Coverage Report

Created: 2025-08-11 07:04

/src/openssl33/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
86.3M
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
4.58k
{
145
4.58k
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
4.58k
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
4.58k
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
4.58k
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
4.58k
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
4.58k
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
4.58k
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
4.58k
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
4.58k
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
4.58k
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
9.94k
{
162
9.94k
    memset(out, 0, 66);
163
9.94k
    (*((limb *) & out[0])) = in[0];
164
9.94k
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
9.94k
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
9.94k
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
9.94k
    (*((limb_aX *) & out[29])) = in[4];
168
9.94k
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
9.94k
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
9.94k
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
9.94k
    (*((limb_aX *) & out[58])) = in[8];
172
9.94k
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
4.58k
{
177
4.58k
    felem_bytearray b_out;
178
4.58k
    int num_bytes;
179
180
4.58k
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
4.58k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
4.58k
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
4.58k
    bin66_to_felem(out, b_out);
190
4.58k
    return 1;
191
4.58k
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
9.94k
{
196
9.94k
    felem_bytearray b_out;
197
9.94k
    felem_to_bin66(b_out, in);
198
9.94k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
9.94k
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
2.84M
{
221
2.84M
    out[0] = in[0];
222
2.84M
    out[1] = in[1];
223
2.84M
    out[2] = in[2];
224
2.84M
    out[3] = in[3];
225
2.84M
    out[4] = in[4];
226
2.84M
    out[5] = in[5];
227
2.84M
    out[6] = in[6];
228
2.84M
    out[7] = in[7];
229
2.84M
    out[8] = in[8];
230
2.84M
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
762k
{
235
762k
    out[0] += in[0];
236
762k
    out[1] += in[1];
237
762k
    out[2] += in[2];
238
762k
    out[3] += in[3];
239
762k
    out[4] += in[4];
240
762k
    out[5] += in[5];
241
762k
    out[6] += in[6];
242
762k
    out[7] += in[7];
243
762k
    out[8] += in[8];
244
762k
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
7.28M
{
249
7.28M
    out[0] = in[0] * scalar;
250
7.28M
    out[1] = in[1] * scalar;
251
7.28M
    out[2] = in[2] * scalar;
252
7.28M
    out[3] = in[3] * scalar;
253
7.28M
    out[4] = in[4] * scalar;
254
7.28M
    out[5] = in[5] * scalar;
255
7.28M
    out[6] = in[6] * scalar;
256
7.28M
    out[7] = in[7] * scalar;
257
7.28M
    out[8] = in[8] * scalar;
258
7.28M
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
1.24M
{
263
1.24M
    out[0] *= scalar;
264
1.24M
    out[1] *= scalar;
265
1.24M
    out[2] *= scalar;
266
1.24M
    out[3] *= scalar;
267
1.24M
    out[4] *= scalar;
268
1.24M
    out[5] *= scalar;
269
1.24M
    out[6] *= scalar;
270
1.24M
    out[7] *= scalar;
271
1.24M
    out[8] *= scalar;
272
1.24M
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
415k
{
277
415k
    out[0] *= scalar;
278
415k
    out[1] *= scalar;
279
415k
    out[2] *= scalar;
280
415k
    out[3] *= scalar;
281
415k
    out[4] *= scalar;
282
415k
    out[5] *= scalar;
283
415k
    out[6] *= scalar;
284
415k
    out[7] *= scalar;
285
415k
    out[8] *= scalar;
286
415k
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
20.1k
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
20.1k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
20.1k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
20.1k
    out[0] = two62m3 - in[0];
302
20.1k
    out[1] = two62m2 - in[1];
303
20.1k
    out[2] = two62m2 - in[2];
304
20.1k
    out[3] = two62m2 - in[3];
305
20.1k
    out[4] = two62m2 - in[4];
306
20.1k
    out[5] = two62m2 - in[5];
307
20.1k
    out[6] = two62m2 - in[6];
308
20.1k
    out[7] = two62m2 - in[7];
309
20.1k
    out[8] = two62m2 - in[8];
310
20.1k
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
662k
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
662k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
662k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
662k
    out[0] += two62m3 - in[0];
328
662k
    out[1] += two62m2 - in[1];
329
662k
    out[2] += two62m2 - in[2];
330
662k
    out[3] += two62m2 - in[3];
331
662k
    out[4] += two62m2 - in[4];
332
662k
    out[5] += two62m2 - in[5];
333
662k
    out[6] += two62m2 - in[6];
334
662k
    out[7] += two62m2 - in[7];
335
662k
    out[8] += two62m2 - in[8];
336
662k
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
1.21M
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
1.21M
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
1.21M
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
1.21M
    out[0] += two63m6 - in[0];
359
1.21M
    out[1] += two63m5 - in[1];
360
1.21M
    out[2] += two63m5 - in[2];
361
1.21M
    out[3] += two63m5 - in[3];
362
1.21M
    out[4] += two63m5 - in[4];
363
1.21M
    out[5] += two63m5 - in[5];
364
1.21M
    out[6] += two63m5 - in[6];
365
1.21M
    out[7] += two63m5 - in[7];
366
1.21M
    out[8] += two63m5 - in[8];
367
1.21M
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
415k
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
415k
    static const uint128_t two127m70 =
382
415k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
415k
    static const uint128_t two127m69 =
384
415k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
415k
    out[0] += (two127m70 - in[0]);
387
415k
    out[1] += (two127m69 - in[1]);
388
415k
    out[2] += (two127m69 - in[2]);
389
415k
    out[3] += (two127m69 - in[3]);
390
415k
    out[4] += (two127m69 - in[4]);
391
415k
    out[5] += (two127m69 - in[5]);
392
415k
    out[6] += (two127m69 - in[6]);
393
415k
    out[7] += (two127m69 - in[7]);
394
415k
    out[8] += (two127m69 - in[8]);
395
415k
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
2.48M
{
406
2.48M
    felem inx2, inx4;
407
2.48M
    felem_scalar(inx2, in, 2);
408
2.48M
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
2.48M
    out[0] = ((uint128_t) in[0]) * in[0];
422
2.48M
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
2.48M
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
2.48M
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
2.48M
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
2.48M
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
2.48M
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
2.48M
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
2.48M
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
2.48M
             ((uint128_t) in[1]) * inx2[5] +
431
2.48M
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
2.48M
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
2.48M
             ((uint128_t) in[1]) * inx2[6] +
434
2.48M
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
2.48M
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
2.48M
             ((uint128_t) in[1]) * inx2[7] +
437
2.48M
             ((uint128_t) in[2]) * inx2[6] +
438
2.48M
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
2.48M
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
2.48M
              ((uint128_t) in[2]) * inx4[7] +
452
2.48M
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
2.48M
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
2.48M
              ((uint128_t) in[3]) * inx4[7] +
457
2.48M
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
2.48M
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
2.48M
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
2.48M
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
2.48M
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
2.48M
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
2.48M
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
2.48M
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
2.48M
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
2.48M
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
2.17M
{
490
2.17M
    felem in2x2;
491
2.17M
    felem_scalar(in2x2, in2, 2);
492
493
2.17M
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
2.17M
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
2.17M
             ((uint128_t) in1[1]) * in2[0];
497
498
2.17M
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
2.17M
             ((uint128_t) in1[1]) * in2[1] +
500
2.17M
             ((uint128_t) in1[2]) * in2[0];
501
502
2.17M
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
2.17M
             ((uint128_t) in1[1]) * in2[2] +
504
2.17M
             ((uint128_t) in1[2]) * in2[1] +
505
2.17M
             ((uint128_t) in1[3]) * in2[0];
506
507
2.17M
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
2.17M
             ((uint128_t) in1[1]) * in2[3] +
509
2.17M
             ((uint128_t) in1[2]) * in2[2] +
510
2.17M
             ((uint128_t) in1[3]) * in2[1] +
511
2.17M
             ((uint128_t) in1[4]) * in2[0];
512
513
2.17M
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
2.17M
             ((uint128_t) in1[1]) * in2[4] +
515
2.17M
             ((uint128_t) in1[2]) * in2[3] +
516
2.17M
             ((uint128_t) in1[3]) * in2[2] +
517
2.17M
             ((uint128_t) in1[4]) * in2[1] +
518
2.17M
             ((uint128_t) in1[5]) * in2[0];
519
520
2.17M
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
2.17M
             ((uint128_t) in1[1]) * in2[5] +
522
2.17M
             ((uint128_t) in1[2]) * in2[4] +
523
2.17M
             ((uint128_t) in1[3]) * in2[3] +
524
2.17M
             ((uint128_t) in1[4]) * in2[2] +
525
2.17M
             ((uint128_t) in1[5]) * in2[1] +
526
2.17M
             ((uint128_t) in1[6]) * in2[0];
527
528
2.17M
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
