Coverage Report

Created: 2025-08-28 07:07

/src/openssl33/ssl/t1_lib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <openssl/objects.h>
13
#include <openssl/evp.h>
14
#include <openssl/hmac.h>
15
#include <openssl/core_names.h>
16
#include <openssl/ocsp.h>
17
#include <openssl/conf.h>
18
#include <openssl/x509v3.h>
19
#include <openssl/dh.h>
20
#include <openssl/bn.h>
21
#include <openssl/provider.h>
22
#include <openssl/param_build.h>
23
#include "internal/nelem.h"
24
#include "internal/sizes.h"
25
#include "internal/tlsgroups.h"
26
#include "ssl_local.h"
27
#include "quic/quic_local.h"
28
#include <openssl/ct.h>
29
30
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
31
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
32
33
SSL3_ENC_METHOD const TLSv1_enc_data = {
34
    tls1_setup_key_block,
35
    tls1_generate_master_secret,
36
    tls1_change_cipher_state,
37
    tls1_final_finish_mac,
38
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40
    tls1_alert_code,
41
    tls1_export_keying_material,
42
    0,
43
    ssl3_set_handshake_header,
44
    tls_close_construct_packet,
45
    ssl3_handshake_write
46
};
47
48
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49
    tls1_setup_key_block,
50
    tls1_generate_master_secret,
51
    tls1_change_cipher_state,
52
    tls1_final_finish_mac,
53
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
54
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
55
    tls1_alert_code,
56
    tls1_export_keying_material,
57
    SSL_ENC_FLAG_EXPLICIT_IV,
58
    ssl3_set_handshake_header,
59
    tls_close_construct_packet,
60
    ssl3_handshake_write
61
};
62
63
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
64
    tls1_setup_key_block,
65
    tls1_generate_master_secret,
66
    tls1_change_cipher_state,
67
    tls1_final_finish_mac,
68
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
69
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
70
    tls1_alert_code,
71
    tls1_export_keying_material,
72
    SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
73
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
74
    ssl3_set_handshake_header,
75
    tls_close_construct_packet,
76
    ssl3_handshake_write
77
};
78
79
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
80
    tls13_setup_key_block,
81
    tls13_generate_master_secret,
82
    tls13_change_cipher_state,
83
    tls13_final_finish_mac,
84
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
85
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
86
    tls13_alert_code,
87
    tls13_export_keying_material,
88
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
89
    ssl3_set_handshake_header,
90
    tls_close_construct_packet,
91
    ssl3_handshake_write
92
};
93
94
OSSL_TIME tls1_default_timeout(void)
95
116k
{
96
    /*
97
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
98
     * http, the cache would over fill
99
     */
100
116k
    return ossl_seconds2time(60 * 60 * 2);
101
116k
}
102
103
int tls1_new(SSL *s)
104
116k
{
105
116k
    if (!ssl3_new(s))
106
0
        return 0;
107
116k
    if (!s->method->ssl_clear(s))
108
0
        return 0;
109
110
116k
    return 1;
111
116k
}
112
113
void tls1_free(SSL *s)
114
57.6k
{
115
57.6k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
116
117
57.6k
    if (sc == NULL)
118
0
        return;
119
120
57.6k
    OPENSSL_free(sc->ext.session_ticket);
121
57.6k
    ssl3_free(s);
122
57.6k
}
123
124
int tls1_clear(SSL *s)
125
250k
{
126
250k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
127
128
250k
    if (sc == NULL)
129
0
        return 0;
130
131
250k
    if (!ssl3_clear(s))
132
0
        return 0;
133
134
250k
    if (s->method->version == TLS_ANY_VERSION)
135
250k
        sc->version = TLS_MAX_VERSION_INTERNAL;
136
0
    else
137
0
        sc->version = s->method->version;
138
139
250k
    return 1;
140
250k
}
141
142
/* Legacy NID to group_id mapping. Only works for groups we know about */
143
static const struct {
144
    int nid;
145
    uint16_t group_id;
146
} nid_to_group[] = {
147
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
148
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
149
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
150
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
151
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
152
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
153
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
154
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
155
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
156
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
157
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
158
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
159
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
160
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
161
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
162
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
163
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
164
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
165
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
166
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
167
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
168
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
169
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
170
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
171
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
172
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
173
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
174
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
175
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
176
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
177
    {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
178
    {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
179
    {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
180
    {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
181
    {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
182
    {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
183
    {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
184
    {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
185
    {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
186
    {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
187
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
188
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
189
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
190
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
191
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
192
};
193
194
static const unsigned char ecformats_default[] = {
195
    TLSEXT_ECPOINTFORMAT_uncompressed,
196
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
197
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
198
};
199
200
/* The default curves */
201
static const uint16_t supported_groups_default[] = {
202
    OSSL_TLS_GROUP_ID_x25519,        /* X25519 (29) */
203
    OSSL_TLS_GROUP_ID_secp256r1,     /* secp256r1 (23) */
204
    OSSL_TLS_GROUP_ID_x448,          /* X448 (30) */
205
    OSSL_TLS_GROUP_ID_secp521r1,     /* secp521r1 (25) */
206
    OSSL_TLS_GROUP_ID_secp384r1,     /* secp384r1 (24) */
207
    OSSL_TLS_GROUP_ID_gc256A,        /* GC256A (34) */
208
    OSSL_TLS_GROUP_ID_gc256B,        /* GC256B (35) */
209
    OSSL_TLS_GROUP_ID_gc256C,        /* GC256C (36) */
210
    OSSL_TLS_GROUP_ID_gc256D,        /* GC256D (37) */
211
    OSSL_TLS_GROUP_ID_gc512A,        /* GC512A (38) */
212
    OSSL_TLS_GROUP_ID_gc512B,        /* GC512B (39) */
213
    OSSL_TLS_GROUP_ID_gc512C,        /* GC512C (40) */
214
    OSSL_TLS_GROUP_ID_ffdhe2048,     /* ffdhe2048 (0x100) */
215
    OSSL_TLS_GROUP_ID_ffdhe3072,     /* ffdhe3072 (0x101) */
216
    OSSL_TLS_GROUP_ID_ffdhe4096,     /* ffdhe4096 (0x102) */
217
    OSSL_TLS_GROUP_ID_ffdhe6144,     /* ffdhe6144 (0x103) */
218
    OSSL_TLS_GROUP_ID_ffdhe8192,     /* ffdhe8192 (0x104) */
219
};
220
221
static const uint16_t suiteb_curves[] = {
222
    OSSL_TLS_GROUP_ID_secp256r1,
223
    OSSL_TLS_GROUP_ID_secp384r1,
224
};
225
226
struct provider_ctx_data_st {
227
    SSL_CTX *ctx;
228
    OSSL_PROVIDER *provider;
229
};
230
231
1.03M
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
232
static OSSL_CALLBACK add_provider_groups;
233
static int add_provider_groups(const OSSL_PARAM params[], void *data)
234
4.61M
{
235
4.61M
    struct provider_ctx_data_st *pgd = data;
236
4.61M
    SSL_CTX *ctx = pgd->ctx;
237
4.61M
    OSSL_PROVIDER *provider = pgd->provider;
238
4.61M
    const OSSL_PARAM *p;
239
4.61M
    TLS_GROUP_INFO *ginf = NULL;
240
4.61M
    EVP_KEYMGMT *keymgmt;
241
4.61M
    unsigned int gid;
242
4.61M
    unsigned int is_kem = 0;
243
4.61M
    int ret = 0;
244
245
4.61M
    if (ctx->group_list_max_len == ctx->group_list_len) {
246
515k
        TLS_GROUP_INFO *tmp = NULL;
247
248
515k
        if (ctx->group_list_max_len == 0)
249
87.8k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
250
515k
                                 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251
427k
        else
252
427k
            tmp = OPENSSL_realloc(ctx->group_list,
253
515k
                                  (ctx->group_list_max_len
254
515k
                                   + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
255
515k
                                  * sizeof(TLS_GROUP_INFO));
256
515k
        if (tmp == NULL)
257
0
            return 0;
258
515k
        ctx->group_list = tmp;
259
515k
        memset(tmp + ctx->group_list_max_len,
260
515k
               0,
261
515k
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
262
515k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
263
515k
    }
264
265
4.61M
    ginf = &ctx->group_list[ctx->group_list_len];
266
267
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
268
4.61M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
269
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
270
0
        goto err;
271
0
    }
272
4.61M
    ginf->tlsname = OPENSSL_strdup(p->data);
273
4.61M
    if (ginf->tlsname == NULL)
274
0
        goto err;
275
276
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
277
4.61M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
278
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
279
0
        goto err;
280
0
    }
281
4.61M
    ginf->realname = OPENSSL_strdup(p->data);
282
4.61M
    if (ginf->realname == NULL)
283
0
        goto err;
284
285
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286
4.61M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288
0
        goto err;
289
0
    }
290
4.61M
    ginf->group_id = (uint16_t)gid;
291
292
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293
4.61M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295
0
        goto err;
296
0
    }
297
4.61M
    ginf->algorithm = OPENSSL_strdup(p->data);
298
4.61M
    if (ginf->algorithm == NULL)
299
0
        goto err;
300
301
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
302
4.61M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
303
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
304
0
        goto err;
305
0
    }
306
307
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
308
4.61M
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
309
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310
0
        goto err;
311
0
    }
312
4.61M
    ginf->is_kem = 1 & is_kem;
313
314
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
315
4.61M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
316
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
317
0
        goto err;
318
0
    }
319
320
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
321
4.61M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
322
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
323
0
        goto err;
324
0
    }
325
326
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
327
4.61M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
328
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
329
0
        goto err;
330
0
    }
331
332
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
333
4.61M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
334
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
335
0
        goto err;
336
0
    }
337
    /*
338
     * Now check that the algorithm is actually usable for our property query
339
     * string. Regardless of the result we still return success because we have
340
     * successfully processed this group, even though we may decide not to use
341
     * it.
