Coverage Report

Created: 2025-08-28 07:07

/src/openssl33/crypto/ec/ecp_nistp384.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2023-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2023 IBM Corp.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * Designed for 56-bit limbs by Rohan McLure <rohan.mclure@linux.ibm.com>.
28
 * The layout is based on that of ecp_nistp{224,521}.c, allowing even for asm
29
 * acceleration of felem_{square,mul} as supported in these files.
30
 */
31
32
#include <openssl/e_os2.h>
33
34
#include <string.h>
35
#include <openssl/err.h>
36
#include "ec_local.h"
37
38
#include "internal/numbers.h"
39
40
#ifndef INT128_MAX
41
# error "Your compiler doesn't appear to support 128-bit integer types"
42
#endif
43
44
typedef uint8_t u8;
45
typedef uint64_t u64;
46
47
/*
48
 * The underlying field. P384 operates over GF(2^384-2^128-2^96+2^32-1). We
49
 * can serialize an element of this field into 48 bytes. We call this an
50
 * felem_bytearray.
51
 */
52
53
typedef u8 felem_bytearray[48];
54
55
/*
56
 * These are the parameters of P384, taken from FIPS 186-3, section D.1.2.4.
57
 * These values are big-endian.
58
 */
59
static const felem_bytearray nistp384_curve_params[5] = {
60
  {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
61
   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
62
   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
63
   0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF},
64
  {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a = -3 */
65
   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
66
   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
67
   0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFC},
68
  {0xB3, 0x31, 0x2F, 0xA7, 0xE2, 0x3E, 0xE7, 0xE4, 0x98, 0x8E, 0x05, 0x6B, /* b */
69
   0xE3, 0xF8, 0x2D, 0x19, 0x18, 0x1D, 0x9C, 0x6E, 0xFE, 0x81, 0x41, 0x12,
70
   0x03, 0x14, 0x08, 0x8F, 0x50, 0x13, 0x87, 0x5A, 0xC6, 0x56, 0x39, 0x8D,
71
   0x8A, 0x2E, 0xD1, 0x9D, 0x2A, 0x85, 0xC8, 0xED, 0xD3, 0xEC, 0x2A, 0xEF},
72
  {0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E, /* x */
73
   0xF3, 0x20, 0xAD, 0x74, 0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98,
74
   0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38, 0x55, 0x02, 0xF2, 0x5D,
75
   0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7},
76
  {0x36, 0x17, 0xDE, 0x4A, 0x96, 0x26, 0x2C, 0x6F, 0x5D, 0x9E, 0x98, 0xBF, /* y */
77
   0x92, 0x92, 0xDC, 0x29, 0xF8, 0xF4, 0x1D, 0xBD, 0x28, 0x9A, 0x14, 0x7C,
78
   0xE9, 0xDA, 0x31, 0x13, 0xB5, 0xF0, 0xB8, 0xC0, 0x0A, 0x60, 0xB1, 0xCE,
79
   0x1D, 0x7E, 0x81, 0x9D, 0x7A, 0x43, 0x1D, 0x7C, 0x90, 0xEA, 0x0E, 0x5F},
80
};
81
82
/*-
83
 * The representation of field elements.
84
 * ------------------------------------
85
 *
86
 * We represent field elements with seven values. These values are either 64 or
87
 * 128 bits and the field element represented is:
88
 *   v[0]*2^0 + v[1]*2^56 + v[2]*2^112 + ... + v[6]*2^336  (mod p)
89
 * Each of the seven values is called a 'limb'. Since the limbs are spaced only
90
 * 56 bits apart, but are greater than 56 bits in length, the most significant
91
 * bits of each limb overlap with the least significant bits of the next
92
 *
93
 * This representation is considered to be 'redundant' in the sense that
94
 * intermediate values can each contain more than a 56-bit value in each limb.
95
 * Reduction causes all but the final limb to be reduced to contain a value less
96
 * than 2^56, with the final value represented allowed to be larger than 2^384,
97
 * inasmuch as we can be sure that arithmetic overflow remains impossible. The
98
 * reduced value must of course be congruent to the unreduced value.
99
 *
100
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
101
 * 'widefelem', featuring enough bits to store the result of a multiplication
102
 * and even some further arithmetic without need for immediate reduction.
103
 */
104
105
465M
#define NLIMBS 7
106
107
typedef uint64_t limb;
108
typedef uint128_t widelimb;
109
typedef limb limb_aX __attribute((__aligned__(1)));
110
typedef limb felem[NLIMBS];
111
typedef widelimb widefelem[2*NLIMBS-1];
112
113
static const limb bottom56bits = 0xffffffffffffff;
114
115
/* Helper functions (de)serialising reduced field elements in little endian */
116
static void bin48_to_felem(felem out, const u8 in[48])
117
20.8k
{
118
20.8k
    memset(out, 0, 56);
119
20.8k
    out[0] = (*((limb *) & in[0])) & bottom56bits;
120
20.8k
    out[1] = (*((limb_aX *) & in[7])) & bottom56bits;
121
20.8k
    out[2] = (*((limb_aX *) & in[14])) & bottom56bits;
122
20.8k
    out[3] = (*((limb_aX *) & in[21])) & bottom56bits;
123
20.8k
    out[4] = (*((limb_aX *) & in[28])) & bottom56bits;
124
20.8k
    out[5] = (*((limb_aX *) & in[35])) & bottom56bits;
125
20.8k
    memmove(&out[6], &in[42], 6);
126
20.8k
}
127
128
static void felem_to_bin48(u8 out[48], const felem in)
129
33.2k
{
130
33.2k
    memset(out, 0, 48);
131
33.2k
    (*((limb *) & out[0]))     |= (in[0] & bottom56bits);
132
33.2k
    (*((limb_aX *) & out[7]))  |= (in[1] & bottom56bits);
133
33.2k
    (*((limb_aX *) & out[14])) |= (in[2] & bottom56bits);
134
33.2k
    (*((limb_aX *) & out[21])) |= (in[3] & bottom56bits);
135
33.2k
    (*((limb_aX *) & out[28])) |= (in[4] & bottom56bits);
136
33.2k
    (*((limb_aX *) & out[35])) |= (in[5] & bottom56bits);
137
33.2k
    memmove(&out[42], &in[6], 6);
138
33.2k
}
139
140
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
141
static int BN_to_felem(felem out, const BIGNUM *bn)
142
20.8k
{
143
20.8k
    felem_bytearray b_out;
144
20.8k
    int num_bytes;
145
146
20.8k
    if (BN_is_negative(bn)) {
147
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
148
0
        return 0;
149
0
    }
150
20.8k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
151
20.8k
    if (num_bytes < 0) {
152
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
153
0
        return 0;
154
0
    }
155
20.8k
    bin48_to_felem(out, b_out);
156
20.8k
    return 1;
157
20.8k
}
158
159
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
160
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
161
33.2k
{
162
33.2k
    felem_bytearray b_out;
163
164
33.2k
    felem_to_bin48(b_out, in);
165
33.2k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
166
33.2k
}
167
168
/*-
169
 * Field operations
170
 * ----------------
171
 */
172
173
static void felem_one(felem out)
174
0
{
175
0
    out[0] = 1;
176
0
    memset(&out[1], 0, sizeof(limb) * (NLIMBS-1));
177
0
}
178
179
static void felem_assign(felem out, const felem in)
180
6.43M
{
181
6.43M
    memcpy(out, in, sizeof(felem));
182
6.43M
}
183
184
/* felem_sum64 sets out = out + in. */
185
static void felem_sum64(felem out, const felem in)
186
2.73M
{
187
2.73M
    unsigned int i;
188
189
21.8M
    for (i = 0; i < NLIMBS; i++)
190
19.1M
        out[i] += in[i];
191
2.73M
}
192
193
/* felem_scalar sets out = in * scalar */
194
static void felem_scalar(felem out, const felem in, limb scalar)
195
8.30M
{
196
8.30M
    unsigned int i;
197
198
66.4M
    for (i = 0; i < NLIMBS; i++)
199
58.1M
        out[i] = in[i] * scalar;
200
8.30M
}
201
202
/* felem_scalar64 sets out = out * scalar */
203
static void felem_scalar64(felem out, limb scalar)
204
3.90M
{
205
3.90M
    unsigned int i;
206
207
31.2M
    for (i = 0; i < NLIMBS; i++)
208
27.3M
        out[i] *= scalar;
209
3.90M
}
210
211
/* felem_scalar128 sets out = out * scalar */
212
static void felem_scalar128(widefelem out, limb scalar)
213
1.30M
{
214
1.30M
    unsigned int i;
215
216
18.2M
    for (i = 0; i < 2*NLIMBS-1; i++)
217
16.9M
        out[i] *= scalar;
218
1.30M
}
219
220
/*-
221
 * felem_neg sets |out| to |-in|
222
 * On entry:
223
 *   in[i] < 2^60 - 2^29
224
 * On exit:
225
 *   out[i] < 2^60
226
 */
227
static void felem_neg(felem out, const felem in)
228
111k
{
229
    /*
230
     * In order to prevent underflow, we add a multiple of p before subtracting.
231
     * Use telescopic sums to represent 2^12 * p redundantly with each limb
232
     * of the form 2^60 + ...
233
     */
234
111k
    static const limb two60m52m4 = (((limb) 1) << 60)
235
111k
                                 - (((limb) 1) << 52)
236
111k
                                 - (((limb) 1) << 4);
237
111k
    static const limb two60p44m12 = (((limb) 1) << 60)
238
111k
                                  + (((limb) 1) << 44)
239
111k
                                  - (((limb) 1) << 12);
240
111k
    static const limb two60m28m4 = (((limb) 1) << 60)
241
111k
                                 - (((limb) 1) << 28)
242
111k
                                 - (((limb) 1) << 4);
243
111k
    static const limb two60m4 = (((limb) 1) << 60)
244
111k
                              - (((limb) 1) << 4);
245
246
111k
    out[0] = two60p44m12 - in[0];
247
111k
    out[1] = two60m52m4 - in[1];
248
111k
    out[2] = two60m28m4 - in[2];
249
111k
    out[3] = two60m4 - in[3];
250
111k
    out[4] = two60m4 - in[4];
251
111k
    out[5] = two60m4 - in[5];
252
111k
    out[6] = two60m4 - in[6];
253
111k
}
254
255
#if defined(ECP_NISTP384_ASM)
256
void p384_felem_diff64(felem out, const felem in);
257
void p384_felem_diff128(widefelem out, const widefelem in);
258
void p384_felem_diff_128_64(widefelem out, const felem in);
259
260
# define felem_diff64           p384_felem_diff64
261
# define felem_diff128          p384_felem_diff128
262
# define felem_diff_128_64      p384_felem_diff_128_64
263
264
#else
265
/*-
266
 * felem_diff64 subtracts |in| from |out|
267
 * On entry:
268
 *   in[i] < 2^60 - 2^52 - 2^4
269
 * On exit:
270
 *   out[i] < out_orig[i] + 2^60 + 2^44
271
 */
272
static void felem_diff64(felem out, const felem in)
273
2.17M
{
274
    /*
275
     * In order to prevent underflow, we add a multiple of p before subtracting.
276
     * Use telescopic sums to represent 2^12 * p redundantly with each limb
277
     * of the form 2^60 + ...
278
     */
279
280
2.17M
    static const limb two60m52m4 = (((limb) 1) << 60)
281
2.17M
                                 - (((limb) 1) << 52)
282
2.17M
                                 - (((limb) 1) << 4);
283
2.17M
    static const limb two60p44m12 = (((limb) 1) << 60)
284
2.17M
                                  + (((limb) 1) << 44)
285
2.17M
                                  - (((limb) 1) << 12);
286
2.17M
    static const limb two60m28m4 = (((limb) 1) << 60)
287
2.17M
                                 - (((limb) 1) << 28)
288
2.17M
                                 - (((limb) 1) << 4);
289
2.17M
    static const limb two60m4 = (((limb) 1) << 60)
290
2.17M
                              - (((limb) 1) << 4);
291
292
2.17M
    out[0] += two60p44m12 - in[0];
293
2.17M
    out[1] += two60m52m4 - in[1];
294
2.17M
    out[2] += two60m28m4 - in[2];
295
2.17M
    out[3] += two60m4 - in[3];
296
2.17M
    out[4] += two60m4 - in[4];
297
2.17M
    out[5] += two60m4 - in[5];
298
2.17M
    out[6] += two60m4 - in[6];
299
2.17M
}
300
301
/*
302
 * in[i] < 2^63
303
 * out[i] < out_orig[i] + 2^64 + 2^48
304
 */
305
static void felem_diff_128_64(widefelem out, const felem in)
306
3.70M
{
307
    /*
308
     * In order to prevent underflow, we add a multiple of p before subtracting.
309
     * Use telescopic sums to represent 2^16 * p redundantly with each limb
310
     * of the form 2^64 + ...