2.17M
             ((uint128_t) in1[1]) * in2[6] +
530
2.17M
             ((uint128_t) in1[2]) * in2[5] +
531
2.17M
             ((uint128_t) in1[3]) * in2[4] +
532
2.17M
             ((uint128_t) in1[4]) * in2[3] +
533
2.17M
             ((uint128_t) in1[5]) * in2[2] +
534
2.17M
             ((uint128_t) in1[6]) * in2[1] +
535
2.17M
             ((uint128_t) in1[7]) * in2[0];
536
537
2.17M
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
2.17M
             ((uint128_t) in1[1]) * in2[7] +
539
2.17M
             ((uint128_t) in1[2]) * in2[6] +
540
2.17M
             ((uint128_t) in1[3]) * in2[5] +
541
2.17M
             ((uint128_t) in1[4]) * in2[4] +
542
2.17M
             ((uint128_t) in1[5]) * in2[3] +
543
2.17M
             ((uint128_t) in1[6]) * in2[2] +
544
2.17M
             ((uint128_t) in1[7]) * in2[1] +
545
2.17M
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
2.17M
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
2.17M
              ((uint128_t) in1[2]) * in2x2[7] +
551
2.17M
              ((uint128_t) in1[3]) * in2x2[6] +
552
2.17M
              ((uint128_t) in1[4]) * in2x2[5] +
553
2.17M
              ((uint128_t) in1[5]) * in2x2[4] +
554
2.17M
              ((uint128_t) in1[6]) * in2x2[3] +
555
2.17M
              ((uint128_t) in1[7]) * in2x2[2] +
556
2.17M
              ((uint128_t) in1[8]) * in2x2[1];
557
558
2.17M
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
2.17M
              ((uint128_t) in1[3]) * in2x2[7] +
560
2.17M
              ((uint128_t) in1[4]) * in2x2[6] +
561
2.17M
              ((uint128_t) in1[5]) * in2x2[5] +
562
2.17M
              ((uint128_t) in1[6]) * in2x2[4] +
563
2.17M
              ((uint128_t) in1[7]) * in2x2[3] +
564
2.17M
              ((uint128_t) in1[8]) * in2x2[2];
565
566
2.17M
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
2.17M
              ((uint128_t) in1[4]) * in2x2[7] +
568
2.17M
              ((uint128_t) in1[5]) * in2x2[6] +
569
2.17M
              ((uint128_t) in1[6]) * in2x2[5] +
570
2.17M
              ((uint128_t) in1[7]) * in2x2[4] +
571
2.17M
              ((uint128_t) in1[8]) * in2x2[3];
572
573
2.17M
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
2.17M
              ((uint128_t) in1[5]) * in2x2[7] +
575
2.17M
              ((uint128_t) in1[6]) * in2x2[6] +
576
2.17M
              ((uint128_t) in1[7]) * in2x2[5] +
577
2.17M
              ((uint128_t) in1[8]) * in2x2[4];
578
579
2.17M
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
2.17M
              ((uint128_t) in1[6]) * in2x2[7] +
581
2.17M
              ((uint128_t) in1[7]) * in2x2[6] +
582
2.17M
              ((uint128_t) in1[8]) * in2x2[5];
583
584
2.17M
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
2.17M
              ((uint128_t) in1[7]) * in2x2[7] +
586
2.17M
              ((uint128_t) in1[8]) * in2x2[6];
587
588
2.17M
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
2.17M
              ((uint128_t) in1[8]) * in2x2[7];
590
591
2.17M
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
2.17M
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
4.24M
{
605
4.24M
    u64 overflow1, overflow2;
606
607
4.24M
    out[0] = ((limb) in[0]) & bottom58bits;
608
4.24M
    out[1] = ((limb) in[1]) & bottom58bits;
609
4.24M
    out[2] = ((limb) in[2]) & bottom58bits;
610
4.24M
    out[3] = ((limb) in[3]) & bottom58bits;
611
4.24M
    out[4] = ((limb) in[4]) & bottom58bits;
612
4.24M
    out[5] = ((limb) in[5]) & bottom58bits;
613
4.24M
    out[6] = ((limb) in[6]) & bottom58bits;
614
4.24M
    out[7] = ((limb) in[7]) & bottom58bits;
615
4.24M
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
4.24M
    out[1] += ((limb) in[0]) >> 58;
620
4.24M
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
4.24M
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
4.24M
    out[2] += ((limb) in[1]) >> 58;
628
4.24M
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
4.24M
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
4.24M
    out[3] += ((limb) in[2]) >> 58;
632
4.24M
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
4.24M
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
4.24M
    out[4] += ((limb) in[3]) >> 58;
636
4.24M
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
4.24M
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
4.24M
    out[5] += ((limb) in[4]) >> 58;
640
4.24M
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
4.24M
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
4.24M
    out[6] += ((limb) in[5]) >> 58;
644
4.24M
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
4.24M
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
4.24M
    out[7] += ((limb) in[6]) >> 58;
648
4.24M
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
4.24M
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
4.24M
    out[8] += ((limb) in[7]) >> 58;
652
4.24M
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
4.24M
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
4.24M
    overflow1 += ((limb) in[8]) >> 58;
660
4.24M
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
4.24M
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
4.24M
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
4.24M
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
4.24M
    out[0] += overflow1;        /* out[0] < 2^60 */
667
4.24M
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
4.24M
    out[1] += out[0] >> 58;
670
4.24M
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
4.24M
}
677
678
#if defined(ECP_NISTP521_ASM)
679
static void felem_square_wrapper(largefelem out, const felem in);
680
static void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
static void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
static void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
static void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
2.48M
# define felem_square felem_square_ref
726
2.17M
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
1.33k
{
753
1.33k
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
1.33k
    largefelem tmp;
755
1.33k
    unsigned i;
756
757
1.33k
    felem_square(tmp, in);
758
1.33k
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
1.33k
    felem_mul(tmp, in, ftmp);
760
1.33k
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
1.33k
    felem_assign(ftmp2, ftmp);
762
1.33k
    felem_square(tmp, ftmp);
763
1.33k
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
1.33k
    felem_mul(tmp, in, ftmp);
765
1.33k
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
1.33k
    felem_square(tmp, ftmp);
767
1.33k
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
1.33k
    felem_square(tmp, ftmp2);
770
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
1.33k
    felem_square(tmp, ftmp3);
772
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
1.33k
    felem_mul(tmp, ftmp3, ftmp2);
774
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
1.33k
    felem_assign(ftmp2, ftmp3);
777
1.33k
    felem_square(tmp, ftmp3);
778
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
1.33k
    felem_square(tmp, ftmp3);
780
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
1.33k
    felem_square(tmp, ftmp3);
782
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
1.33k
    felem_square(tmp, ftmp3);
784
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
1.33k
    felem_mul(tmp, ftmp3, ftmp);
786
1.33k
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
787
1.33k
    felem_square(tmp, ftmp4);
788
1.33k
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
789
1.33k
    felem_mul(tmp, ftmp3, ftmp2);
790
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
791
1.33k
    felem_assign(ftmp2, ftmp3);
792
793
12.0k
    for (i = 0; i < 8; i++) {
794
10.6k
        felem_square(tmp, ftmp3);
795
10.6k
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
796
10.6k
    }
797
1.33k
    felem_mul(tmp, ftmp3, ftmp2);
798
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
799
1.33k
    felem_assign(ftmp2, ftmp3);
800
801
22.7k
    for (i = 0; i < 16; i++) {
802
21.3k
        felem_square(tmp, ftmp3);
803
21.3k
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
804
21.3k
    }
805
1.33k
    felem_mul(tmp, ftmp3, ftmp2);
806
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
807
1.33k
    felem_assign(ftmp2, ftmp3);
808
809
44.0k
    for (i = 0; i < 32; i++) {
810
42.7k
        felem_square(tmp, ftmp3);
811
42.7k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
812
42.7k
    }
813
1.33k
    felem_mul(tmp, ftmp3, ftmp2);
814
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
815
1.33k
    felem_assign(ftmp2, ftmp3);
816
817
86.8k
    for (i = 0; i < 64; i++) {
818
85.5k
        felem_square(tmp, ftmp3);
819
85.5k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
820
85.5k
    }
821
1.33k
    felem_mul(tmp, ftmp3, ftmp2);
822
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
823
1.33k
    felem_assign(ftmp2, ftmp3);
824
825
172k
    for (i = 0; i < 128; i++) {
826
171k
        felem_square(tmp, ftmp3);
827
171k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
828
171k
    }
829
1.33k
    felem_mul(tmp, ftmp3, ftmp2);
830
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
831
1.33k
    felem_assign(ftmp2, ftmp3);
832
833
343k
    for (i = 0; i < 256; i++) {
834
342k
        felem_square(tmp, ftmp3);
835
342k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
836
342k
    }
837
1.33k
    felem_mul(tmp, ftmp3, ftmp2);
838
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
839
840
13.3k
    for (i = 0; i < 9; i++) {
841
12.0k
        felem_square(tmp, ftmp3);
842
12.0k
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
843
12.0k
    }
844
1.33k
    felem_mul(tmp, ftmp3, ftmp4);
845
1.33k
    felem_reduce(ftmp3, tmp);   /* 2^521 - 2^2 */
846
1.33k
    felem_mul(tmp, ftmp3, in);
847
1.33k
    felem_reduce(out, tmp);     /* 2^521 - 3 */
848
1.33k
}
849
850
/* This is 2^521-1, expressed as an felem */
851
static const felem kPrime = {
852
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
855
};
856
857
/*-
858
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
859
 * otherwise.