342
     */
343
4.61M
    ret = 1;
344
4.61M
    ERR_set_mark();
345
4.61M
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
346
4.61M
    if (keymgmt != NULL) {
347
        /*
348
         * We have successfully fetched the algorithm - however if the provider
349
         * doesn't match this one then we ignore it.
350
         *
351
         * Note: We're cheating a little here. Technically if the same algorithm
352
         * is available from more than one provider then it is undefined which
353
         * implementation you will get back. Theoretically this could be
354
         * different every time...we assume here that you'll always get the
355
         * same one back if you repeat the exact same fetch. Is this a reasonable
356
         * assumption to make (in which case perhaps we should document this
357
         * behaviour)?
358
         */
359
4.61M
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
360
            /* We have a match - so we will use this group */
361
4.61M
            ctx->group_list_len++;
362
4.61M
            ginf = NULL;
363
4.61M
        }
364
4.61M
        EVP_KEYMGMT_free(keymgmt);
365
4.61M
    }
366
4.61M
    ERR_pop_to_mark();
367
4.61M
 err:
368
4.61M
    if (ginf != NULL) {
369
0
        OPENSSL_free(ginf->tlsname);
370
0
        OPENSSL_free(ginf->realname);
371
0
        OPENSSL_free(ginf->algorithm);
372
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
373
0
    }
374
4.61M
    return ret;
375
4.61M
}
376
377
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
378
293k
{
379
293k
    struct provider_ctx_data_st pgd;
380
381
293k
    pgd.ctx = vctx;
382
293k
    pgd.provider = provider;
383
293k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
384
293k
                                          add_provider_groups, &pgd);
385
293k
}
386
387
int ssl_load_groups(SSL_CTX *ctx)
388
87.8k
{
389
87.8k
    size_t i, j, num_deflt_grps = 0;
390
87.8k
    uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
391
392
87.8k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
393
0
        return 0;
394
395
1.58M
    for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
396
72.7M
        for (j = 0; j < ctx->group_list_len; j++) {
397
72.1M
            if (ctx->group_list[j].group_id == supported_groups_default[i]) {
398
878k
                tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
399
878k
                break;
400
878k
            }
401
72.1M
        }
402
1.49M
    }
403
404
87.8k
    if (num_deflt_grps == 0)
405
0
        return 1;
406
407
87.8k
    ctx->ext.supported_groups_default
408
87.8k
        = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
409
410
87.8k
    if (ctx->ext.supported_groups_default == NULL)
411
0
        return 0;
412
413
87.8k
    memcpy(ctx->ext.supported_groups_default,
414
87.8k
           tmp_supp_groups,
415
87.8k
           num_deflt_grps * sizeof(tmp_supp_groups[0]));
416
87.8k
    ctx->ext.supported_groups_default_len = num_deflt_grps;
417
418
87.8k
    return 1;
419
87.8k
}
420
421
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10
422
static OSSL_CALLBACK add_provider_sigalgs;
423
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
424
{
425
    struct provider_ctx_data_st *pgd = data;
426
    SSL_CTX *ctx = pgd->ctx;
427
    OSSL_PROVIDER *provider = pgd->provider;
428
    const OSSL_PARAM *p;
429
    TLS_SIGALG_INFO *sinf = NULL;
430
    EVP_KEYMGMT *keymgmt;
431
    const char *keytype;
432
    unsigned int code_point = 0;
433
    int ret = 0;
434
435
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
436
        TLS_SIGALG_INFO *tmp = NULL;
437
438
        if (ctx->sigalg_list_max_len == 0)
439
            tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
440
                                 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
441
        else
442
            tmp = OPENSSL_realloc(ctx->sigalg_list,
443
                                  (ctx->sigalg_list_max_len
444
                                   + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
445
                                  * sizeof(TLS_SIGALG_INFO));
446
        if (tmp == NULL)
447
            return 0;
448
        ctx->sigalg_list = tmp;
449
        memset(tmp + ctx->sigalg_list_max_len, 0,
450
               sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
451
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
452
    }
453
454
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
455
456
    /* First, mandatory parameters */
457
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
458
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
459
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
460
        goto err;
461
    }
462
    OPENSSL_free(sinf->sigalg_name);
463
    sinf->sigalg_name = OPENSSL_strdup(p->data);
464
    if (sinf->sigalg_name == NULL)
465
        goto err;
466
467
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
468
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
469
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
470
        goto err;
471
    }
472
    OPENSSL_free(sinf->name);
473
    sinf->name = OPENSSL_strdup(p->data);
474
    if (sinf->name == NULL)
475
        goto err;
476
477
    p = OSSL_PARAM_locate_const(params,
478
                                OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
479
    if (p == NULL
480
        || !OSSL_PARAM_get_uint(p, &code_point)
481
        || code_point > UINT16_MAX) {
482
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
483
        goto err;
484
    }
485
    sinf->code_point = (uint16_t)code_point;
486
487
    p = OSSL_PARAM_locate_const(params,
488
                                OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
489
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
490
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
491
        goto err;
492
    }
493
494
    /* Now, optional parameters */
495
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
496
    if (p == NULL) {
497
        sinf->sigalg_oid = NULL;
498
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
499
        goto err;
500
    } else {
501
        OPENSSL_free(sinf->sigalg_oid);
502
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
503
        if (sinf->sigalg_oid == NULL)
504
            goto err;
505
    }
506
507
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
508
    if (p == NULL) {
509
        sinf->sig_name = NULL;
510
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
511
        goto err;
512
    } else {
513
        OPENSSL_free(sinf->sig_name);
514
        sinf->sig_name = OPENSSL_strdup(p->data);
515
        if (sinf->sig_name == NULL)
516
            goto err;
517
    }
518
519
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
520
    if (p == NULL) {
521
        sinf->sig_oid = NULL;
522
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
523
        goto err;
524
    } else {
525
        OPENSSL_free(sinf->sig_oid);
526
        sinf->sig_oid = OPENSSL_strdup(p->data);
527
        if (sinf->sig_oid == NULL)
528
            goto err;
529
    }
530
531
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
532
    if (p == NULL) {
533
        sinf->hash_name = NULL;
534
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
535
        goto err;
536
    } else {
537
        OPENSSL_free(sinf->hash_name);
538
        sinf->hash_name = OPENSSL_strdup(p->data);
539
        if (sinf->hash_name == NULL)
540
            goto err;
541
    }
542
543
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
544
    if (p == NULL) {
545
        sinf->hash_oid = NULL;
546
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
547
        goto err;
548
    } else {
549
        OPENSSL_free(sinf->hash_oid);
550
        sinf->hash_oid = OPENSSL_strdup(p->data);
551
        if (sinf->hash_oid == NULL)
552
            goto err;
553
    }
554
555
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
556
    if (p == NULL) {
557
        sinf->keytype = NULL;
558
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
559
        goto err;
560
    } else {
561
        OPENSSL_free(sinf->keytype);
562
        sinf->keytype = OPENSSL_strdup(p->data);
563
        if (sinf->keytype == NULL)
564
            goto err;
565
    }
566
567
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
568
    if (p == NULL) {
569
        sinf->keytype_oid = NULL;
570
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
571
        goto err;
572
    } else {
573
        OPENSSL_free(sinf->keytype_oid);
574
        sinf->keytype_oid = OPENSSL_strdup(p->data);
575
        if (sinf->keytype_oid == NULL)
576
            goto err;
577
    }
578
579
    /* The remaining parameters below are mandatory again */
580
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
581
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
582
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
583
        goto err;
584
    }
585
    if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
586
        ((sinf->mintls < TLS1_3_VERSION))) {
587
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
588
        ret = 1;
589
        goto err;
590
    }
591
592
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
593
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
594
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
595
        goto err;
596
    }
597
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
598
        ((sinf->maxtls < sinf->mintls))) {
599
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
600
        goto err;
601
    }
602
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
603
        ((sinf->maxtls < TLS1_3_VERSION))) {
604
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
605
        ret = 1;
606
        goto err;
607
    }
608
609
    /*
610
     * Now check that the algorithm is actually usable for our property query
611
     * string. Regardless of the result we still return success because we have
612
     * successfully processed this signature, even though we may decide not to
613
     * use it.
