Coverage Report

Created: 2025-08-11 07:04

/src/openssl34/crypto/bn/bn_mul.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <assert.h>
11
#include "internal/cryptlib.h"
12
#include "bn_local.h"
13
14
#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
15
/*
16
 * Here follows specialised variants of bn_add_words() and bn_sub_words().
17
 * They have the property performing operations on arrays of different sizes.
18
 * The sizes of those arrays is expressed through cl, which is the common
19
 * length ( basically, min(len(a),len(b)) ), and dl, which is the delta
20
 * between the two lengths, calculated as len(a)-len(b). All lengths are the
21
 * number of BN_ULONGs...  For the operations that require a result array as
22
 * parameter, it must have the length cl+abs(dl). These functions should
23
 * probably end up in bn_asm.c as soon as there are assembler counterparts
24
 * for the systems that use assembler files.
25
 */
26
27
BN_ULONG bn_sub_part_words(BN_ULONG *r,
28
                           const BN_ULONG *a, const BN_ULONG *b,
29
                           int cl, int dl)
30
88.5M
{
31
88.5M
    BN_ULONG c, t;
32
33
88.5M
    assert(cl >= 0);
34
88.5M
    c = bn_sub_words(r, a, b, cl);
35
36
88.5M
    if (dl == 0)
37
84.8M
        return c;
38
39
3.68M
    r += cl;
40
3.68M
    a += cl;
41
3.68M
    b += cl;
42
43
3.68M
    if (dl < 0) {
44
607k
        for (;;) {
45
607k
            t = b[0];
46
607k
            r[0] = (0 - t - c) & BN_MASK2;
47
607k
            if (t != 0)
48
0
                c = 1;
49
607k
            if (++dl >= 0)
50
63.2k
                break;
51
52
544k
            t = b[1];
53
544k
            r[1] = (0 - t - c) & BN_MASK2;
54
544k
            if (t != 0)
55
0
                c = 1;
56
544k
            if (++dl >= 0)
57
36.1k
                break;
58
59
507k
            t = b[2];
60
507k
            r[2] = (0 - t - c) & BN_MASK2;
61
507k
            if (t != 0)
62
0
                c = 1;
63
507k
            if (++dl >= 0)
64
99.5k
                break;
65
66
408k
            t = b[3];
67
408k
            r[3] = (0 - t - c) & BN_MASK2;
68
408k
            if (t != 0)
69
0
                c = 1;
70
408k
            if (++dl >= 0)
71
19.1k
                break;
72
73
389k
            b += 4;
74
389k
            r += 4;
75
389k
        }
76
3.46M
    } else {
77
3.46M
        int save_dl = dl;
78
4.20M
        while (c) {
79
873k
            t = a[0];
80
873k
            r[0] = (t - c) & BN_MASK2;
81
873k
            if (t != 0)
82
421k
                c = 0;
83
873k
            if (--dl <= 0)
84
38.5k
                break;
85
86
834k
            t = a[1];
87
834k
            r[1] = (t - c) & BN_MASK2;
88
834k
            if (t != 0)
89
402k
                c = 0;
90
834k
            if (--dl <= 0)
91
26.5k
                break;
92
93
808k
            t = a[2];
94
808k
            r[2] = (t - c) & BN_MASK2;
95
808k
            if (t != 0)
96
428k
                c = 0;
97
808k
            if (--dl <= 0)
98
52.2k
                break;
99
100
756k
            t = a[3];
101
756k
            r[3] = (t - c) & BN_MASK2;
102
756k
            if (t != 0)
103
398k
                c = 0;
104
756k
            if (--dl <= 0)
105
17.1k
                break;
106
107
739k
            save_dl = dl;
108
739k
            a += 4;
109
739k
            r += 4;
110
739k
        }
111
3.46M
        if (dl > 0) {
112
3.32M
            if (save_dl > dl) {
113
0
                switch (save_dl - dl) {
114
0
                case 1:
115
0
                    r[1] = a[1];
116
0
                    if (--dl <= 0)
117
0
                        break;
118
                    /* fall through */
119
0
                case 2:
120
0
                    r[2] = a[2];
121
0
                    if (--dl <= 0)
122
0
                        break;
123
                    /* fall through */
124
0
                case 3:
125
0
                    r[3] = a[3];
126
0
                    if (--dl <= 0)
127
0
                        break;
128
0
                }
129
0
                a += 4;
130
0
                r += 4;
131
0