860
 * On entry:
861
 *   in[i] < 2^59 + 2^14
862
 */
863
static limb felem_is_zero(const felem in)
864
673k
{
865
673k
    felem ftmp;
866
673k
    limb is_zero, is_p;
867
673k
    felem_assign(ftmp, in);
868
869
673k
    ftmp[0] += ftmp[8] >> 57;
870
673k
    ftmp[8] &= bottom57bits;
871
    /* ftmp[8] < 2^57 */
872
673k
    ftmp[1] += ftmp[0] >> 58;
873
673k
    ftmp[0] &= bottom58bits;
874
673k
    ftmp[2] += ftmp[1] >> 58;
875
673k
    ftmp[1] &= bottom58bits;
876
673k
    ftmp[3] += ftmp[2] >> 58;
877
673k
    ftmp[2] &= bottom58bits;
878
673k
    ftmp[4] += ftmp[3] >> 58;
879
673k
    ftmp[3] &= bottom58bits;
880
673k
    ftmp[5] += ftmp[4] >> 58;
881
673k
    ftmp[4] &= bottom58bits;
882
673k
    ftmp[6] += ftmp[5] >> 58;
883
673k
    ftmp[5] &= bottom58bits;
884
673k
    ftmp[7] += ftmp[6] >> 58;
885
673k
    ftmp[6] &= bottom58bits;
886
673k
    ftmp[8] += ftmp[7] >> 58;
887
673k
    ftmp[7] &= bottom58bits;
888
    /* ftmp[8] < 2^57 + 4 */
889
890
    /*
891
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
892
     * than our bound for ftmp[8]. Therefore we only have to check if the
893
     * zero is zero or 2^521-1.
894
     */
895
896
673k
    is_zero = 0;
897
673k
    is_zero |= ftmp[0];
898
673k
    is_zero |= ftmp[1];
899
673k
    is_zero |= ftmp[2];
900
673k
    is_zero |= ftmp[3];
901
673k
    is_zero |= ftmp[4];
902
673k
    is_zero |= ftmp[5];
903
673k
    is_zero |= ftmp[6];
904
673k
    is_zero |= ftmp[7];
905
673k
    is_zero |= ftmp[8];
906
907
673k
    is_zero--;
908
    /*
909
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
910
     * can be set is if is_zero was 0 before the decrement.
911
     */
912
673k
    is_zero = 0 - (is_zero >> 63);
913
914
673k
    is_p = ftmp[0] ^ kPrime[0];
915
673k
    is_p |= ftmp[1] ^ kPrime[1];
916
673k
    is_p |= ftmp[2] ^ kPrime[2];
917
673k
    is_p |= ftmp[3] ^ kPrime[3];
918
673k
    is_p |= ftmp[4] ^ kPrime[4];
919
673k
    is_p |= ftmp[5] ^ kPrime[5];
920
673k
    is_p |= ftmp[6] ^ kPrime[6];
921
673k
    is_p |= ftmp[7] ^ kPrime[7];
922
673k
    is_p |= ftmp[8] ^ kPrime[8];
923
924
673k
    is_p--;
925
673k
    is_p = 0 - (is_p >> 63);
926
927
673k
    is_zero |= is_p;
928
673k
    return is_zero;
929
673k
}
930
931
static int felem_is_zero_int(const void *in)
932
0
{
933
0
    return (int)(felem_is_zero(in) & ((limb) 1));
934
0
}
935
936
/*-
937
 * felem_contract converts |in| to its unique, minimal representation.
938
 * On entry:
939
 *   in[i] < 2^59 + 2^14
940
 */
941
static void felem_contract(felem out, const felem in)
942
6.60k
{
943
6.60k
    limb is_p, is_greater, sign;
944
6.60k
    static const limb two58 = ((limb) 1) << 58;
945
946
6.60k
    felem_assign(out, in);
947
948
6.60k
    out[0] += out[8] >> 57;
949
6.60k
    out[8] &= bottom57bits;
950
    /* out[8] < 2^57 */
951
6.60k
    out[1] += out[0] >> 58;
952
6.60k
    out[0] &= bottom58bits;
953
6.60k
    out[2] += out[1] >> 58;
954
6.60k
    out[1] &= bottom58bits;
955
6.60k
    out[3] += out[2] >> 58;
956
6.60k
    out[2] &= bottom58bits;
957
6.60k
    out[4] += out[3] >> 58;
958
6.60k
    out[3] &= bottom58bits;
959
6.60k
    out[5] += out[4] >> 58;
960
6.60k
    out[4] &= bottom58bits;
961
6.60k
    out[6] += out[5] >> 58;
962
6.60k
    out[5] &= bottom58bits;
963
6.60k
    out[7] += out[6] >> 58;
964
6.60k
    out[6] &= bottom58bits;
965
6.60k
    out[8] += out[7] >> 58;
966
6.60k
    out[7] &= bottom58bits;
967
    /* out[8] < 2^57 + 4 */
968
969
    /*
970
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
971
     * out. See the comments in felem_is_zero regarding why we don't test for
972
     * other multiples of the prime.
973
     */
974
975
    /*
976
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
977
     */
978
979
6.60k
    is_p = out[0] ^ kPrime[0];
980
6.60k
    is_p |= out[1] ^ kPrime[1];
981
6.60k
    is_p |= out[2] ^ kPrime[2];
982
6.60k
    is_p |= out[3] ^ kPrime[3];
983
6.60k
    is_p |= out[4] ^ kPrime[4];
984
6.60k
    is_p |= out[5] ^ kPrime[5];
985
6.60k
    is_p |= out[6] ^ kPrime[6];
986
6.60k
    is_p |= out[7] ^ kPrime[7];
987
6.60k
    is_p |= out[8] ^ kPrime[8];
988
989
6.60k
    is_p--;
990
6.60k
    is_p &= is_p << 32;
991
6.60k
    is_p &= is_p << 16;
992
6.60k
    is_p &= is_p << 8;
993
6.60k
    is_p &= is_p << 4;
994
6.60k
    is_p &= is_p << 2;
995
6.60k
    is_p &= is_p << 1;
996
6.60k
    is_p = 0 - (is_p >> 63);
997
6.60k
    is_p = ~is_p;
998
999
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1000
1001
6.60k
    out[0] &= is_p;
1002
6.60k
    out[1] &= is_p;
1003
6.60k
    out[2] &= is_p;
1004
6.60k
    out[3] &= is_p;
1005
6.60k
    out[4] &= is_p;
1006
6.60k
    out[5] &= is_p;
1007
6.60k
    out[6] &= is_p;
1008
6.60k
    out[7] &= is_p;
1009
6.60k
    out[8] &= is_p;
1010
1011
    /*
1012
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1013
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1014
     */
1015
6.60k
    is_greater = out[8] >> 57;
1016
6.60k
    is_greater |= is_greater << 32;
1017
6.60k
    is_greater |= is_greater << 16;
1018
6.60k
    is_greater |= is_greater << 8;
1019
6.60k
    is_greater |= is_greater << 4;
1020
6.60k
    is_greater |= is_greater << 2;
1021
6.60k
    is_greater |= is_greater << 1;
1022
6.60k
    is_greater = 0 - (is_greater >> 63);
1023
1024
6.60k
    out[0] -= kPrime[0] & is_greater;
1025
6.60k
    out[1] -= kPrime[1] & is_greater;
1026
6.60k
    out[2] -= kPrime[2] & is_greater;
1027
6.60k
    out[3] -= kPrime[3] & is_greater;
1028
6.60k
    out[4] -= kPrime[4] & is_greater;
1029
6.60k
    out[5] -= kPrime[5] & is_greater;
1030
6.60k
    out[6] -= kPrime[6] & is_greater;
1031
6.60k
    out[7] -= kPrime[7] & is_greater;
1032
6.60k
    out[8] -= kPrime[8] & is_greater;
1033
1034
    /* Eliminate negative coefficients */
1035
6.60k
    sign = -(out[0] >> 63);
1036
6.60k
    out[0] += (two58 & sign);
1037
6.60k
    out[1] -= (1 & sign);
1038
6.60k
    sign = -(out[1] >> 63);
1039
6.60k
    out[1] += (two58 & sign);
1040
6.60k
    out[2] -= (1 & sign);
1041
6.60k
    sign = -(out[2] >> 63);
1042
6.60k
    out[2] += (two58 & sign);
1043
6.60k
    out[3] -= (1 & sign);
1044
6.60k
    sign = -(out[3] >> 63);
1045
6.60k
    out[3] += (two58 & sign);
1046
6.60k
    out[4] -= (1 & sign);
1047
6.60k
    sign = -(out[4] >> 63);
1048
6.60k
    out[4] += (two58 & sign);
1049
6.60k
    out[5] -= (1 & sign);
1050
6.60k
    sign = -(out[0] >> 63);
1051
6.60k
    out[5] += (two58 & sign);
1052
6.60k
    out[6] -= (1 & sign);
1053
6.60k
    sign = -(out[6] >> 63);
1054
6.60k
    out[6] += (two58 & sign);
1055
6.60k
    out[7] -= (1 & sign);
1056
6.60k
    sign = -(out[7] >> 63);
1057
6.60k
    out[7] += (two58 & sign);
1058
6.60k
    out[8] -= (1 & sign);
1059
6.60k
    sign = -(out[5] >> 63);
1060
6.60k
    out[5] += (two58 & sign);
1061
6.60k
    out[6] -= (1 & sign);
1062
6.60k
    sign = -(out[6] >> 63);
1063
6.60k
    out[6] += (two58 & sign);
1064
6.60k
    out[7] -= (1 & sign);
1065
6.60k
    sign = -(out[7] >> 63);
1066
6.60k
    out[7] += (two58 & sign);
1067
6.60k
    out[8] -= (1 & sign);
1068
6.60k
}
1069
1070
/*-
1071
 * Group operations
1072
 * ----------------
1073
 *
1074
 * Building on top of the field operations we have the operations on the
1075
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1076
 * coordinates */
1077
1078
/*-
1079
 * point_double calculates 2*(x_in, y_in, z_in)
1080
 *
1081
 * The method is taken from:
1082
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1083
 *
1084
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1085
