFF, 0xFF,
100
    0xFF, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
101
    0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
102
    0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20,
103
    0x21, 0x22, 0x23, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
104
    0xFF, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A,
105
    0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32,
106
    0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A,
107
    0x3B, 0x3C, 0x3D, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
108
};
109
110
#ifndef CHARSET_EBCDIC
111
static unsigned char conv_ascii2bin(unsigned char a, const unsigned char *table)
112
624M
{
113
624M
    if (a & 0x80)
114
5.57k
        return B64_ERROR;
115
624M
    return table[a];
116
624M
}
117
#else
118
static unsigned char conv_ascii2bin(unsigned char a, const unsigned char *table)
119
{
120
    a = os_toascii[a];
121
    if (a & 0x80)
122
        return B64_ERROR;
123
    return table[a];
124
}
125
#endif
126
127
EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void)
128
206k
{
129
206k
    return OPENSSL_zalloc(sizeof(EVP_ENCODE_CTX));
130
206k
}
131
132
void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx)
133
246k
{
134
246k
    OPENSSL_free(ctx);
135
246k
}
136
137
int EVP_ENCODE_CTX_copy(EVP_ENCODE_CTX *dctx, const EVP_ENCODE_CTX *sctx)
138
0
{
139
0
    memcpy(dctx, sctx, sizeof(EVP_ENCODE_CTX));
140
141
0
    return 1;
142
0
}
143
144
int EVP_ENCODE_CTX_num(EVP_ENCODE_CTX *ctx)
145
13.3k
{
146
13.3k
    return ctx->num;
147
13.3k
}
148
149
void evp_encode_ctx_set_flags(EVP_ENCODE_CTX *ctx, unsigned int flags)
150
0
{
151
0
    ctx->flags = flags;
152
0
}
153
154
void EVP_EncodeInit(EVP_ENCODE_CTX *ctx)
155
6.49k
{
156
6.49k
    ctx->length = 48;
157
6.49k
    ctx->num = 0;
158
6.49k
    ctx->line_num = 0;
159
6.49k
    ctx->flags = 0;
160
6.49k
}
161
162
int EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,
163
                      const unsigned char *in, int inl)
164
0
{
165
0
    int i, j;
166
0
    size_t total = 0;
167
168
0
    *outl = 0;
169
0
    if (inl <= 0)
170
0
        return 0;
171
0
    OPENSSL_assert(ctx->length <= (int)sizeof(ctx->enc_data));
172
0
    if (ctx->length - ctx->num > inl) {
173
0
        memcpy(&(ctx->enc_data[ctx->num]), in, inl);
174
0
        ctx->num += inl;
175
0
        return 1;
176
0
    }
177
0
    if (ctx->num != 0) {
178
0
        i = ctx->length - ctx->num;
179
0
        memcpy(&(ctx->enc_data[ctx->num]), in, i);
180
0
        in += i;
181
0
        inl -= i;
182
0
        j = evp_encodeblock_int(ctx, out, ctx->enc_data, ctx->length);
183
0
        ctx->num = 0;
184
0
        out += j;
185
0
        total = j;
186
0
        if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0) {
187
0
            *(out++) = '\n';
188
0
            total++;
189
0
        }
190
0
        *out = '\0';
191
0
    }
192
0
    while (inl >= ctx->length && total <= INT_MAX) {
193
0
        j = evp_encodeblock_int(ctx, out, in, ctx->length);
194
0
        in += ctx->length;
195
0
        inl -= ctx->length;
196
0
        out += j;
197
0
        total += j;
198
0
        if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0) {
199
0
            *(out++) = '\n';
200
0
            total++;
201
0
        }
202
0
        *out = '\0';
203
0
    }
204
0
    if (total > INT_MAX) {
205
        /* Too much output data! */
206
0
        *outl = 0;
207
0
        return 0;
208
0
    }
209
0
    if (inl != 0)
210
0
        memcpy(&(ctx->enc_data[0]), in, inl);
211
0
    ctx->num = inl;
212
0
    *outl = total;
213
214
0
    return 1;
215
0
}
216
217
void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl)
218
759
{
219
759
    unsigned int ret = 0;
220
221
759
    if (ctx->num != 0) {
222
759
        ret = evp_encodeblock_int(ctx, out, ctx->enc_data, ctx->num);
223
759
        if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0)
224
759
            out[ret++] = '\n';
225
759
        out[ret] = '\0';
226
759
        ctx->num = 0;
227
759
    }
228
759
    *outl = ret;
229
759
}
230
231
static int evp_encodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
232
                               const unsigned char *f, int dlen)
233
759
{
234
759
    int i, ret = 0;
235
759
    unsigned long l;
236
759
    const unsigned char *table;
237
238
759
    if (ctx != NULL && (ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0)
239
0