            }
132
3.32M
        }
133
3.46M
        if (dl > 0) {
134
17.0M
            for (;;) {
135
17.0M
                r[0] = a[0];
136
17.0M
                if (--dl <= 0)
137
336k
                    break;
138
16.6M
                r[1] = a[1];
139
16.6M
                if (--dl <= 0)
140
267k
                    break;
141
16.4M
                r[2] = a[2];
142
16.4M
                if (--dl <= 0)
143
2.17M
                    break;
144
14.2M
                r[3] = a[3];
145
14.2M
                if (--dl <= 0)
146
548k
                    break;
147
148
13.7M
                a += 4;
149
13.7M
                r += 4;
150
13.7M
            }
151
3.32M
        }
152
3.46M
    }
153
3.68M
    return c;
154
3.68M
}
155
#endif
156
157
#ifdef BN_RECURSION
158
/*
159
 * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of
160
 * Computer Programming, Vol. 2)
161
 */
162
163
/*-
164
 * r is 2*n2 words in size,
165
 * a and b are both n2 words in size.
166
 * n2 must be a power of 2.
167
 * We multiply and return the result.
168
 * t must be 2*n2 words in size
169
 * We calculate
170
 * a[0]*b[0]
171
 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
172
 * a[1]*b[1]
173
 */
174
/* dnX may not be positive, but n2/2+dnX has to be */
175
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
176
                      int dna, int dnb, BN_ULONG *t)
177
45.0M
{
178
45.0M
    int n = n2 / 2, c1, c2;
179
45.0M
    int tna = n + dna, tnb = n + dnb;
180
45.0M
    unsigned int neg, zero;
181
45.0M
    BN_ULONG ln, lo, *p;
182
183
45.0M
# ifdef BN_MUL_COMBA
184
#  if 0
185
    if (n2 == 4) {
186
        bn_mul_comba4(r, a, b);
187
        return;
188
    }
189
#  endif
190
    /*
191
     * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete
192
     * [steve]
193
     */
194
45.0M
    if (n2 == 8 && dna == 0 && dnb == 0) {
195
77.0k
        bn_mul_comba8(r, a, b);
196
77.0k
        return;
197
77.0k
    }
198
44.9M
# endif                         /* BN_MUL_COMBA */
199
    /* Else do normal multiply */
200
44.9M
    if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
201
42.8k
        bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
202
42.8k
        if ((dna + dnb) < 0)
203
42.8k
            memset(&r[2 * n2 + dna + dnb], 0,
204
42.8k
                   sizeof(BN_ULONG) * -(dna + dnb));
205
42.8k
        return;
206
42.8k
    }
207
    /* r=(a[0]-a[1])*(b[1]-b[0]) */
208
44.9M
    c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
209
44.9M
    c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
210
44.9M
    zero = neg = 0;
211
44.9M
    switch (c1 * 3 + c2) {
212
9.07M
    case -4:
213
9.07M
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
214
9.07M
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
215
9.07M
        break;
216
588k
    case -3:
217
588k
        zero = 1;
218
588k
        break;
219
8.96M
    case -2:
220
8.96M
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
221
8.96M
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
222
8.96M
        neg = 1;
223
8.96M
        break;
224
150k
    case -1:
225
1.05M
    case 0:
226
1.20M
    case 1:
227
1.20M
        zero = 1;
228
1.20M
        break;
229
15.0M
    case 2:
230
15.0M
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
231
15.0M
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
232
15.0M
        neg = 1;
233
15.0M
        break;
234
639k
    case 3:
235
639k
        zero = 1;
236
639k
        break;
237
9.42M
    case 4:
238
9.42M
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
239
9.42M
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
240
9.42M
        break;
241
44.9M
    }
242
243
44.9M
# ifdef BN_MUL_COMBA
244
44.9M
    if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take
245
                                           * extra args to do this well */
246
0
        if (!zero)
247
0
            bn_mul_comba4(&(t[n2]), t, &(t[n]));
248
0
        else
249
0
            memset(&t[n2], 0, sizeof(*t) * 8);
250
251
0
        bn_mul_comba4(r, a, b);
252
0
        bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