311
     */
312
313
3.70M
    static const widelimb two64m56m8 = (((widelimb) 1) << 64)
314
3.70M
                                     - (((widelimb) 1) << 56)
315
3.70M
                                     - (((widelimb) 1) << 8);
316
3.70M
    static const widelimb two64m32m8 = (((widelimb) 1) << 64)
317
3.70M
                                     - (((widelimb) 1) << 32)
318
3.70M
                                     - (((widelimb) 1) << 8);
319
3.70M
    static const widelimb two64m8 = (((widelimb) 1) << 64)
320
3.70M
                                  - (((widelimb) 1) << 8);
321
3.70M
    static const widelimb two64p48m16 = (((widelimb) 1) << 64)
322
3.70M
                                      + (((widelimb) 1) << 48)
323
3.70M
                                      - (((widelimb) 1) << 16);
324
3.70M
    unsigned int i;
325
326
3.70M
    out[0] += two64p48m16;
327
3.70M
    out[1] += two64m56m8;
328
3.70M
    out[2] += two64m32m8;
329
3.70M
    out[3] += two64m8;
330
3.70M
    out[4] += two64m8;
331
3.70M
    out[5] += two64m8;
332
3.70M
    out[6] += two64m8;
333
334
29.6M
    for (i = 0; i < NLIMBS; i++)
335
25.9M
        out[i] -= in[i];
336
3.70M
}
337
338
/*
339
 * in[i] < 2^127 - 2^119 - 2^71
340
 * out[i] < out_orig[i] + 2^127 + 2^111
341
 */
342
static void felem_diff128(widefelem out, const widefelem in)
343
1.30M
{
344
    /*
345
     * In order to prevent underflow, we add a multiple of p before subtracting.
346
     * Use telescopic sums to represent 2^415 * p redundantly with each limb
347
     * of the form 2^127 + ...
348
     */
349
350
1.30M
    static const widelimb two127 = ((widelimb) 1) << 127;
351
1.30M
    static const widelimb two127m71 = (((widelimb) 1) << 127)
352
1.30M
                                    - (((widelimb) 1) << 71);
353
1.30M
    static const widelimb two127p111m79m71 = (((widelimb) 1) << 127)
354
1.30M
                                           + (((widelimb) 1) << 111)
355
1.30M
                                           - (((widelimb) 1) << 79)
356
1.30M
                                           - (((widelimb) 1) << 71);
357
1.30M
    static const widelimb two127m119m71 = (((widelimb) 1) << 127)
358
1.30M
                                        - (((widelimb) 1) << 119)
359
1.30M
                                        - (((widelimb) 1) << 71);
360
1.30M
    static const widelimb two127m95m71 = (((widelimb) 1) << 127)
361
1.30M
                                       - (((widelimb) 1) << 95)
362
1.30M
                                       - (((widelimb) 1) << 71);
363
1.30M
    unsigned int i;
364
365
1.30M
    out[0]  += two127;
366
1.30M
    out[1]  += two127m71;
367
1.30M
    out[2]  += two127m71;
368
1.30M
    out[3]  += two127m71;
369
1.30M
    out[4]  += two127m71;
370
1.30M
    out[5]  += two127m71;
371
1.30M
    out[6]  += two127p111m79m71;
372
1.30M
    out[7]  += two127m119m71;
373
1.30M
    out[8]  += two127m95m71;
374
1.30M
    out[9]  += two127m71;
375
1.30M
    out[10] += two127m71;
376
1.30M
    out[11] += two127m71;
377
1.30M
    out[12] += two127m71;
378
379
18.2M
    for (i = 0; i < 2*NLIMBS-1; i++)
380
16.9M
        out[i] -= in[i];
381
1.30M
}
382
#endif /* ECP_NISTP384_ASM */
383
384
static void felem_square_ref(widefelem out, const felem in)
385
7.99M
{
386
7.99M
    felem inx2;
387
7.99M
    felem_scalar(inx2, in, 2);
388
389
7.99M
    out[0] = ((uint128_t) in[0]) * in[0];
390
391
7.99M
    out[1] = ((uint128_t) in[0]) * inx2[1];
392
393
7.99M
    out[2] = ((uint128_t) in[0]) * inx2[2]
394
7.99M
           + ((uint128_t) in[1]) * in[1];
395
396
7.99M
    out[3] = ((uint128_t) in[0]) * inx2[3]
397
7.99M
           + ((uint128_t) in[1]) * inx2[2];
398
399
7.99M
    out[4] = ((uint128_t) in[0]) * inx2[4]
400
7.99M
           + ((uint128_t) in[1]) * inx2[3]
401
7.99M
           + ((uint128_t) in[2]) * in[2];
402
403
7.99M
    out[5] = ((uint128_t) in[0]) * inx2[5]
404
7.99M
           + ((uint128_t) in[1]) * inx2[4]
405
7.99M
           + ((uint128_t) in[2]) * inx2[3];
406
407
7.99M
    out[6] = ((uint128_t) in[0]) * inx2[6]
408
7.99M
           + ((uint128_t) in[1]) * inx2[5]
409
7.99M
           + ((uint128_t) in[2]) * inx2[4]
410
7.99M
           + ((uint128_t) in[3]) * in[3];
411
412
7.99M
    out[7] = ((uint128_t) in[1]) * inx2[6]
413
7.99M
           + ((uint128_t) in[2]) * inx2[5]
414
7.99M
           + ((uint128_t) in[3]) * inx2[4];
415
416
7.99M
    out[8] = ((uint128_t) in[2]) * inx2[6]
417
7.99M
           + ((uint128_t) in[3]) * inx2[5]
418
7.99M
           + ((uint128_t) in[4]) * in[4];
419
420
7.99M
    out[9] = ((uint128_t) in[3]) * inx2[6]
421
7.99M
           + ((uint128_t) in[4]) * inx2[5];
422
423
7.99M
    out[10] = ((uint128_t) in[4]) * inx2[6]
424
7.99M
            + ((uint128_t) in[5]) * in[5];
425
426
7.99M
    out[11] = ((uint128_t) in[5]) * inx2[6];
427
428
7.99M
    out[12] = ((uint128_t) in[6]) * in[6];
429
7.99M
}
430
431
static void felem_mul_ref(widefelem out, const felem in1, const felem in2)
432
6.51M
{
433
6.51M
    out[0] = ((uint128_t) in1[0]) * in2[0];
434
435
6.51M
    out[1] = ((uint128_t) in1[0]) * in2[1]
436
6.51M
           + ((uint128_t) in1[1]) * in2[0];
437
438
6.51M
    out[2] = ((uint128_t) in1[0]) * in2[2]
439
6.51M
           + ((uint128_t) in1[1]) * in2[1]
440
6.51M
           + ((uint128_t) in1[2]) * in2[0];
441
442
6.51M
    out[3] = ((uint128_t) in1[0]) * in2[3]
443
6.51M
           + ((uint128_t) in1[1]) * in2[2]
444
6.51M
           + ((uint128_t) in1[2]) * in2[1]
445
6.51M
           + ((uint128_t) in1[3]) * in2[0];
446
447
6.51M
    out[4] = ((uint128_t) in1[0]) * in2[4]
448
6.51M
           + ((uint128_t) in1[1]) * in2[3]
449
6.51M
           + ((uint128_t) in1[2]) * in2[2]
450
6.51M
           + ((uint128_t) in1[3]) * in2[1]
451
6.51M
           + ((uint128_t) in1[4]) * in2[0];
452
453
6.51M
    out[5] = ((uint128_t) in1[0]) * in2[5]
454
6.51M
           + ((uint128_t) in1[1]) * in2[4]
455
6.51M
           + ((uint128_t) in1[2]) * in2[3]
456
6.51M
           + ((uint128_t) in1[3]) * in2[2]
457
6.51M
           + ((uint128_t) in1[4]) * in2[1]
458
6.51M
           + ((uint128_t) in1[5]) * in2[0];
459
460
6.51M
    out[6] = ((uint128_t) in1[0]) * in2[6]
461
6.51M
           + ((uint128_t) in1[1]) * in2[5]
462
6.51M
           + ((uint128_t) in1[2]) * in2[4]
463
6.51M
           + ((uint128_t) in1[3]) * in2[3]
464
6.51M
           + ((uint128_t) in1[4]) * in2[2]
465
6.51M
           + ((uint128_t) in1[5]) * in2[1]
466
6.51M
           + ((uint128_t) in1[6]) * in2[0];
467
468
6.51M
    out[7] = ((uint128_t) in1[1]) * in2[6]
469
6.51M
           + ((uint128_t) in1[2]) * in2[5]
470
6.51M
           + ((uint128_t) in1[3]) * in2[4]
471
6.51M
           + ((uint128_t) in1[4]) * in2[3]
472
6.51M
           + ((uint128_t) in1[5]) * in2[2]
473
6.51M
           + ((uint128_t) in1[6]) * in2[1];
474
475
6.51M
    out[8] = ((uint128_t) in1[2]) * in2[6]
476
6.51M
           + ((uint128_t) in1[3]) * in2[5]
477
6.51M
           + ((uint128_t) in1[4]) * in2[4]
478
6.51M
           + ((uint128_t) in1[5]) * in2[3]
479
6.51M
           + ((uint128_t) in1[6]) * in2[2];
480
481
6.51M
    out[9] = ((uint128_t) in1[3]) * in2[6]
482
6.51M
           + ((uint128_t) in1[4]) * in2[5]
483
6.51M
           + ((uint128_t) in1[5]) * in2[4]
484
6.51M
           + ((uint128_t) in1[6]) * in2[3];
485
486
6.51M
    out[10] = ((uint128_t) in1[4]) * in2[6]
487
6.51M
            + ((uint128_t) in1[5]) * in2[5]
488
6.51M
            + ((uint128_t) in1[6]) * in2[4];
489
490
6.51M
    out[11] = ((uint128_t) in1[5]) * in2[6]
491
6.51M
            + ((uint128_t) in1[6]) * in2[5];
492
493
6.51M
    out[12] = ((uint128_t) in1[6]) * in2[6];
494
6.51M
}
495
496
/*-
497
 * Reduce thirteen 128-bit coefficients to seven 64-bit coefficients.
498
 * in[i] < 2^128 - 2^125
499
 * out[i] < 2^56 for i < 6,
500
 * out[6] <= 2^48
501
 *
502
 * The technique in use here stems from the format of the prime modulus:
503
 * P384 = 2^384 - delta
504
 *
505
 * Thus we can reduce numbers of the form (X + 2^384 * Y) by substituting
506
 * them with (X + delta Y), with delta = 2^128 + 2^96 + (-2^32 + 1). These
507
 * coefficients are still quite large, and so we repeatedly apply this
508
 * technique on high-order bits in order to guarantee the desired bounds on
509
 * the size of our output.
510
 *
511
 * The three phases of elimination are as follows:
512
 * [1]: Y = 2^120 (in[12] | in[11] | in[10] | in[9])
513
 * [2]: Y = 2^8 (acc[8] | acc[7])
514
 * [3]: Y = 2^48 (acc[6] >> 48)
515
 * (Where a | b | c | d = (2^56)^3 a + (2^56)^2 b + (2^56) c + d)
516
 */
517
static void felem_reduce_ref(felem out, const widefelem in)
518
13.2M
{
519
    /*
520
     * In order to prevent underflow, we add a multiple of p before subtracting.
521
     * Use telescopic sums to represent 2^76 * p redundantly with each limb
522
     * of the form 2^124 + ...