        table = srpdata_bin2ascii;
240
759
    else
241
759
        table = data_bin2ascii;
242
243
4.69k
    for (i = dlen; i > 0; i -= 3) {
244
3.93k
        if (i >= 3) {
245
3.35k
            l = (((unsigned long)f[0]) << 16L) |
246
3.35k
                (((unsigned long)f[1]) << 8L) | f[2];
247
3.35k
            *(t++) = conv_bin2ascii(l >> 18L, table);
248
3.35k
            *(t++) = conv_bin2ascii(l >> 12L, table);
249
3.35k
            *(t++) = conv_bin2ascii(l >> 6L, table);
250
3.35k
            *(t++) = conv_bin2ascii(l, table);
251
3.35k
        } else {
252
582
            l = ((unsigned long)f[0]) << 16L;
253
582
            if (i == 2)
254
262
                l |= ((unsigned long)f[1] << 8L);
255
256
582
            *(t++) = conv_bin2ascii(l >> 18L, table);
257
582
            *(t++) = conv_bin2ascii(l >> 12L, table);
258
582
            *(t++) = (i == 1) ? '=' : conv_bin2ascii(l >> 6L, table);
259
582
            *(t++) = '=';
260
582
        }
261
3.93k
        ret += 4;
262
3.93k
        f += 3;
263
3.93k
    }
264
265
759
    *t = '\0';
266
759
    return ret;
267
759
}
268
269
int EVP_EncodeBlock(unsigned char *t, const unsigned char *f, int dlen)
270
0
{
271
0
    return evp_encodeblock_int(NULL, t, f, dlen);
272
0
}
273
274
void EVP_DecodeInit(EVP_ENCODE_CTX *ctx)
275
463k
{
276
    /* Only ctx->num and ctx->flags are used during decoding. */
277
463k
    ctx->num = 0;
278
463k
    ctx->length = 0;
279
463k
    ctx->line_num = 0;
280
463k
    ctx->flags = 0;
281
463k
}
282
283
/*-
284
 * -1 for error
285
 *  0 for last line
286
 *  1 for full line
287
 *
288
 * Note: even though EVP_DecodeUpdate attempts to detect and report end of
289
 * content, the context doesn't currently remember it and will accept more data
290
 * in the next call. Therefore, the caller is responsible for checking and
291
 * rejecting a 0 return value in the middle of content.
292
 *
293
 * Note: even though EVP_DecodeUpdate has historically tried to detect end of
294
 * content based on line length, this has never worked properly. Therefore,
295
 * we now return 0 when one of the following is true:
296
 *   - Padding or B64_EOF was detected and the last block is complete.
297
 *   - Input has zero-length.
298
 * -1 is returned if:
299
 *   - Invalid characters are detected.
300
 *   - There is extra trailing padding, or data after padding.
301
 *   - B64_EOF is detected after an incomplete base64 block.
302
 */
303
int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,
304
                     const unsigned char *in, int inl)
305
359k
{
306
359k
    int seof = 0, eof = 0, rv = -1, ret = 0, i, v, tmp, n, decoded_len;
307
359k
    unsigned char *d;
308
359k
    const unsigned char *table;
309
310
359k
    n = ctx->num;
311
359k
    d = ctx->enc_data;
312
313
359k
    if (n > 0 && d[n - 1] == '=') {
314
4.39k
        eof++;
315
4.39k
        if (n > 1 && d[n - 2] == '=')
316
1.45k
            eof++;
317
4.39k
    }
318
319
     /* Legacy behaviour: an empty input chunk signals end of input. */
320
359k
    if (inl == 0) {
321
0
        rv = 0;
322
0
        goto end;
323
0
    }
324
325
359k
    if ((ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0)
326
0
        table = srpdata_ascii2bin;
327
359k
    else
328
359k
        table = data_ascii2bin;
329
330
187M
    for (i = 0; i < inl; i++) {
331
187M
        tmp = *(in++);
332
187M
        v = conv_ascii2bin(tmp, table);
333
187M
        if (v == B64_ERROR) {
334
129k
            rv = -1;
335
129k
            goto end;
336
129k
        }
337
338
187M
        if (tmp == '=') {
339
161k
            eof++;
340
187M
        } else if (eof > 0 && B64_BASE64(v)) {
341
            /* More data after padding. */
342
1.15k
            rv = -1;
343
1.15k
            goto end;
344
1.15k
        }
345
346
187M
        if (eof > 2) {
347
1.07k
            rv = -1;
348
1.07k
            goto end;
349
1.07k
        }
350
351
187M
        if (v == B64_EOF) {
352
2.77k
            seof = 1;
353
2.77k
            goto tail;
354
2.77k
        }
355
356
        /* Only save valid base64 characters. */
357
187M
        if (B64_BASE64(v)) {
358
174M
            if (n >= 64) {
359
                /*
360
                 * We increment n once per loop, and empty the buffer as soon as
361
                 * we reach 64 characters, so this can only happen if someone's
362
                 * manually messed with the ctx. Refuse to write any more data.