253
44.9M
    } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could
254
                                                  * take extra args to do
255
                                                  * this well */
256
30.8M
        if (!zero)
257
29.1M
            bn_mul_comba8(&(t[n2]), t, &(t[n]));
258
1.76M
        else
259
1.76M
            memset(&t[n2], 0, sizeof(*t) * 16);
260
261
30.8M
        bn_mul_comba8(r, a, b);
262
30.8M
        bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
263
30.8M
    } else
264
14.0M
# endif                         /* BN_MUL_COMBA */
265
14.0M
    {
266
14.0M
        p = &(t[n2 * 2]);
267
14.0M
        if (!zero)
268
13.3M
            bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
269
666k
        else
270
666k
            memset(&t[n2], 0, sizeof(*t) * n2);
271
14.0M
        bn_mul_recursive(r, a, b, n, 0, 0, p);
272
14.0M
        bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
273
14.0M
    }
274
275
    /*-
276
     * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
277
     * r[10] holds (a[0]*b[0])
278
     * r[32] holds (b[1]*b[1])
279
     */
280
281
44.9M
    c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
282
283
44.9M
    if (neg) {                  /* if t[32] is negative */
284
23.9M
        c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
285
23.9M
    } else {
286
        /* Might have a carry */
287
20.9M
        c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
288
20.9M
    }
289
290
    /*-
291
     * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
292
     * r[10] holds (a[0]*b[0])
293
     * r[32] holds (b[1]*b[1])
294
     * c1 holds the carry bits
295
     */
296
44.9M
    c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
297
44.9M
    if (c1) {
298
17.3M
        p = &(r[n + n2]);
299
17.3M
        lo = *p;
300
17.3M
        ln = (lo + c1) & BN_MASK2;
301
17.3M
        *p = ln;
302
303
        /*
304
         * The overflow will stop before we over write words we should not
305
         * overwrite
306
         */
307
17.3M
        if (ln < (BN_ULONG)c1) {
308
431k
            do {
309
431k
                p++;
310
431k
                lo = *p;
311
431k
                ln = (lo + 1) & BN_MASK2;
312
431k
                *p = ln;
313
431k
            } while (ln == 0);
314
88.9k
        }
315
17.3M
    }
316
44.9M
}
317
318
/*
319
 * n+tn is the word length t needs to be n*4 is size, as does r
320
 */
321
/* tnX may not be negative but less than n */
322
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
323
                           int tna, int tnb, BN_ULONG *t)
324
1.80M
{
325
1.80M
    int i, j, n2 = n * 2;
326
1.80M
    int c1, c2, neg;
327
1.80M
    BN_ULONG ln, lo, *p;
328
329
1.80M
    if (n < 8) {
330
0
        bn_mul_normal(r, a, n + tna, b, n + tnb);
331
0
        return;
332
0
    }
333
334
    /* r=(a[0]-a[1])*(b[1]-b[0]) */
335
1.80M
    c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
336
1.80M
    c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
337
1.80M
    neg = 0;
338
1.80M
    switch (c1 * 3 + c2) {
339
139k
    case -4:
340
139k
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
341
139k
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
342
139k
        break;
343
4.13k
    case -3:
344
19.8k
    case -2:
345
19.8k
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
346
19.8k
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
347
19.8k
        neg = 1;
348
19.8k
        break;
349
20.0k
    case -1:
350
23.6k
    case 0:
351
25.8k
    case 1:
352
1.61M
    case 2:
353
1.61M
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
354
1.61M
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
355
1.61M
        neg = 1;
356
1.61M
        break;
357
12.0k
    case 3:
358
33.8k
    case 4:
359
33.8k
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
360
33.8k
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
361
33.8k
        break;
362
1.80M
    }
363
    /*
364
     * The zero case isn't yet implemented here. The speedup would probably
365
     * be negligible.