523
     */
524
13.2M
    static const widelimb two124m68 = (((widelimb) 1) << 124)
525
13.2M
                                    - (((widelimb) 1) << 68);
526
13.2M
    static const widelimb two124m116m68 = (((widelimb) 1) << 124)
527
13.2M
                                        - (((widelimb) 1) << 116)
528
13.2M
                                        - (((widelimb) 1) << 68);
529
13.2M
    static const widelimb two124p108m76 = (((widelimb) 1) << 124)
530
13.2M
                                        + (((widelimb) 1) << 108)
531
13.2M
                                        - (((widelimb) 1) << 76);
532
13.2M
    static const widelimb two124m92m68 = (((widelimb) 1) << 124)
533
13.2M
                                       - (((widelimb) 1) << 92)
534
13.2M
                                       - (((widelimb) 1) << 68);
535
13.2M
    widelimb temp, acc[9];
536
13.2M
    unsigned int i;
537
538
13.2M
    memcpy(acc, in, sizeof(widelimb) * 9);
539
540
13.2M
    acc[0] += two124p108m76;
541
13.2M
    acc[1] += two124m116m68;
542
13.2M
    acc[2] += two124m92m68;
543
13.2M
    acc[3] += two124m68;
544
13.2M
    acc[4] += two124m68;
545
13.2M
    acc[5] += two124m68;
546
13.2M
    acc[6] += two124m68;
547
548
    /* [1]: Eliminate in[9], ..., in[12] */
549
13.2M
    acc[8] += in[12] >> 32;
550
13.2M
    acc[7] += (in[12] & 0xffffffff) << 24;
551
13.2M
    acc[7] += in[12] >> 8;
552
13.2M
    acc[6] += (in[12] & 0xff) << 48;
553
13.2M
    acc[6] -= in[12] >> 16;
554
13.2M
    acc[5] -= (in[12] & 0xffff) << 40;
555
13.2M
    acc[6] += in[12] >> 48;
556
13.2M
    acc[5] += (in[12] & 0xffffffffffff) << 8;
557
558
13.2M
    acc[7] += in[11] >> 32;
559
13.2M
    acc[6] += (in[11] & 0xffffffff) << 24;
560
13.2M
    acc[6] += in[11] >> 8;
561
13.2M
    acc[5] += (in[11] & 0xff) << 48;
562
13.2M
    acc[5] -= in[11] >> 16;
563
13.2M
    acc[4] -= (in[11] & 0xffff) << 40;
564
13.2M
    acc[5] += in[11] >> 48;
565
13.2M
    acc[4] += (in[11] & 0xffffffffffff) << 8;
566
567
13.2M
    acc[6] += in[10] >> 32;
568
13.2M
    acc[5] += (in[10] & 0xffffffff) << 24;
569
13.2M
    acc[5] += in[10] >> 8;
570
13.2M
    acc[4] += (in[10] & 0xff) << 48;
571
13.2M
    acc[4] -= in[10] >> 16;
572
13.2M
    acc[3] -= (in[10] & 0xffff) << 40;
573
13.2M
    acc[4] += in[10] >> 48;
574
13.2M
    acc[3] += (in[10] & 0xffffffffffff) << 8;
575
576
13.2M
    acc[5] += in[9] >> 32;
577
13.2M
    acc[4] += (in[9] & 0xffffffff) << 24;
578
13.2M
    acc[4] += in[9] >> 8;
579
13.2M
    acc[3] += (in[9] & 0xff) << 48;
580
13.2M
    acc[3] -= in[9] >> 16;
581
13.2M
    acc[2] -= (in[9] & 0xffff) << 40;
582
13.2M
    acc[3] += in[9] >> 48;
583
13.2M
    acc[2] += (in[9] & 0xffffffffffff) << 8;
584
585
    /*
586
     * [2]: Eliminate acc[7], acc[8], that is the 7 and eighth limbs, as
587
     * well as the contributions made from eliminating higher limbs.
588
     * acc[7] < in[7] + 2^120 + 2^56 < in[7] + 2^121
589
     * acc[8] < in[8] + 2^96
590
     */
591
13.2M
    acc[4] += acc[8] >> 32;
592
13.2M
    acc[3] += (acc[8] & 0xffffffff) << 24;
593
13.2M
    acc[3] += acc[8] >> 8;
594
13.2M
    acc[2] += (acc[8] & 0xff) << 48;
595
13.2M
    acc[2] -= acc[8] >> 16;
596
13.2M
    acc[1] -= (acc[8] & 0xffff) << 40;
597
13.2M
    acc[2] += acc[8] >> 48;
598
13.2M
    acc[1] += (acc[8] & 0xffffffffffff) << 8;
599
600
13.2M
    acc[3] += acc[7] >> 32;
601
13.2M
    acc[2] += (acc[7] & 0xffffffff) << 24;
602
13.2M
    acc[2] += acc[7] >> 8;
603
13.2M
    acc[1] += (acc[7] & 0xff) << 48;
604
13.2M
    acc[1] -= acc[7] >> 16;
605
13.2M
    acc[0] -= (acc[7] & 0xffff) << 40;
606
13.2M
    acc[1] += acc[7] >> 48;
607
13.2M
    acc[0] += (acc[7] & 0xffffffffffff) << 8;
608
609
    /*-
610
     * acc[k] < in[k] + 2^124 + 2^121 
611
     *        < in[k] + 2^125
612
     *        < 2^128, for k <= 6
613
     */
614
615
    /*
616
     * Carry 4 -> 5 -> 6
617
     * This has the effect of ensuring that these more significant limbs
618
     * will be small in value after eliminating high bits from acc[6].
619
     */
620
13.2M
    acc[5] += acc[4] >> 56;
621
13.2M
    acc[4] &= 0x00ffffffffffffff;
622
623
13.2M
    acc[6] += acc[5] >> 56;
624
13.2M
    acc[5] &= 0x00ffffffffffffff;
625
626
    /*-
627
     * acc[6] < in[6] + 2^124 + 2^121 + 2^72 + 2^16
628
     *        < in[6] + 2^125
629
     *        < 2^128
630
     */
631
632
    /* [3]: Eliminate high bits of acc[6] */
633
13.2M
    temp = acc[6] >> 48;
634
13.2M
    acc[6] &= 0x0000ffffffffffff;
635
    
636
    /* temp < 2^80 */
637
638
13.2M
    acc[3] += temp >> 40;
639
13.2M
    acc[2] += (temp & 0xffffffffff) << 16;
640
13.2M
    acc[2] += temp >> 16;
641
13.2M
    acc[1] += (temp & 0xffff) << 40;
642
13.2M
    acc[1] -= temp >> 24;
643
13.2M
    acc[0] -= (temp & 0xffffff) << 32;
644
13.2M
    acc[0] += temp;
645
646
    /*-
647
     * acc[k] < acc_old[k] + 2^64 + 2^56
648
     *        < in[k] + 2^124 + 2^121 + 2^72 + 2^64 + 2^56 + 2^16 , k < 4
649
     */
650
651
    /* Carry 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
652
13.2M
    acc[1] += acc[0] >> 56;   /* acc[1] < acc_old[1] + 2^72 */
653
13.2M
    acc[0] &= 0x00ffffffffffffff;
654
655
13.2M
    acc[2] += acc[1] >> 56;   /* acc[2] < acc_old[2] + 2^72 + 2^16 */
656
13.2M
    acc[1] &= 0x00ffffffffffffff;
657
658
13.2M
    acc[3] += acc[2] >> 56;   /* acc[3] < acc_old[3] + 2^72 + 2^16 */
659
13.2M
    acc[2] &= 0x00ffffffffffffff;
660
661
    /*-
662
     * acc[k] < acc_old[k] + 2^72 + 2^16
663
     *        < in[k] + 2^124 + 2^121 + 2^73 + 2^64 + 2^56 + 2^17
664
     *        < in[k] + 2^125
665
     *        < 2^128 , k < 4
666
     */
667
668
13.2M
    acc[4] += acc[3] >> 56;   /*-
669
                               * acc[4] < acc_old[4] + 2^72 + 2^16
670
                               *        < 2^72 + 2^56 + 2^16
671
                               */
672
13.2M
    acc[3] &= 0x00ffffffffffffff;
673
674
13.2M
    acc[5] += acc[4] >> 56;   /*-
675
                               * acc[5] < acc_old[5] + 2^16 + 1
676
                               *        < 2^56 + 2^16 + 1
677
                               */
678
13.2M
    acc[4] &= 0x00ffffffffffffff;
679
680
13.2M
    acc[6] += acc[5] >> 56;   /* acc[6] < 2^48 + 1 <= 2^48 */
681
13.2M
    acc[5] &= 0x00ffffffffffffff;
682
683
105M
    for (i = 0; i < NLIMBS; i++)
684
92.4M
        out[i] = acc[i];
685
13.2M
}
686
687
static ossl_inline void felem_square_reduce_ref(felem out, const felem in)
688
4.82M
{
689
4.82M
    widefelem tmp;
690
691
4.82M
    felem_square_ref(tmp, in);
692
4.82M
    felem_reduce_ref(out, tmp);
693
4.82M
}
694
695
static ossl_inline void felem_mul_reduce_ref(felem out, const felem in1, const felem in2)
696
3.90M
{
697
3.90M
    widefelem tmp;
698
699
3.90M
    felem_mul_ref(tmp, in1, in2);
700
3.90M
    felem_reduce_ref(out, tmp);
701
3.90M
}
702
703
#if defined(ECP_NISTP384_ASM)
704
static void felem_square_wrapper(widefelem out, const felem in);
705
static void felem_mul_wrapper(widefelem out, const felem in1, const felem in2);
706
707
static void (*felem_square_p)(widefelem out, const felem in) =
708
    felem_square_wrapper;
709
static void (*felem_mul_p)(widefelem out, const felem in1, const felem in2) =
710
    felem_mul_wrapper;
711
712
static void (*felem_reduce_p)(felem out, const widefelem in) = felem_reduce_ref;
713
714
static void (*felem_square_reduce_p)(felem out, const felem in) =
715
    felem_square_reduce_ref;
716
static void (*felem_mul_reduce_p)(felem out, const felem in1, const felem in2) =
717
    felem_mul_reduce_ref;
718
719
void p384_felem_square(widefelem out, const felem in);
720
void p384_felem_mul(widefelem out, const felem in1, const felem in2);
721
void p384_felem_reduce(felem out, const widefelem in);
722
723
void p384_felem_square_reduce(felem out, const felem in);
724
void p384_felem_mul_reduce(felem out, const felem in1, const felem in2);
725
726
# if defined(_ARCH_PPC64)
727
#  include "crypto/ppc_arch.h"
728
# endif
729
730
static void felem_select(void)
731
{
732
# if defined(_ARCH_PPC64)
733
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
734
        felem_square_p = p384_felem_square;
735
        felem_mul_p = p384_felem_mul;
736
        felem_reduce_p = p384_felem_reduce;
737
        felem_square_reduce_p = p384_felem_square_reduce;
738
        felem_mul_reduce_p = p384_felem_mul_reduce;
739
740
        return;
741
    }
742
# endif
743
744
    /* Default */
745
    felem_square_p = felem_square_ref;
746
    felem_mul_p = felem_mul_ref;
747
    felem_reduce_p = felem_reduce_ref;
748
    felem_square_reduce_p = felem_square_reduce_ref;
749
    felem_mul_reduce_p = felem_mul_reduce_ref;
750
}
751
752
static void felem_square_wrapper(widefelem out, const felem in)
753
{
754
    felem_select();
755
    felem_square_p(out, in);
756
}
757
758
static void felem_mul_wrapper(widefelem out, const felem in1, const felem in2)
759
{
760
    felem_select();
761
    felem_mul_p(out, in1, in2);
762
}
763
764
# define felem_square felem_square_p
765
# define felem_mul felem_mul_p
766
# define felem_reduce felem_reduce_p
767
768
# define felem_square_reduce felem_square_reduce_p
769
# define felem_mul_reduce felem_mul_reduce_p
770
#else
771
3.16M
# define felem_square felem_square_ref
772
2.61M
# define felem_mul felem_mul_ref
773
4.47M
# define felem_reduce felem_reduce_ref
774
775
4.82M
# define felem_square_reduce felem_square_reduce_ref
776
3.90M
# define felem_mul_reduce felem_mul_reduce_ref
777
#endif
778
779
/*-
780
 * felem_inv calculates |out| = |in|^{-1}
781
 *
782
 * Based on Fermat's Little Theorem:
783
 *   a^p = a (mod p)
784
 *   a^{p-1} = 1 (mod p)
785
 *   a^{p-2} = a^{-1} (mod p)
786
 */