614
     */
615
    ret = 1;
616
    ERR_set_mark();
617
    keytype = (sinf->keytype != NULL
618
               ? sinf->keytype
619
               : (sinf->sig_name != NULL
620
                  ? sinf->sig_name
621
                  : sinf->sigalg_name));
622
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
623
    if (keymgmt != NULL) {
624
        /*
625
         * We have successfully fetched the algorithm - however if the provider
626
         * doesn't match this one then we ignore it.
627
         *
628
         * Note: We're cheating a little here. Technically if the same algorithm
629
         * is available from more than one provider then it is undefined which
630
         * implementation you will get back. Theoretically this could be
631
         * different every time...we assume here that you'll always get the
632
         * same one back if you repeat the exact same fetch. Is this a reasonable
633
         * assumption to make (in which case perhaps we should document this
634
         * behaviour)?
635
         */
636
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
637
            /*
638
             * We have a match - so we could use this signature;
639
             * Check proper object registration first, though. 
640
             * Don't care about return value as this may have been
641
             * done within providers or previous calls to
642
             * add_provider_sigalgs.
643
             */
644
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
645
            /* sanity check: Without successful registration don't use alg */
646
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
647
                (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
648
                    ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
649
                    goto err;
650
            }
651
            if (sinf->sig_name != NULL)
652
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
653
            if (sinf->keytype != NULL)
654
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
655
            if (sinf->hash_name != NULL)
656
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
657
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
658
                          (sinf->hash_name != NULL
659
                           ? OBJ_txt2nid(sinf->hash_name)
660
                           : NID_undef),
661
                          OBJ_txt2nid(keytype));
662
            ctx->sigalg_list_len++;
663
            sinf = NULL;
664
        }
665
        EVP_KEYMGMT_free(keymgmt);
666
    }
667
    ERR_pop_to_mark();
668
 err:
669
    if (sinf != NULL) {
670
        OPENSSL_free(sinf->name);
671
        sinf->name = NULL;
672
        OPENSSL_free(sinf->sigalg_name);
673
        sinf->sigalg_name = NULL;
674
        OPENSSL_free(sinf->sigalg_oid);
675
        sinf->sigalg_oid = NULL;
676
        OPENSSL_free(sinf->sig_name);
677
        sinf->sig_name = NULL;
678
        OPENSSL_free(sinf->sig_oid);
679
        sinf->sig_oid = NULL;
680
        OPENSSL_free(sinf->hash_name);
681
        sinf->hash_name = NULL;
682
        OPENSSL_free(sinf->hash_oid);
683
        sinf->hash_oid = NULL;
684
        OPENSSL_free(sinf->keytype);
685
        sinf->keytype = NULL;
686
        OPENSSL_free(sinf->keytype_oid);
687
        sinf->keytype_oid = NULL;
688
    }
689
    return ret;
690
}
691
692
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
693
270k
{
694
270k
    struct provider_ctx_data_st pgd;
695
696
270k
    pgd.ctx = vctx;
697
270k
    pgd.provider = provider;
698
270k
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
699
270k
                                   add_provider_sigalgs, &pgd);
700
    /*
701
     * Always OK, even if provider doesn't support the capability:
702
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
703
     */
704
270k
    return 1;
705
270k
}
706
707
int ssl_load_sigalgs(SSL_CTX *ctx)
708
135k
{
709
135k
    size_t i;
710
135k
    SSL_CERT_LOOKUP lu;
711
712
135k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
713
0
        return 0;
714
715
    /* now populate ctx->ssl_cert_info */
716
135k
    if (ctx->sigalg_list_len > 0) {
717
59.0k
        OPENSSL_free(ctx->ssl_cert_info);
718
59.0k
        ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
719
59.0k
        if (ctx->ssl_cert_info == NULL)
720
0
            return 0;
721
236k
        for(i = 0; i < ctx->sigalg_list_len; i++) {
722
177k
            ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
723
177k
            ctx->ssl_cert_info[i].amask = SSL_aANY;
724
177k
        }
725
59.0k
    }
726
727
    /* 
728
     * For now, leave it at this: legacy sigalgs stay in their own
729
     * data structures until "legacy cleanup" occurs.
730
     */
731
732
135k
    return 1;
733
135k
}
734
735
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
736
472k
{
737
472k
    size_t i;
738
739
2.65M
    for (i = 0; i < ctx->group_list_len; i++) {
740
2.65M
        if (strcmp(ctx->group_list[i].tlsname, name) == 0
741
2.65M
                || strcmp(ctx->group_list[i].realname, name) == 0)
742
472k
            return ctx->group_list[i].group_id;
743
2.65M
    }
744
745
0
    return 0;
746
472k
}
747
748
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
749
2.94M
{
750
2.94M
    size_t i;
751
752
83.6M
    for (i = 0; i < ctx->group_list_len; i++) {
753
83.6M
        if (ctx->group_list[i].group_id == group_id)
754
2.94M
            return &ctx->group_list[i];
755
83.6M
    }
756
757
0
    return NULL;
758
2.94M
}
759
760
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
761
0
{
762
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
763
764
0
    if (tls_group_info == NULL)
765
0
        return NULL;
766
767
0
    return tls_group_info->tlsname;
768
0
}
769
770
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
771
1.32M
{
772
1.32M
    size_t i;
773
774
1.32M
    if (group_id == 0)
775
0
        return NID_undef;
776
777
    /*
778
     * Return well known Group NIDs - for backwards compatibility. This won't
779
     * work for groups we don't know about.
780
     */
781
42.4M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
782
42.3M
    {
783
42.3M
        if (nid_to_group[i].group_id == group_id)
784
1.25M
            return nid_to_group[i].nid;
785
42.3M
    }
786
65.8k
    if (!include_unknown)
787
65.8k
        return NID_undef;
788
0
    return TLSEXT_nid_unknown | (int)group_id;
789
65.8k
}
790
791
uint16_t tls1_nid2group_id(int nid)
792
23.4k
{
793
23.4k
    size_t i;
794
795
    /*
796
     * Return well known Group ids - for backwards compatibility. This won't
797
     * work for groups we don't know about.
798
     */
799
540k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
800
540k
    {
801
540k
        if (nid_to_group[i].nid == nid)
802
23.4k
            return nid_to_group[i].group_id;
803
540k
    }
804
805
6
    return 0;
806
23.4k
}
807
808
/*
809
 * Set *pgroups to the supported groups list and *pgroupslen to
810
 * the number of groups supported.
811
 */
812
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
813
                               size_t *pgroupslen)
814
433k
{
815
433k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
816
817
    /* For Suite B mode only include P-256, P-384 */
818
433k
    switch (tls1_suiteb(s)) {
819
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
820
0
        *pgroups = suiteb_curves;
821
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
822
0
        break;
823
824
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
825
0
        *pgroups = suiteb_curves;
826
0
        *pgroupslen = 1;
827
0
        break;
828
829
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
830
0
        *pgroups = suiteb_curves + 1;
831
0
        *pgroupslen = 1;
832
0
        break;
833
834
433k
    default:
835
433k
        if (s->ext.supportedgroups == NULL) {
836
286k
            *pgroups = sctx->ext.supported_groups_default;
837
286k
            *pgroupslen = sctx->ext.supported_groups_default_len;
838
286k
        } else {
839
146k
            *pgroups = s->ext.supportedgroups;
840
146k
            *pgroupslen = s->ext.supportedgroups_len;
841
146k
        }
842
433k
        break;
843
433k
    }
844
433k
}
845
846
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
847
                    int minversion, int maxversion,
848
                    int isec, int *okfortls13)
849
1.11M
{
850
1.11M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
851
1.11M
                                                       group_id);
852
1.11M
    int ret;
853
1.11M
    int group_minversion, group_maxversion;
854
855
1.11M
    if (okfortls13 != NULL)
856
746k
        *okfortls13 = 0;
857
858
1.11M
    if (ginfo == NULL)
859
0
        return 0;
860
861
1.11M
    group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
862
1.11M
    group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
863
864
1.11M
    if (group_minversion < 0 || group_maxversion < 0)
865
97.5k
        return 0;
866
1.01M
    if (group_maxversion == 0)
867
1.01M
        ret = 1;
868
0
    else
869
0
        ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
870
1.01M
    if (group_minversion > 0)
871
1.01M
        ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
872
873
1.01M
    if (!SSL_CONNECTION_IS_DTLS(s)) {
874
876k
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
875
568k
            *okfortls13 = (group_maxversion == 0)
876
568k
                          || (group_maxversion >= TLS1_3_VERSION);
877
876k
    }
878
1.01M
    ret &= !isec
879
1.01M
           || strcmp(ginfo->algorithm, "EC") == 0
880
1.01M
           || strcmp(ginfo->algorithm, "X25519") == 0
881
1.01M
           || strcmp(ginfo->algorithm, "X448") == 0;
882
883
1.01M
    return ret;
884
1.11M
}
885
886
/* See if group is allowed by security callback */
887
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
888
1.32M
{
889
1.32M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
890
1.32M
                                                       group);
891
1.32M
    unsigned char gtmp[2];
892
893
1.32M
    if (ginfo == NULL)
894
0
        return 0;
895
896
1.32M
    gtmp[0] = group >> 8;
897
1.32M
    gtmp[1] = group & 0xff;
898
1.32M
    return ssl_security(s, op, ginfo->secbits,
899
1.32M
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
900
1.32M
}
901
902
/* Return 1 if "id" is in "list" */
903
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
904
82.5k
{
905
82.5k
    size_t i;
906
566k
    for (i = 0; i < listlen; i++)
907
520k
        if (list[i] == id)
908
36.4k
            return 1;
909
46.1k
    return 0;
910
82.5k
}
911
912
/*-
913
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
914
 * if there is no match.