363
                 */
364
0
                rv = -1;
365
0
                goto end;
366
0
            }
367
174M
            OPENSSL_assert(n < (int)sizeof(ctx->enc_data));
368
174M
            d[n++] = tmp;
369
174M
        }
370
371
187M
        if (n == 64) {
372
2.68M
            decoded_len = evp_decodeblock_int(ctx, out, d, n);
373
2.68M
            n = 0;
374
2.68M
            if (decoded_len < 0 || eof > decoded_len) {
375
0
                rv = -1;
376
0
                goto end;
377
0
            }
378
2.68M
            ret += decoded_len - eof;
379
2.68M
            out += decoded_len - eof;
380
2.68M
        }
381
187M
    }
382
383
    /*
384
     * Legacy behaviour: if the current line is a full base64-block (i.e., has
385
     * 0 mod 4 base64 characters), it is processed immediately. We keep this
386
     * behaviour as applications may not be calling EVP_DecodeFinal properly.
387
     */
388
227k
tail:
389
227k
    if (n > 0) {
390
202k
        if ((n & 3) == 0) {
391
126k
            decoded_len = evp_decodeblock_int(ctx, out, d, n);
392
126k
            n = 0;
393
126k
            if (decoded_len < 0 || eof > decoded_len) {
394
0
                rv = -1;
395
0
                goto end;
396
0
            }
397
126k
            ret += (decoded_len - eof);
398
126k
        } else if (seof) {
399
            /* EOF in the middle of a base64 block. */
400
1.49k
            rv = -1;
401
1.49k
            goto end;
402
1.49k
        }
403
202k
    }
404
405
226k
    rv = seof || (n == 0 && eof) ? 0 : 1;
406
359k
end:
407
    /* Legacy behaviour. This should probably rather be zeroed on error. */
408
359k
    *outl = ret;
409
359k
    ctx->num = n;
410
359k
    return rv;
411
226k
}
412
413
static int evp_decodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
414
                               const unsigned char *f, int n)
415
2.08M
{
416
2.08M
    int i, ret = 0, a, b, c, d;
417
2.08M
    unsigned long l;
418
2.08M
    const unsigned char *table;
419
420
2.08M
    if (ctx != NULL && (ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0)
421
0
        table = srpdata_ascii2bin;
422
2.08M
    else
423
2.08M
        table = data_ascii2bin;
424
425
    /* trim whitespace from the start of the line. */
426
2.08M
    while ((n > 0) && (conv_ascii2bin(*f, table) == B64_WS)) {
427
0
        f++;
428
0
        n--;
429
0
    }
430
431
    /*
432
     * strip off stuff at the end of the line ascii2bin values B64_WS,
433
     * B64_EOLN, B64_EOLN and B64_EOF
434
     */
435
2.08M
    while ((n > 3) && (B64_NOT_BASE64(conv_ascii2bin(f[n - 1], table))))
436
0
        n--;
437
438
2.08M
    if (n % 4 != 0)
439
146
        return -1;
440
441
34.5M
    for (i = 0; i < n; i += 4) {
442
32.5M
        a = conv_ascii2bin(*(f++), table);
443
32.5M
        b = conv_ascii2bin(*(f++), table);
444
32.5M
        c = conv_ascii2bin(*(f++), table);
445
32.5M
        d = conv_ascii2bin(*(f++), table);
446
32.5M
        if ((a & 0x80) || (b & 0x80) || (c & 0x80) || (d & 0x80))
447
0
            return -1;
448
32.5M
        l = ((((unsigned long)a) << 18L) |
449
32.5M
             (((unsigned long)b) << 12L) |
450
32.5M
             (((unsigned long)c) << 6L) | (((unsigned long)d)));
451
32.5M
        *(t++) = (unsigned char)(l >> 16L) & 0xff;
452
32.5M
        *(t++) = (unsigned char)(l >> 8L) & 0xff;
453
32.5M
        *(t++) = (unsigned char)(l) & 0xff;
454
32.5M
        ret += 3;
455
32.5M
    }
456
2.08M
    return ret;
457
2.08M
}
458
459
int EVP_DecodeBlock(unsigned char *t, const unsigned char *f, int n)
460
0
{
461
0
    return evp_decodeblock_int(NULL, t, f, n);
462
0
}
463
464
int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl)
465
195k
{
466
195k
    int i;
467
468
195k
    *outl = 0;
469
195k
    if (ctx->num != 0) {
470
748
        i = evp_decodeblock_int(ctx, out, ctx->enc_data, ctx->num);
471
748
        if (i < 0)
472
748
            return -1;
473
0
        ctx->num = 0;
474
0
        *outl = i;
475
0
        return 1;
476
748
    } else
477
194k
        return 1;
478
195k
}