787
static void felem_inv(felem out, const felem in)
788
5.48k
{
789
5.48k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6;
790
5.48k
    unsigned int i = 0;
791
792
5.48k
    felem_square_reduce(ftmp, in);      /* 2^1 */
793
5.48k
    felem_mul_reduce(ftmp, ftmp, in);   /* 2^1 + 2^0 */
794
5.48k
    felem_assign(ftmp2, ftmp);
795
796
5.48k
    felem_square_reduce(ftmp, ftmp);    /* 2^2 + 2^1 */
797
5.48k
    felem_mul_reduce(ftmp, ftmp, in);   /* 2^2 + 2^1 * 2^0 */
798
5.48k
    felem_assign(ftmp3, ftmp);
799
800
21.9k
    for (i = 0; i < 3; i++)
801
16.4k
        felem_square_reduce(ftmp, ftmp); /* 2^5 + 2^4 + 2^3 */
802
5.48k
    felem_mul_reduce(ftmp, ftmp3, ftmp); /* 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 */
803
5.48k
    felem_assign(ftmp4, ftmp);
804
805
38.3k
    for (i = 0; i < 6; i++)
806
32.8k
        felem_square_reduce(ftmp, ftmp); /* 2^11 + ... + 2^6 */
807
5.48k
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^11 + ... + 2^0 */
808
809
21.9k
    for (i = 0; i < 3; i++)
810
16.4k
        felem_square_reduce(ftmp, ftmp); /* 2^14 + ... + 2^3 */
811
5.48k
    felem_mul_reduce(ftmp, ftmp3, ftmp); /* 2^14 + ... + 2^0 */
812
5.48k
    felem_assign(ftmp5, ftmp);
813
814
87.7k
    for (i = 0; i < 15; i++)
815
82.2k
        felem_square_reduce(ftmp, ftmp); /* 2^29 + ... + 2^15 */
816
5.48k
    felem_mul_reduce(ftmp, ftmp5, ftmp); /* 2^29 + ... + 2^0 */
817
5.48k
    felem_assign(ftmp6, ftmp);
818
819
169k
    for (i = 0; i < 30; i++)
820
164k
        felem_square_reduce(ftmp, ftmp); /* 2^59 + ... + 2^30 */
821
5.48k
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^59 + ... + 2^0 */
822
5.48k
    felem_assign(ftmp4, ftmp);
823
824
334k
    for (i = 0; i < 60; i++)
825
328k
        felem_square_reduce(ftmp, ftmp); /* 2^119 + ... + 2^60 */
826
5.48k
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^119 + ... + 2^0 */
827
5.48k
    felem_assign(ftmp4, ftmp);
828
829
663k
    for (i = 0; i < 120; i++)
830
657k
      felem_square_reduce(ftmp, ftmp);   /* 2^239 + ... + 2^120 */
831
5.48k
    felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^239 + ... + 2^0 */
832
833
87.7k
    for (i = 0; i < 15; i++)
834
82.2k
        felem_square_reduce(ftmp, ftmp); /* 2^254 + ... + 2^15 */
835
5.48k
    felem_mul_reduce(ftmp, ftmp5, ftmp); /* 2^254 + ... + 2^0 */
836
837
175k
    for (i = 0; i < 31; i++)
838
169k
        felem_square_reduce(ftmp, ftmp); /* 2^285 + ... + 2^31 */
839
5.48k
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^285 + ... + 2^31 + 2^29 + ... + 2^0 */
840
841
16.4k
    for (i = 0; i < 2; i++)
842
10.9k
        felem_square_reduce(ftmp, ftmp); /* 2^287 + ... + 2^33 + 2^31 + ... + 2^2 */
843
5.48k
    felem_mul_reduce(ftmp, ftmp2, ftmp); /* 2^287 + ... + 2^33 + 2^31 + ... + 2^0 */
844
845
520k
    for (i = 0; i < 94; i++)
846
515k
        felem_square_reduce(ftmp, ftmp); /* 2^381 + ... + 2^127 + 2^125 + ... + 2^94 */
847
5.48k
    felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^381 + ... + 2^127 + 2^125 + ... + 2^94 + 2^29 + ... + 2^0 */
848
849
16.4k
    for (i = 0; i < 2; i++)
850
10.9k
        felem_square_reduce(ftmp, ftmp); /* 2^383 + ... + 2^129 + 2^127 + ... + 2^96 + 2^31 + ... + 2^2 */
851
5.48k
    felem_mul_reduce(ftmp, in, ftmp);    /* 2^383 + ... + 2^129 + 2^127 + ... + 2^96 + 2^31 + ... + 2^2 + 2^0 */
852
853
5.48k
    memcpy(out, ftmp, sizeof(felem));
854
5.48k
}
855
856
/*
857
 * Zero-check: returns a limb with all bits set if |in| == 0 (mod p)
858
 * and 0 otherwise. We know that field elements are reduced to
859
 * 0 < in < 2p, so we only need to check two cases:
860
 * 0 and 2^384 - 2^128 - 2^96 + 2^32 - 1
861
 *   in[k] < 2^56, k < 6
862
 *   in[6] <= 2^48
863
 */
864
static limb felem_is_zero(const felem in)
865
1.72M
{
866
1.72M
    limb zero, p384;
867
868
1.72M
    zero = in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6];
869
1.72M
    zero = ((int64_t) (zero) - 1) >> 63;
870
1.72M
    p384 = (in[0] ^ 0x000000ffffffff) | (in[1] ^ 0xffff0000000000)
871
1.72M
         | (in[2] ^ 0xfffffffffeffff) | (in[3] ^ 0xffffffffffffff)
872
1.72M
         | (in[4] ^ 0xffffffffffffff) | (in[5] ^ 0xffffffffffffff)
873
1.72M
         | (in[6] ^ 0xffffffffffff);
874
1.72M
    p384 = ((int64_t) (p384) - 1) >> 63;
875
876
1.72M
    return (zero | p384);
877
1.72M
}
878
879
static int felem_is_zero_int(const void *in)
880
0
{
881
0
    return (int)(felem_is_zero(in) & ((limb) 1));
882
0
}
883
884
/*-
885
 * felem_contract converts |in| to its unique, minimal representation.
886
 * Assume we've removed all redundant bits.
887
 * On entry:
888
 *   in[k] < 2^56, k < 6
889
 *   in[6] <= 2^48
890
 */
891
static void felem_contract(felem out, const felem in)
892
24.7k
{
893
24.7k
    static const int64_t two56 = ((limb) 1) << 56;
894
895
    /*
896
     * We know for a fact that 0 <= |in| < 2*p, for p = 2^384 - 2^128 - 2^96 + 2^32 - 1
897
     * Perform two successive, idempotent subtractions to reduce if |in| >= p.
898
     */
899
900
24.7k
    int64_t tmp[NLIMBS], cond[5], a;
901
24.7k
    unsigned int i;
902
903
24.7k
    memcpy(tmp, in, sizeof(felem));
904
 
905
    /* Case 1: a = 1 iff |in| >= 2^384 */
906
24.7k
    a = (in[6] >> 48);
907
24.7k
    tmp[0] += a;
908
24.7k
    tmp[0] -= a << 32;
909
24.7k
    tmp[1] += a << 40;
910
24.7k
    tmp[2] += a << 16;
911
24.7k
    tmp[6] &= 0x0000ffffffffffff;
912
913
    /*
914
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
915
     * non-zero, so we only need one step
916
     */
917
918
24.7k
    a = tmp[0] >> 63;
919
24.7k
    tmp[0] += a & two56;
920
24.7k
    tmp[1] -= a & 1;
921
922
    /* Carry 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
923
24.7k
    tmp[2] += tmp[1] >> 56;
924
24.7k
    tmp[1] &= 0x00ffffffffffffff;
925
926
24.7k
    tmp[3] += tmp[2] >> 56;
927
24.7k
    tmp[2] &= 0x00ffffffffffffff;
928
929
24.7k
    tmp[4] += tmp[3] >> 56;
930
24.7k
    tmp[3] &= 0x00ffffffffffffff;
931
932
24.7k
    tmp[5] += tmp[4] >> 56;
933
24.7k
    tmp[4] &= 0x00ffffffffffffff;
934
935
24.7k
    tmp[6] += tmp[5] >> 56; /* tmp[6] < 2^48 */
936
24.7k
    tmp[5] &= 0x00ffffffffffffff;
937
938
    /*
939
     * Case 2: a = all ones if p <= |in| < 2^384, 0 otherwise
940
     */
941
942
    /* 0 iff (2^129..2^383) are all one */
943
24.7k
    cond[0] = ((tmp[6] | 0xff000000000000) & tmp[5] & tmp[4] & tmp[3] & (tmp[2] | 0x0000000001ffff)) + 1;
944
    /* 0 iff 2^128 bit is one */
945
24.7k
    cond[1] = (tmp[2] | ~0x00000000010000) + 1;
946
    /* 0 iff (2^96..2^127) bits are all one */
947
24.7k
    cond[2] = ((tmp[2] | 0xffffffffff0000) & (tmp[1] | 0x0000ffffffffff)) + 1;
948
    /* 0 iff (2^32..2^95) bits are all zero */
949
24.7k
    cond[3] = (tmp[1] & ~0xffff0000000000) | (tmp[0] & ~((int64_t) 0x000000ffffffff));
950
    /* 0 iff (2^0..2^31) bits are all one */
951
24.7k
    cond[4] = (tmp[0] | 0xffffff00000000) + 1;
952
953
    /*
954
     * In effect, invert our conditions, so that 0 values become all 1's,
955
     * any non-zero value in the low-order 56 bits becomes all 0's
956
     */
957
148k
    for (i = 0; i < 5; i++)
958
123k
       cond[i] = ((cond[i] & 0x00ffffffffffffff) - 1) >> 63;
959
960
    /*
961
     * The condition for determining whether in is greater than our
962
     * prime is given by the following condition.
963
     */
964
965
    /* First subtract 2^384 - 2^129 cheaply */
966
24.7k
    a = cond[0] & (cond[1] | (cond[2] & (~cond[3] | cond[4])));
967
24.7k
    tmp[6] &= ~a;
968
24.7k
    tmp[5] &= ~a;
969
24.7k
    tmp[4] &= ~a;
970
24.7k
    tmp[3] &= ~a;
971
24.7k
    tmp[2] &= ~a | 0x0000000001ffff;
972
973
    /*
974
     * Subtract 2^128 - 2^96 by
975
     * means of disjoint cases.
976
     */
977
978
    /* subtract 2^128 if that bit is present, and add 2^96 */
979
24.7k
    a = cond[0] & cond[1];
980
24.7k
    tmp[2] &= ~a | 0xfffffffffeffff;
981
24.7k
    tmp[1] += a & ((int64_t) 1 << 40);
982
983
    /* otherwise, clear bits 2^127 .. 2^96  */
984
24.7k
    a = cond[0] & ~cond[1] & (cond[2] & (~cond[3] | cond[4]));
985
24.7k
    tmp[2] &= ~a | 0xffffffffff0000;
986
24.7k
    tmp[1] &= ~a | 0x0000ffffffffff;
987
988
    /* finally, subtract the last 2^32 - 1 */
989
24.7k
    a = cond[0] & (cond[1] | (cond[2] & (~cond[3] | cond[4])));
990
24.7k
    tmp[0] += a & (-((int64_t) 1 << 32) + 1);
991
992
    /*
993
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
994
     * non-zero, so we only need one step
995
     */
996
24.7k
    a = tmp[0] >> 63;
997
24.7k
    tmp[0] += a & two56;
998
24.7k
    tmp[1] -= a & 1;
999
1000
    /* Carry 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
1001
24.7k
    tmp[2] += tmp[1] >> 56;
1002
24.7k
    tmp[1] &= 0x00ffffffffffffff;
1003
1004
24.7k
    tmp[3] += tmp[2] >> 56;
1005
24.7k
    tmp[2] &= 0x00ffffffffffffff;
1006
1007
24.7k
    tmp[4] += tmp[3] >> 56;
1008
24.7k
    tmp[3] &= 0x00ffffffffffffff;
1009
1010
24.7k
    tmp[5] += tmp[4] >> 56;
1011
24.7k
    tmp[4] &= 0x00ffffffffffffff;
1012
1013
24.7k
    tmp[6] += tmp[5] >> 56;
1014
24.7k
    tmp[5] &= 0x00ffffffffffffff;
1015
1016
24.7k
    memcpy(out, tmp, sizeof(felem));
1017
24.7k
}
1018
1019
/*-
1020
 * Group operations
1021
 * ----------------
1022
 *
1023
 * Building on top of the field operations we have the operations on the
1024
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1025
 * coordinates
1026
 */
1027
1028
/*-
1029
 * point_double calculates 2*(x_in, y_in, z_in)
1030
 *
1031
 * The method is taken from:
1032
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1033
 *
1034
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1035
 * while x_out == y_in is not (maybe this works, but it's not tested).