915
 * For nmatch == -1, return number of matches
916
 * For nmatch == -2, return the id of the group to use for
917
 * a tmp key, or 0 if there is no match.
918
 */
919
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
920
28.4k
{
921
28.4k
    const uint16_t *pref, *supp;
922
28.4k
    size_t num_pref, num_supp, i;
923
28.4k
    int k;
924
28.4k
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
925
926
    /* Can't do anything on client side */
927
28.4k
    if (s->server == 0)
928
0
        return 0;
929
28.4k
    if (nmatch == -2) {
930
6.45k
        if (tls1_suiteb(s)) {
931
            /*
932
             * For Suite B ciphersuite determines curve: we already know
933
             * these are acceptable due to previous checks.
934
             */
935
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
936
937
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
938
0
                return OSSL_TLS_GROUP_ID_secp256r1;
939
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
940
0
                return OSSL_TLS_GROUP_ID_secp384r1;
941
            /* Should never happen */
942
0
            return 0;
943
0
        }
944
        /* If not Suite B just return first preference shared curve */
945
6.45k
        nmatch = 0;
946
6.45k
    }
947
    /*
948
     * If server preference set, our groups are the preference order
949
     * otherwise peer decides.
950
     */
951
28.4k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
952
0
        tls1_get_supported_groups(s, &pref, &num_pref);
953
0
        tls1_get_peer_groups(s, &supp, &num_supp);
954
28.4k
    } else {
955
28.4k
        tls1_get_peer_groups(s, &pref, &num_pref);
956
28.4k
        tls1_get_supported_groups(s, &supp, &num_supp);
957
28.4k
    }
958
959
63.6k
    for (k = 0, i = 0; i < num_pref; i++) {
960
48.4k
        uint16_t id = pref[i];
961
48.4k
        const TLS_GROUP_INFO *inf;
962
48.4k
        int minversion, maxversion;
963
964
48.4k
        if (!tls1_in_list(id, supp, num_supp)
965
48.4k
                || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
966
31.9k
            continue;
967
16.5k
        inf = tls1_group_id_lookup(ctx, id);
968
16.5k
        if (!ossl_assert(inf != NULL))
969
0
            return 0;
970
971
16.5k
        minversion = SSL_CONNECTION_IS_DTLS(s)
972
16.5k
                         ? inf->mindtls : inf->mintls;
973
16.5k
        maxversion = SSL_CONNECTION_IS_DTLS(s)
974
16.5k
                         ? inf->maxdtls : inf->maxtls;
975
16.5k
        if (maxversion == -1)
976
1.33k
            continue;
977
15.1k
        if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
978
15.1k
            || (maxversion != 0
979
13.1k
                && ssl_version_cmp(s, s->version, maxversion) > 0))
980
2.01k
            continue;
981
982
13.1k
        if (nmatch == k)
983
13.1k
            return id;
984
0
         k++;
985
0
    }
986
15.2k
    if (nmatch == -1)
987
0
        return k;
988
    /* Out of range (nmatch > k). */
989
15.2k
    return 0;
990
15.2k
}
991
992
int tls1_set_groups(uint16_t **pext, size_t *pextlen,
993
                    int *groups, size_t ngroups)
994
0
{
995
0
    uint16_t *glist;
996
0
    size_t i;
997
    /*
998
     * Bitmap of groups included to detect duplicates: two variables are added
999
     * to detect duplicates as some values are more than 32.
1000
     */
1001
0
    unsigned long *dup_list = NULL;
1002
0
    unsigned long dup_list_egrp = 0;
1003
0
    unsigned long dup_list_dhgrp = 0;
1004
1005
0
    if (ngroups == 0) {
1006
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1007
0
        return 0;
1008
0
    }
1009
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1010
0
        return 0;
1011
0
    for (i = 0; i < ngroups; i++) {
1012
0
        unsigned long idmask;
1013
0
        uint16_t id;
1014
0
        id = tls1_nid2group_id(groups[i]);
1015
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1016
0
            goto err;
1017
0
        idmask = 1L << (id & 0x00FF);
1018
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1019
0
        if (!id || ((*dup_list) & idmask))
1020
0
            goto err;
1021
0
        *dup_list |= idmask;
1022
0
        glist[i] = id;
1023
0
    }
1024
0
    OPENSSL_free(*pext);
1025
0
    *pext = glist;
1026
0
    *pextlen = ngroups;
1027
0
    return 1;
1028
0
err:
1029
0
    OPENSSL_free(glist);
1030
0
    return 0;
1031
0
}
1032
1033
0
# define GROUPLIST_INCREMENT   40
1034
# define GROUP_NAME_BUFFER_LENGTH 64
1035
typedef struct {
1036
    SSL_CTX *ctx;
1037
    size_t gidcnt;
1038
    size_t gidmax;
1039
    uint16_t *gid_arr;
1040
} gid_cb_st;
1041
1042
static int gid_cb(const char *elem, int len, void *arg)
1043
{
1044
    gid_cb_st *garg = arg;
1045
    size_t i;
1046
    uint16_t gid = 0;
1047
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1048
    int ignore_unknown = 0;
1049
1050
    if (elem == NULL)
1051
        return 0;
1052
    if (elem[0] == '?') {
1053
        ignore_unknown = 1;
1054
        ++elem;
1055
        --len;
1056
    }
1057
    if (garg->gidcnt == garg->gidmax) {
1058
        uint16_t *tmp =
1059
            OPENSSL_realloc(garg->gid_arr,
1060
                            (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1061
        if (tmp == NULL)
1062
            return 0;
1063
        garg->gidmax += GROUPLIST_INCREMENT;
1064
        garg->gid_arr = tmp;
1065
    }
1066
    if (len > (int)(sizeof(etmp) - 1))
1067
        return 0;
1068
    memcpy(etmp, elem, len);
1069
    etmp[len] = 0;
1070
1071
    gid = tls1_group_name2id(garg->ctx, etmp);
1072
    if (gid == 0) {
1073
        /* Unknown group - ignore, if ignore_unknown */
1074
        return ignore_unknown;
1075
    }
1076
    for (i = 0; i < garg->gidcnt; i++)
1077
        if (garg->gid_arr[i] == gid) {
1078
            /* Duplicate group - ignore */
1079
            return 1;
1080
        }
1081
    garg->gid_arr[garg->gidcnt++] = gid;
1082
    return 1;
1083
}
1084
1085
/* Set groups based on a colon separated list */
1086
int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
1087
                         const char *str)
1088
0
{
1089
0
    gid_cb_st gcb;
1090
0
    uint16_t *tmparr;
1091
0
    int ret = 0;
1092
1093
0
    gcb.gidcnt = 0;
1094
0
    gcb.gidmax = GROUPLIST_INCREMENT;
1095
0
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1096
0
    if (gcb.gid_arr == NULL)
1097
0
        return 0;
1098
0
    gcb.ctx = ctx;
1099
0
    if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
1100
0
        goto end;
1101
0
    if (gcb.gidcnt == 0) {
1102
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1103
0
                       "No valid groups in '%s'", str);
1104
0
        goto end;
1105
0
    }
1106
0
    if (pext == NULL) {
1107
0
        ret = 1;
1108
0
        goto end;
1109
0
    }
1110
1111
    /*
1112
     * gid_cb ensurse there are no duplicates so we can just go ahead and set
1113
     * the result
1114
     */
1115
0
    tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
1116
0
    if (tmparr == NULL)
1117
0
        goto end;
1118
0
    OPENSSL_free(*pext);
1119
0
    *pext = tmparr;
1120
0
    *pextlen = gcb.gidcnt;
1121
0
    ret = 1;
1122
0
 end:
1123
0
    OPENSSL_free(gcb.gid_arr);
1124
0
    return ret;
1125
0
}
1126
1127
/* Check a group id matches preferences */
1128
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1129
                        int check_own_groups)
1130
33.8k
    {
1131
33.8k
    const uint16_t *groups;
1132
33.8k
    size_t groups_len;
1133
1134
33.8k
    if (group_id == 0)
1135
17
        return 0;
1136
1137
    /* Check for Suite B compliance */
1138
33.8k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1139
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1140
1141
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1142
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1143
0
                return 0;
1144
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1145
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1146
0
                return 0;
1147
0
        } else {
1148
            /* Should never happen */
1149
0
            return 0;
1150
0
        }
1151
0
    }
1152
1153
33.8k
    if (check_own_groups) {
1154
        /* Check group is one of our preferences */
1155
10.6k
        tls1_get_supported_groups(s, &groups, &groups_len);
1156
10.6k
        if (!tls1_in_list(group_id, groups, groups_len))
1157
134
            return 0;
1158
10.6k
    }
1159
1160
33.6k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1161
0
        return 0;
1162
1163
    /* For clients, nothing more to check */
1164
33.6k
    if (!s->server)
1165
10.4k
        return 1;
1166
1167
    /* Check group is one of peers preferences */
1168
23.1k
    tls1_get_peer_groups(s, &groups, &groups_len);
1169
1170
    /*
1171
     * RFC 4492 does not require the supported elliptic curves extension
1172
     * so if it is not sent we can just choose any curve.
