Coverage Report

Created: 2025-08-11 07:04

/src/openssl34/crypto/ec/ecp_nistp224.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2010-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
34
 *
35
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
36
 * and Adam Langley's public domain 64-bit C implementation of curve25519
37
 */
38
39
#include <openssl/opensslconf.h>
40
41
#include <stdint.h>
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/******************************************************************************/
56
/*-
57
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
58
 *
59
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
60
 * using 64-bit coefficients called 'limbs',
61
 * and sometimes (for multiplication results) as
62
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
63
 * using 128-bit coefficients called 'widelimbs'.
64
 * A 4-limb representation is an 'felem';
65
 * a 7-widelimb representation is a 'widefelem'.
66
 * Even within felems, bits of adjacent limbs overlap, and we don't always
67
 * reduce the representations: we ensure that inputs to each felem
68
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
69
 * and fit into a 128-bit word without overflow. The coefficients are then
70
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
71
 * We only reduce to the unique minimal representation at the end of the
72
 * computation.
73
 */
74
75
typedef uint64_t limb;
76
typedef uint64_t limb_aX __attribute((__aligned__(1)));
77
typedef uint128_t widelimb;
78
79
typedef limb felem[4];
80
typedef widelimb widefelem[7];
81
82
/*
83
 * Field element represented as a byte array. 28*8 = 224 bits is also the
84
 * group order size for the elliptic curve, and we also use this type for
85
 * scalars for point multiplication.
86
 */
87
typedef u8 felem_bytearray[28];
88
89
static const felem_bytearray nistp224_curve_params[5] = {
90
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
91
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
92
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
93
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
94
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
95
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
96
    {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
97
     0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
98
     0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
99
    {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
100
     0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
101
     0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
102
    {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
103
     0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
104
     0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
105
};
106
107
/*-
108
 * Precomputed multiples of the standard generator
109
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
110
 * (0 for the point at infinity).
111
 * For each field element, slice a_0 is word 0, etc.
112
 *
113
 * The table has 2 * 16 elements, starting with the following:
114
 * index | bits    | point
115
 * ------+---------+------------------------------
116
 *     0 | 0 0 0 0 | 0G
117
 *     1 | 0 0 0 1 | 1G
118
 *     2 | 0 0 1 0 | 2^56G
119
 *     3 | 0 0 1 1 | (2^56 + 1)G
120
 *     4 | 0 1 0 0 | 2^112G
121
 *     5 | 0 1 0 1 | (2^112 + 1)G
122
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
123
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
124
 *     8 | 1 0 0 0 | 2^168G
125
 *     9 | 1 0 0 1 | (2^168 + 1)G
126
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
127
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
128
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
129
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
130
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
131
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
132
 * followed by a copy of this with each element multiplied by 2^28.
133
 *
134
 * The reason for this is so that we can clock bits into four different
135
 * locations when doing simple scalar multiplies against the base point,
136
 * and then another four locations using the second 16 elements.
137
 */
138
static const felem gmul[2][16][3] = {
139
{{{0, 0, 0, 0},
140
  {0, 0, 0, 0},
141
  {0, 0, 0, 0}},
142
 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
143
  {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
144
  {1, 0, 0, 0}},
145
 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
146
  {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
147
  {1, 0, 0, 0}},
148
 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
149
  {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
150
  {1, 0, 0, 0}},
151
 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
152
  {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
153
  {1, 0, 0, 0}},
154
 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
155
  {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
156
  {1, 0, 0, 0}},
157
 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
158
  {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
159
  {1, 0, 0, 0}},
160
 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
161
  {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
162
  {1, 0, 0, 0}},
163
 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
164
  {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
165
  {1, 0, 0, 0}},
166
 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
167
  {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
168
  {1, 0, 0, 0}},
169
 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
170
  {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
171
  {1, 0, 0, 0}},
172
 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
173
  {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
174
  {1, 0, 0, 0}},
175
 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
176
  {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
177
  {1, 0, 0, 0}},
178
 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
179
  {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
180
  {1, 0, 0, 0}},
181
 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
182
  {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
183
  {1, 0, 0, 0}},
184
 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
185
  {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
186
  {1, 0, 0, 0}}},
187
{{{0, 0, 0, 0},
188
  {0, 0, 0, 0},
189
  {0, 0, 0, 0}},
190
 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
191
  {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
192
  {1, 0, 0, 0}},
193
 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
194
  {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
195
  {1, 0, 0, 0}},
196
 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
197
  {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
198
  {1, 0, 0, 0}},
199
 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
200
  {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
201
  {1, 0, 0, 0}},
202
 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
203
  {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
204
  {1, 0, 0, 0}},
205
 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
206
  {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
207
  {1, 0, 0, 0}},
208
 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
209
  {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
210
  {1, 0, 0, 0}},
211
 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
212
  {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
213
  {1, 0, 0, 0}},
214
 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
215
  {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
216
  {1, 0, 0, 0}},
217
 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
218
  {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
219
  {1, 0, 0, 0}},
220
 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
221
  {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
222
  {1, 0, 0, 0}},
223
 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
224
  {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
225
  {1, 0, 0, 0}},
226
 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