1036
 */
1037
static void
1038
point_double(felem x_out, felem y_out, felem z_out,
1039
             const felem x_in, const felem y_in, const felem z_in)
1040
870k
{
1041
870k
    widefelem tmp, tmp2;
1042
870k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1043
1044
870k
    felem_assign(ftmp, x_in);
1045
870k
    felem_assign(ftmp2, x_in);
1046
1047
    /* delta = z^2 */
1048
870k
    felem_square_reduce(delta, z_in);     /* delta[i] < 2^56 */
1049
1050
    /* gamma = y^2 */
1051
870k
    felem_square_reduce(gamma, y_in);     /* gamma[i] < 2^56 */
1052
1053
    /* beta = x*gamma */
1054
870k
    felem_mul_reduce(beta, x_in, gamma);  /* beta[i] < 2^56 */
1055
1056
    /* alpha = 3*(x-delta)*(x+delta) */
1057
870k
    felem_diff64(ftmp, delta);            /* ftmp[i] < 2^60 + 2^58 + 2^44 */
1058
870k
    felem_sum64(ftmp2, delta);            /* ftmp2[i] < 2^59 */
1059
870k
    felem_scalar64(ftmp2, 3);             /* ftmp2[i] < 2^61 */
1060
870k
    felem_mul_reduce(alpha, ftmp, ftmp2); /* alpha[i] < 2^56 */
1061
1062
    /* x' = alpha^2 - 8*beta */
1063
870k
    felem_square(tmp, alpha);             /* tmp[i] < 2^115 */
1064
870k
    felem_assign(ftmp, beta);             /* ftmp[i] < 2^56 */
1065
870k
    felem_scalar64(ftmp, 8);              /* ftmp[i] < 2^59 */
1066
870k
    felem_diff_128_64(tmp, ftmp);         /* tmp[i] < 2^115 + 2^64 + 2^48 */
1067
870k
    felem_reduce(x_out, tmp);             /* x_out[i] < 2^56 */
1068
1069
    /* z' = (y + z)^2 - gamma - delta */
1070
870k
    felem_sum64(delta, gamma);     /* delta[i] < 2^57 */
1071
870k
    felem_assign(ftmp, y_in);      /* ftmp[i] < 2^56 */
1072
870k
    felem_sum64(ftmp, z_in);       /* ftmp[i] < 2^56 */
1073
870k
    felem_square(tmp, ftmp);       /* tmp[i] < 2^115 */
1074
870k
    felem_diff_128_64(tmp, delta); /* tmp[i] < 2^115 + 2^64 + 2^48 */
1075
870k
    felem_reduce(z_out, tmp);      /* z_out[i] < 2^56 */
1076
1077
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1078
870k
    felem_scalar64(beta, 4);       /* beta[i] < 2^58 */
1079
870k
    felem_diff64(beta, x_out);     /* beta[i] < 2^60 + 2^58 + 2^44 */
1080
870k
    felem_mul(tmp, alpha, beta);   /* tmp[i] < 2^119 */
1081
870k
    felem_square(tmp2, gamma);     /* tmp2[i] < 2^115 */
1082
870k
    felem_scalar128(tmp2, 8);      /* tmp2[i] < 2^118 */
1083
870k
    felem_diff128(tmp, tmp2);      /* tmp[i] < 2^127 + 2^119 + 2^111 */
1084
870k
    felem_reduce(y_out, tmp);      /* tmp[i] < 2^56 */
1085
870k
}
1086
1087
/* copy_conditional copies in to out iff mask is all ones. */
1088
static void copy_conditional(felem out, const felem in, limb mask)
1089
2.69M
{
1090
2.69M
    unsigned int i;
1091
1092
21.5M
    for (i = 0; i < NLIMBS; i++)
1093
18.8M
        out[i] ^= mask & (in[i] ^ out[i]);
1094
2.69M
}
1095
1096
/*-
1097
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1098
 *
1099
 * The method is taken from
1100
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1101
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1102
 *
1103
 * This function includes a branch for checking whether the two input points
1104
 * are equal (while not equal to the point at infinity). See comment below
1105
 * on constant-time.
1106
 */
1107
static void point_add(felem x3, felem y3, felem z3,
1108
                      const felem x1, const felem y1, const felem z1,
1109
                      const int mixed, const felem x2, const felem y2,
1110
                      const felem z2)
1111
430k
{
1112
430k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1113
430k
    widefelem tmp, tmp2;
1114
430k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1115
430k
    limb points_equal;
1116
1117
430k
    z1_is_zero = felem_is_zero(z1);
1118
430k
    z2_is_zero = felem_is_zero(z2);
1119
1120
    /* ftmp = z1z1 = z1**2 */
1121
430k
    felem_square_reduce(ftmp, z1);      /* ftmp[i] < 2^56 */
1122
1123
430k
    if (!mixed) {
1124
        /* ftmp2 = z2z2 = z2**2 */
1125
120k
        felem_square_reduce(ftmp2, z2); /* ftmp2[i] < 2^56 */
1126
1127
        /* u1 = ftmp3 = x1*z2z2 */
1128
120k
        felem_mul_reduce(ftmp3, x1, ftmp2); /* ftmp3[i] < 2^56 */
1129
1130
        /* ftmp5 = z1 + z2 */
1131
120k
        felem_assign(ftmp5, z1);       /* ftmp5[i] < 2^56 */
1132
120k
        felem_sum64(ftmp5, z2);        /* ftmp5[i] < 2^57 */
1133
1134
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1135
120k
        felem_square(tmp, ftmp5);      /* tmp[i] < 2^117 */
1136
120k
        felem_diff_128_64(tmp, ftmp);  /* tmp[i] < 2^117 + 2^64 + 2^48 */
1137
120k
        felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 2^117 + 2^65 + 2^49 */
1138
120k
        felem_reduce(ftmp5, tmp);      /* ftmp5[i] < 2^56 */
1139
1140
        /* ftmp2 = z2 * z2z2 */
1141
120k
        felem_mul_reduce(ftmp2, ftmp2, z2); /* ftmp2[i] < 2^56 */
1142
1143
        /* s1 = ftmp6 = y1 * z2**3 */
1144
120k
        felem_mul_reduce(ftmp6, y1, ftmp2); /* ftmp6[i] < 2^56 */
1145
310k
    } else {
1146
        /*
1147
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1148
         */
1149
1150
        /* u1 = ftmp3 = x1*z2z2 */
1151
310k
        felem_assign(ftmp3, x1);     /* ftmp3[i] < 2^56 */
1152
1153
        /* ftmp5 = 2*z1z2 */
1154
310k
        felem_scalar(ftmp5, z1, 2);  /* ftmp5[i] < 2^57 */
1155
1156
        /* s1 = ftmp6 = y1 * z2**3 */
1157
310k
        felem_assign(ftmp6, y1);     /* ftmp6[i] < 2^56 */
1158
310k
    }
1159
    /* ftmp3[i] < 2^56, ftmp5[i] < 2^57, ftmp6[i] < 2^56 */
1160
1161
    /* u2 = x2*z1z1 */
1162
430k
    felem_mul(tmp, x2, ftmp);        /* tmp[i] < 2^115 */
1163
1164
    /* h = ftmp4 = u2 - u1 */
1165
430k
    felem_diff_128_64(tmp, ftmp3);   /* tmp[i] < 2^115 + 2^64 + 2^48 */
1166
430k
    felem_reduce(ftmp4, tmp);        /* ftmp[4] < 2^56 */
1167
1168
430k
    x_equal = felem_is_zero(ftmp4);
1169
1170
    /* z_out = ftmp5 * h */
1171
430k
    felem_mul_reduce(z_out, ftmp5, ftmp4);  /* z_out[i] < 2^56 */
1172
1173
    /* ftmp = z1 * z1z1 */
1174
430k
    felem_mul_reduce(ftmp, ftmp, z1);  /* ftmp[i] < 2^56 */
1175
1176
    /* s2 = tmp = y2 * z1**3 */
1177
430k
    felem_mul(tmp, y2, ftmp);      /* tmp[i] < 2^115 */
1178
1179
    /* r = ftmp5 = (s2 - s1)*2 */
1180
430k
    felem_diff_128_64(tmp, ftmp6); /* tmp[i] < 2^115 + 2^64 + 2^48 */
1181
430k
    felem_reduce(ftmp5, tmp);      /* ftmp5[i] < 2^56 */
1182
430k
    y_equal = felem_is_zero(ftmp5);
1183
430k
    felem_scalar64(ftmp5, 2);      /* ftmp5[i] < 2^57 */
1184
1185
    /*
1186
     * The formulae are incorrect if the points are equal, in affine coordinates
1187
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1188
     * happens.
1189
     *
1190
     * We use bitwise operations to avoid potential side-channels introduced by
1191
     * the short-circuiting behaviour of boolean operators.
1192
     *
1193
     * The special case of either point being the point at infinity (z1 and/or
1194
     * z2 are zero), is handled separately later on in this function, so we
1195
     * avoid jumping to point_double here in those special cases.
1196
     *
1197
     * Notice the comment below on the implications of this branching for timing
1198
     * leaks and why it is considered practically irrelevant.
1199
     */
1200
430k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1201
1202
430k
    if (points_equal) {
1203
        /*
1204
         * This is obviously not constant-time but it will almost-never happen
1205
         * for ECDH / ECDSA.
1206
         */
1207
0
        point_double(x3, y3, z3, x1, y1, z1);
1208
0
        return;
1209
0
    }
1210
1211
    /* I = ftmp = (2h)**2 */
1212
430k
    felem_assign(ftmp, ftmp4);        /* ftmp[i] < 2^56 */
1213
430k
    felem_scalar64(ftmp, 2);          /* ftmp[i] < 2^57 */
1214
430k
    felem_square_reduce(ftmp, ftmp);  /* ftmp[i] < 2^56 */
1215
1216
    /* J = ftmp2 = h * I */
1217
430k
    felem_mul_reduce(ftmp2, ftmp4, ftmp); /* ftmp2[i] < 2^56 */
1218
1219
    /* V = ftmp4 = U1 * I */
1220
430k
    felem_mul_reduce(ftmp4, ftmp3, ftmp); /* ftmp4[i] < 2^56 */
1221
1222
    /* x_out = r**2 - J - 2V */
1223
430k
    felem_square(tmp, ftmp5);      /* tmp[i] < 2^117 */
1224
430k
    felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 2^117 + 2^64 + 2^48 */
1225
430k
    felem_assign(ftmp3, ftmp4);    /* ftmp3[i] < 2^56 */
1226
430k
    felem_scalar64(ftmp4, 2);      /* ftmp4[i] < 2^57 */
1227
430k
    felem_diff_128_64(tmp, ftmp4); /* tmp[i] < 2^117 + 2^65 + 2^49 */
1228
430k
    felem_reduce(x_out, tmp);      /* x_out[i] < 2^56 */
1229
1230
    /* y_out = r(V-x_out) - 2 * s1 * J */
1231
430k
    felem_diff64(ftmp3, x_out);    /* ftmp3[i] < 2^60 + 2^56 + 2^44 */
1232
430k
    felem_mul(tmp, ftmp5, ftmp3);  /* tmp[i] < 2^116 */
1233
430k
    felem_mul(tmp2, ftmp6, ftmp2); /* tmp2[i] < 2^115 */
1234
430k
    felem_scalar128(tmp2, 2);      /* tmp2[i] < 2^116 */
1235
430k
    felem_diff128(tmp, tmp2);      /* tmp[i] < 2^127 + 2^116 + 2^111 */
1236
430k
    felem_reduce(y_out, tmp);      /* y_out[i] < 2^56 */
1237
1238
430k
    copy_conditional(x_out, x2, z1_is_zero);
1239
430k
    copy_conditional(x_out, x1, z2_is_zero);
1240
430k
    copy_conditional(y_out, y2, z1_is_zero);
1241
430k
    copy_conditional(y_out, y1, z2_is_zero);
1242
430k
    copy_conditional(z_out, z2, z1_is_zero);
1243
430k
    copy_conditional(z_out, z1, z2_is_zero);
1244
430k
    felem_assign(x3, x_out);
1245
430k
    felem_assign(y3, y_out);
1246
430k
    felem_assign(z3, z_out);
1247
430k
}
1248
1249
/*-
1250
 * Base point pre computation
1251
 * --------------------------
1252
 *
1253
 * Two different sorts of precomputed tables are used in the following code.
1254
 * Each contain various points on the curve, where each point is three field
1255
 * elements (x, y, z).
1256
 *
1257
 * For the base point table, z is usually 1 (0 for the point at infinity).
1258
 * This table has 16 elements:
1259
 * index | bits    | point
1260
 * ------+---------+------------------------------
1261
 *     0 | 0 0 0 0 | 0G
1262
 *     1 | 0 0 0 1 | 1G
1263
 *     2 | 0 0 1 0 | 2^95G
1264
 *     3 | 0 0 1 1 | (2^95 + 1)G
1265
 *     4 | 0 1 0 0 | 2^190G
1266
 *     5 | 0 1 0 1 | (2^190 + 1)G
1267
 *     6 | 0 1 1 0 | (2^190 + 2^95)G
1268
 *     7 | 0 1 1 1 | (2^190 + 2^95 + 1)G
1269
 *     8 | 1 0 0 0 | 2^285G
1270
 *     9 | 1 0 0 1 | (2^285 + 1)G
1271
 *    10 | 1 0 1 0 | (2^285 + 2^95)G
1272
 *    11 | 1 0 1 1 | (2^285 + 2^95 + 1)G
1273
 *    12 | 1 1 0 0 | (2^285 + 2^190)G
1274
 *    13 | 1 1 0 1 | (2^285 + 2^190 + 1)G
1275
 *    14 | 1 1 1 0 | (2^285 + 2^190 + 2^95)G
1276
 *    15 | 1 1 1 1 | (2^285 + 2^190 + 2^95 + 1)G
1277
 *
1278
 * The reason for this is so that we can clock bits into four different
1279
 * locations when doing simple scalar multiplies against the base point.
1280
 *
1281
 * Tables for other points have table[i] = iG for i in 0 .. 16.