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1086
static void
1087
point_double(felem x_out, felem y_out, felem z_out,
1088
             const felem x_in, const felem y_in, const felem z_in)
1089
246k
{
1090
246k
    largefelem tmp, tmp2;
1091
246k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1092
1093
246k
    felem_assign(ftmp, x_in);
1094
246k
    felem_assign(ftmp2, x_in);
1095
1096
    /* delta = z^2 */
1097
246k
    felem_square(tmp, z_in);
1098
246k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1099
1100
    /* gamma = y^2 */
1101
246k
    felem_square(tmp, y_in);
1102
246k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1103
1104
    /* beta = x*gamma */
1105
246k
    felem_mul(tmp, x_in, gamma);
1106
246k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1107
1108
    /* alpha = 3*(x-delta)*(x+delta) */
1109
246k
    felem_diff64(ftmp, delta);
1110
    /* ftmp[i] < 2^61 */
1111
246k
    felem_sum64(ftmp2, delta);
1112
    /* ftmp2[i] < 2^60 + 2^15 */
1113
246k
    felem_scalar64(ftmp2, 3);
1114
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1115
246k
    felem_mul(tmp, ftmp, ftmp2);
1116
    /*-
1117
     * tmp[i] < 17(3*2^121 + 3*2^76)
1118
     *        = 61*2^121 + 61*2^76
1119
     *        < 64*2^121 + 64*2^76
1120
     *        = 2^127 + 2^82
1121
     *        < 2^128
1122
     */
1123
246k
    felem_reduce(alpha, tmp);
1124
1125
    /* x' = alpha^2 - 8*beta */
1126
246k
    felem_square(tmp, alpha);
1127
    /*
1128
     * tmp[i] < 17*2^120 < 2^125
1129
     */
1130
246k
    felem_assign(ftmp, beta);
1131
246k
    felem_scalar64(ftmp, 8);
1132
    /* ftmp[i] < 2^62 + 2^17 */
1133
246k
    felem_diff_128_64(tmp, ftmp);
1134
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1135
246k
    felem_reduce(x_out, tmp);
1136
1137
    /* z' = (y + z)^2 - gamma - delta */
1138
246k
    felem_sum64(delta, gamma);
1139
    /* delta[i] < 2^60 + 2^15 */
1140
246k
    felem_assign(ftmp, y_in);
1141
246k
    felem_sum64(ftmp, z_in);
1142
    /* ftmp[i] < 2^60 + 2^15 */
1143
246k
    felem_square(tmp, ftmp);
1144
    /*
1145
     * tmp[i] < 17(2^122) < 2^127
1146
     */
1147
246k
    felem_diff_128_64(tmp, delta);
1148
    /* tmp[i] < 2^127 + 2^63 */
1149
246k
    felem_reduce(z_out, tmp);
1150
1151
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1152
246k
    felem_scalar64(beta, 4);
1153
    /* beta[i] < 2^61 + 2^16 */
1154
246k
    felem_diff64(beta, x_out);
1155
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1156
246k
    felem_mul(tmp, alpha, beta);
1157
    /*-
1158
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1159
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1160
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1161
     *        < 2^128
1162
     */
1163
246k
    felem_square(tmp2, gamma);
1164
    /*-
1165
     * tmp2[i] < 17*(2^59 + 2^14)^2
1166
     *         = 17*(2^118 + 2^74 + 2^28)
1167
     */
1168
246k
    felem_scalar128(tmp2, 8);
1169
    /*-
1170
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1171
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1172
     *         < 2^126
1173
     */
1174
246k
    felem_diff128(tmp, tmp2);
1175
    /*-
1176
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1177
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1178
     *          2^74 + 2^69 + 2^34 + 2^30
1179
     *        < 2^128
1180
     */
1181
246k
    felem_reduce(y_out, tmp);
1182
246k
}
1183
1184
/* copy_conditional copies in to out iff mask is all ones. */
1185
static void copy_conditional(felem out, const felem in, limb mask)
1186
1.03M
{
1187
1.03M
    unsigned i;
1188
10.3M
    for (i = 0; i < NLIMBS; ++i) {
1189
9.27M
        const limb tmp = mask & (in[i] ^ out[i]);
1190
9.27M
        out[i] ^= tmp;
1191
9.27M
    }
1192
1.03M
}
1193
1194
/*-
1195
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1196
 *
1197
 * The method is taken from
1198
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1199
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1200
 *
1201
 * This function includes a branch for checking whether the two input points
1202
 * are equal (while not equal to the point at infinity). See comment below
1203
 * on constant-time.
1204
 */
1205
static void point_add(felem x3, felem y3, felem z3,
1206
                      const felem x1, const felem y1, const felem z1,
1207
                      const int mixed, const felem x2, const felem y2,
1208
                      const felem z2)
1209
168k
{
1210
168k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1211
168k
    largefelem tmp, tmp2;
1212
168k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1213
168k
    limb points_equal;
1214
1215
168k
    z1_is_zero = felem_is_zero(z1);
1216
168k
    z2_is_zero = felem_is_zero(z2);
1217
1218
    /* ftmp = z1z1 = z1**2 */
1219
168k
    felem_square(tmp, z1);
1220
168k
    felem_reduce(ftmp, tmp);
1221
1222
168k
    if (!mixed) {
1223
        /* ftmp2 = z2z2 = z2**2 */
1224
21.3k
        felem_square(tmp, z2);
1225
21.3k
        felem_reduce(ftmp2, tmp);
1226
1227
        /* u1 = ftmp3 = x1*z2z2 */
1228
21.3k
        felem_mul(tmp, x1, ftmp2);
1229
21.3k
        felem_reduce(ftmp3, tmp);
1230
1231
        /* ftmp5 = z1 + z2 */
1232
21.3k
        felem_assign(ftmp5, z1);
1233
21.3k
        felem_sum64(ftmp5, z2);
1234
        /* ftmp5[i] < 2^61 */
1235
1236
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1237
21.3k
        felem_square(tmp, ftmp5);
1238
        /* tmp[i] < 17*2^122 */
1239
21.3k
        felem_diff_128_64(tmp, ftmp);
1240
        /* tmp[i] < 17*2^122 + 2^63 */
1241
21.3k
        felem_diff_128_64(tmp, ftmp2);
1242
        /* tmp[i] < 17*2^122 + 2^64 */
1243
21.3k
        felem_reduce(ftmp5, tmp);
1244
1245
        /* ftmp2 = z2 * z2z2 */
1246
21.3k
        felem_mul(tmp, ftmp2, z2);
1247
21.3k
        felem_reduce(ftmp2, tmp);
1248
1249
        /* s1 = ftmp6 = y1 * z2**3 */
1250
21.3k
        felem_mul(tmp, y1, ftmp2);
1251
21.3k
        felem_reduce(ftmp6, tmp);
1252
147k
    } else {
1253
        /*
1254
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1255
         */
1256
1257
        /* u1 = ftmp3 = x1*z2z2 */
1258
147k
        felem_assign(ftmp3, x1);
1259
1260
        /* ftmp5 = 2*z1z2 */
1261
147k
        felem_scalar(ftmp5, z1, 2);
1262
1263
        /* s1 = ftmp6 = y1 * z2**3 */
1264
147k
        felem_assign(ftmp6, y1);
1265
147k
    }
1266
1267
    /* u2 = x2*z1z1 */
1268
168k
    felem_mul(tmp, x2, ftmp);
1269
    /* tmp[i] < 17*2^120 */
1270
1271
    /* h = ftmp4 = u2 - u1 */
1272
168k
    felem_diff_128_64(tmp, ftmp3);
1273
    /* tmp[i] < 17*2^120 + 2^63 */
1274
168k
    felem_reduce(ftmp4, tmp);
1275
1276
168k
    x_equal = felem_is_zero(ftmp4);
1277
1278
    /* z_out = ftmp5 * h */
1279
168k
    felem_mul(tmp, ftmp5, ftmp4);
1280
168k
    felem_reduce(z_out, tmp);
1281
1282
    /* ftmp = z1 * z1z1 */
1283
168k
    felem_mul(tmp, ftmp, z1);
1284
168k
    felem_reduce(ftmp, tmp);
1285
1286
    /* s2 = tmp = y2 * z1**3 */
1287
168k
    felem_mul(tmp, y2, ftmp);
1288
    /* tmp[i] < 17*2^120 */
1289
1290
    /* r = ftmp5 = (s2 - s1)*2 */
1291
168k
    felem_diff_128_64(tmp, ftmp6);
1292
    /* tmp[i] < 17*2^120 + 2^63 */
1293
168k
    felem_reduce(ftmp5, tmp);
1294
168k
    y_equal = felem_is_zero(ftmp5);
1295
168k
    felem_scalar64(ftmp5, 2);
1296
    /* ftmp5[i] < 2^61 */
1297
1298
    /*
1299
     * The formulae are incorrect if the points are equal, in affine coordinates
1300
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1301
     * happens.