366
     */
367
# if 0
368
    if (n == 4) {
369
        bn_mul_comba4(&(t[n2]), t, &(t[n]));
370
        bn_mul_comba4(r, a, b);
371
        bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
372
        memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2));
373
    } else
374
# endif
375
1.80M
    if (n == 8) {
376
179k
        bn_mul_comba8(&(t[n2]), t, &(t[n]));
377
179k
        bn_mul_comba8(r, a, b);
378
179k
        bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
379
179k
        memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb));
380
1.62M
    } else {
381
1.62M
        p = &(t[n2 * 2]);
382
1.62M
        bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
383
1.62M
        bn_mul_recursive(r, a, b, n, 0, 0, p);
384
1.62M
        i = n / 2;
385
        /*
386
         * If there is only a bottom half to the number, just do it
387
         */
388
1.62M
        if (tna > tnb)
389
115k
            j = tna - i;
390
1.51M
        else
391
1.51M
            j = tnb - i;
392
1.62M
        if (j == 0) {
393
31.8k
            bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
394
31.8k
                             i, tna - i, tnb - i, p);
395
31.8k
            memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2));
396
1.59M
        } else if (j > 0) {     /* eg, n == 16, i == 8 and tn == 11 */
397
247k
            bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
398
247k
                                  i, tna - i, tnb - i, p);
399
247k
            memset(&(r[n2 + tna + tnb]), 0,
400
247k
                   sizeof(BN_ULONG) * (n2 - tna - tnb));
401
1.34M
        } else {                /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
402
403
1.34M
            memset(&r[n2], 0, sizeof(*r) * n2);
404
1.34M
            if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
405
1.34M
                && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
406
1.27M
                bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
407
1.27M
            } else {
408
87.8k
                for (;;) {
409
87.8k
                    i /= 2;
410
                    /*
411
                     * these simplified conditions work exclusively because
412
                     * difference between tna and tnb is 1 or 0
413
                     */
414
87.8k
                    if (i < tna || i < tnb) {
415
46.2k
                        bn_mul_part_recursive(&(r[n2]),
416
46.2k
                                              &(a[n]), &(b[n]),
417
46.2k
                                              i, tna - i, tnb - i, p);
418
46.2k
                        break;
419
46.2k
                    } else if (i == tna || i == tnb) {
420
27.8k
                        bn_mul_recursive(&(r[n2]),
421
27.8k
                                         &(a[n]), &(b[n]),
422
27.8k
                                         i, tna - i, tnb - i, p);
423
27.8k
                        break;
424
27.8k
                    }
425
87.8k
                }
426
74.0k
            }
427
1.34M
        }
428
1.62M
    }
429
430
    /*-
431
     * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
432
     * r[10] holds (a[0]*b[0])
433
     * r[32] holds (b[1]*b[1])
434
     */
435
436
1.80M
    c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
437
438
1.80M
    if (neg) {                  /* if t[32] is negative */
439
1.63M
        c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
440
1.63M
    } else {
441
        /* Might have a carry */
442
173k
        c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
443
173k
    }
444
445
    /*-
446
     * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
447
     * r[10] holds (a[0]*b[0])
448
     * r[32] holds (b[1]*b[1])
449
     * c1 holds the carry bits
450
     */
451
1.80M
    c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
452
1.80M
    if (c1) {
453
20.6k
        p = &(r[n + n2]);
454
20.6k
        lo = *p;
455
20.6k
        ln = (lo + c1) & BN_MASK2;
456
20.6k
        *p = ln;
457
458
        /*
459
         * The overflow will stop before we over write words we should not
460
         * overwrite
461
         */
462
20.6k
        if (ln < (BN_ULONG)c1) {
463
53.0k
            do {
464
53.0k
                p++;
465
53.0k
                lo = *p;
466
53.0k
                ln = (lo + 1) & BN_MASK2;
467
53.0k
                *p = ln;
468
53.0k
            } while (ln == 0);
469
10.0k
        }
470
20.6k
    }
471
1.80M
}
472
473
/*-
474
 * a and b must be the same size, which is n2.