227
  {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
228
  {1, 0, 0, 0}},
229
 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
230
  {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
231
  {1, 0, 0, 0}},
232
 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
233
  {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
234
  {1, 0, 0, 0}}}
235
};
236
237
/* Precomputation for the group generator. */
238
struct nistp224_pre_comp_st {
239
    felem g_pre_comp[2][16][3];
240
    CRYPTO_REF_COUNT references;
241
};
242
243
const EC_METHOD *EC_GFp_nistp224_method(void)
244
29.3k
{
245
29.3k
    static const EC_METHOD ret = {
246
29.3k
        EC_FLAGS_DEFAULT_OCT,
247
29.3k
        NID_X9_62_prime_field,
248
29.3k
        ossl_ec_GFp_nistp224_group_init,
249
29.3k
        ossl_ec_GFp_simple_group_finish,
250
29.3k
        ossl_ec_GFp_simple_group_clear_finish,
251
29.3k
        ossl_ec_GFp_nist_group_copy,
252
29.3k
        ossl_ec_GFp_nistp224_group_set_curve,
253
29.3k
        ossl_ec_GFp_simple_group_get_curve,
254
29.3k
        ossl_ec_GFp_simple_group_get_degree,
255
29.3k
        ossl_ec_group_simple_order_bits,
256
29.3k
        ossl_ec_GFp_simple_group_check_discriminant,
257
29.3k
        ossl_ec_GFp_simple_point_init,
258
29.3k
        ossl_ec_GFp_simple_point_finish,
259
29.3k
        ossl_ec_GFp_simple_point_clear_finish,
260
29.3k
        ossl_ec_GFp_simple_point_copy,
261
29.3k
        ossl_ec_GFp_simple_point_set_to_infinity,
262
29.3k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
263
29.3k
        ossl_ec_GFp_nistp224_point_get_affine_coordinates,
264
29.3k
        0 /* point_set_compressed_coordinates */ ,
265
29.3k
        0 /* point2oct */ ,
266
29.3k
        0 /* oct2point */ ,
267
29.3k
        ossl_ec_GFp_simple_add,
268
29.3k
        ossl_ec_GFp_simple_dbl,
269
29.3k
        ossl_ec_GFp_simple_invert,
270
29.3k
        ossl_ec_GFp_simple_is_at_infinity,
271
29.3k
        ossl_ec_GFp_simple_is_on_curve,
272
29.3k
        ossl_ec_GFp_simple_cmp,
273
29.3k
        ossl_ec_GFp_simple_make_affine,
274
29.3k
        ossl_ec_GFp_simple_points_make_affine,
275
29.3k
        ossl_ec_GFp_nistp224_points_mul,
276
29.3k
        ossl_ec_GFp_nistp224_precompute_mult,
277
29.3k
        ossl_ec_GFp_nistp224_have_precompute_mult,
278
29.3k
        ossl_ec_GFp_nist_field_mul,
279
29.3k
        ossl_ec_GFp_nist_field_sqr,
280
29.3k
        0 /* field_div */ ,
281
29.3k
        ossl_ec_GFp_simple_field_inv,
282
29.3k
        0 /* field_encode */ ,
283
29.3k
        0 /* field_decode */ ,
284
29.3k
        0,                      /* field_set_to_one */
285
29.3k
        ossl_ec_key_simple_priv2oct,
286
29.3k
        ossl_ec_key_simple_oct2priv,
287
29.3k
        0, /* set private */
288
29.3k
        ossl_ec_key_simple_generate_key,
289
29.3k
        ossl_ec_key_simple_check_key,
290
29.3k
        ossl_ec_key_simple_generate_public_key,
291
29.3k
        0, /* keycopy */
292
29.3k
        0, /* keyfinish */
293
29.3k
        ossl_ecdh_simple_compute_key,
294
29.3k
        ossl_ecdsa_simple_sign_setup,
295
29.3k
        ossl_ecdsa_simple_sign_sig,
296
29.3k
        ossl_ecdsa_simple_verify_sig,
297
29.3k
        0, /* field_inverse_mod_ord */
298
29.3k
        0, /* blind_coordinates */
299
29.3k
        0, /* ladder_pre */
300
29.3k
        0, /* ladder_step */
301
29.3k
        0  /* ladder_post */
302
29.3k
    };
303
304
29.3k
    return &ret;
305
29.3k
}
306
307
/*
308
 * Helper functions to convert field elements to/from internal representation
309
 */
310
static void bin28_to_felem(felem out, const u8 in[28])
311
18.4k
{
312
18.4k
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
313
18.4k
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
314
18.4k
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
315
18.4k
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
316
18.4k
}
317
318
static void felem_to_bin28(u8 out[28], const felem in)
319
27.7k
{
320
27.7k
    unsigned i;
321
221k
    for (i = 0; i < 7; ++i) {
322
194k
        out[i] = in[0] >> (8 * i);
323
194k
        out[i + 7] = in[1] >> (8 * i);
324
194k
        out[i + 14] = in[2] >> (8 * i);
325
194k
        out[i + 21] = in[3] >> (8 * i);
326
194k
    }
327
27.7k
}
328
329
/* From OpenSSL BIGNUM to internal representation */
330
static int BN_to_felem(felem out, const BIGNUM *bn)
331
18.4k
{
332
18.4k
    felem_bytearray b_out;
333
18.4k
    int num_bytes;
334
335
18.4k
    if (BN_is_negative(bn)) {
336
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
337
0
        return 0;
338
0
    }
339
18.4k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
340
18.4k
    if (num_bytes < 0) {
341
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
342
0
        return 0;
343
0
    }
344
18.4k
    bin28_to_felem(out, b_out);
345
18.4k
    return 1;
346
18.4k
}
347
348
/* From internal representation to OpenSSL BIGNUM */
349
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
350
27.7k
{
351
27.7k
    felem_bytearray b_out;
352
27.7k
    felem_to_bin28(b_out, in);
353
27.7k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
354
27.7k
}
355
356
/******************************************************************************/
357
/*-
358
 *                              FIELD OPERATIONS
359
 *
360
 * Field operations, using the internal representation of field elements.
361
 * NB! These operations are specific to our point multiplication and cannot be
362
 * expected to be correct in general - e.g., multiplication with a large scalar
363
 * will cause an overflow.
364
 *
365
 */
366
367
static void felem_one(felem out)
368
0
{
369
0
    out[0] = 1;
370
0
    out[1] = 0;
371
0
    out[2] = 0;
372
0
    out[3] = 0;
373
0
}
374
375
static void felem_assign(felem out, const felem in)
376
2.01M
{
377
2.01M
    out[0] = in[0];
378
2.01M
    out[1] = in[1];
379
2.01M
    out[2] = in[2];
380
2.01M
    out[3] = in[3];
381
2.01M
}
382
383
/* Sum two field elements: out += in */
384
static void felem_sum(felem out, const felem in)
385
580k
{
386
580k
    out[0] += in[0];
387
580k
    out[1] += in[1];
388
580k
    out[2] += in[2];
389
580k
    out[3] += in[3];
390
580k
}
391
392
/* Subtract field elements: out -= in */
393
/* Assumes in[i] < 2^57 */
394
static void felem_diff(felem out, const felem in)
395
551k
{
396
551k
    static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
397
551k
    static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
398
551k
    static const limb two58m42m2 = (((limb) 1) << 58) -
399
551k
        (((limb) 1) << 42) - (((limb) 1) << 2);
400
401
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
402
551k
    out[0] += two58p2;
403
551k
    out[1] += two58m42m2;
404
551k
    out[2] += two58m2;
405
551k
    out[3] += two58m2;
406
407
551k
    out[0] -= in[0];
408
551k
    out[1] -= in[1];
409
551k
    out[2] -= in[2];
410
551k
    out[3] -= in[3];
411
551k
}
412
413
/* Subtract in unreduced 128-bit mode: out -= in */
414
/* Assumes in[i] < 2^119 */
415
static void widefelem_diff(widefelem out, const widefelem in)
416
358k
{
417
358k
    static const widelimb two120 = ((widelimb) 1) << 120;
418
358k
    static const widelimb two120m64 = (((widelimb) 1) << 120) -
419
358k
        (((widelimb) 1) << 64);
420
358k
    static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
421
358k
        (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
422
423
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
424
358k
    out[0] += two120;
425
358k
    out[1] += two120m64;
426
358k
    out[2] += two120m64;
427
358k
    out[3] += two120;
428
358k
    out[4] += two120m104m64;
429
358k
    out[5] += two120m64;
430
358k
    out[6] += two120m64;
431
432
358k
    out[0] -= in[0];
433
358k
    out[1] -= in[1];
434
358k
    out[2] -= in[2];
435
358k
    out[3] -= in[3];
436
358k
    out[4] -= in[4];
437
358k
    out[5] -= in[5];
438
358k
    out[6] -= in[6];
439
358k
}
440
441
/* Subtract in mixed mode: out128 -= in64 */
442
/* in[i] < 2^63 */
443
static void felem_diff_128_64(widefelem out, const felem in)
444
1.07M
{
445
1.07M
    static const widelimb two64p8 = (((widelimb) 1) << 64) +
446
1.07M
        (((widelimb) 1) << 8);
447
1.07M