1302
     *
1303
     * We use bitwise operations to avoid potential side-channels introduced by
1304
     * the short-circuiting behaviour of boolean operators.
1305
     *
1306
     * The special case of either point being the point at infinity (z1 and/or
1307
     * z2 are zero), is handled separately later on in this function, so we
1308
     * avoid jumping to point_double here in those special cases.
1309
     *
1310
     * Notice the comment below on the implications of this branching for timing
1311
     * leaks and why it is considered practically irrelevant.
1312
     */
1313
168k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1314
1315
168k
    if (points_equal) {
1316
        /*
1317
         * This is obviously not constant-time but it will almost-never happen
1318
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1319
         * where the intermediate value gets very close to the group order.
1320
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1321
         * for the scalar, it's possible for the intermediate value to be a small
1322
         * negative multiple of the base point, and for the final signed digit
1323
         * to be the same value. We believe that this only occurs for the scalar
1324
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1325
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1326
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1327
         * the final digit is also -9G. Since this only happens for a single
1328
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1329
         * check whether a secret scalar was that exact value, can already do
1330
         * so.)
1331
         */
1332
0
        point_double(x3, y3, z3, x1, y1, z1);
1333
0
        return;
1334
0
    }
1335
1336
    /* I = ftmp = (2h)**2 */
1337
168k
    felem_assign(ftmp, ftmp4);
1338
168k
    felem_scalar64(ftmp, 2);
1339
    /* ftmp[i] < 2^61 */
1340
168k
    felem_square(tmp, ftmp);
1341
    /* tmp[i] < 17*2^122 */
1342
168k
    felem_reduce(ftmp, tmp);
1343
1344
    /* J = ftmp2 = h * I */
1345
168k
    felem_mul(tmp, ftmp4, ftmp);
1346
168k
    felem_reduce(ftmp2, tmp);
1347
1348
    /* V = ftmp4 = U1 * I */
1349
168k
    felem_mul(tmp, ftmp3, ftmp);
1350
168k
    felem_reduce(ftmp4, tmp);
1351
1352
    /* x_out = r**2 - J - 2V */
1353
168k
    felem_square(tmp, ftmp5);
1354
    /* tmp[i] < 17*2^122 */
1355
168k
    felem_diff_128_64(tmp, ftmp2);
1356
    /* tmp[i] < 17*2^122 + 2^63 */
1357
168k
    felem_assign(ftmp3, ftmp4);
1358
168k
    felem_scalar64(ftmp4, 2);
1359
    /* ftmp4[i] < 2^61 */
1360
168k
    felem_diff_128_64(tmp, ftmp4);
1361
    /* tmp[i] < 17*2^122 + 2^64 */
1362
168k
    felem_reduce(x_out, tmp);
1363
1364
    /* y_out = r(V-x_out) - 2 * s1 * J */
1365
168k
    felem_diff64(ftmp3, x_out);
1366
    /*
1367
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1368
     */
1369
168k
    felem_mul(tmp, ftmp5, ftmp3);
1370
    /* tmp[i] < 17*2^122 */
1371
168k
    felem_mul(tmp2, ftmp6, ftmp2);
1372
    /* tmp2[i] < 17*2^120 */
1373
168k
    felem_scalar128(tmp2, 2);
1374
    /* tmp2[i] < 17*2^121 */
1375
168k
    felem_diff128(tmp, tmp2);
1376
        /*-
1377
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1378
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1379
         *        < 2^127
1380
         */
1381
168k
    felem_reduce(y_out, tmp);
1382
1383
168k
    copy_conditional(x_out, x2, z1_is_zero);
1384
168k
    copy_conditional(x_out, x1, z2_is_zero);
1385
168k
    copy_conditional(y_out, y2, z1_is_zero);
1386
168k
    copy_conditional(y_out, y1, z2_is_zero);
1387
168k
    copy_conditional(z_out, z2, z1_is_zero);
1388
168k
    copy_conditional(z_out, z1, z2_is_zero);
1389
168k
    felem_assign(x3, x_out);
1390
168k
    felem_assign(y3, y_out);
1391
168k
    felem_assign(z3, z_out);
1392
168k
}
1393
1394
/*-
1395
 * Base point pre computation
1396
 * --------------------------
1397
 *
1398
 * Two different sorts of precomputed tables are used in the following code.
1399
 * Each contain various points on the curve, where each point is three field
1400
 * elements (x, y, z).
1401
 *
1402
 * For the base point table, z is usually 1 (0 for the point at infinity).
1403
 * This table has 16 elements:
1404
 * index | bits    | point
1405
 * ------+---------+------------------------------
1406
 *     0 | 0 0 0 0 | 0G
1407
 *     1 | 0 0 0 1 | 1G
1408
 *     2 | 0 0 1 0 | 2^130G
1409
 *     3 | 0 0 1 1 | (2^130 + 1)G
1410
 *     4 | 0 1 0 0 | 2^260G
1411
 *     5 | 0 1 0 1 | (2^260 + 1)G
1412
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1413
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1414
 *     8 | 1 0 0 0 | 2^390G
1415
 *     9 | 1 0 0 1 | (2^390 + 1)G
1416
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1417
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1418
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1419
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1420
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1421
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1422
 *
1423
 * The reason for this is so that we can clock bits into four different
1424
 * locations when doing simple scalar multiplies against the base point.
1425
 *
1426
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1427
1428
/* gmul is the table of precomputed base points */
1429
static const felem gmul[16][3] = {
1430
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1431
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1433
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1434
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1435
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1436
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1437
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1438
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1439
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1440
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1441
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1442
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1443
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1444
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1445
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1446
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1447
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1448
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1449
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1450
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1451
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1452
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1453
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1454
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1455
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1456
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1457
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1458
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1459
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1460
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1461
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1462
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1463
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1464
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1465
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1466
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1467
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1468
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1469
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1470
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1471
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1472
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1473
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1474
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1475
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1476
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1477
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1478
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1479
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1480
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1481
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1482
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1483
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1484
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1485
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1486
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1487
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1488
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1489
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1490
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1491
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1492
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1493
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1494
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1495
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1496
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1497
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1498
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1499
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1500
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1501
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1502
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1503
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1504
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1505
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1506
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1507
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1508
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1509
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1510
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1511
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1512
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1513
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1514
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1515
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1516
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1517
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1518
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1519
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1520
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1521
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1522
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1523
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1524
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1525
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1526
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1527
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1528
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1529
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1530
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1531
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1532
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1533
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1534
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1535
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1536
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1537
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1538
};
1539
1540
/*
1541
 * select_point selects the |idx|th point from a precomputation table and
1542
 * copies it to out.