475
 * r needs to be n2 words and t needs to be n2*2
476
 */
477
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
478
                          BN_ULONG *t)
479
0
{
480
0
    int n = n2 / 2;
481
482
0
    bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));
483
0
    if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {
484
0
        bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));
485
0
        bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
486
0
        bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));
487
0
        bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
488
0
    } else {
489
0
        bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);
490
0
        bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);
491
0
        bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
492
0
        bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
493
0
    }
494
0
}
495
#endif                          /* BN_RECURSION */
496
497
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
498
23.2M
{
499
23.2M
    int ret = bn_mul_fixed_top(r, a, b, ctx);
500
501
23.2M
    bn_correct_top(r);
502
23.2M
    bn_check_top(r);
503
504
23.2M
    return ret;
505
23.2M
}
506
507
int bn_mul_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
508
27.5M
{
509
27.5M
    int ret = 0;
510
27.5M
    int top, al, bl;
511
27.5M
    BIGNUM *rr;
512
27.5M
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
513
27.5M
    int i;
514
27.5M
#endif
515
27.5M
#ifdef BN_RECURSION
516
27.5M
    BIGNUM *t = NULL;
517
27.5M
    int j = 0, k;
518
27.5M
#endif
519
520
27.5M
    bn_check_top(a);
521
27.5M
    bn_check_top(b);
522
27.5M
    bn_check_top(r);
523
524
27.5M
    al = a->top;
525
27.5M
    bl = b->top;
526
527
27.5M
    if ((al == 0) || (bl == 0)) {
528
1.27M
        BN_zero(r);
529
1.27M
        return 1;
530
1.27M
    }
531
26.3M
    top = al + bl;
532
533
26.3M
    BN_CTX_start(ctx);
534
26.3M
    if ((r == a) || (r == b)) {
535
93.8k
        if ((rr = BN_CTX_get(ctx)) == NULL)
536
0
            goto err;
537
93.8k
    } else
538
26.2M
        rr = r;
539
540
26.3M
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
541
26.3M
    i = al - bl;
542
26.3M
#endif
543
26.3M
#ifdef BN_MUL_COMBA
544
26.3M
    if (i == 0) {
545
# if 0
546
        if (al == 4) {
547
            if (bn_wexpand(rr, 8) == NULL)
548
                goto err;
549
            rr->top = 8;
550
            bn_mul_comba4(rr->d, a->d, b->d);
551
            goto end;
552
        }
553
# endif
554
7.37M
        if (al == 8) {
555
24.8k
            if (bn_wexpand(rr, 16) == NULL)
556
0
                goto err;
557
24.8k
            rr->top = 16;
558
24.8k
            bn_mul_comba8(rr->d, a->d, b->d);
559
24.8k
            goto end;
560
24.8k
        }
561
7.37M
    }
562
26.2M
#endif                          /* BN_MUL_COMBA */
563
26.2M
#ifdef BN_RECURSION
564
26.2M
    if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
565
1.90M
        if (i >= -1 && i <= 1) {
566
            /*
567
             * Find out the power of two lower or equal to the longest of the
568
             * two numbers
569
             */
570
1.84M
            if (i >= 0) {
571
1.63M
                j = BN_num_bits_word((BN_ULONG)al);
572
1.63M
            }
573
1.84M
            if (i == -1) {
574
208k
                j = BN_num_bits_word((BN_ULONG)bl);
575
208k
            }
576
1.84M
            j = 1 << (j - 1);
577
1.84M
            assert(j <= al || j <= bl);
578