    static const widelimb two64m8 = (((widelimb) 1) << 64) -
448
1.07M
        (((widelimb) 1) << 8);
449
1.07M
    static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
450
1.07M
        (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
451
452
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
453
1.07M
    out[0] += two64p8;
454
1.07M
    out[1] += two64m48m8;
455
1.07M
    out[2] += two64m8;
456
1.07M
    out[3] += two64m8;
457
458
1.07M
    out[0] -= in[0];
459
1.07M
    out[1] -= in[1];
460
1.07M
    out[2] -= in[2];
461
1.07M
    out[3] -= in[3];
462
1.07M
}
463
464
/*
465
 * Multiply a field element by a scalar: out = out * scalar The scalars we
466
 * actually use are small, so results fit without overflow
467
 */
468
static void felem_scalar(felem out, const limb scalar)
469
745k
{
470
745k
    out[0] *= scalar;
471
745k
    out[1] *= scalar;
472
745k
    out[2] *= scalar;
473
745k
    out[3] *= scalar;
474
745k
}
475
476
/*
477
 * Multiply an unreduced field element by a scalar: out = out * scalar The
478
 * scalars we actually use are small, so results fit without overflow
479
 */
480
static void widefelem_scalar(widefelem out, const widelimb scalar)
481
193k
{
482
193k
    out[0] *= scalar;
483
193k
    out[1] *= scalar;
484
193k
    out[2] *= scalar;
485
193k
    out[3] *= scalar;
486
193k
    out[4] *= scalar;
487
193k
    out[5] *= scalar;
488
193k
    out[6] *= scalar;
489
193k
}
490
491
/* Square a field element: out = in^2 */
492
static void felem_square(widefelem out, const felem in)
493
2.74M
{
494
2.74M
    limb tmp0, tmp1, tmp2;
495
2.74M
    tmp0 = 2 * in[0];
496
2.74M
    tmp1 = 2 * in[1];
497
2.74M
    tmp2 = 2 * in[2];
498
2.74M
    out[0] = ((widelimb) in[0]) * in[0];
499
2.74M
    out[1] = ((widelimb) in[0]) * tmp1;
500
2.74M
    out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
501
2.74M
    out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
502
2.74M
    out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
503
2.74M
    out[5] = ((widelimb) in[3]) * tmp2;
504
2.74M
    out[6] = ((widelimb) in[3]) * in[3];
505
2.74M
}
506
507
/* Multiply two field elements: out = in1 * in2 */
508
static void felem_mul(widefelem out, const felem in1, const felem in2)
509
2.08M
{
510
2.08M
    out[0] = ((widelimb) in1[0]) * in2[0];
511
2.08M
    out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
512
2.08M
    out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
513
2.08M
             ((widelimb) in1[2]) * in2[0];
514
2.08M
    out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
515
2.08M
             ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
516
2.08M
    out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
517
2.08M
             ((widelimb) in1[3]) * in2[1];
518
2.08M
    out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
519
2.08M
    out[6] = ((widelimb) in1[3]) * in2[3];
520
2.08M
}
521
522
/*-
523
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
524
 * Requires in[i] < 2^126,
525
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
526
static void felem_reduce(felem out, const widefelem in)
527
4.50M
{
528
4.50M
    static const widelimb two127p15 = (((widelimb) 1) << 127) +
529
4.50M
        (((widelimb) 1) << 15);
530
4.50M
    static const widelimb two127m71 = (((widelimb) 1) << 127) -
531
4.50M
        (((widelimb) 1) << 71);
532
4.50M
    static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
533
4.50M
        (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
534
4.50M
    widelimb output[5];
535
536
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
537
4.50M
    output[0] = in[0] + two127p15;
538
4.50M
    output[1] = in[1] + two127m71m55;
539
4.50M
    output[2] = in[2] + two127m71;
540
4.50M
    output[3] = in[3];
541
4.50M
    output[4] = in[4];
542
543
    /* Eliminate in[4], in[5], in[6] */
544
4.50M
    output[4] += in[6] >> 16;
545
4.50M
    output[3] += (in[6] & 0xffff) << 40;
546
4.50M
    output[2] -= in[6];
547
548
4.50M
    output[3] += in[5] >> 16;
549
4.50M
    output[2] += (in[5] & 0xffff) << 40;
550
4.50M
    output[1] -= in[5];
551
552
4.50M
    output[2] += output[4] >> 16;
553
4.50M
    output[1] += (output[4] & 0xffff) << 40;
554
4.50M
    output[0] -= output[4];
555
556
    /* Carry 2 -> 3 -> 4 */
557
4.50M
    output[3] += output[2] >> 56;
558
4.50M
    output[2] &= 0x00ffffffffffffff;
559
560
4.50M
    output[4] = output[3] >> 56;
561
4.50M
    output[3] &= 0x00ffffffffffffff;
562
563
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
564
565
    /* Eliminate output[4] */
566
4.50M
    output[2] += output[4] >> 16;
567
    /* output[2] < 2^56 + 2^56 = 2^57 */
568
4.50M
    output[1] += (output[4] & 0xffff) << 40;
569
4.50M
    output[0] -= output[4];
570
571
    /* Carry 0 -> 1 -> 2 -> 3 */
572
4.50M
    output[1] += output[0] >> 56;
573
4.50M
    out[0] = output[0] & 0x00ffffffffffffff;
574
575
4.50M
    output[2] += output[1] >> 56;
576
    /* output[2] < 2^57 + 2^72 */
577
4.50M
    out[1] = output[1] & 0x00ffffffffffffff;
578
4.50M
    output[3] += output[2] >> 56;
579
    /* output[3] <= 2^56 + 2^16 */
580
4.50M
    out[2] = output[2] & 0x00ffffffffffffff;
581
582
    /*-
583
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
584
     * out[3] <= 2^56 + 2^16 (due to final carry),
585
     * so out < 2*p
586
     */
587
4.50M
    out[3] = output[3];
588
4.50M
}
589
590
static void felem_square_reduce(felem out, const felem in)
591
0
{
592
0
    widefelem tmp;
593
0
    felem_square(tmp, in);
594
0
    felem_reduce(out, tmp);
595
0
}
596
597
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
598
0
{
599
0
    widefelem tmp;
600
0
    felem_mul(tmp, in1, in2);
601
0
    felem_reduce(out, tmp);
602
0
}
603
604
/*
605
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
606
 * call felem_reduce first)
607
 */
608
static void felem_contract(felem out, const felem in)
609
20.3k
{
610
20.3k
    static const int64_t two56 = ((limb) 1) << 56;
611
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
612
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
613
20.3k
    int64_t tmp[4], a;
614
20.3k
    tmp[0] = in[0];
615
20.3k
    tmp[1] = in[1];
616
20.3k
    tmp[2] = in[2];
617
20.3k
    tmp[3] = in[3];
618
    /* Case 1: a = 1 iff in >= 2^224 */
619
20.3k
    a = (in[3] >> 56);
620
20.3k
    tmp[0] -= a;
621
20.3k
    tmp[1] += a << 40;
622
20.3k
    tmp[3] &= 0x00ffffffffffffff;
623
    /*
624
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
625
     * and the lower part is non-zero
626
     */
627
20.3k
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
628
20.3k
        (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
629
20.3k
    a &= 0x00ffffffffffffff;
630
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
631
20.3k
    a = (a - 1) >> 63;
632
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
633
20.3k
    tmp[3] &= a ^ 0xffffffffffffffff;
634
20.3k
    tmp[2] &= a ^ 0xffffffffffffffff;
635
20.3k
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
636
20.3k
    tmp[0] -= 1 & a;
637
638
    /*
639
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
640
     * non-zero, so we only need one step
641
     */
642
20.3k
    a = tmp[0] >> 63;
643
20.3k
    tmp[0] += two56 & a;
644
20.3k
    tmp[1] -= 1 & a;
645
646
    /* carry 1 -> 2 -> 3 */
647
20.3k
    tmp[2] += tmp[1] >> 56;
648
20.3k
    tmp[1] &= 0x00ffffffffffffff;
649
650
20.3k
    tmp[3] += tmp[2] >> 56;
651
20.3k
    tmp[2] &= 0x00ffffffffffffff;
652
653
    /* Now 0 <= out < p */
654
20.3k
    out[0] = tmp[0];
655
20.3k
    out[1] = tmp[1];
656
20.3k
    out[2] = tmp[2];
657
20.3k
    out[3] = tmp[3];
658
20.3k
}
659
660
/*
661
 * Get negative value: out = -in
662
 * Requires in[i] < 2^63,
663
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
664
 */
665
static void felem_neg(felem out, const felem in)
666
25.0k
{
667
25.0k
    widefelem tmp;
668
669
25.0k
    memset(tmp, 0, sizeof(tmp));
670
25.0k
    felem_diff_128_64(tmp, in);
671
25.0k
    felem_reduce(out, tmp);
672
25.0k
}
673
674
/*
675
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
676
 * elements are reduced to in < 2^225, so we only need to check three cases:
677
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
678
 */
679