1543
 */
1544
 /* pre_comp below is of the size provided in |size| */
1545
static void select_point(const limb idx, unsigned int size,
1546
                         const felem pre_comp[][3], felem out[3])
1547
168k
{
1548
168k
    unsigned i, j;
1549
168k
    limb *outlimbs = &out[0][0];
1550
1551
168k
    memset(out, 0, sizeof(*out) * 3);
1552
1553
2.88M
    for (i = 0; i < size; i++) {
1554
2.71M
        const limb *inlimbs = &pre_comp[i][0][0];
1555
2.71M
        limb mask = i ^ idx;
1556
2.71M
        mask |= mask >> 4;
1557
2.71M
        mask |= mask >> 2;
1558
2.71M
        mask |= mask >> 1;
1559
2.71M
        mask &= 1;
1560
2.71M
        mask--;
1561
76.0M
        for (j = 0; j < NLIMBS * 3; j++)
1562
73.3M
            outlimbs[j] |= inlimbs[j] & mask;
1563
2.71M
    }
1564
168k
}
1565
1566
/* get_bit returns the |i|th bit in |in| */
1567
static char get_bit(const felem_bytearray in, int i)
1568
710k
{
1569
710k
    if (i < 0)
1570
192
        return 0;
1571
710k
    return (in[i >> 3] >> (i & 7)) & 1;
1572
710k
}
1573
1574
/*
1575
 * Interleaved point multiplication using precomputed point multiples: The
1576
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1577
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1578
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1579
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1580
 */
1581
static void batch_mul(felem x_out, felem y_out, felem z_out,
1582
                      const felem_bytearray scalars[],
1583
                      const unsigned num_points, const u8 *g_scalar,
1584
                      const int mixed, const felem pre_comp[][17][3],
1585
                      const felem g_pre_comp[16][3])
1586
1.31k
{
1587
1.31k
    int i, skip;
1588
1.31k
    unsigned num, gen_mul = (g_scalar != NULL);
1589
1.31k
    felem nq[3], tmp[4];
1590
1.31k
    limb bits;
1591
1.31k
    u8 sign, digit;
1592
1593
    /* set nq to the point at infinity */
1594
1.31k
    memset(nq, 0, sizeof(nq));
1595
1596
    /*
1597
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1598
     * of the generator (last quarter of rounds) and additions of other
1599
     * points multiples (every 5th round).
1600
     */
1601
1.31k
    skip = 1;                   /* save two point operations in the first
1602
                                 * round */
1603
248k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1604
        /* double */
1605
246k
        if (!skip)
1606
245k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1607
1608
        /* add multiples of the generator */
1609
246k
        if (gen_mul && (i <= 130)) {
1610
148k
            bits = get_bit(g_scalar, i + 390) << 3;
1611
148k
            if (i < 130) {
1612
147k
                bits |= get_bit(g_scalar, i + 260) << 2;
1613
147k
                bits |= get_bit(g_scalar, i + 130) << 1;
1614
147k
                bits |= get_bit(g_scalar, i);
1615
147k
            }
1616
            /* select the point to add, in constant time */
1617
148k
            select_point(bits, 16, g_pre_comp, tmp);
1618
148k
            if (!skip) {
1619
                /* The 1 argument below is for "mixed" */
1620
147k
                point_add(nq[0], nq[1], nq[2],
1621
147k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1622
147k
            } else {
1623
1.12k
                memcpy(nq, tmp, 3 * sizeof(felem));
1624
1.12k
                skip = 0;
1625
1.12k
            }
1626
148k
        }
1627
1628
        /* do other additions every 5 doublings */
1629
246k
        if (num_points && (i % 5 == 0)) {
1630
            /* loop over all scalars */
1631
40.3k
            for (num = 0; num < num_points; ++num) {
1632
20.1k
                bits = get_bit(scalars[num], i + 4) << 5;
1633
20.1k
                bits |= get_bit(scalars[num], i + 3) << 4;
1634
20.1k
                bits |= get_bit(scalars[num], i + 2) << 3;
1635
20.1k
                bits |= get_bit(scalars[num], i + 1) << 2;
1636
20.1k
                bits |= get_bit(scalars[num], i) << 1;
1637
20.1k
                bits |= get_bit(scalars[num], i - 1);
1638
20.1k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1639
1640
                /*
1641
                 * select the point to add or subtract, in constant time
1642
                 */
1643
20.1k
                select_point(digit, 17, pre_comp[num], tmp);
1644
20.1k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1645
                                            * point */
1646
20.1k
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1647
1648
20.1k
                if (!skip) {
1649
19.9k
                    point_add(nq[0], nq[1], nq[2],
1650
19.9k
                              nq[0], nq[1], nq[2],
1651
19.9k
                              mixed, tmp[0], tmp[1], tmp[2]);
1652
19.9k
                } else {
1653
192
                    memcpy(nq, tmp, 3 * sizeof(felem));
1654
192
                    skip = 0;
1655
192
                }
1656
20.1k
            }
1657
20.1k
        }
1658
246k
    }
1659
1.31k
    felem_assign(x_out, nq[0]);
1660
1.31k
    felem_assign(y_out, nq[1]);
1661
1.31k
    felem_assign(z_out, nq[2]);
1662
1.31k
}
1663
1664
/* Precomputation for the group generator. */
1665
struct nistp521_pre_comp_st {
1666
    felem g_pre_comp[16][3];
1667
    CRYPTO_REF_COUNT references;
1668
};
1669
1670
const EC_METHOD *EC_GFp_nistp521_method(void)
1671
12.5k
{
1672
12.5k
    static const EC_METHOD ret = {
1673
12.5k
        EC_FLAGS_DEFAULT_OCT,
1674
12.5k
        NID_X9_62_prime_field,
1675
12.5k
        ossl_ec_GFp_nistp521_group_init,
1676
12.5k
        ossl_ec_GFp_simple_group_finish,
1677
12.5k
        ossl_ec_GFp_simple_group_clear_finish,
1678
12.5k
        ossl_ec_GFp_nist_group_copy,
1679
12.5k
        ossl_ec_GFp_nistp521_group_set_curve,
1680
12.5k
        ossl_ec_GFp_simple_group_get_curve,
1681
12.5k
        ossl_ec_GFp_simple_group_get_degree,
1682
12.5k
        ossl_ec_group_simple_order_bits,
1683
12.5k
        ossl_ec_GFp_simple_group_check_discriminant,
1684
12.5k
        ossl_ec_GFp_simple_point_init,
1685
12.5k
        ossl_ec_GFp_simple_point_finish,
1686
12.5k
        ossl_ec_GFp_simple_point_clear_finish,
1687
12.5k
        ossl_ec_GFp_simple_point_copy,
1688
12.5k
        ossl_ec_GFp_simple_point_set_to_infinity,
1689
12.5k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1690
12.5k
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1691
12.5k
        0 /* point_set_compressed_coordinates */ ,
1692
12.5k
        0 /* point2oct */ ,
1693
12.5k
        0 /* oct2point */ ,
1694
12.5k
        ossl_ec_GFp_simple_add,
1695
12.5k
        ossl_ec_GFp_simple_dbl,
1696
12.5k
        ossl_ec_GFp_simple_invert,
1697
12.5k
        ossl_ec_GFp_simple_is_at_infinity,
1698
12.5k
        ossl_ec_GFp_simple_is_on_curve,
1699
12.5k
        ossl_ec_GFp_simple_cmp,
1700
12.5k
        ossl_ec_GFp_simple_make_affine,
1701
12.5k
        ossl_ec_GFp_simple_points_make_affine,
1702
12.5k
        ossl_ec_GFp_nistp521_points_mul,
1703
12.5k
        ossl_ec_GFp_nistp521_precompute_mult,
1704
12.5k
        ossl_ec_GFp_nistp521_have_precompute_mult,
1705
12.5k
        ossl_ec_GFp_nist_field_mul,
1706
12.5k
        ossl_ec_GFp_nist_field_sqr,
1707
12.5k
        0 /* field_div */ ,
1708
12.5k
        ossl_ec_GFp_simple_field_inv,
1709
12.5k
        0 /* field_encode */ ,
1710
12.5k
        0 /* field_decode */ ,
1711
12.5k
        0,                      /* field_set_to_one */
1712
12.5k
        ossl_ec_key_simple_priv2oct,
1713
12.5k
        ossl_ec_key_simple_oct2priv,
1714
12.5k
        0, /* set private */
1715
12.5k
        ossl_ec_key_simple_generate_key,
1716
12.5k
        ossl_ec_key_simple_check_key,
1717
12.5k
        ossl_ec_key_simple_generate_public_key,
1718
12.5k
        0, /* keycopy */
1719
12.5k
        0, /* keyfinish */
1720
12.5k
        ossl_ecdh_simple_compute_key,
1721
12.5k
        ossl_ecdsa_simple_sign_setup,
1722
12.5k
        ossl_ecdsa_simple_sign_sig,
1723
12.5k
        ossl_ecdsa_simple_verify_sig,
1724
12.5k
        0, /* field_inverse_mod_ord */
1725
12.5k
        0, /* blind_coordinates */
1726
12.5k
        0, /* ladder_pre */
1727
12.5k
        0, /* ladder_step */
1728
12.5k
        0  /* ladder_post */
1729
12.5k
    };
1730
1731
12.5k
    return &ret;
1732
12.5k
}
1733
1734
/******************************************************************************/
1735
/*
1736
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1737
 */
1738
1739
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1740
0
{
1741
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1742
1743
0
    if (ret == NULL)
1744
0
        return ret;
1745
1746
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1747
0
        OPENSSL_free(ret);
1748
0
        return NULL;
1749
0
    }
1750
0
    return ret;
1751
0
}
1752
1753
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1754
0
{
1755
0
    int i;
1756
0
    if (p != NULL)
1757
0
        CRYPTO_UP_REF(&p->references, &i);
1758
0
    return p;
1759
0
}
1760
1761
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1762
0
{
1763
0
    int i;
1764
1765
0
    if (p == NULL)
1766
0
        return;
1767
1768
0
    CRYPTO_DOWN_REF(&p->references, &i);
1769
0
    REF_PRINT_COUNT("EC_nistp521", i, p);
1770
0
    if (i > 0)
1771
0
        return;
1772
0
    REF_ASSERT_ISNT(i < 0);
1773
1774
0
    CRYPTO_FREE_REF(&p->references);
1775
0
    OPENSSL_free(p);
1776
0
}
1777
1778
/******************************************************************************/
1779
/*
1780
 * OPENSSL EC_METHOD FUNCTIONS
1781