1.84M
            k = j + j;
579
1.84M
            t = BN_CTX_get(ctx);
580
1.84M
            if (t == NULL)
581
0
                goto err;
582
1.84M
            if (al > j || bl > j) {
583
1.51M
                if (bn_wexpand(t, k * 4) == NULL)
584
0
                    goto err;
585
1.51M
                if (bn_wexpand(rr, k * 4) == NULL)
586
0
                    goto err;
587
1.51M
                bn_mul_part_recursive(rr->d, a->d, b->d,
588
1.51M
                                      j, al - j, bl - j, t->d);
589
1.51M
            } else {            /* al <= j || bl <= j */
590
591
331k
                if (bn_wexpand(t, k * 2) == NULL)
592
0
                    goto err;
593
331k
                if (bn_wexpand(rr, k * 2) == NULL)
594
0
                    goto err;
595
331k
                bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
596
331k
            }
597
1.84M
            rr->top = top;
598
1.84M
            goto end;
599
1.84M
        }
600
1.90M
    }
601
24.4M
#endif                          /* BN_RECURSION */
602
24.4M
    if (bn_wexpand(rr, top) == NULL)
603
0
        goto err;
604
24.4M
    rr->top = top;
605
24.4M
    bn_mul_normal(rr->d, a->d, al, b->d, bl);
606
607
24.4M
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
608
26.3M
 end:
609
26.3M
#endif
610
26.3M
    rr->neg = a->neg ^ b->neg;
611
26.3M
    rr->flags |= BN_FLG_FIXED_TOP;
612
26.3M
    if (r != rr && BN_copy(r, rr) == NULL)
613
0
        goto err;
614
615
26.3M
    ret = 1;
616
26.3M
 err:
617
26.3M
    bn_check_top(r);
618
26.3M
    BN_CTX_end(ctx);
619
26.3M
    return ret;
620
26.3M
}
621
622
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
623
25.9M
{
624
25.9M
    BN_ULONG *rr;
625
626
25.9M
    if (na < nb) {
627
17.9M
        int itmp;
628
17.9M
        BN_ULONG *ltmp;
629
630
17.9M
        itmp = na;
631
17.9M
        na = nb;
632
17.9M
        nb = itmp;
633
17.9M
        ltmp = a;
634
17.9M
        a = b;
635
17.9M
        b = ltmp;
636
637
17.9M
    }
638
25.9M
    rr = &(r[na]);
639
25.9M
    if (nb <= 0) {
640
251k
        (void)bn_mul_words(r, a, na, 0);
641
251k
        return;
642
251k
    } else
643
25.6M
        rr[0] = bn_mul_words(r, a, na, b[0]);
644
645
26.9M
    for (;;) {
646
26.9M
        if (--nb <= 0)
647
22.1M
            return;
648
4.79M
        rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
649
4.79M
        if (--nb <= 0)
650
667k
            return;
651
4.13M
        rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
652
4.13M
        if (--nb <= 0)
653
314k
            return;
654
3.81M
        rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
655
3.81M
        if (--nb <= 0)
656
2.58M
            return;
657
1.23M
        rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
658
1.23M
        rr += 4;
659
1.23M
        r += 4;
660
1.23M
        b += 4;
661
1.23M
    }
662
25.6M
}
663
664
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
665
0
{
666
0
    bn_mul_words(r, a, n, b[0]);
667
668
0
    for (;;) {
669
0
        if (--n <= 0)
670
0
            return;
671
0
        bn_mul_add_words(&(r[1]), a, n, b[1]);
672
0
        if (--n <= 0)
673
0
            return;
674
0
        bn_mul_add_words(&(r[2]), a, n, b[2]);
675
0
        if (--n <= 0)
676
0
            return;
677
0
        bn_mul_add_words(&(r[3]), a, n, b[3]);
678
0
        if (--n <= 0)
679
0
            return;
680
0
        bn_mul_add_words(&(r[4]), a, n, b[4]);
681
0
        r += 4;
682
0
        b += 4;
683
0
    }
684
0
}