static limb felem_is_zero(const felem in)
680
658k
{
681
658k
    limb zero, two224m96p1, two225m97p2;
682
683
658k
    zero = in[0] | in[1] | in[2] | in[3];
684
658k
    zero = (((int64_t) (zero) - 1) >> 63) & 1;
685
658k
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
686
658k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
687
658k
    two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
688
658k
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
689
658k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
690
658k
    two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
691
658k
    return (zero | two224m96p1 | two225m97p2);
692
658k
}
693
694
static int felem_is_zero_int(const void *in)
695
0
{
696
0
    return (int)(felem_is_zero(in) & ((limb) 1));
697
0
}
698
699
/* Invert a field element */
700
/* Computation chain copied from djb's code */
701
static void felem_inv(felem out, const felem in)
702
5.60k
{
703
5.60k
    felem ftmp, ftmp2, ftmp3, ftmp4;
704
5.60k
    widefelem tmp;
705
5.60k
    unsigned i;
706
707
5.60k
    felem_square(tmp, in);
708
5.60k
    felem_reduce(ftmp, tmp);    /* 2 */
709
5.60k
    felem_mul(tmp, in, ftmp);
710
5.60k
    felem_reduce(ftmp, tmp);    /* 2^2 - 1 */
711
5.60k
    felem_square(tmp, ftmp);
712
5.60k
    felem_reduce(ftmp, tmp);    /* 2^3 - 2 */
713
5.60k
    felem_mul(tmp, in, ftmp);
714
5.60k
    felem_reduce(ftmp, tmp);    /* 2^3 - 1 */
715
5.60k
    felem_square(tmp, ftmp);
716
5.60k
    felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */
717
5.60k
    felem_square(tmp, ftmp2);
718
5.60k
    felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */
719
5.60k
    felem_square(tmp, ftmp2);
720
5.60k
    felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */
721
5.60k
    felem_mul(tmp, ftmp2, ftmp);
722
5.60k
    felem_reduce(ftmp, tmp);    /* 2^6 - 1 */
723
5.60k
    felem_square(tmp, ftmp);
724
5.60k
    felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */
725
33.6k
    for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */
726
28.0k
        felem_square(tmp, ftmp2);
727
28.0k
        felem_reduce(ftmp2, tmp);
728
28.0k
    }
729
5.60k
    felem_mul(tmp, ftmp2, ftmp);
730
5.60k
    felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */
731
5.60k
    felem_square(tmp, ftmp2);
732
5.60k
    felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */
733
67.2k
    for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */
734
61.6k
        felem_square(tmp, ftmp3);
735
61.6k
        felem_reduce(ftmp3, tmp);
736
61.6k
    }
737
5.60k
    felem_mul(tmp, ftmp3, ftmp2);
738
5.60k
    felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */
739
5.60k
    felem_square(tmp, ftmp2);
740
5.60k
    felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */
741
134k
    for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */
742
128k
        felem_square(tmp, ftmp3);
743
128k
        felem_reduce(ftmp3, tmp);
744
128k
    }
745
5.60k
    felem_mul(tmp, ftmp3, ftmp2);
746
5.60k
    felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */
747
5.60k
    felem_square(tmp, ftmp3);
748
5.60k
    felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */
749
269k
    for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */
750
263k
        felem_square(tmp, ftmp4);
751
263k
        felem_reduce(ftmp4, tmp);
752
263k
    }
753
5.60k
    felem_mul(tmp, ftmp3, ftmp4);
754
5.60k
    felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */
755
5.60k
    felem_square(tmp, ftmp3);
756
5.60k
    felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */
757
134k
    for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */
758
128k
        felem_square(tmp, ftmp4);
759
128k
        felem_reduce(ftmp4, tmp);
760
128k
    }
761
5.60k
    felem_mul(tmp, ftmp2, ftmp4);
762
5.60k
    felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */
763
39.2k
    for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */
764
33.6k
        felem_square(tmp, ftmp2);
765
33.6k
        felem_reduce(ftmp2, tmp);
766
33.6k
    }
767
5.60k
    felem_mul(tmp, ftmp2, ftmp);
768
5.60k
    felem_reduce(ftmp, tmp);    /* 2^126 - 1 */
769
5.60k
    felem_square(tmp, ftmp);
770
5.60k
    felem_reduce(ftmp, tmp);    /* 2^127 - 2 */
771
5.60k
    felem_mul(tmp, ftmp, in);
772
5.60k
    felem_reduce(ftmp, tmp);    /* 2^127 - 1 */
773
549k
    for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */
774
543k
        felem_square(tmp, ftmp);
775
543k
        felem_reduce(ftmp, tmp);
776
543k
    }
777
5.60k
    felem_mul(tmp, ftmp, ftmp3);
778
5.60k
    felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */
779
5.60k
}
780
781
/*
782
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
783
 * out to itself.
784
 */
785
static void copy_conditional(felem out, const felem in, limb icopy)
786
1.01M
{
787
1.01M
    unsigned i;
788
    /*
789
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
790
     */
791
1.01M
    const limb copy = -icopy;
792
5.06M
    for (i = 0; i < 4; ++i) {
793
4.04M
        const limb tmp = copy & (in[i] ^ out[i]);
794
4.04M
        out[i] ^= tmp;
795
4.04M
    }
796
1.01M
}
797
798
/******************************************************************************/
799
/*-
800
 *                       ELLIPTIC CURVE POINT OPERATIONS
801
 *
802
 * Points are represented in Jacobian projective coordinates:
803
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
804
 * or to the point at infinity if Z == 0.
805
 *
806
 */
807
808
/*-
809
 * Double an elliptic curve point:
810
 * (X', Y', Z') = 2 * (X, Y, Z), where
811
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
812
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
813
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
814
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
815
 * while x_out == y_in is not (maybe this works, but it's not tested).
816
 */
817
static void
818
point_double(felem x_out, felem y_out, felem z_out,
819
             const felem x_in, const felem y_in, const felem z_in)
820
193k
{
821
193k
    widefelem tmp, tmp2;
822
193k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
823
824
193k
    felem_assign(ftmp, x_in);
825
193k
    felem_assign(ftmp2, x_in);
826
827
    /* delta = z^2 */
828
193k
    felem_square(tmp, z_in);
829
193k
    felem_reduce(delta, tmp);
830
831
    /* gamma = y^2 */
832
193k
    felem_square(tmp, y_in);
833
193k
    felem_reduce(gamma, tmp);
834
835
    /* beta = x*gamma */
836
193k
    felem_mul(tmp, x_in, gamma);
837
193k
    felem_reduce(beta, tmp);
838
839
    /* alpha = 3*(x-delta)*(x+delta) */
840
193k
    felem_diff(ftmp, delta);
841
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
842
193k
    felem_sum(ftmp2, delta);
843
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
844
193k
    felem_scalar(ftmp2, 3);
845
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
846
193k
    felem_mul(tmp, ftmp, ftmp2);
847
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
848
193k
    felem_reduce(alpha, tmp);
849
850
    /* x' = alpha^2 - 8*beta */
851
193k
    felem_square(tmp, alpha);
852
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
853
193k
    felem_assign(ftmp, beta);
854
193k
    felem_scalar(ftmp, 8);
855
    /* ftmp[i] < 8 * 2^57 = 2^60 */
856
193k
    felem_diff_128_64(tmp, ftmp);
857
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
858
193k
    felem_reduce(x_out, tmp);
859
860
    /* z' = (y + z)^2 - gamma - delta */
861
193k
    felem_sum(delta, gamma);
862
    /* delta[i] < 2^57 + 2^57 = 2^58 */
863
193k
    felem_assign(ftmp, y_in);
864
193k
    felem_sum(ftmp, z_in);
865
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
866
193k
    felem_square(tmp, ftmp);
867
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
868
193k
    felem_diff_128_64(tmp, delta);
869
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
870
193k
    felem_reduce(z_out, tmp);
871
872
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
873
193k
    felem_scalar(beta, 4);
874
    /* beta[i] < 4 * 2^57 = 2^59 */
875
193k
    felem_diff(beta, x_out);
876
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
877
193k
    felem_mul(tmp, alpha, beta);
878
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