 */
1782
1783
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1784
25.0k
{
1785
25.0k
    int ret;
1786
25.0k
    ret = ossl_ec_GFp_simple_group_init(group);
1787
25.0k
    group->a_is_minus3 = 1;
1788
25.0k
    return ret;
1789
25.0k
}
1790
1791
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1792
                                         const BIGNUM *a, const BIGNUM *b,
1793
                                         BN_CTX *ctx)
1794
12.5k
{
1795
12.5k
    int ret = 0;
1796
12.5k
    BIGNUM *curve_p, *curve_a, *curve_b;
1797
12.5k
#ifndef FIPS_MODULE
1798
12.5k
    BN_CTX *new_ctx = NULL;
1799
1800
12.5k
    if (ctx == NULL)
1801
0
        ctx = new_ctx = BN_CTX_new();
1802
12.5k
#endif
1803
12.5k
    if (ctx == NULL)
1804
0
        return 0;
1805
1806
12.5k
    BN_CTX_start(ctx);
1807
12.5k
    curve_p = BN_CTX_get(ctx);
1808
12.5k
    curve_a = BN_CTX_get(ctx);
1809
12.5k
    curve_b = BN_CTX_get(ctx);
1810
12.5k
    if (curve_b == NULL)
1811
0
        goto err;
1812
12.5k
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1813
12.5k
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1814
12.5k
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1815
12.5k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1816
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1817
0
        goto err;
1818
0
    }
1819
12.5k
    group->field_mod_func = BN_nist_mod_521;
1820
12.5k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1821
12.5k
 err:
1822
12.5k
    BN_CTX_end(ctx);
1823
12.5k
#ifndef FIPS_MODULE
1824
12.5k
    BN_CTX_free(new_ctx);
1825
12.5k
#endif
1826
12.5k
    return ret;
1827
12.5k
}
1828
1829
/*
1830
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1831
 * (X/Z^2, Y/Z^3)
1832
 */
1833
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1834
                                                      const EC_POINT *point,
1835
                                                      BIGNUM *x, BIGNUM *y,
1836
                                                      BN_CTX *ctx)
1837
1.33k
{
1838
1.33k
    felem z1, z2, x_in, y_in, x_out, y_out;
1839
1.33k
    largefelem tmp;
1840
1841
1.33k
    if (EC_POINT_is_at_infinity(group, point)) {
1842
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1843
0
        return 0;
1844
0
    }
1845
1.33k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1846
1.33k
        (!BN_to_felem(z1, point->Z)))
1847
0
        return 0;
1848
1.33k
    felem_inv(z2, z1);
1849
1.33k
    felem_square(tmp, z2);
1850
1.33k
    felem_reduce(z1, tmp);
1851
1.33k
    felem_mul(tmp, x_in, z1);
1852
1.33k
    felem_reduce(x_in, tmp);
1853
1.33k
    felem_contract(x_out, x_in);
1854
1.33k
    if (x != NULL) {
1855
1.33k
        if (!felem_to_BN(x, x_out)) {
1856
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1857
0
            return 0;
1858
0
        }
1859
1.33k
    }
1860
1.33k
    felem_mul(tmp, z1, z2);
1861
1.33k
    felem_reduce(z1, tmp);
1862
1.33k
    felem_mul(tmp, y_in, z1);
1863
1.33k
    felem_reduce(y_in, tmp);
1864
1.33k
    felem_contract(y_out, y_in);
1865
1.33k
    if (y != NULL) {
1866
1.27k
        if (!felem_to_BN(y, y_out)) {
1867
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1868
0
            return 0;
1869
0
        }
1870
1.27k
    }
1871
1.33k
    return 1;
1872
1.33k
}
1873
1874
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1875
static void make_points_affine(size_t num, felem points[][3],
1876
                               felem tmp_felems[])
1877
0
{
1878
    /*
1879
     * Runs in constant time, unless an input is the point at infinity (which
1880
     * normally shouldn't happen).
1881
     */
1882
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1883
0
                                                  points,
1884
0
                                                  sizeof(felem),
1885
0
                                                  tmp_felems,
1886
0
                                                  (void (*)(void *))felem_one,
1887
0
                                                  felem_is_zero_int,
1888
0
                                                  (void (*)(void *, const void *))
1889
0
                                                  felem_assign,
1890
0
                                                  (void (*)(void *, const void *))
1891
0
                                                  felem_square_reduce, (void (*)
1892
0
                                                                        (void *,
1893
0
                                                                         const void
1894
0
                                                                         *,
1895
0
                                                                         const void
1896
0
                                                                         *))
1897
0
                                                  felem_mul_reduce,
1898
0
                                                  (void (*)(void *, const void *))
1899
0
                                                  felem_inv,
1900
0
                                                  (void (*)(void *, const void *))
1901
0
                                                  felem_contract);
1902
0
}
1903
1904
/*
1905
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1906
 * values Result is stored in r (r can equal one of the inputs).
1907
 */
1908
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1909
                                    const BIGNUM *scalar, size_t num,
1910
                                    const EC_POINT *points[],
1911
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1912
1.31k
{
1913
1.31k
    int ret = 0;
1914
1.31k
    int j;
1915
1.31k
    int mixed = 0;
1916
1.31k
    BIGNUM *x, *y, *z, *tmp_scalar;
1917
1.31k
    felem_bytearray g_secret;
1918
1.31k
    felem_bytearray *secrets = NULL;
1919
1.31k
    felem (*pre_comp)[17][3] = NULL;
1920
1.31k
    felem *tmp_felems = NULL;
1921
1.31k
    unsigned i;
1922
1.31k
    int num_bytes;
1923
1.31k
    int have_pre_comp = 0;
1924
1.31k
    size_t num_points = num;
1925
1.31k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1926
1.31k
    NISTP521_PRE_COMP *pre = NULL;
1927
1.31k
    felem(*g_pre_comp)[3] = NULL;
1928
1.31k
    EC_POINT *generator = NULL;
1929
1.31k
    const EC_POINT *p = NULL;
1930
1.31k
    const BIGNUM *p_scalar = NULL;
1931
1932
1.31k
    BN_CTX_start(ctx);
1933
1.31k
    x = BN_CTX_get(ctx);
1934
1.31k
    y = BN_CTX_get(ctx);
1935
1.31k
    z = BN_CTX_get(ctx);
1936
1.31k
    tmp_scalar = BN_CTX_get(ctx);
1937
1.31k
    if (tmp_scalar == NULL)
1938
0
        goto err;
1939
1940
1.31k
    if (scalar != NULL) {
1941
1.13k
        pre = group->pre_comp.nistp521;
1942
1.13k
        if (pre)
1943
            /* we have precomputation, try to use it */
1944
0
            g_pre_comp = &pre->g_pre_comp[0];
1945
1.13k
        else
1946
            /* try to use the standard precomputation */
1947
1.13k
            g_pre_comp = (felem(*)[3]) gmul;
1948
1.13k
        generator = EC_POINT_new(group);
1949
1.13k
        if (generator == NULL)
1950
0
            goto err;
1951
        /* get the generator from precomputation */
1952
1.13k
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1953
1.13k
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1954
1.13k
            !felem_to_BN(z, g_pre_comp[1][2])) {
1955
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1956
0
            goto err;
1957
0
        }
1958
1.13k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1959
1.13k
                                                                generator,
1960
1.13k
                                                                x, y, z, ctx))
1961
0
            goto err;
1962
1.13k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1963
            /* precomputation matches generator */
1964
1.13k
            have_pre_comp = 1;
1965
0
        else
1966
            /*
1967
             * we don't have valid precomputation: treat the generator as a
1968
             * random point
1969
             */
1970
0
            num_points++;
1971
1.13k
    }
1972
1973
1.31k
    if (num_points > 0) {
1974
192
        if (num_points >= 2) {
1975
            /*
1976
             * unless we precompute multiples for just one point, converting
1977
             * those into affine form is time well spent
1978
             */
1979
0
            mixed = 1;
1980
0
        }
1981
192
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1982
192
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1983
192
        if (mixed)
1984
0
            tmp_felems =
1985
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1986
192
        if ((secrets == NULL) || (pre_comp == NULL)
1987
192
            || (mixed && (tmp_felems == NULL)))
1988
0
            goto err;
1989
1990
        /*
1991
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1992
         * i.e., they contribute nothing to the linear combination
1993
         */
1994
384
        for (i = 0; i < num_points; ++i) {
1995
192
            if (i == num) {
1996
                /*
1997
                 * we didn't have a valid precomputation, so we pick the
1998
                 * generator
1999
                 */
2000
0
                p = EC_GROUP_get0_generator(group);
2001
0
                p_scalar = scalar;
2002
192
            } else {
2003
                /* the i^th point */
2004
192
                p = points[i];
2005
192
                p_scalar = scalars[i];
2006
192
            }