1173
     * It is invalid to send an empty list in the supported groups
1174
     * extension, so groups_len == 0 always means no extension.
1175
     */
1176
23.1k
    if (groups_len == 0)
1177
13.1k
            return 1;
1178
10.0k
    return tls1_in_list(group_id, groups, groups_len);
1179
23.1k
}
1180
1181
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1182
                         size_t *num_formats)
1183
89.1k
{
1184
    /*
1185
     * If we have a custom point format list use it otherwise use default
1186
     */
1187
89.1k
    if (s->ext.ecpointformats) {
1188
0
        *pformats = s->ext.ecpointformats;
1189
0
        *num_formats = s->ext.ecpointformats_len;
1190
89.1k
    } else {
1191
89.1k
        *pformats = ecformats_default;
1192
        /* For Suite B we don't support char2 fields */
1193
89.1k
        if (tls1_suiteb(s))
1194
0
            *num_formats = sizeof(ecformats_default) - 1;
1195
89.1k
        else
1196
89.1k
            *num_formats = sizeof(ecformats_default);
1197
89.1k
    }
1198
89.1k
}
1199
1200
/* Check a key is compatible with compression extension */
1201
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1202
24.1k
{
1203
24.1k
    unsigned char comp_id;
1204
24.1k
    size_t i;
1205
24.1k
    int point_conv;
1206
1207
    /* If not an EC key nothing to check */
1208
24.1k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1209
0
        return 1;
1210
1211
1212
    /* Get required compression id */
1213
24.1k
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1214
24.1k
    if (point_conv == 0)
1215
0
        return 0;
1216
24.1k
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1217
24.0k
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1218
24.0k
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1219
        /*
1220
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1221
         * this check.
1222
         */
1223
0
        return 1;
1224
88
    } else {
1225
88
        int field_type = EVP_PKEY_get_field_type(pkey);
1226
1227
88
        if (field_type == NID_X9_62_prime_field)
1228
82
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1229
6
        else if (field_type == NID_X9_62_characteristic_two_field)
1230
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1231
6
        else
1232
6
            return 0;
1233
88
    }
1234
    /*
1235
     * If point formats extension present check it, otherwise everything is
1236
     * supported (see RFC4492).
1237
     */
1238
24.1k
    if (s->ext.peer_ecpointformats == NULL)
1239
19.1k
        return 1;
1240
1241
8.39k
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1242
7.76k
        if (s->ext.peer_ecpointformats[i] == comp_id)
1243
4.39k
            return 1;
1244
7.76k
    }
1245
629
    return 0;
1246
5.02k
}
1247
1248
/* Return group id of a key */
1249
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1250
23.4k
{
1251
23.4k
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1252
1253
23.4k
    if (curve_nid == NID_undef)
1254
0
        return 0;
1255
23.4k
    return tls1_nid2group_id(curve_nid);
1256
23.4k
}
1257
1258
/*
1259
 * Check cert parameters compatible with extensions: currently just checks EC
1260
 * certificates have compatible curves and compression.
1261
 */
1262
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1263
71.4k
{
1264
71.4k
    uint16_t group_id;
1265
71.4k
    EVP_PKEY *pkey;
1266
71.4k
    pkey = X509_get0_pubkey(x);
1267
71.4k
    if (pkey == NULL)
1268
0
        return 0;
1269
    /* If not EC nothing to do */
1270
71.4k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1271
47.6k
        return 1;
1272
    /* Check compression */
1273
23.8k
    if (!tls1_check_pkey_comp(s, pkey))
1274
614
        return 0;
1275
23.1k
    group_id = tls1_get_group_id(pkey);
1276
    /*
1277
     * For a server we allow the certificate to not be in our list of supported
1278
     * groups.
1279
     */
1280
23.1k
    if (!tls1_check_group_id(s, group_id, !s->server))
1281
5.77k
        return 0;
1282
    /*
1283
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1284
     * SHA384+P-384.
1285
     */
1286
17.4k
    if (check_ee_md && tls1_suiteb(s)) {
1287
0
        int check_md;
1288
0
        size_t i;
1289
1290
        /* Check to see we have necessary signing algorithm */
1291
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1292
0
            check_md = NID_ecdsa_with_SHA256;
1293
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1294
0
            check_md = NID_ecdsa_with_SHA384;
1295
0
        else
1296
0
            return 0;           /* Should never happen */
1297
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1298
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1299
0
                return 1;
1300
0
        }
1301
0
        return 0;
1302
0
    }
1303
17.4k
    return 1;
1304
17.4k
}
1305
1306
/*
1307
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1308
 * @s: SSL connection
1309
 * @cid: Cipher ID we're considering using
1310
 *
1311
 * Checks that the kECDHE cipher suite we're considering using
1312
 * is compatible with the client extensions.
1313
 *
1314
 * Returns 0 when the cipher can't be used or 1 when it can.
1315
 */
1316
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1317
27.6k
{
1318
    /* If not Suite B just need a shared group */
1319
27.6k
    if (!tls1_suiteb(s))
1320
27.6k
        return tls1_shared_group(s, 0) != 0;
1321
    /*
1322
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1323
     * curves permitted.
1324
     */
1325
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1326
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1327
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1328
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1329
1330
0
    return 0;
1331
0
}
1332
1333
/* Default sigalg schemes */
1334
static const uint16_t tls12_sigalgs[] = {
1335
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1336
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1337
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1338
    TLSEXT_SIGALG_ed25519,
1339
    TLSEXT_SIGALG_ed448,
1340
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1341
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1342
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1343
1344
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1345
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1346
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1347
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1348
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1349
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1350
1351
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1352
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1353
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1354
1355
    TLSEXT_SIGALG_ecdsa_sha224,
1356
    TLSEXT_SIGALG_ecdsa_sha1,
1357
1358
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1359
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1360
1361
    TLSEXT_SIGALG_dsa_sha224,
1362
    TLSEXT_SIGALG_dsa_sha1,
1363
1364
    TLSEXT_SIGALG_dsa_sha256,
1365
    TLSEXT_SIGALG_dsa_sha384,
1366
    TLSEXT_SIGALG_dsa_sha512,
1367
1368
#ifndef OPENSSL_NO_GOST
1369
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1370
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1371
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1372
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1373
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1374
#endif
1375
};
1376
1377
1378
static const uint16_t suiteb_sigalgs[] = {
1379
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1380
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1381
};
1382
1383
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1384
    {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1385
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1386
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1387
    {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1388
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1389
     NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1390
    {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1391
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1392
     NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1393
    {"ed25519", TLSEXT_SIGALG_ed25519,
1394
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1395
     NID_undef, NID_undef, 1},
1396
    {"ed448", TLSEXT_SIGALG_ed448,
1397
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1398
     NID_undef, NID_undef, 1},
1399
    {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1400
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1401
     NID_ecdsa_with_SHA224, NID_undef, 1},
1402
    {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1403
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1404
     NID_ecdsa_with_SHA1, NID_undef, 1},
1405
    {"ecdsa_brainpoolP256r1_sha256", TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1406
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1407
     NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
1408
    {"ecdsa_brainpoolP384r1_sha384", TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1409
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1410
     NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
1411
    {"ecdsa_brainpoolP512r1_sha512", TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1412
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1413
     NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
1414
    {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1415
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1416
     NID_undef, NID_undef, 1},
1417
    {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1418
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1419
     NID_undef, NID_undef, 1},
1420
    {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1421
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1422
     NID_undef, NID_undef, 1},
1423
    {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1424
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1425
     NID_undef, NID_undef, 1},
1426
    {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1427
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1428
     NID_undef, NID_undef, 1},
1429
    {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1430
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1431
     NID_undef, NID_undef, 1},
1432
    {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1433
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1434
     NID_sha256WithRSAEncryption, NID_undef, 1},
1435
    {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1436
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1437
     NID_sha384WithRSAEncryption, NID_undef, 1},
1438
    {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1439
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1440
     NID_sha512WithRSAEncryption, NID_undef, 1},
1441
    {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1442
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1443
     NID_sha224WithRSAEncryption, NID_undef, 1},
1444
    {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1445
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1446
     NID_sha1WithRSAEncryption, NID_undef, 1},
1447
    {NULL, TLSEXT_SIGALG_dsa_sha256,
1448
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1449
     NID_dsa_with_SHA256, NID_undef, 1},
1450
    {NULL, TLSEXT_SIGALG_dsa_sha384,
1451
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1452
     NID_undef, NID_undef, 1},
1453
    {NULL, TLSEXT_SIGALG_dsa_sha512,
1454
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1455
     NID_undef, NID_undef, 1},
1456
    {NULL, TLSEXT_SIGALG_dsa_sha224,
1457
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1458
     NID_undef, NID_undef, 1},
1459
    {NULL, TLSEXT_SIGALG_dsa_sha1,
1460
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1461
     NID_dsaWithSHA1, NID_undef, 1},
1462
#ifndef OPENSSL_NO_GOST
1463
    {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1464
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1465
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1466
     NID_undef, NID_undef, 1},
1467
    {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1468
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1469
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1470
     NID_undef, NID_undef, 1},
1471
    {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1472
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1473
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1474
     NID_undef, NID_undef, 1},
1475
    {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1476
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1477
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1478
     NID_undef, NID_undef, 1},
1479
    {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1480
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1481
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1482
     NID_undef, NID_undef, 1}
1483
#endif
1484
};
1485
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1486
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1487
    "rsa_pkcs1_md5_sha1", 0,
1488
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1489
     EVP_PKEY_RSA, SSL_PKEY_RSA,
1490
     NID_undef, NID_undef, 1
1491
};
1492
1493
/*
1494
 * Default signature algorithm values used if signature algorithms not present.