879
193k
    felem_square(tmp2, gamma);
880
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
881
193k
    widefelem_scalar(tmp2, 8);
882
    /* tmp2[i] < 8 * 2^116 = 2^119 */
883
193k
    widefelem_diff(tmp, tmp2);
884
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
885
193k
    felem_reduce(y_out, tmp);
886
193k
}
887
888
/*-
889
 * Add two elliptic curve points:
890
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
891
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
892
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
893
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
894
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
895
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
896
 *
897
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
898
 */
899
900
/*
901
 * This function is not entirely constant-time: it includes a branch for
902
 * checking whether the two input points are equal, (while not equal to the
903
 * point at infinity). This case never happens during single point
904
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
905
 */
906
static void point_add(felem x3, felem y3, felem z3,
907
                      const felem x1, const felem y1, const felem z1,
908
                      const int mixed, const felem x2, const felem y2,
909
                      const felem z2)
910
164k
{
911
164k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
912
164k
    widefelem tmp, tmp2;
913
164k
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
914
164k
    limb points_equal;
915
916
164k
    if (!mixed) {
917
        /* ftmp2 = z2^2 */
918
28.3k
        felem_square(tmp, z2);
919
28.3k
        felem_reduce(ftmp2, tmp);
920
921
        /* ftmp4 = z2^3 */
922
28.3k
        felem_mul(tmp, ftmp2, z2);
923
28.3k
        felem_reduce(ftmp4, tmp);
924
925
        /* ftmp4 = z2^3*y1 */
926
28.3k
        felem_mul(tmp2, ftmp4, y1);
927
28.3k
        felem_reduce(ftmp4, tmp2);
928
929
        /* ftmp2 = z2^2*x1 */
930
28.3k
        felem_mul(tmp2, ftmp2, x1);
931
28.3k
        felem_reduce(ftmp2, tmp2);
932
136k
    } else {
933
        /*
934
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
935
         */
936
937
        /* ftmp4 = z2^3*y1 */
938
136k
        felem_assign(ftmp4, y1);
939
940
        /* ftmp2 = z2^2*x1 */
941
136k
        felem_assign(ftmp2, x1);
942
136k
    }
943
944
    /* ftmp = z1^2 */
945
164k
    felem_square(tmp, z1);
946
164k
    felem_reduce(ftmp, tmp);
947
948
    /* ftmp3 = z1^3 */
949
164k
    felem_mul(tmp, ftmp, z1);
950
164k
    felem_reduce(ftmp3, tmp);
951
952
    /* tmp = z1^3*y2 */
953
164k
    felem_mul(tmp, ftmp3, y2);
954
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
955
956
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
957
164k
    felem_diff_128_64(tmp, ftmp4);
958
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
959
164k
    felem_reduce(ftmp3, tmp);
960
961
    /* tmp = z1^2*x2 */
962
164k
    felem_mul(tmp, ftmp, x2);
963
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
964
965
    /* ftmp = z1^2*x2 - z2^2*x1 */
966
164k
    felem_diff_128_64(tmp, ftmp2);
967
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
968
164k
    felem_reduce(ftmp, tmp);
969
970
    /*
971
     * The formulae are incorrect if the points are equal, in affine coordinates
972
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
973
     * happens.
974
     *
975
     * We use bitwise operations to avoid potential side-channels introduced by
976
     * the short-circuiting behaviour of boolean operators.
977
     */
978
164k
    x_equal = felem_is_zero(ftmp);
979
164k
    y_equal = felem_is_zero(ftmp3);
980
    /*
981
     * The special case of either point being the point at infinity (z1 and/or
982
     * z2 are zero), is handled separately later on in this function, so we
983
     * avoid jumping to point_double here in those special cases.
984
     */
985
164k
    z1_is_zero = felem_is_zero(z1);
986
164k
    z2_is_zero = felem_is_zero(z2);
987
988
    /*
989
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
990
     * specific implementation `felem_is_zero()` returns truth as `0x1`
991
     * (rather than `0xff..ff`).
992
     *
993
     * This implies that `~true` in this implementation becomes
994
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
995
     * the if expression, we mask out only the last bit in the next
996
     * line.
997
     */
998
164k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
999
1000
164k
    if (points_equal) {
1001
        /*
1002
         * This is obviously not constant-time but, as mentioned before, this
1003
         * case never happens during single point multiplication, so there is no
1004
         * timing leak for ECDH or ECDSA signing.
1005
         */
1006
0
        point_double(x3, y3, z3, x1, y1, z1);
1007
0
        return;
1008
0
    }
1009
1010
    /* ftmp5 = z1*z2 */
1011
164k
    if (!mixed) {
1012
28.3k
        felem_mul(tmp, z1, z2);
1013
28.3k
        felem_reduce(ftmp5, tmp);
1014
136k
    } else {
1015
        /* special case z2 = 0 is handled later */
1016
136k
        felem_assign(ftmp5, z1);
1017
136k
    }
1018
1019
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1020
164k
    felem_mul(tmp, ftmp, ftmp5);
1021
164k
    felem_reduce(z_out, tmp);
1022
1023
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1024
164k
    felem_assign(ftmp5, ftmp);
1025
164k
    felem_square(tmp, ftmp);
1026
164k
    felem_reduce(ftmp, tmp);
1027
1028
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1029
164k
    felem_mul(tmp, ftmp, ftmp5);
1030
164k
    felem_reduce(ftmp5, tmp);
1031
1032
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1033
164k
    felem_mul(tmp, ftmp2, ftmp);
1034
164k
    felem_reduce(ftmp2, tmp);
1035
1036
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1037
164k
    felem_mul(tmp, ftmp4, ftmp5);
1038
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1039
1040
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1041
164k
    felem_square(tmp2, ftmp3);
1042
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1043
1044
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1045
164k
    felem_diff_128_64(tmp2, ftmp5);
1046
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1047
1048
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1049
164k
    felem_assign(ftmp5, ftmp2);
1050
164k
    felem_scalar(ftmp5, 2);
1051
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1052
1053
    /*-
1054
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1055
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1056
     */
1057
164k
    felem_diff_128_64(tmp2, ftmp5);
1058
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1059
164k
    felem_reduce(x_out, tmp2);
1060
1061
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1062
164k
    felem_diff(ftmp2, x_out);
1063
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1064
1065
    /*
1066
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1067
     */
1068
164k
    felem_mul(tmp2, ftmp3, ftmp2);
1069
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1070
1071
    /*-
1072
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1073
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1074
     */
1075
164k
    widefelem_diff(tmp2, tmp);
1076
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1077
164k
    felem_reduce(y_out, tmp2);
1078
1079
    /*
1080
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1081
     * the point at infinity, so we need to check for this separately
1082
     */
1083
1084
    /*
1085
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1086
     */
1087
164k
    copy_conditional(x_out, x2, z1_is_zero);
1088
164k
    copy_conditional(x_out, x1, z2_is_zero);
1089
164k
    copy_conditional(y_out, y2, z1_is_zero);
1090
164k
    copy_conditional(y_out, y1, z2_is_zero);
1091
164k
    copy_conditional(z_out, z2, z1_is_zero);
1092
164k
    copy_conditional(z_out, z1, z2_is_zero);
1093
164k
    felem_assign(x3, x_out);
1094
164k
    felem_assign(y3, y_out);
1095
164k
    felem_assign(z3, z_out);
1096
164k
}
1097
1098
/*
1099
 * select_point selects the |idx|th point from a precomputation table and
1100
 * copies it to out.