2007
192
            if ((p_scalar != NULL) && (p != NULL)) {
2008
                /* reduce scalar to 0 <= scalar < 2^521 */
2009
192
                if ((BN_num_bits(p_scalar) > 521)
2010
192
                    || (BN_is_negative(p_scalar))) {
2011
                    /*
2012
                     * this is an unusual input, and we don't guarantee
2013
                     * constant-timeness
2014
                     */
2015
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2016
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2017
0
                        goto err;
2018
0
                    }
2019
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2020
0
                                               secrets[i], sizeof(secrets[i]));
2021
192
                } else {
2022
192
                    num_bytes = BN_bn2lebinpad(p_scalar,
2023
192
                                               secrets[i], sizeof(secrets[i]));
2024
192
                }
2025
192
                if (num_bytes < 0) {
2026
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027
0
                    goto err;
2028
0
                }
2029
                /* precompute multiples */
2030
192
                if ((!BN_to_felem(x_out, p->X)) ||
2031
192
                    (!BN_to_felem(y_out, p->Y)) ||
2032
192
                    (!BN_to_felem(z_out, p->Z)))
2033
0
                    goto err;
2034
192
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2035
192
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2036
192
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2037
3.07k
                for (j = 2; j <= 16; ++j) {
2038
2.88k
                    if (j & 1) {
2039
1.34k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2040
1.34k
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2041
1.34k
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2042
1.34k
                                  pre_comp[i][j - 1][0],
2043
1.34k
                                  pre_comp[i][j - 1][1],
2044
1.34k
                                  pre_comp[i][j - 1][2]);
2045
1.53k
                    } else {
2046
1.53k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2047
1.53k
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2048
1.53k
                                     pre_comp[i][j / 2][1],
2049
1.53k
                                     pre_comp[i][j / 2][2]);
2050
1.53k
                    }
2051
2.88k
                }
2052
192
            }
2053
192
        }
2054
192
        if (mixed)
2055
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2056
192
    }
2057
2058
    /* the scalar for the generator */
2059
1.31k
    if ((scalar != NULL) && (have_pre_comp)) {
2060
1.13k
        memset(g_secret, 0, sizeof(g_secret));
2061
        /* reduce scalar to 0 <= scalar < 2^521 */
2062
1.13k
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2063
            /*
2064
             * this is an unusual input, and we don't guarantee
2065
             * constant-timeness
2066
             */
2067
38
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2068
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2069
0
                goto err;
2070
0
            }
2071
38
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2072
1.09k
        } else {
2073
1.09k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2074
1.09k
        }
2075
        /* do the multiplication with generator precomputation */
2076
1.13k
        batch_mul(x_out, y_out, z_out,
2077
1.13k
                  (const felem_bytearray(*))secrets, num_points,
2078
1.13k
                  g_secret,
2079
1.13k
                  mixed, (const felem(*)[17][3])pre_comp,
2080
1.13k
                  (const felem(*)[3])g_pre_comp);
2081
1.13k
    } else {
2082
        /* do the multiplication without generator precomputation */
2083
180
        batch_mul(x_out, y_out, z_out,
2084
180
                  (const felem_bytearray(*))secrets, num_points,
2085
180
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2086
180
    }
2087
    /* reduce the output to its unique minimal representation */
2088
1.31k
    felem_contract(x_in, x_out);
2089
1.31k
    felem_contract(y_in, y_out);
2090
1.31k
    felem_contract(z_in, z_out);
2091
1.31k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2092
1.31k
        (!felem_to_BN(z, z_in))) {
2093
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2094
0
        goto err;
2095
0
    }
2096
1.31k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2097
1.31k
                                                             ctx);
2098
2099
1.31k
 err:
2100
1.31k
    BN_CTX_end(ctx);
2101
1.31k
    EC_POINT_free(generator);
2102
1.31k
    OPENSSL_free(secrets);
2103
1.31k
    OPENSSL_free(pre_comp);
2104
1.31k
    OPENSSL_free(tmp_felems);
2105
1.31k
    return ret;
2106
1.31k
}
2107
2108
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2109
0
{
2110
0
    int ret = 0;
2111
0
    NISTP521_PRE_COMP *pre = NULL;
2112
0
    int i, j;
2113
0
    BIGNUM *x, *y;
2114
0
    EC_POINT *generator = NULL;
2115
0
    felem tmp_felems[16];
2116
0
#ifndef FIPS_MODULE
2117
0
    BN_CTX *new_ctx = NULL;
2118
0
#endif
2119
2120
    /* throw away old precomputation */
2121
0
    EC_pre_comp_free(group);
2122
2123
0
#ifndef FIPS_MODULE
2124
0
    if (ctx == NULL)
2125
0
        ctx = new_ctx = BN_CTX_new();
2126
0
#endif
2127
0
    if (ctx == NULL)
2128
0
        return 0;
2129
2130
0
    BN_CTX_start(ctx);
2131
0
    x = BN_CTX_get(ctx);
2132
0
    y = BN_CTX_get(ctx);
2133
0
    if (y == NULL)
2134
0
        goto err;
2135
    /* get the generator */
2136
0
    if (group->generator == NULL)
2137
0
        goto err;
2138
0
    generator = EC_POINT_new(group);
2139
0
    if (generator == NULL)
2140
0
        goto err;
2141
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2142
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2143
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2144
0
        goto err;
2145
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2146
0
        goto err;
2147
    /*
2148
     * if the generator is the standard one, use built-in precomputation
2149
     */
2150
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2151
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2152
0
        goto done;
2153
0
    }
2154
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2155
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2156
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2157
0
        goto err;
2158
    /* compute 2^130*G, 2^260*G, 2^390*G */
2159
0
    for (i = 1; i <= 4; i <<= 1) {
2160
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2161
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2162
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2163
0
        for (j = 0; j < 129; ++j) {
2164
0
            point_double(pre->g_pre_comp[2 * i][0],
2165
0
                         pre->g_pre_comp[2 * i][1],
2166
0
                         pre->g_pre_comp[2 * i][2],
2167
0
                         pre->g_pre_comp[2 * i][0],
2168
0
                         pre->g_pre_comp[2 * i][1],
2169
0
                         pre->g_pre_comp[2 * i][2]);
2170
0
        }
2171
0
    }
2172
    /* g_pre_comp[0] is the point at infinity */
2173
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2174
    /* the remaining multiples */
2175
    /* 2^130*G + 2^260*G */
2176
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2177
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2178
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2179
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2180
0
              pre->g_pre_comp[2][2]);
2181
    /* 2^130*G + 2^390*G */
2182
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2183
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2184
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2185
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2186
0
              pre->g_pre_comp[2][2]);
2187
    /* 2^260*G + 2^390*G */
2188
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2189
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2190
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2191
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2192
0
              pre->g_pre_comp[4][2]);
2193
    /* 2^130*G + 2^260*G + 2^390*G */
2194
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2195
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2196
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2197
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2198
0
              pre->g_pre_comp[2][2]);
2199
0
    for (i = 1; i < 8; ++i) {
2200
        /* odd multiples: add G */
2201
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2202
0
                  pre->g_pre_comp[2 * i + 1][1],
2203
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2204
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2205
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2206
0
                  pre->g_pre_comp[1][2]);
2207
0
    }
2208
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2209
2210
0
 done:
2211
0
    SETPRECOMP(group, nistp521, pre);
2212
0
    ret = 1;
2213
0
    pre = NULL;
2214
0
 err:
2215
0
    BN_CTX_end(ctx);
2216
0
    EC_POINT_free(generator);
2217
0
#ifndef FIPS_MODULE
2218
0
    BN_CTX_free(new_ctx);
2219
0
#endif
2220
0
    EC_nistp521_pre_comp_free(pre);
2221
0
    return ret;
2222
0
}
2223
2224
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2225
0
{
2226
0
    return HAVEPRECOMP(group, nistp521);
2227
0
}