1282
 */
1283
1284
/* gmul is the table of precomputed base points */
1285
static const felem gmul[16][3] = {
1286
{{0, 0, 0, 0, 0, 0, 0},
1287
 {0, 0, 0, 0, 0, 0, 0},
1288
 {0, 0, 0, 0, 0, 0, 0}},
1289
{{0x00545e3872760ab7, 0x00f25dbf55296c3a, 0x00e082542a385502, 0x008ba79b9859f741,
1290
  0x0020ad746e1d3b62, 0x0005378eb1c71ef3, 0x0000aa87ca22be8b},
1291
 {0x00431d7c90ea0e5f, 0x00b1ce1d7e819d7a, 0x0013b5f0b8c00a60, 0x00289a147ce9da31,
1292
  0x0092dc29f8f41dbd, 0x002c6f5d9e98bf92, 0x00003617de4a9626},
1293
 {1, 0, 0, 0, 0, 0, 0}},
1294
{{0x00024711cc902a90, 0x00acb2e579ab4fe1, 0x00af818a4b4d57b1, 0x00a17c7bec49c3de,
1295
  0x004280482d726a8b, 0x00128dd0f0a90f3b, 0x00004387c1c3fa3c},
1296
 {0x002ce76543cf5c3a, 0x00de6cee5ef58f0a, 0x00403e42fa561ca6, 0x00bc54d6f9cb9731,
1297
  0x007155f925fb4ff1, 0x004a9ce731b7b9bc, 0x00002609076bd7b2},
1298
 {1, 0, 0, 0, 0, 0, 0}},
1299
{{0x00e74c9182f0251d, 0x0039bf54bb111974, 0x00b9d2f2eec511d2, 0x0036b1594eb3a6a4,
1300
  0x00ac3bb82d9d564b, 0x00f9313f4615a100, 0x00006716a9a91b10},
1301
 {0x0046698116e2f15c, 0x00f34347067d3d33, 0x008de4ccfdebd002, 0x00e838c6b8e8c97b,
1302
  0x006faf0798def346, 0x007349794a57563c, 0x00002629e7e6ad84},
1303
 {1, 0, 0, 0, 0, 0, 0}},
1304
{{0x0075300e34fd163b, 0x0092e9db4e8d0ad3, 0x00254be9f625f760, 0x00512c518c72ae68,
1305
  0x009bfcf162bede5a, 0x00bf9341566ce311, 0x0000cd6175bd41cf},
1306
 {0x007dfe52af4ac70f, 0x0002159d2d5c4880, 0x00b504d16f0af8d0, 0x0014585e11f5e64c,
1307
  0x0089c6388e030967, 0x00ffb270cbfa5f71, 0x00009a15d92c3947},
1308
 {1, 0, 0, 0, 0, 0, 0}},
1309
{{0x0033fc1278dc4fe5, 0x00d53088c2caa043, 0x0085558827e2db66, 0x00c192bef387b736,
1310
  0x00df6405a2225f2c, 0x0075205aa90fd91a, 0x0000137e3f12349d},
1311
 {0x00ce5b115efcb07e, 0x00abc3308410deeb, 0x005dc6fc1de39904, 0x00907c1c496f36b4,
1312
  0x0008e6ad3926cbe1, 0x00110747b787928c, 0x0000021b9162eb7e},
1313
 {1, 0, 0, 0, 0, 0, 0}},
1314
{{0x008180042cfa26e1, 0x007b826a96254967, 0x0082473694d6b194, 0x007bd6880a45b589,
1315
  0x00c0a5097072d1a3, 0x0019186555e18b4e, 0x000020278190e5ca},
1316
 {0x00b4bef17de61ac0, 0x009535e3c38ed348, 0x002d4aa8e468ceab, 0x00ef40b431036ad3,
1317
  0x00defd52f4542857, 0x0086edbf98234266, 0x00002025b3a7814d},
1318
 {1, 0, 0, 0, 0, 0, 0}},
1319
{{0x00b238aa97b886be, 0x00ef3192d6dd3a32, 0x0079f9e01fd62df8, 0x00742e890daba6c5,
1320
  0x008e5289144408ce, 0x0073bbcc8e0171a5, 0x0000c4fd329d3b52},
1321
 {0x00c6f64a15ee23e7, 0x00dcfb7b171cad8b, 0x00039f6cbd805867, 0x00de024e428d4562,
1322
  0x00be6a594d7c64c5, 0x0078467b70dbcd64, 0x0000251f2ed7079b},
1323
 {1, 0, 0, 0, 0, 0, 0}},
1324
{{0x000e5cc25fc4b872, 0x005ebf10d31ef4e1, 0x0061e0ebd11e8256, 0x0076e026096f5a27,
1325
  0x0013e6fc44662e9a, 0x0042b00289d3597e, 0x000024f089170d88},
1326
 {0x001604d7e0effbe6, 0x0048d77cba64ec2c, 0x008166b16da19e36, 0x006b0d1a0f28c088,
1327
  0x000259fcd47754fd, 0x00cc643e4d725f9a, 0x00007b10f3c79c14},
1328
 {1, 0, 0, 0, 0, 0, 0}},
1329
{{0x00430155e3b908af, 0x00b801e4fec25226, 0x00b0d4bcfe806d26, 0x009fc4014eb13d37,
1330
  0x0066c94e44ec07e8, 0x00d16adc03874ba2, 0x000030c917a0d2a7},
1331
 {0x00edac9e21eb891c, 0x00ef0fb768102eff, 0x00c088cef272a5f3, 0x00cbf782134e2964,
1332
  0x0001044a7ba9a0e3, 0x00e363f5b194cf3c, 0x00009ce85249e372},
1333
 {1, 0, 0, 0, 0, 0, 0}},
1334
{{0x001dd492dda5a7eb, 0x008fd577be539fd1, 0x002ff4b25a5fc3f1, 0x0074a8a1b64df72f,
1335
  0x002ba3d8c204a76c, 0x009d5cff95c8235a, 0x0000e014b9406e0f},
1336
 {0x008c2e4dbfc98aba, 0x00f30bb89f1a1436, 0x00b46f7aea3e259c, 0x009224454ac02f54,
1337
  0x00906401f5645fa2, 0x003a1d1940eabc77, 0x00007c9351d680e6},
1338
 {1, 0, 0, 0, 0, 0, 0}},
1339
{{0x005a35d872ef967c, 0x0049f1b7884e1987, 0x0059d46d7e31f552, 0x00ceb4869d2d0fb6,
1340
  0x00e8e89eee56802a, 0x0049d806a774aaf2, 0x0000147e2af0ae24},
1341
 {0x005fd1bd852c6e5e, 0x00b674b7b3de6885, 0x003b9ea5eb9b6c08, 0x005c9f03babf3ef7,
1342
  0x00605337fecab3c7, 0x009a3f85b11bbcc8, 0x0000455470f330ec},
1343
 {1, 0, 0, 0, 0, 0, 0}},
1344
{{0x002197ff4d55498d, 0x00383e8916c2d8af, 0x00eb203f34d1c6d2, 0x0080367cbd11b542,
1345
  0x00769b3be864e4f5, 0x0081a8458521c7bb, 0x0000c531b34d3539},
1346
 {0x00e2a3d775fa2e13, 0x00534fc379573844, 0x00ff237d2a8db54a, 0x00d301b2335a8882,
1347
  0x000f75ea96103a80, 0x0018fecb3cdd96fa, 0x0000304bf61e94eb},
1348
 {1, 0, 0, 0, 0, 0, 0}},
1349
{{0x00b2afc332a73dbd, 0x0029a0d5bb007bc5, 0x002d628eb210f577, 0x009f59a36dd05f50,
1350
  0x006d339de4eca613, 0x00c75a71addc86bc, 0x000060384c5ea93c},
1351
 {0x00aa9641c32a30b4, 0x00cc73ae8cce565d, 0x00ec911a4df07f61, 0x00aa4b762ea4b264,
1352
  0x0096d395bb393629, 0x004efacfb7632fe0, 0x00006f252f46fa3f},
1353
 {1, 0, 0, 0, 0, 0, 0}},
1354
{{0x00567eec597c7af6, 0x0059ba6795204413, 0x00816d4e6f01196f, 0x004ae6b3eb57951d,
1355
  0x00420f5abdda2108, 0x003401d1f57ca9d9, 0x0000cf5837b0b67a},
1356
 {0x00eaa64b8aeeabf9, 0x00246ddf16bcb4de, 0x000e7e3c3aecd751, 0x0008449f04fed72e,
1357
  0x00307b67ccf09183, 0x0017108c3556b7b1, 0x0000229b2483b3bf},
1358
 {1, 0, 0, 0, 0, 0, 0}},
1359
{{0x00e7c491a7bb78a1, 0x00eafddd1d3049ab, 0x00352c05e2bc7c98, 0x003d6880c165fa5c,
1360
  0x00b6ac61cc11c97d, 0x00beeb54fcf90ce5, 0x0000dc1f0b455edc},
1361
 {0x002db2e7aee34d60, 0x0073b5f415a2d8c0, 0x00dd84e4193e9a0c, 0x00d02d873467c572,
1362
  0x0018baaeda60aee5, 0x0013fb11d697c61e, 0x000083aafcc3a973},
1363
 {1, 0, 0, 0, 0, 0, 0}}
1364
};
1365
1366
/*
1367
 * select_point selects the |idx|th point from a precomputation table and
1368
 * copies it to out.
1369
 *
1370
 * pre_comp below is of the size provided in |size|.
1371
 */
1372
static void select_point(const limb idx, unsigned int size,
1373
                         const felem pre_comp[][3], felem out[3])
1374
425k
{
1375
425k
    unsigned int i, j;
1376
425k
    limb *outlimbs = &out[0][0];
1377
1378
425k
    memset(out, 0, sizeof(*out) * 3);
1379
1380
7.34M
    for (i = 0; i < size; i++) {
1381
6.91M
        const limb *inlimbs = &pre_comp[i][0][0];
1382
6.91M
        limb mask = i ^ idx;
1383
1384
6.91M
        mask |= mask >> 4;
1385
6.91M
        mask |= mask >> 2;
1386
6.91M
        mask |= mask >> 1;
1387
6.91M
        mask &= 1;
1388
6.91M
        mask--;
1389
152M
        for (j = 0; j < NLIMBS * 3; j++)
1390
145M
            outlimbs[j] |= inlimbs[j] & mask;
1391
6.91M
    }
1392
425k
}
1393
1394
/* get_bit returns the |i|th bit in |in| */
1395
static char get_bit(const felem_bytearray in, int i)
1396
1.88M
{
1397
1.88M
    if (i < 0 || i >= 384)
1398
2.90k
        return 0;
1399
1.88M
    return (in[i >> 3] >> (i & 7)) & 1;
1400
1.88M
}
1401
1402
/*
1403
 * Interleaved point multiplication using precomputed point multiples: The
1404
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1405
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1406
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1407
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1408
 */
1409
static void batch_mul(felem x_out, felem y_out, felem z_out,
1410
                      const felem_bytearray scalars[],
1411
                      const unsigned int num_points, const u8 *g_scalar,
1412
                      const int mixed, const felem pre_comp[][17][3],
1413
                      const felem g_pre_comp[16][3])
1414
4.59k
{
1415
4.59k
    int i, skip;
1416
4.59k
    unsigned int num, gen_mul = (g_scalar != NULL);
1417
4.59k
    felem nq[3], tmp[4];
1418
4.59k
    limb bits;
1419
4.59k
    u8 sign, digit;
1420
1421
    /* set nq to the point at infinity */
1422
4.59k
    memset(nq, 0, sizeof(nq));
1423
1424
    /*
1425
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1426
     * of the generator (last quarter of rounds) and additions of other
1427
     * points multiples (every 5th round).