1101
 * The pre_comp array argument should be size of |size| argument
1102
 */
1103
static void select_point(const u64 idx, unsigned int size,
1104
                         const felem pre_comp[][3], felem out[3])
1105
163k
{
1106
163k
    unsigned i, j;
1107
163k
    limb *outlimbs = &out[0][0];
1108
1109
163k
    memset(out, 0, sizeof(*out) * 3);
1110
2.80M
    for (i = 0; i < size; i++) {
1111
2.64M
        const limb *inlimbs = &pre_comp[i][0][0];
1112
2.64M
        u64 mask = i ^ idx;
1113
2.64M
        mask |= mask >> 4;
1114
2.64M
        mask |= mask >> 2;
1115
2.64M
        mask |= mask >> 1;
1116
2.64M
        mask &= 1;
1117
2.64M
        mask--;
1118
34.3M
        for (j = 0; j < 4 * 3; j++)
1119
31.7M
            outlimbs[j] |= inlimbs[j] & mask;
1120
2.64M
    }
1121
163k
}
1122
1123
/* get_bit returns the |i|th bit in |in| */
1124
static char get_bit(const felem_bytearray in, unsigned i)
1125
704k
{
1126
704k
    if (i >= 224)
1127
1.11k
        return 0;
1128
703k
    return (in[i >> 3] >> (i & 7)) & 1;
1129
704k
}
1130
1131
/*
1132
 * Interleaved point multiplication using precomputed point multiples: The
1133
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1134
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1135
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1136
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1137
 */
1138
static void batch_mul(felem x_out, felem y_out, felem z_out,
1139
                      const felem_bytearray scalars[],
1140
                      const unsigned num_points, const u8 *g_scalar,
1141
                      const int mixed, const felem pre_comp[][17][3],
1142
                      const felem g_pre_comp[2][16][3])
1143
3.03k
{
1144
3.03k
    int i, skip;
1145
3.03k
    unsigned num;
1146
3.03k
    unsigned gen_mul = (g_scalar != NULL);
1147
3.03k
    felem nq[3], tmp[4];
1148
3.03k
    u64 bits;
1149
3.03k
    u8 sign, digit;
1150
1151
    /* set nq to the point at infinity */
1152
3.03k
    memset(nq, 0, sizeof(nq));
1153
1154
    /*
1155
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1156
     * of the generator (two in each of the last 28 rounds) and additions of
1157
     * other points multiples (every 5th round).
1158
     */
1159
3.03k
    skip = 1;                   /* save two point operations in the first
1160
                                 * round */
1161
195k
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1162
        /* double */
1163
192k
        if (!skip)
1164
189k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1165
1166
        /* add multiples of the generator */
1167
192k
        if (gen_mul && (i <= 27)) {
1168
            /* first, look 28 bits upwards */
1169
69.3k
            bits = get_bit(g_scalar, i + 196) << 3;
1170
69.3k
            bits |= get_bit(g_scalar, i + 140) << 2;
1171
69.3k
            bits |= get_bit(g_scalar, i + 84) << 1;
1172
69.3k
            bits |= get_bit(g_scalar, i + 28);
1173
            /* select the point to add, in constant time */
1174
69.3k
            select_point(bits, 16, g_pre_comp[1], tmp);
1175
1176
69.3k
            if (!skip) {
1177
                /* value 1 below is argument for "mixed" */
1178
66.8k
                point_add(nq[0], nq[1], nq[2],
1179
66.8k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1180
66.8k
            } else {
1181
2.47k
                memcpy(nq, tmp, 3 * sizeof(felem));
1182
2.47k
                skip = 0;
1183
2.47k
            }
1184
1185
            /* second, look at the current position */
1186
69.3k
            bits = get_bit(g_scalar, i + 168) << 3;
1187
69.3k
            bits |= get_bit(g_scalar, i + 112) << 2;
1188
69.3k
            bits |= get_bit(g_scalar, i + 56) << 1;
1189
69.3k
            bits |= get_bit(g_scalar, i);
1190
            /* select the point to add, in constant time */
1191
69.3k
            select_point(bits, 16, g_pre_comp[0], tmp);
1192
69.3k
            point_add(nq[0], nq[1], nq[2],
1193
69.3k
                      nq[0], nq[1], nq[2],
1194
69.3k
                      1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1195
69.3k
        }
1196
1197
        /* do other additions every 5 doublings */
1198
192k
        if (num_points && (i % 5 == 0)) {
1199
            /* loop over all scalars */
1200
50.0k
            for (num = 0; num < num_points; ++num) {
1201
25.0k
                bits = get_bit(scalars[num], i + 4) << 5;
1202
25.0k
                bits |= get_bit(scalars[num], i + 3) << 4;
1203
25.0k
                bits |= get_bit(scalars[num], i + 2) << 3;
1204
25.0k
                bits |= get_bit(scalars[num], i + 1) << 2;
1205
25.0k
                bits |= get_bit(scalars[num], i) << 1;
1206
25.0k
                bits |= get_bit(scalars[num], i - 1);
1207
25.0k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1208
1209
                /* select the point to add or subtract */
1210
25.0k
                select_point(digit, 17, pre_comp[num], tmp);
1211
25.0k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1212
                                            * point */
1213
25.0k
                copy_conditional(tmp[1], tmp[3], sign);
1214
1215
25.0k
                if (!skip) {
1216
24.4k
                    point_add(nq[0], nq[1], nq[2],
1217
24.4k
                              nq[0], nq[1], nq[2],
1218
24.4k
                              mixed, tmp[0], tmp[1], tmp[2]);
1219
24.4k
                } else {
1220
556
                    memcpy(nq, tmp, 3 * sizeof(felem));
1221
556
                    skip = 0;
1222
556
                }
1223
25.0k
            }
1224
25.0k
        }
1225
192k
    }
1226
3.03k
    felem_assign(x_out, nq[0]);
1227
3.03k
    felem_assign(y_out, nq[1]);
1228
3.03k
    felem_assign(z_out, nq[2]);
1229
3.03k
}
1230
1231
/******************************************************************************/
1232
/*
1233
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1234
 */
1235
1236
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1237
0
{
1238
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1239
1240
0
    if (ret == NULL)
1241
0
        return ret;
1242
1243
1244
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1245
0
        OPENSSL_free(ret);
1246
0
        return NULL;
1247
0
    }
1248
0
    return ret;
1249
0
}
1250
1251
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1252
0
{
1253
0
    int i;
1254
0
    if (p != NULL)
1255
0
        CRYPTO_UP_REF(&p->references, &i);
1256
0
    return p;
1257
0
}
1258
1259
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1260
0
{
1261
0
    int i;
1262
1263
0
    if (p == NULL)
1264
0
        return;
1265
1266
0
    CRYPTO_DOWN_REF(&p->references, &i);
1267
0
    REF_PRINT_COUNT("EC_nistp224", i, p);
1268
0
    if (i > 0)
1269
0
        return;
1270
0
    REF_ASSERT_ISNT(i < 0);
1271
1272
0
    CRYPTO_FREE_REF(&p->references);
1273
0
    OPENSSL_free(p);
1274
0
}
1275
1276
/******************************************************************************/
1277
/*
1278
 * OPENSSL EC_METHOD FUNCTIONS
1279
 */
1280
1281
int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)
1282
54.6k
{
1283
54.6k
    int ret;
1284
54.6k
    ret = ossl_ec_GFp_simple_group_init(group);
1285
54.6k
    group->a_is_minus3 = 1;
1286
54.6k
    return ret;
1287
54.6k
}
1288
1289
int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1290
                                         const BIGNUM *a, const BIGNUM *b,
1291
                                         BN_CTX *ctx)
1292
29.3k
{
1293
29.3k
    int ret = 0;
1294
29.3k
    BIGNUM *curve_p, *curve_a, *curve_b;
1295
29.3k
#ifndef FIPS_MODULE
1296
29.3k
    BN_CTX *new_ctx = NULL;
1297
1298
29.3k
    if (ctx == NULL)
1299
0
        ctx = new_ctx = BN_CTX_new();
1300
29.3k
#endif
1301
29.3k
    if (ctx == NULL)
1302
0
        return 0;
1303
1304
29.3k
    BN_CTX_start(ctx);
1305
29.3k
    curve_p = BN_CTX_get(ctx);
1306
29.3k
    curve_a = BN_CTX_get(ctx);
1307
29.3k
    curve_b = BN_CTX_get(ctx);
1308
29.3k
    if (curve_b == NULL)
1309
0
        goto err;
1310
29.3k
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1311
29.3k
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1312
29.3k
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1313
29.3k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1314
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1315
0
        goto err;
1316
0
    }
1317
29.3k
    group->field_mod_func = BN_nist_mod_224;
1318
29.3k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1319
29.3k
 err:
1320
29.3k
    BN_CTX_end(ctx);
1321
29.3k
#ifndef FIPS_MODULE
1322
29.3k
    BN_CTX_free(new_ctx);
1323
29.3k
#endif
1324
29.3k
    return ret;
1325
29.3k
}
1326
1327
/*
1328
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1329
 * (X/Z^2, Y/Z^3)
1330
 */
1331
int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1332
                                                      const EC_POINT *point,
1333
                                                      BIGNUM *x, BIGNUM *y,
1334
                                                      BN_CTX *ctx)
1335
5.60k
{
1336
5.60k