1495
 * From RFC5246. Note: order must match certificate index order.
1496
 */
1497
static const uint16_t tls_default_sigalg[] = {
1498
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1499
    0, /* SSL_PKEY_RSA_PSS_SIGN */
1500
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1501
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1502
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1503
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1504
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1505
    0, /* SSL_PKEY_ED25519 */
1506
    0, /* SSL_PKEY_ED448 */
1507
};
1508
1509
int ssl_setup_sigalgs(SSL_CTX *ctx)
1510
76.2k
{
1511
76.2k
    size_t i, cache_idx, sigalgs_len;
1512
76.2k
    const SIGALG_LOOKUP *lu;
1513
76.2k
    SIGALG_LOOKUP *cache = NULL;
1514
76.2k
    uint16_t *tls12_sigalgs_list = NULL;
1515
76.2k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1516
76.2k
    int ret = 0;
1517
1518
76.2k
    if (ctx == NULL)
1519
0
        goto err;
1520
1521
76.2k
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
1522
1523
76.2k
    cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
1524
76.2k
    if (cache == NULL || tmpkey == NULL)
1525
0
        goto err;
1526
1527
76.2k
    tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
1528
76.2k
    if (tls12_sigalgs_list == NULL)
1529
0
        goto err;
1530
1531
76.2k
    ERR_set_mark();
1532
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
1533
76.2k
    for (i = 0, lu = sigalg_lookup_tbl;
1534
2.44M
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1535
2.36M
        EVP_PKEY_CTX *pctx;
1536
1537
2.36M
        cache[i] = *lu;
1538
2.36M
        tls12_sigalgs_list[i] = tls12_sigalgs[i];
1539
1540
        /*
1541
         * Check hash is available.
1542
         * This test is not perfect. A provider could have support
1543
         * for a signature scheme, but not a particular hash. However the hash
1544
         * could be available from some other loaded provider. In that case it
1545
         * could be that the signature is available, and the hash is available
1546
         * independently - but not as a combination. We ignore this for now.
1547
         */
1548
2.36M
        if (lu->hash != NID_undef
1549
2.36M
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1550
381k
            cache[i].enabled = 0;
1551
381k
            continue;
1552
381k
        }
1553
1554
1.98M
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1555
0
            cache[i].enabled = 0;
1556
0
            continue;
1557
0
        }
1558
1.98M
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1559
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1560
1.98M
        if (pctx == NULL)
1561
0
            cache[i].enabled = 0;
1562
1.98M
        EVP_PKEY_CTX_free(pctx);
1563
1.98M
    }
1564
1565
    /* Now complete cache and tls12_sigalgs list with provider sig information */
1566
76.2k
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
1567
76.2k
    for (i = 0; i < ctx->sigalg_list_len; i++) {
1568
0
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
1569
0
        cache[cache_idx].name = si.name;
1570
0
        cache[cache_idx].sigalg = si.code_point;
1571
0
        tls12_sigalgs_list[cache_idx] = si.code_point;
1572
0
        cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
1573
0
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
1574
0
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
1575
0
        cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
1576
0
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
1577
0
        cache[cache_idx].curve = NID_undef;
1578
        /* all provided sigalgs are enabled by load */
1579
0
        cache[cache_idx].enabled = 1;
1580
0
        cache_idx++;
1581
0
    }
1582
76.2k
    ERR_pop_to_mark();
1583
76.2k
    ctx->sigalg_lookup_cache = cache;
1584
76.2k
    ctx->tls12_sigalgs = tls12_sigalgs_list;
1585
76.2k
    ctx->tls12_sigalgs_len = sigalgs_len;
1586
76.2k
    cache = NULL;
1587
76.2k
    tls12_sigalgs_list = NULL;
1588
1589
76.2k
    ret = 1;
1590
76.2k
 err:
1591
76.2k
    OPENSSL_free(cache);
1592
76.2k
    OPENSSL_free(tls12_sigalgs_list);
1593
76.2k
    EVP_PKEY_free(tmpkey);
1594
76.2k
    return ret;
1595
76.2k
}
1596
1597
/* Lookup TLS signature algorithm */
1598
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
1599
                                               uint16_t sigalg)
1600
13.5M
{
1601
13.5M
    size_t i;
1602
13.5M
    const SIGALG_LOOKUP *lu;
1603
1604
13.5M
    for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
1605
216M
         i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1606
215M
         lu++, i++) {
1607
215M
        if (lu->sigalg == sigalg) {
1608
13.2M
            if (!lu->enabled)
1609
1.37M
                return NULL;
1610
11.8M
            return lu;
1611
13.2M
        }
1612
215M
    }
1613
301k
    return NULL;
1614
13.5M
}
1615
/* Lookup hash: return 0 if invalid or not enabled */
1616
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1617
3.68M
{
1618
3.68M
    const EVP_MD *md;
1619
1620
3.68M
    if (lu == NULL)
1621
0
        return 0;
1622
    /* lu->hash == NID_undef means no associated digest */
1623
3.68M
    if (lu->hash == NID_undef) {
1624
330k
        md = NULL;
1625
3.35M
    } else {
1626
3.35M
        md = ssl_md(ctx, lu->hash_idx);
1627
3.35M
        if (md == NULL)
1628
0
            return 0;
1629
3.35M
    }
1630
3.68M
    if (pmd)
1631
3.61M
        *pmd = md;
1632
3.68M
    return 1;
1633
3.68M
}
1634
1635
/*
1636
 * Check if key is large enough to generate RSA-PSS signature.
1637
 *
1638
 * The key must greater than or equal to 2 * hash length + 2.
1639
 * SHA512 has a hash length of 64 bytes, which is incompatible
1640
 * with a 128 byte (1024 bit) key.
1641
 */
1642
424
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1643
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1644
                                      const SIGALG_LOOKUP *lu)
1645
424
{
1646
424
    const EVP_MD *md;
1647
1648
424
    if (pkey == NULL)
1649
0
        return 0;
1650
424
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1651
0
        return 0;
1652
424
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1653
0
        return 0;
1654
424
    return 1;
1655
424
}
1656
1657
/*
1658
 * Returns a signature algorithm when the peer did not send a list of supported
1659
 * signature algorithms. The signature algorithm is fixed for the certificate
1660
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1661
 * certificate type from |s| will be used.
1662
 * Returns the signature algorithm to use, or NULL on error.
1663
 */
1664
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
1665
                                                   int idx)
1666
228k
{
1667
228k
    if (idx == -1) {
1668
17.7k
        if (s->server) {
1669
17.7k
            size_t i;
1670
1671
            /* Work out index corresponding to ciphersuite */
1672
22.1k
            for (i = 0; i < s->ssl_pkey_num; i++) {
1673
22.1k
                const SSL_CERT_LOOKUP *clu
1674
22.1k
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
1675
1676
22.1k
                if (clu == NULL)
1677
0
                    continue;
1678
22.1k
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1679
17.7k
                    idx = i;
1680
17.7k
                    break;
1681
17.7k
                }
1682
22.1k
            }
1683
1684
            /*
1685
             * Some GOST ciphersuites allow more than one signature algorithms
1686
             * */
1687
17.7k
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1688
0
                int real_idx;
1689
1690
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1691
0
                     real_idx--) {
1692
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1693
0
                        idx = real_idx;
1694
0
                        break;
1695
0
                    }
1696
0
                }
1697
0
            }
1698
            /*
1699
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1700
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1701
             */
1702
17.7k
            else if (idx == SSL_PKEY_GOST12_256) {
1703
0
                int real_idx;
1704
1705
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1706
0
                     real_idx--) {
1707
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
1708
0
                         idx = real_idx;
1709
0
                         break;
1710
0
                     }
1711
0
                }
1712
0
            }
1713
17.7k
        } else {
1714
0
            idx = s->cert->key - s->cert->pkeys;
1715
0
        }
1716
17.7k
    }
1717
228k
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1718
25.1k
        return NULL;
1719
1720
203k
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1721
189k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1722
1723
189k
        if (lu == NULL)
1724
122k
            return NULL;
1725
66.8k
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
1726
0
            return NULL;
1727
66.8k
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1728
0
            return NULL;
1729
66.8k
        return lu;
1730
66.8k
    }
1731
13.6k
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1732
0
        return NULL;
1733
13.6k
    return &legacy_rsa_sigalg;
1734
13.6k
}
1735
/* Set peer sigalg based key type */
1736
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
1737
1.36k
{
1738
1.36k
    size_t idx;
1739
1.36k
    const SIGALG_LOOKUP *lu;
1740
1741
1.36k
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
1742
0
        return 0;
1743
1.36k
    lu = tls1_get_legacy_sigalg(s, idx);
1744
1.36k
    if (lu == NULL)
1745
9
        return 0;
1746
1.35k
    s->s3.tmp.peer_sigalg = lu;
1747
1.35k
    return 1;
1748
1.36k
}
1749
1750
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
1751
489k
{
1752
    /*
1753
     * If Suite B mode use Suite B sigalgs only, ignore any other
1754
     * preferences.