1428
     */
1429
4.59k
    skip = 1;                   /* save two point operations in the first
1430
                                 * round */
1431
868k
    for (i = (num_points ? 380 : 98); i >= 0; --i) {
1432
        /* double */
1433
863k
        if (!skip)
1434
859k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1435
1436
        /* add multiples of the generator */
1437
863k
        if (gen_mul && (i <= 98)) {
1438
313k
            bits = get_bit(g_scalar, i + 285) << 3;
1439
313k
            if (i < 95) {
1440
300k
                bits |= get_bit(g_scalar, i + 190) << 2;
1441
300k
                bits |= get_bit(g_scalar, i + 95) << 1;
1442
300k
                bits |= get_bit(g_scalar, i);
1443
300k
            }
1444
            /* select the point to add, in constant time */
1445
313k
            select_point(bits, 16, g_pre_comp, tmp);
1446
313k
            if (!skip) {
1447
                /* The 1 argument below is for "mixed" */
1448
310k
                point_add(nq[0],  nq[1],  nq[2],
1449
310k
                          nq[0],  nq[1],  nq[2], 1,
1450
310k
                          tmp[0], tmp[1], tmp[2]);
1451
310k
            } else {
1452
3.13k
                memcpy(nq, tmp, 3 * sizeof(felem));
1453
3.13k
                skip = 0;
1454
3.13k
            }
1455
313k
        }
1456
1457
        /* do other additions every 5 doublings */
1458
863k
        if (num_points && (i % 5 == 0)) {
1459
            /* loop over all scalars */
1460
223k
            for (num = 0; num < num_points; ++num) {
1461
111k
                bits = get_bit(scalars[num], i + 4) << 5;
1462
111k
                bits |= get_bit(scalars[num], i + 3) << 4;
1463
111k
                bits |= get_bit(scalars[num], i + 2) << 3;
1464
111k
                bits |= get_bit(scalars[num], i + 1) << 2;
1465
111k
                bits |= get_bit(scalars[num], i) << 1;
1466
111k
                bits |= get_bit(scalars[num], i - 1);
1467
111k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1468
1469
                /*
1470
                 * select the point to add or subtract, in constant time
1471
                 */
1472
111k
                select_point(digit, 17, pre_comp[num], tmp);
1473
111k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1474
                                            * point */
1475
111k
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1476
1477
111k
                if (!skip) {
1478
110k
                    point_add(nq[0],  nq[1],  nq[2],
1479
110k
                              nq[0],  nq[1],  nq[2], mixed,
1480
110k
                              tmp[0], tmp[1], tmp[2]);
1481
110k
                } else {
1482
1.45k
                    memcpy(nq, tmp, 3 * sizeof(felem));
1483
1.45k
                    skip = 0;
1484
1.45k
                }
1485
111k
            }
1486
111k
        }
1487
863k
    }
1488
4.59k
    felem_assign(x_out, nq[0]);
1489
4.59k
    felem_assign(y_out, nq[1]);
1490
4.59k
    felem_assign(z_out, nq[2]);
1491
4.59k
}
1492
1493
/* Precomputation for the group generator. */
1494
struct nistp384_pre_comp_st {
1495
    felem g_pre_comp[16][3];
1496
    CRYPTO_REF_COUNT references;
1497
};
1498
1499
const EC_METHOD *ossl_ec_GFp_nistp384_method(void)
1500
14.2k
{
1501
14.2k
    static const EC_METHOD ret = {
1502
14.2k
        EC_FLAGS_DEFAULT_OCT,
1503
14.2k
        NID_X9_62_prime_field,
1504
14.2k
        ossl_ec_GFp_nistp384_group_init,
1505
14.2k
        ossl_ec_GFp_simple_group_finish,
1506
14.2k
        ossl_ec_GFp_simple_group_clear_finish,
1507
14.2k
        ossl_ec_GFp_nist_group_copy,
1508
14.2k
        ossl_ec_GFp_nistp384_group_set_curve,
1509
14.2k
        ossl_ec_GFp_simple_group_get_curve,
1510
14.2k
        ossl_ec_GFp_simple_group_get_degree,
1511
14.2k
        ossl_ec_group_simple_order_bits,
1512
14.2k
        ossl_ec_GFp_simple_group_check_discriminant,
1513
14.2k
        ossl_ec_GFp_simple_point_init,
1514
14.2k
        ossl_ec_GFp_simple_point_finish,
1515
14.2k
        ossl_ec_GFp_simple_point_clear_finish,
1516
14.2k
        ossl_ec_GFp_simple_point_copy,
1517
14.2k
        ossl_ec_GFp_simple_point_set_to_infinity,
1518
14.2k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1519
14.2k
        ossl_ec_GFp_nistp384_point_get_affine_coordinates,
1520
14.2k
        0, /* point_set_compressed_coordinates */
1521
14.2k
        0, /* point2oct */
1522
14.2k
        0, /* oct2point */
1523
14.2k
        ossl_ec_GFp_simple_add,
1524
14.2k
        ossl_ec_GFp_simple_dbl,
1525
14.2k
        ossl_ec_GFp_simple_invert,
1526
14.2k
        ossl_ec_GFp_simple_is_at_infinity,
1527
14.2k
        ossl_ec_GFp_simple_is_on_curve,
1528
14.2k
        ossl_ec_GFp_simple_cmp,
1529
14.2k
        ossl_ec_GFp_simple_make_affine,
1530
14.2k
        ossl_ec_GFp_simple_points_make_affine,
1531
14.2k
        ossl_ec_GFp_nistp384_points_mul,
1532
14.2k
        ossl_ec_GFp_nistp384_precompute_mult,
1533
14.2k
        ossl_ec_GFp_nistp384_have_precompute_mult,
1534
14.2k
        ossl_ec_GFp_nist_field_mul,
1535
14.2k
        ossl_ec_GFp_nist_field_sqr,
1536
14.2k
        0, /* field_div */
1537
14.2k
        ossl_ec_GFp_simple_field_inv,
1538
14.2k
        0, /* field_encode */
1539
14.2k
        0, /* field_decode */
1540
14.2k
        0, /* field_set_to_one */
1541
14.2k
        ossl_ec_key_simple_priv2oct,
1542
14.2k
        ossl_ec_key_simple_oct2priv,
1543
14.2k
        0, /* set private */
1544
14.2k
        ossl_ec_key_simple_generate_key,
1545
14.2k
        ossl_ec_key_simple_check_key,
1546
14.2k
        ossl_ec_key_simple_generate_public_key,
1547
14.2k
        0, /* keycopy */
1548
14.2k
        0, /* keyfinish */
1549
14.2k
        ossl_ecdh_simple_compute_key,
1550
14.2k
        ossl_ecdsa_simple_sign_setup,
1551
14.2k
        ossl_ecdsa_simple_sign_sig,
1552
14.2k
        ossl_ecdsa_simple_verify_sig,
1553
14.2k
        0, /* field_inverse_mod_ord */
1554
14.2k
        0, /* blind_coordinates */
1555
14.2k
        0, /* ladder_pre */
1556
14.2k
        0, /* ladder_step */
1557
14.2k
        0  /* ladder_post */
1558
14.2k
    };
1559
1560
14.2k
    return &ret;
1561
14.2k
}
1562
1563
/******************************************************************************/
1564
/*
1565
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1566
 */
1567
1568
static NISTP384_PRE_COMP *nistp384_pre_comp_new(void)
1569
0
{
1570
0
    NISTP384_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1571
1572
0
    if (ret == NULL)
1573
0
        return ret;
1574
1575
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1576
0
        OPENSSL_free(ret);
1577
0
        return NULL;
1578
0
    }
1579
0
    return ret;
1580
0
}
1581
1582
NISTP384_PRE_COMP *ossl_ec_nistp384_pre_comp_dup(NISTP384_PRE_COMP *p)
1583
0
{
1584
0
    int i;
1585
1586
0
    if (p != NULL)
1587
0
        CRYPTO_UP_REF(&p->references, &i);
1588
0
    return p;
1589
0
}
1590
1591
void ossl_ec_nistp384_pre_comp_free(NISTP384_PRE_COMP *p)
1592
0
{
1593
0
    int i;
1594
1595
0
    if (p == NULL)
1596
0
        return;
1597
1598
0
    CRYPTO_DOWN_REF(&p->references, &i);
1599
0
    REF_PRINT_COUNT("ossl_ec_nistp384", i, p);
1600
0
    if (i > 0)
1601
0
        return;
1602
0
    REF_ASSERT_ISNT(i < 0);
1603
1604
0
    CRYPTO_FREE_REF(&p->references);
1605
0
    OPENSSL_free(p);
1606
0
}
1607
1608
/******************************************************************************/
1609
/*
1610
 * OPENSSL EC_METHOD FUNCTIONS
1611
 */
1612
1613
int ossl_ec_GFp_nistp384_group_init(EC_GROUP *group)
1614
29.6k
{
1615
29.6k
    int ret;
1616
1617
29.6k
    ret = ossl_ec_GFp_simple_group_init(group);
1618
29.6k
    group->a_is_minus3 = 1;
1619
29.6k
    return ret;
1620
29.6k
}
1621
1622
int ossl_ec_GFp_nistp384_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1623
                                         const BIGNUM *a, const BIGNUM *b,
1624
                                         BN_CTX *ctx)
1625
14.2k
{
1626
14.2k
    int ret = 0;
1627
14.2k
    BIGNUM *curve_p, *curve_a, *curve_b;
1628
14.2k
#ifndef FIPS_MODULE
1629
14.2k
    BN_CTX *new_ctx = NULL;
1630
1631
14.2k
    if (ctx == NULL)
1632
0
        ctx = new_ctx = BN_CTX_new();
1633
14.2k
#endif
1634
14.2k
    if (ctx == NULL)
1635
0
        return 0;
1636
1637
14.2k
    BN_CTX_start(ctx);
1638
14.2k
    curve_p = BN_CTX_get(ctx);
1639
14.2k
    curve_a = BN_CTX_get(ctx);
1640
14.2k
    curve_b = BN_CTX_get(ctx);
1641
14.2k
    if (curve_b == NULL)
1642
0
        goto err;
1643
14.2k
    BN_bin2bn(nistp384_curve_params[0], sizeof(felem_bytearray), curve_p);
1644
14.2k
    BN_bin2bn(nistp384_curve_params[1], sizeof(felem_bytearray), curve_a);
1645
14.2k
    BN_bin2bn(nistp384_curve_params[2], sizeof(felem_bytearray), curve_b);
1646
14.2k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1647
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1648
0
        goto err;
1649
0
    }
1650
14.2k
    group->field_mod_func = BN_nist_mod_384;
1651
14.2k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1652
14.2k
 err:
1653
14.2k
    BN_CTX_end(ctx);
1654
14.2k
#ifndef FIPS_MODULE
1655
14.2k
    BN_CTX_free(new_ctx);
1656
14.2k
#endif
1657
14.2k
    return ret;
1658
14.2k
}
1659
1660
/*
1661
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1662
 * (X/Z^2, Y/Z^3)
1663
 */
1664
int ossl_ec_GFp_nistp384_point_get_affine_coordinates(const EC_GROUP *group,
1665
                                                      const EC_POINT *point,
1666
                                                      BIGNUM *x, BIGNUM *y,
1667
                                                      BN_CTX *ctx)
1668
5.48k
{
1669
5.48k
    felem z1, z2, x_in, y_in, x_out, y_out;
1670
5.48k
    widefelem tmp;
1671
1672
5.48k
    if (EC_POINT_is_at_infinity(group, point)) {
1673
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1674
0
        return 0;
1675
0
    }
1676
5.48k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1677
5.48k
        (!BN_to_felem(z1, point->Z)))
1678
0
        return 0;
1679
5.48k
    felem_inv(z2, z1);
1680
5.48k
    felem_square(tmp, z2);
1681
5.48k
    felem_reduce(z1, tmp);
1682
5.48k
    felem_mul(tmp, x_in, z1);
1683
5.48k
    felem_reduce(x_in, tmp);
1684
5.48k
    felem_contract(x_out, x_in);
1685
5.48k
    if (x != NULL) {
1686
5.48k
        if (!felem_to_BN(x, x_out)) {
1687
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1688
0
            return 0;
1689
0
        }
1690
5.48k
    }
1691
5.48k
    felem_mul(tmp, z1, z2);
1692
5.48k
    felem_reduce(z1, tmp);
1693
5.48k
    felem_mul(tmp, y_in, z1);
1694
5.48k
    felem_reduce(y_in, tmp);
1695
5.48k
    felem_contract(y_out, y_in);
1696
5.48k
    if (y != NULL) {
1697
4.45k
        if (!felem_to_BN(y, y_out)) {
1698
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1699
0
            return 0;
1700
0
        }
1701
4.45k
    }
1702
5.48k
    return 1;
1703
5.48k
}
1704
1705
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1706
static void make_points_affine(size_t num, felem points[][3],
1707
                               felem tmp_felems[])
1708
0
{
1709
    /*
1710
     * Runs in constant time, unless an input is the point at infinity (which
1711
     * normally shouldn't happen).
1712
     */
1713
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1714
0
                                                  points,
1715
0
                                                  sizeof(felem),
1716
0
                                                  tmp_felems,
1717
0
                                                  (void (*)(void *))felem_one,
1718
0
                                                  felem_is_zero_int,
1719
0
                                                  (void (*)(void *, const void *))
1720
0
                                                  felem_assign,
1721
0
                                                  (void (*)(void *, const void *))
1722
0
                                                  felem_square_reduce,
1723
0
                                                  (void (*)(void *, const void *, const void*))
1724
0
                                                  felem_mul_reduce,
1725
0
                                                  (void (*)(void *, const void *))
1726
0
                                                  felem_inv,
1727
0
                                                  (void (*)(void *, const void *))
1728
0
                                                  felem_contract);
1729
0
}
1730
1731
/*
1732
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1733
 * values Result is stored in r (r can equal one of the inputs).