    felem z1, z2, x_in, y_in, x_out, y_out;
1337
5.60k
    widefelem tmp;
1338
1339
5.60k
    if (EC_POINT_is_at_infinity(group, point)) {
1340
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1341
0
        return 0;
1342
0
    }
1343
5.60k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1344
5.60k
        (!BN_to_felem(z1, point->Z)))
1345
0
        return 0;
1346
5.60k
    felem_inv(z2, z1);
1347
5.60k
    felem_square(tmp, z2);
1348
5.60k
    felem_reduce(z1, tmp);
1349
5.60k
    felem_mul(tmp, x_in, z1);
1350
5.60k
    felem_reduce(x_in, tmp);
1351
5.60k
    felem_contract(x_out, x_in);
1352
5.60k
    if (x != NULL) {
1353
5.60k
        if (!felem_to_BN(x, x_out)) {
1354
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1355
0
            return 0;
1356
0
        }
1357
5.60k
    }
1358
5.60k
    felem_mul(tmp, z1, z2);
1359
5.60k
    felem_reduce(z1, tmp);
1360
5.60k
    felem_mul(tmp, y_in, z1);
1361
5.60k
    felem_reduce(y_in, tmp);
1362
5.60k
    felem_contract(y_out, y_in);
1363
5.60k
    if (y != NULL) {
1364
5.60k
        if (!felem_to_BN(y, y_out)) {
1365
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1366
0
            return 0;
1367
0
        }
1368
5.60k
    }
1369
5.60k
    return 1;
1370
5.60k
}
1371
1372
static void make_points_affine(size_t num, felem points[ /* num */ ][3],
1373
                               felem tmp_felems[ /* num+1 */ ])
1374
0
{
1375
    /*
1376
     * Runs in constant time, unless an input is the point at infinity (which
1377
     * normally shouldn't happen).
1378
     */
1379
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1380
0
                                                  points,
1381
0
                                                  sizeof(felem),
1382
0
                                                  tmp_felems,
1383
0
                                                  (void (*)(void *))felem_one,
1384
0
                                                  felem_is_zero_int,
1385
0
                                                  (void (*)(void *, const void *))
1386
0
                                                  felem_assign,
1387
0
                                                  (void (*)(void *, const void *))
1388
0
                                                  felem_square_reduce, (void (*)
1389
0
                                                                        (void *,
1390
0
                                                                         const void
1391
0
                                                                         *,
1392
0
                                                                         const void
1393
0
                                                                         *))
1394
0
                                                  felem_mul_reduce,
1395
0
                                                  (void (*)(void *, const void *))
1396
0
                                                  felem_inv,
1397
0
                                                  (void (*)(void *, const void *))
1398
0
                                                  felem_contract);
1399
0
}
1400
1401
/*
1402
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1403
 * values Result is stored in r (r can equal one of the inputs).
1404
 */
1405
int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1406
                                    const BIGNUM *scalar, size_t num,
1407
                                    const EC_POINT *points[],
1408
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1409
3.03k
{
1410
3.03k
    int ret = 0;
1411
3.03k
    int j;
1412
3.03k
    unsigned i;
1413
3.03k
    int mixed = 0;
1414
3.03k
    BIGNUM *x, *y, *z, *tmp_scalar;
1415
3.03k
    felem_bytearray g_secret;
1416
3.03k
    felem_bytearray *secrets = NULL;
1417
3.03k
    felem (*pre_comp)[17][3] = NULL;
1418
3.03k
    felem *tmp_felems = NULL;
1419
3.03k
    int num_bytes;
1420
3.03k
    int have_pre_comp = 0;
1421
3.03k
    size_t num_points = num;
1422
3.03k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1423
3.03k
    NISTP224_PRE_COMP *pre = NULL;
1424
3.03k
    const felem(*g_pre_comp)[16][3] = NULL;
1425
3.03k
    EC_POINT *generator = NULL;
1426
3.03k
    const EC_POINT *p = NULL;
1427
3.03k
    const BIGNUM *p_scalar = NULL;
1428
1429
3.03k
    BN_CTX_start(ctx);
1430
3.03k
    x = BN_CTX_get(ctx);
1431
3.03k
    y = BN_CTX_get(ctx);
1432
3.03k
    z = BN_CTX_get(ctx);
1433
3.03k
    tmp_scalar = BN_CTX_get(ctx);
1434
3.03k
    if (tmp_scalar == NULL)
1435
0
        goto err;
1436
1437
3.03k
    if (scalar != NULL) {
1438
2.47k
        pre = group->pre_comp.nistp224;
1439
2.47k
        if (pre)
1440
            /* we have precomputation, try to use it */
1441
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1442
2.47k
        else
1443
            /* try to use the standard precomputation */
1444
2.47k
            g_pre_comp = &gmul[0];
1445
2.47k
        generator = EC_POINT_new(group);
1446
2.47k
        if (generator == NULL)
1447
0
            goto err;
1448
        /* get the generator from precomputation */
1449
2.47k
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1450
2.47k
            !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1451
2.47k
            !felem_to_BN(z, g_pre_comp[0][1][2])) {
1452
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1453
0
            goto err;
1454
0
        }
1455
2.47k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1456
2.47k
                                                                generator,
1457
2.47k
                                                                x, y, z, ctx))
1458
0
            goto err;
1459
2.47k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1460
            /* precomputation matches generator */
1461
2.47k
            have_pre_comp = 1;
1462
0
        else
1463
            /*
1464
             * we don't have valid precomputation: treat the generator as a
1465
             * random point
1466
             */
1467
0
            num_points = num_points + 1;
1468
2.47k
    }
1469
1470
3.03k
    if (num_points > 0) {
1471
556
        if (num_points >= 3) {
1472
            /*
1473
             * unless we precompute multiples for just one or two points,
1474
             * converting those into affine form is time well spent
1475
             */
1476
0
            mixed = 1;
1477
0
        }
1478
556
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1479
556
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1480
556
        if (mixed)
1481
0
            tmp_felems =
1482
0
                OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1483
556
        if ((secrets == NULL) || (pre_comp == NULL)
1484
556
            || (mixed && (tmp_felems == NULL)))
1485
0
            goto err;
1486
1487
        /*
1488
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1489
         * i.e., they contribute nothing to the linear combination
1490
         */
1491
1.11k
        for (i = 0; i < num_points; ++i) {
1492
556
            if (i == num) {
1493
                /* the generator */
1494
0
                p = EC_GROUP_get0_generator(group);
1495
0
                p_scalar = scalar;
1496
556
            } else {
1497
                /* the i^th point */
1498
556
                p = points[i];
1499
556
                p_scalar = scalars[i];
1500
556
            }
1501
556
            if ((p_scalar != NULL) && (p != NULL)) {
1502
                /* reduce scalar to 0 <= scalar < 2^224 */
1503
556
                if ((BN_num_bits(p_scalar) > 224)
1504
556
                    || (BN_is_negative(p_scalar))) {
1505
                    /*
1506
                     * this is an unusual input, and we don't guarantee
1507
                     * constant-timeness
1508
                     */
1509
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1510
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1511
0
                        goto err;
1512
0
                    }
1513
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1514
0
                                               secrets[i], sizeof(secrets[i]));
1515
556
                } else {
1516
556
                    num_bytes = BN_bn2lebinpad(p_scalar,
1517
556
                                               secrets[i], sizeof(secrets[i]));
1518
556
                }
1519
556
                if (num_bytes < 0) {
1520
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1521
0
                    goto err;
1522
0
                }
1523
                /* precompute multiples */
1524
556
                if ((!BN_to_felem(x_out, p->X)) ||
1525
556
                    (!BN_to_felem(y_out, p->Y)) ||
1526
556
                    (!BN_to_felem(z_out, p->Z)))
1527
0
                    goto err;
1528
556
                felem_assign(pre_comp[i][1][0], x_out);
1529
556
                felem_assign(pre_comp[i][1][1], y_out);
1530
556
                felem_assign(pre_comp[i][1][2], z_out);
1531
8.89k
                for (j = 2; j <= 16; ++j) {
1532
8.34k
                    if (j & 1) {
1533