1755
     */
1756
489k
    switch (tls1_suiteb(s)) {
1757
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
1758
0
        *psigs = suiteb_sigalgs;
1759
0
        return OSSL_NELEM(suiteb_sigalgs);
1760
1761
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1762
0
        *psigs = suiteb_sigalgs;
1763
0
        return 1;
1764
1765
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
1766
0
        *psigs = suiteb_sigalgs + 1;
1767
0
        return 1;
1768
489k
    }
1769
    /*
1770
     *  We use client_sigalgs (if not NULL) if we're a server
1771
     *  and sending a certificate request or if we're a client and
1772
     *  determining which shared algorithm to use.
1773
     */
1774
489k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1775
0
        *psigs = s->cert->client_sigalgs;
1776
0
        return s->cert->client_sigalgslen;
1777
489k
    } else if (s->cert->conf_sigalgs) {
1778
0
        *psigs = s->cert->conf_sigalgs;
1779
0
        return s->cert->conf_sigalgslen;
1780
489k
    } else {
1781
489k
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1782
489k
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1783
489k
    }
1784
489k
}
1785
1786
/*
1787
 * Called by servers only. Checks that we have a sig alg that supports the
1788
 * specified EC curve.
1789
 */
1790
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
1791
0
{
1792
0
   const uint16_t *sigs;
1793
0
   size_t siglen, i;
1794
1795
0
    if (s->cert->conf_sigalgs) {
1796
0
        sigs = s->cert->conf_sigalgs;
1797
0
        siglen = s->cert->conf_sigalgslen;
1798
0
    } else {
1799
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1800
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1801
0
    }
1802
1803
0
    for (i = 0; i < siglen; i++) {
1804
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1805
1806
0
        if (lu == NULL)
1807
0
            continue;
1808
0
        if (lu->sig == EVP_PKEY_EC
1809
0
                && lu->curve != NID_undef
1810
0
                && curve == lu->curve)
1811
0
            return 1;
1812
0
    }
1813
1814
0
    return 0;
1815
0
}
1816
1817
/*
1818
 * Return the number of security bits for the signature algorithm, or 0 on
1819
 * error.
1820
 */
1821
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1822
1.15M
{
1823
1.15M
    const EVP_MD *md = NULL;
1824
1.15M
    int secbits = 0;
1825
1826
1.15M
    if (!tls1_lookup_md(ctx, lu, &md))
1827
0
        return 0;
1828
1.15M
    if (md != NULL)
1829
1.07M
    {
1830
1.07M
        int md_type = EVP_MD_get_type(md);
1831
1832
        /* Security bits: half digest bits */
1833
1.07M
        secbits = EVP_MD_get_size(md) * 4;
1834
        /*
1835
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
1836
         * they're no longer accepted at security level 1. The real values don't
1837
         * really matter as long as they're lower than 80, which is our
1838
         * security level 1.
1839
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1840
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1841
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1842
         * puts a chosen-prefix attack for MD5 at 2^39.
1843
         */
1844
1.07M
        if (md_type == NID_sha1)
1845
84.3k
            secbits = 64;
1846
990k
        else if (md_type == NID_md5_sha1)
1847
4.25k
            secbits = 67;
1848
986k
        else if (md_type == NID_md5)
1849
0
            secbits = 39;
1850
1.07M
    } else {
1851
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1852
78.3k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1853
37.6k
            secbits = 128;
1854
40.6k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1855
40.6k
            secbits = 224;
1856
78.3k
    }
1857
    /*
1858
     * For provider-based sigalgs we have secbits information available
1859
     * in the (provider-loaded) sigalg_list structure
1860
     */
1861
1.15M
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
1862
1.15M
               && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
1863
0
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
1864
0
    }
1865
1.15M
    return secbits;
1866
1.15M
}
1867
1868
/*
1869
 * Check signature algorithm is consistent with sent supported signature
1870
 * algorithms and if so set relevant digest and signature scheme in
1871
 * s.
1872
 */
1873
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
1874
10.9k
{
1875
10.9k
    const uint16_t *sent_sigs;
1876
10.9k
    const EVP_MD *md = NULL;
1877
10.9k
    char sigalgstr[2];
1878
10.9k
    size_t sent_sigslen, i, cidx;
1879
10.9k
    int pkeyid = -1;
1880
10.9k
    const SIGALG_LOOKUP *lu;
1881
10.9k
    int secbits = 0;
1882
1883
10.9k
    pkeyid = EVP_PKEY_get_id(pkey);
1884
1885
10.9k
    if (SSL_CONNECTION_IS_TLS13(s)) {
1886
        /* Disallow DSA for TLS 1.3 */
1887
9.48k
        if (pkeyid == EVP_PKEY_DSA) {
1888
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1889
0
            return 0;
1890
0
        }
1891
        /* Only allow PSS for TLS 1.3 */
1892
9.48k
        if (pkeyid == EVP_PKEY_RSA)
1893
9.47k
            pkeyid = EVP_PKEY_RSA_PSS;
1894
9.48k
    }
1895
10.9k
    lu = tls1_lookup_sigalg(s, sig);
1896
    /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
1897
10.9k
    if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
1898
0
        pkeyid = lu->sig;
1899
1900
    /* Should never happen */
1901
10.9k
    if (pkeyid == -1)
1902
0
        return -1;
1903
1904
    /*
1905
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1906
     * is consistent with signature: RSA keys can be used for RSA-PSS
1907
     */
1908
10.9k
    if (lu == NULL
1909
10.9k
        || (SSL_CONNECTION_IS_TLS13(s)
1910
10.8k
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1911
10.9k
        || (pkeyid != lu->sig
1912
10.8k
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1913
97
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1914
97
        return 0;
1915
97
    }
1916
    /* Check the sigalg is consistent with the key OID */
1917
10.8k
    if (!ssl_cert_lookup_by_nid(
1918
10.8k
                 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
1919
10.8k
                 &cidx, SSL_CONNECTION_GET_CTX(s))
1920
10.8k
            || lu->sig_idx != (int)cidx) {
1921
6
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1922
6
        return 0;
1923
6
    }
1924
1925
10.8k
    if (pkeyid == EVP_PKEY_EC) {
1926
1927
        /* Check point compression is permitted */
1928
120
        if (!tls1_check_pkey_comp(s, pkey)) {
1929
11
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1930
11
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
1931
11
            return 0;
1932
11
        }
1933
1934
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1935
109
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
1936
0
            int curve = ssl_get_EC_curve_nid(pkey);
1937
1938
0
            if (lu->curve != NID_undef && curve != lu->curve) {
1939
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1940
0
                return 0;
1941
0
            }
1942
0
        }
1943
109
        if (!SSL_CONNECTION_IS_TLS13(s)) {
1944
            /* Check curve matches extensions */
1945
109
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1946
6
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1947
6
                return 0;
1948
6
            }
1949
103
            if (tls1_suiteb(s)) {
1950
                /* Check sigalg matches a permissible Suite B value */
1951
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1952
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1953
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1954
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
1955
0
                    return 0;
1956
0
                }
1957
0
            }
1958
103
        }
1959
10.7k
    } else if (tls1_suiteb(s)) {
1960
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1961
0
        return 0;
1962
0
    }
1963
1964
    /* Check signature matches a type we sent */
1965
10.8k
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1966
141k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1967
141k
        if (sig == *sent_sigs)
1968
10.8k
            break;
1969
141k
    }
1970
    /* Allow fallback to SHA1 if not strict mode */
1971
10.8k
    if (i == sent_sigslen && (lu->hash != NID_sha1
1972
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1973
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1974
0
        return 0;
1975
0
    }
1976
10.8k
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
1977
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1978
0
        return 0;
1979
0
    }
1980
    /*
1981
     * Make sure security callback allows algorithm. For historical
1982
     * reasons we have to pass the sigalg as a two byte char array.