1734
 */
1735
int ossl_ec_GFp_nistp384_points_mul(const EC_GROUP *group, EC_POINT *r,
1736
                                    const BIGNUM *scalar, size_t num,
1737
                                    const EC_POINT *points[],
1738
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1739
4.59k
{
1740
4.59k
    int ret = 0;
1741
4.59k
    int j;
1742
4.59k
    int mixed = 0;
1743
4.59k
    BIGNUM *x, *y, *z, *tmp_scalar;
1744
4.59k
    felem_bytearray g_secret;
1745
4.59k
    felem_bytearray *secrets = NULL;
1746
4.59k
    felem (*pre_comp)[17][3] = NULL;
1747
4.59k
    felem *tmp_felems = NULL;
1748
4.59k
    unsigned int i;
1749
4.59k
    int num_bytes;
1750
4.59k
    int have_pre_comp = 0;
1751
4.59k
    size_t num_points = num;
1752
4.59k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1753
4.59k
    NISTP384_PRE_COMP *pre = NULL;
1754
4.59k
    felem(*g_pre_comp)[3] = NULL;
1755
4.59k
    EC_POINT *generator = NULL;
1756
4.59k
    const EC_POINT *p = NULL;
1757
4.59k
    const BIGNUM *p_scalar = NULL;
1758
1759
4.59k
    BN_CTX_start(ctx);
1760
4.59k
    x = BN_CTX_get(ctx);
1761
4.59k
    y = BN_CTX_get(ctx);
1762
4.59k
    z = BN_CTX_get(ctx);
1763
4.59k
    tmp_scalar = BN_CTX_get(ctx);
1764
4.59k
    if (tmp_scalar == NULL)
1765
0
        goto err;
1766
1767
4.59k
    if (scalar != NULL) {
1768
3.16k
        pre = group->pre_comp.nistp384;
1769
3.16k
        if (pre)
1770
            /* we have precomputation, try to use it */
1771
0
            g_pre_comp = &pre->g_pre_comp[0];
1772
3.16k
        else
1773
            /* try to use the standard precomputation */
1774
3.16k
            g_pre_comp = (felem(*)[3]) gmul;
1775
3.16k
        generator = EC_POINT_new(group);
1776
3.16k
        if (generator == NULL)
1777
0
            goto err;
1778
        /* get the generator from precomputation */
1779
3.16k
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1780
3.16k
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1781
3.16k
            !felem_to_BN(z, g_pre_comp[1][2])) {
1782
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1783
0
            goto err;
1784
0
        }
1785
3.16k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1786
3.16k
                                                                generator,
1787
3.16k
                                                                x, y, z, ctx))
1788
0
            goto err;
1789
3.16k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1790
            /* precomputation matches generator */
1791
3.16k
            have_pre_comp = 1;
1792
0
        else
1793
            /*
1794
             * we don't have valid precomputation: treat the generator as a
1795
             * random point
1796
             */
1797
0
            num_points++;
1798
3.16k
    }
1799
1800
4.59k
    if (num_points > 0) {
1801
1.45k
        if (num_points >= 2) {
1802
            /*
1803
             * unless we precompute multiples for just one point, converting
1804
             * those into affine form is time well spent
1805
             */
1806
0
            mixed = 1;
1807
0
        }
1808
1.45k
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1809
1.45k
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1810
1.45k
        if (mixed)
1811
0
            tmp_felems =
1812
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1813
1.45k
        if ((secrets == NULL) || (pre_comp == NULL)
1814
1.45k
            || (mixed && (tmp_felems == NULL)))
1815
0
            goto err;
1816
1817
        /*
1818
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1819
         * i.e., they contribute nothing to the linear combination
1820
         */
1821
2.90k
        for (i = 0; i < num_points; ++i) {
1822
1.45k
            if (i == num) {
1823
                /*
1824
                 * we didn't have a valid precomputation, so we pick the
1825
                 * generator
1826
                 */
1827
0
                p = EC_GROUP_get0_generator(group);
1828
0
                p_scalar = scalar;
1829
1.45k
            } else {
1830
                /* the i^th point */
1831
1.45k
                p = points[i];
1832
1.45k
                p_scalar = scalars[i];
1833
1.45k
            }
1834
1.45k
            if (p_scalar != NULL && p != NULL) {
1835
                /* reduce scalar to 0 <= scalar < 2^384 */
1836
1.45k
                if ((BN_num_bits(p_scalar) > 384)
1837
1.45k
                    || (BN_is_negative(p_scalar))) {
1838
                    /*
1839
                     * this is an unusual input, and we don't guarantee
1840
                     * constant-timeness
1841
                     */
1842
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1843
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1844
0
                        goto err;
1845
0
                    }
1846
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1847
0
                                               secrets[i], sizeof(secrets[i]));
1848
1.45k
                } else {
1849
1.45k
                    num_bytes = BN_bn2lebinpad(p_scalar,
1850
1.45k
                                               secrets[i], sizeof(secrets[i]));
1851
1.45k
                }
1852
1.45k
                if (num_bytes < 0) {
1853
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1854
0
                    goto err;
1855
0
                }
1856
                /* precompute multiples */
1857
1.45k
                if ((!BN_to_felem(x_out, p->X)) ||
1858
1.45k
                    (!BN_to_felem(y_out, p->Y)) ||
1859
1.45k
                    (!BN_to_felem(z_out, p->Z)))
1860
0
                    goto err;
1861
1.45k
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1862
1.45k
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1863
1.45k
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1864
23.2k
                for (j = 2; j <= 16; ++j) {
1865
21.7k
                    if (j & 1) {
1866
10.1k
                        point_add(pre_comp[i][j][0],     pre_comp[i][j][1],     pre_comp[i][j][2],
1867
10.1k
                                  pre_comp[i][1][0],     pre_comp[i][1][1],     pre_comp[i][1][2], 0,
1868
10.1k
                                  pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]);
1869
11.6k
                    } else {
1870
11.6k
                        point_double(pre_comp[i][j][0],     pre_comp[i][j][1],     pre_comp[i][j][2],
1871
11.6k
                                     pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]);
1872
11.6k
                    }
1873
21.7k
                }
1874
1.45k
            }
1875
1.45k
        }
1876
1.45k
        if (mixed)
1877
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1878
1.45k
    }
1879
1880
    /* the scalar for the generator */
1881
4.59k
    if (scalar != NULL && have_pre_comp) {
1882
3.16k
        memset(g_secret, 0, sizeof(g_secret));
1883
        /* reduce scalar to 0 <= scalar < 2^384 */
1884
3.16k
        if ((BN_num_bits(scalar) > 384) || (BN_is_negative(scalar))) {
1885
            /*
1886
             * this is an unusual input, and we don't guarantee
1887
             * constant-timeness
1888
             */
1889
44
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1890
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1891
0
                goto err;
1892
0
            }
1893
44
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1894
3.12k
        } else {
1895
3.12k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1896
3.12k
        }
1897
        /* do the multiplication with generator precomputation */
1898
3.16k
        batch_mul(x_out, y_out, z_out,
1899
3.16k
                  (const felem_bytearray(*))secrets, num_points,
1900
3.16k
                  g_secret,
1901
3.16k
                  mixed, (const felem(*)[17][3])pre_comp,
1902
3.16k
                  (const felem(*)[3])g_pre_comp);
1903
3.16k
    } else {
1904
        /* do the multiplication without generator precomputation */
1905
1.42k
        batch_mul(x_out, y_out, z_out,
1906
1.42k
                  (const felem_bytearray(*))secrets, num_points,
1907
1.42k
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1908
1.42k
    }
1909
    /* reduce the output to its unique minimal representation */
1910
4.59k
    felem_contract(x_in, x_out);
1911
4.59k
    felem_contract(y_in, y_out);
1912
4.59k
    felem_contract(z_in, z_out);
1913
4.59k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1914
4.59k
        (!felem_to_BN(z, z_in))) {
1915
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1916
0
        goto err;
1917
0
    }
1918
4.59k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1919
4.59k
                                                             ctx);
1920
1921
4.59k
 err:
1922
4.59k
    BN_CTX_end(ctx);
1923
4.59k
    EC_POINT_free(generator);
1924
4.59k
    OPENSSL_free(secrets);
1925
4.59k
    OPENSSL_free(pre_comp);
1926
4.59k
    OPENSSL_free(tmp_felems);
1927
4.59k
    return ret;
1928
4.59k
}
1929
1930
int ossl_ec_GFp_nistp384_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1931
0
{
1932
0
    int ret = 0;
1933
0
    NISTP384_PRE_COMP *pre = NULL;
1934
0
    int i, j;
1935
0
    BIGNUM *x, *y;
1936
0
    EC_POINT *generator = NULL;
1937
0
    felem tmp_felems[16];
1938
0
#ifndef FIPS_MODULE
1939
0
    BN_CTX *new_ctx = NULL;
1940
0
#endif
1941
1942
    /* throw away old precomputation */
1943
0
    EC_pre_comp_free(group);
1944
1945
0
#ifndef FIPS_MODULE
1946
0
    if (ctx == NULL)
1947
0
        ctx = new_ctx = BN_CTX_new();
1948
0
#endif
1949
0
    if (ctx == NULL)
1950
0
        return 0;
1951
1952
0
    BN_CTX_start(ctx);
1953
0
    x = BN_CTX_get(ctx);
1954
0
    y = BN_CTX_get(ctx);
1955
0
    if (y == NULL)
1956
0
        goto err;
1957
    /* get the generator */
1958
0
    if (group->generator == NULL)
1959
0
        goto err;
1960
0
    generator = EC_POINT_new(group);
1961
0
    if (generator == NULL)
1962
0
        goto err;
1963
0
    BN_bin2bn(nistp384_curve_params[3], sizeof(felem_bytearray), x);
1964
0
    BN_bin2bn(nistp384_curve_params[4], sizeof(felem_bytearray), y);
1965
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1966
0
        goto err;
1967
0
    if ((pre = nistp384_pre_comp_new()) == NULL)
1968
0
        goto err;
1969
    /*
1970
     * if the generator is the standard one, use built-in precomputation
1971
     */
1972
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1973
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1974
0
        goto done;
1975
0
    }
1976
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
1977
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
1978
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
1979
0
        goto err;
1980
    /* compute 2^95*G, 2^190*G, 2^285*G */
1981
0
    for (i = 1; i <= 4; i <<= 1) {
1982
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2],
1983
0
                     pre->g_pre_comp[i][0],  pre->g_pre_comp[i][1],    pre->g_pre_comp[i][2]);
1984
0
        for (j = 0; j < 94; ++j) {
1985
0
            point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2],
1986
0
                         pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2]);
1987
0
        }
1988
0
    }
1989
    /* g_pre_comp[0] is the point at infinity */
1990
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
1991
    /* the remaining multiples */
1992
    /* 2^95*G + 2^190*G */
1993
0
    point_add(pre->g_pre_comp[6][0],  pre->g_pre_comp[6][1],  pre->g_pre_comp[6][2],
1994
0
              pre->g_pre_comp[4][0],  pre->g_pre_comp[4][1],  pre->g_pre_comp[4][2], 0,
1995
0
              pre->g_pre_comp[2][0],  pre->g_pre_comp[2][1],  pre->g_pre_comp[2][2]);
1996
    /* 2^95*G + 2^285*G */
1997
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], pre->g_pre_comp[10][2],
1998
0
              pre->g_pre_comp[8][0],  pre->g_pre_comp[8][1],  pre->g_pre_comp[8][2], 0,
1999
0
              pre->g_pre_comp[2][0],  pre->g_pre_comp[2][1],  pre->g_pre_comp[2][2]);
2000
    /* 2^190*G + 2^285*G */
2001
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2002
0
              pre->g_pre_comp[8][0],  pre->g_pre_comp[8][1],  pre->g_pre_comp[8][2], 0,
2003
0
              pre->g_pre_comp[4][0],  pre->g_pre_comp[4][1],  pre->g_pre_comp[4][2]);
2004
    /* 2^95*G + 2^190*G + 2^285*G */
2005
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], pre->g_pre_comp[14][2],
2006
0
              pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], 0,
2007
0
              pre->g_pre_comp[2][0],  pre->g_pre_comp[2][1],  pre->g_pre_comp[2][2]);
2008
0
    for (i = 1; i < 8; ++i) {
2009
        /* odd multiples: add G */
2010
0
        point_add(pre->g_pre_comp[2 * i + 1][0], pre->g_pre_comp[2 * i + 1][1], pre->g_pre_comp[2 * i + 1][2],
2011
0
                  pre->g_pre_comp[2 * i][0],     pre->g_pre_comp[2 * i][1],     pre->g_pre_comp[2 * i][2], 0,
2012
0
                  pre->g_pre_comp[1][0],         pre->g_pre_comp[1][1],         pre->g_pre_comp[1][2]);
2013
0
    }
2014
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2015
2016
0
 done:
2017
0
    SETPRECOMP(group, nistp384, pre);
2018
0
    ret = 1;
2019
0
    pre = NULL;
2020
0
 err:
2021
0
    BN_CTX_end(ctx);
2022
0
    EC_POINT_free(generator);
2023
0
#ifndef FIPS_MODULE
2024
0
    BN_CTX_free(new_ctx);
2025
0
#endif
2026
0
    ossl_ec_nistp384_pre_comp_free(pre);
2027
0
    return ret;
2028
0
}
2029
2030
int ossl_ec_GFp_nistp384_have_precompute_mult(const EC_GROUP *group)
2031
0
{
2032
0
    return HAVEPRECOMP(group, nistp384);
2033
0
}