3.89k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1534
3.89k
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1535
3.89k
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1536
3.89k
                                  pre_comp[i][j - 1][0],
1537
3.89k
                                  pre_comp[i][j - 1][1],
1538
3.89k
                                  pre_comp[i][j - 1][2]);
1539
4.44k
                    } else {
1540
4.44k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1541
4.44k
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1542
4.44k
                                     pre_comp[i][j / 2][1],
1543
4.44k
                                     pre_comp[i][j / 2][2]);
1544
4.44k
                    }
1545
8.34k
                }
1546
556
            }
1547
556
        }
1548
556
        if (mixed)
1549
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1550
556
    }
1551
1552
    /* the scalar for the generator */
1553
3.03k
    if ((scalar != NULL) && (have_pre_comp)) {
1554
2.47k
        memset(g_secret, 0, sizeof(g_secret));
1555
        /* reduce scalar to 0 <= scalar < 2^224 */
1556
2.47k
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1557
            /*
1558
             * this is an unusual input, and we don't guarantee
1559
             * constant-timeness
1560
             */
1561
546
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1562
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1563
0
                goto err;
1564
0
            }
1565
546
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1566
1.93k
        } else {
1567
1.93k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1568
1.93k
        }
1569
        /* do the multiplication with generator precomputation */
1570
2.47k
        batch_mul(x_out, y_out, z_out,
1571
2.47k
                  (const felem_bytearray(*))secrets, num_points,
1572
2.47k
                  g_secret,
1573
2.47k
                  mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1574
2.47k
    } else {
1575
        /* do the multiplication without generator precomputation */
1576
556
        batch_mul(x_out, y_out, z_out,
1577
556
                  (const felem_bytearray(*))secrets, num_points,
1578
556
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1579
556
    }
1580
    /* reduce the output to its unique minimal representation */
1581
3.03k
    felem_contract(x_in, x_out);
1582
3.03k
    felem_contract(y_in, y_out);
1583
3.03k
    felem_contract(z_in, z_out);
1584
3.03k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1585
3.03k
        (!felem_to_BN(z, z_in))) {
1586
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1587
0
        goto err;
1588
0
    }
1589
3.03k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1590
3.03k
                                                             ctx);
1591
1592
3.03k
 err:
1593
3.03k
    BN_CTX_end(ctx);
1594
3.03k
    EC_POINT_free(generator);
1595
3.03k
    OPENSSL_free(secrets);
1596
3.03k
    OPENSSL_free(pre_comp);
1597
3.03k
    OPENSSL_free(tmp_felems);
1598
3.03k
    return ret;
1599
3.03k
}
1600
1601
int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1602
0
{
1603
0
    int ret = 0;
1604
0
    NISTP224_PRE_COMP *pre = NULL;
1605
0
    int i, j;
1606
0
    BIGNUM *x, *y;
1607
0
    EC_POINT *generator = NULL;
1608
0
    felem tmp_felems[32];
1609
0
#ifndef FIPS_MODULE
1610
0
    BN_CTX *new_ctx = NULL;
1611
0
#endif
1612
1613
    /* throw away old precomputation */
1614
0
    EC_pre_comp_free(group);
1615
1616
0
#ifndef FIPS_MODULE
1617
0
    if (ctx == NULL)
1618
0
        ctx = new_ctx = BN_CTX_new();
1619
0
#endif
1620
0
    if (ctx == NULL)
1621
0
        return 0;
1622
1623
0
    BN_CTX_start(ctx);
1624
0
    x = BN_CTX_get(ctx);
1625
0
    y = BN_CTX_get(ctx);
1626
0
    if (y == NULL)
1627
0
        goto err;
1628
    /* get the generator */
1629
0
    if (group->generator == NULL)
1630
0
        goto err;
1631
0
    generator = EC_POINT_new(group);
1632
0
    if (generator == NULL)
1633
0
        goto err;
1634
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1635
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1636
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1637
0
        goto err;
1638
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1639
0
        goto err;
1640
    /*
1641
     * if the generator is the standard one, use built-in precomputation
1642
     */
1643
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1644
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1645
0
        goto done;
1646
0
    }
1647
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1648
0
        (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1649
0
        (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1650
0
        goto err;
1651
    /*
1652
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1653
     * 2^140*G, 2^196*G for the second one
1654
     */
1655
0
    for (i = 1; i <= 8; i <<= 1) {
1656
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1657
0
                     pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1658
0
                     pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1659
0
        for (j = 0; j < 27; ++j) {
1660
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1661
0
                         pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1662
0
                         pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1663
0
        }
1664
0
        if (i == 8)
1665
0
            break;
1666
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1667
0
                     pre->g_pre_comp[0][2 * i][1],
1668
0
                     pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1669
0
                     pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1670
0
        for (j = 0; j < 27; ++j) {
1671
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1672
0
                         pre->g_pre_comp[0][2 * i][1],
1673
0
                         pre->g_pre_comp[0][2 * i][2],
1674
0
                         pre->g_pre_comp[0][2 * i][0],
1675
0
                         pre->g_pre_comp[0][2 * i][1],
1676
0
                         pre->g_pre_comp[0][2 * i][2]);
1677
0
        }
1678
0
    }
1679
0
    for (i = 0; i < 2; i++) {
1680
        /* g_pre_comp[i][0] is the point at infinity */
1681
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1682
        /* the remaining multiples */
1683
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1684
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1685
0
                  pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1686
0
                  pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1687
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1688
0
                  pre->g_pre_comp[i][2][2]);
1689
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1690
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1691
0
                  pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1692
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1693
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1694
0
                  pre->g_pre_comp[i][2][2]);
1695
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1696
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1697
0
                  pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1698
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1699
0
                  0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1700
0
                  pre->g_pre_comp[i][4][2]);
1701
        /*
1702
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1703
         */
1704
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1705
0
                  pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1706
0
                  pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1707
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1708
0
                  pre->g_pre_comp[i][2][2]);
1709
0
        for (j = 1; j < 8; ++j) {
1710
            /* odd multiples: add G resp. 2^28*G */
1711
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1712
0
                      pre->g_pre_comp[i][2 * j + 1][1],
1713
0
                      pre->g_pre_comp[i][2 * j + 1][2],
1714
0
                      pre->g_pre_comp[i][2 * j][0],
1715
0
                      pre->g_pre_comp[i][2 * j][1],
1716
0
                      pre->g_pre_comp[i][2 * j][2], 0,
1717
0
                      pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1718
0
                      pre->g_pre_comp[i][1][2]);
1719
0
        }
1720
0
    }
1721
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1722
1723
0
 done:
1724
0
    SETPRECOMP(group, nistp224, pre);
1725
0
    pre = NULL;
1726
0
    ret = 1;
1727
0
 err:
1728
0
    BN_CTX_end(ctx);
1729
0
    EC_POINT_free(generator);
1730
0
#ifndef FIPS_MODULE
1731
0
    BN_CTX_free(new_ctx);
1732
0
#endif
1733
0
    EC_nistp224_pre_comp_free(pre);
1734
0
    return ret;
1735
0
}
1736
1737
int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1738
0
{
1739
0
    return HAVEPRECOMP(group, nistp224);
1740
0
}