1983
     */
1984
10.8k
    sigalgstr[0] = (sig >> 8) & 0xff;
1985
10.8k
    sigalgstr[1] = sig & 0xff;
1986
10.8k
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
1987
10.8k
    if (secbits == 0 ||
1988
10.8k
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1989
10.8k
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
1990
10.8k
                      (void *)sigalgstr)) {
1991
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1992
0
        return 0;
1993
0
    }
1994
    /* Store the sigalg the peer uses */
1995
10.8k
    s->s3.tmp.peer_sigalg = lu;
1996
10.8k
    return 1;
1997
10.8k
}
1998
1999
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2000
0
{
2001
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2002
2003
0
    if (sc == NULL)
2004
0
        return 0;
2005
2006
0
    if (sc->s3.tmp.peer_sigalg == NULL)
2007
0
        return 0;
2008
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2009
0
    return 1;
2010
0
}
2011
2012
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2013
0
{
2014
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2015
2016
0
    if (sc == NULL)
2017
0
        return 0;
2018
2019
0
    if (sc->s3.tmp.sigalg == NULL)
2020
0
        return 0;
2021
0
    *pnid = sc->s3.tmp.sigalg->sig;
2022
0
    return 1;
2023
0
}
2024
2025
/*
2026
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2027
 * supported, doesn't appear in supported signature algorithms, isn't supported
2028
 * by the enabled protocol versions or by the security level.
2029
 *
2030
 * This function should only be used for checking which ciphers are supported
2031
 * by the client.
2032
 *
2033
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2034
 */
2035
int ssl_set_client_disabled(SSL_CONNECTION *s)
2036
324k
{
2037
324k
    s->s3.tmp.mask_a = 0;
2038
324k
    s->s3.tmp.mask_k = 0;
2039
324k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2040
324k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2041
324k
                                &s->s3.tmp.max_ver, NULL) != 0)
2042
0
        return 0;
2043
324k
#ifndef OPENSSL_NO_PSK
2044
    /* with PSK there must be client callback set */
2045
324k
    if (!s->psk_client_callback) {
2046
324k
        s->s3.tmp.mask_a |= SSL_aPSK;
2047
324k
        s->s3.tmp.mask_k |= SSL_PSK;
2048
324k
    }
2049
324k
#endif                          /* OPENSSL_NO_PSK */
2050
324k
#ifndef OPENSSL_NO_SRP
2051
324k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2052
324k
        s->s3.tmp.mask_a |= SSL_aSRP;
2053
324k
        s->s3.tmp.mask_k |= SSL_kSRP;
2054
324k
    }
2055
324k
#endif
2056
324k
    return 1;
2057
324k
}
2058
2059
/*
2060
 * ssl_cipher_disabled - check that a cipher is disabled or not
2061
 * @s: SSL connection that you want to use the cipher on
2062
 * @c: cipher to check
2063
 * @op: Security check that you want to do
2064
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2065
 *
2066
 * Returns 1 when it's disabled, 0 when enabled.
2067
 */
2068
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2069
                        int op, int ecdhe)
2070
24.0M
{
2071
24.0M
    int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2072
24.0M
    int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2073
2074
24.0M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2075
24.0M
        || c->algorithm_auth & s->s3.tmp.mask_a)
2076
10.0M
        return 1;
2077
14.0M
    if (s->s3.tmp.max_ver == 0)
2078
0
        return 1;
2079
2080
14.0M
    if (SSL_IS_QUIC_HANDSHAKE(s))
2081
        /* For QUIC, only allow these ciphersuites. */
2082
357k
        switch (SSL_CIPHER_get_id(c)) {
2083
113k
        case TLS1_3_CK_AES_128_GCM_SHA256:
2084
242k
        case TLS1_3_CK_AES_256_GCM_SHA384:
2085
357k
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2086
357k
            break;
2087
30
        default:
2088
30
            return 1;
2089
357k
        }
2090
2091
    /*
2092
     * For historical reasons we will allow ECHDE to be selected by a server
2093
     * in SSLv3 if we are a client
2094
     */
2095
14.0M
    if (minversion == TLS1_VERSION
2096
14.0M
            && ecdhe
2097
14.0M
            && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2098
5.67k
        minversion = SSL3_VERSION;
2099
2100
14.0M
    if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2101
14.0M
        || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2102
325k
        return 1;
2103
2104
13.7M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2105
14.0M
}
2106
2107
int tls_use_ticket(SSL_CONNECTION *s)
2108
145k
{
2109
145k
    if ((s->options & SSL_OP_NO_TICKET))
2110
0
        return 0;
2111
145k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2112
145k
}
2113
2114
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2115
24.3k
{
2116
24.3k
    size_t i;
2117
2118
    /* Clear any shared signature algorithms */
2119
24.3k
    OPENSSL_free(s->shared_sigalgs);
2120
24.3k
    s->shared_sigalgs = NULL;
2121
24.3k
    s->shared_sigalgslen = 0;
2122
2123
    /* Clear certificate validity flags */
2124
24.3k
    if (s->s3.tmp.valid_flags)
2125
114
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2126
24.2k
    else
2127
24.2k
        s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2128
24.3k
    if (s->s3.tmp.valid_flags == NULL)
2129
0
        return 0;
2130
    /*
2131
     * If peer sent no signature algorithms check to see if we support
2132
     * the default algorithm for each certificate type
2133
     */
2134
24.3k
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2135
24.3k
            && s->s3.tmp.peer_sigalgs == NULL) {
2136
18.4k
        const uint16_t *sent_sigs;
2137
18.4k
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2138
2139
209k
        for (i = 0; i < s->ssl_pkey_num; i++) {
2140
190k
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2141
190k
            size_t j;
2142
2143
190k
            if (lu == NULL)
2144
135k
                continue;
2145
            /* Check default matches a type we sent */
2146
1.25M
            for (j = 0; j < sent_sigslen; j++) {
2147
1.24M
                if (lu->sigalg == sent_sigs[j]) {
2148
48.9k
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2149
48.9k
                        break;
2150
48.9k
                }
2151
1.24M
            }
2152
55.2k
        }
2153
18.4k
        return 1;
2154
18.4k
    }
2155
2156
5.91k
    if (!tls1_process_sigalgs(s)) {
2157
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2158
0
        return 0;
2159
0
    }
2160
5.91k
    if (s->shared_sigalgs != NULL)
2161
5.81k
        return 1;
2162
2163
    /* Fatal error if no shared signature algorithms */
2164
5.91k
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2165
94
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2166
94
    return 0;
2167
5.91k
}
2168
2169
/*-
2170
 * Gets the ticket information supplied by the client if any.
2171
 *
2172
 *   hello: The parsed ClientHello data
2173
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
2174
 *       point to the resulting session.
2175
 */
2176
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2177
                                             CLIENTHELLO_MSG *hello,
2178
                                             SSL_SESSION **ret)
2179
23.2k
{
2180
23.2k
    size_t size;
2181
23.2k
    RAW_EXTENSION *ticketext;
2182
2183
23.2k
    *ret = NULL;
2184
23.2k
    s->ext.ticket_expected = 0;
2185
2186
    /*
2187
     * If tickets disabled or not supported by the protocol version
2188
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
2189
     * resumption.
2190
     */
2191
23.2k
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
2192
159
        return SSL_TICKET_NONE;
2193
2194
23.0k
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
2195
23.0k
    if (!ticketext->present)
2196
17.7k
        return SSL_TICKET_NONE;
2197
2198
5.27k
    size = PACKET_remaining(&ticketext->data);
2199
2200
5.27k
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
2201
5.27k
                              hello->session_id, hello->session_id_len, ret);
2202
23.0k
}
2203
2204
/*-
2205
 * tls_decrypt_ticket attempts to decrypt a session ticket.
2206
 *
2207
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
2208
 * expecting a pre-shared key ciphersuite, in which case we have no use for
2209
 * session tickets and one will never be decrypted, nor will
2210
 * s->ext.ticket_expected be set to 1.
2211
 *
2212
 * Side effects:
2213
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
2214
 *   a new session ticket to the client because the client indicated support
2215
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2216
 *   a session ticket or we couldn't use the one it gave us, or if
2217
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
2218
 *   Otherwise, s->ext.ticket_expected is set to 0.
2219
 *
2220
 *   etick: points to the body of the session ticket extension.
2221
 *   eticklen: the length of the session tickets extension.
2222
 *   sess_id: points at the session ID.
2223
 *   sesslen: the length of the session ID.
2224
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
2225
 *       point to the resulting session.
2226
 */
2227
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
2228
                                     const unsigned char *etick,
2229
                                     size_t eticklen,
2230
                                     const unsigned char *sess_id,
2231
                                     size_t sesslen, SSL_SESSION **psess)
2232
6.23k
{
2233
6.23k
    SSL_SESSION *sess = NULL;
2234
6.23k
    unsigned char *sdec;
2235
6.23k
    const unsigned char *p;
2236
6.23k
    int slen, ivlen, renew_ticket = 0, declen;
2237
6.23k
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
2238
6.23k
    size_t mlen;
2239
6.23k
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
2240
6.23k
    SSL_HMAC *hctx = NULL;
2241
6.23k
    EVP_CIPHER_CTX *ctx = NULL;
2242
6.23k
    SSL_CTX *tctx = s->session_ctx;
2243
6.23k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
2244
2245
6.23k
    if (eticklen == 0) {
2246
        /*
2247
         * The client will accept a ticket but doesn't currently have
2248
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
2249
         */
2250
3.47k
        ret = SSL_TICKET_EMPTY;
2251
3.47k
        goto end;
2252
3.47k
    }
2253
2.75k
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
2254
        /*
2255
         * Indicate that the ticket couldn't be decrypted rather than
2256
         * generating the session from ticket now, trigger
2257
         * abbreviated handshake based on external mechanism to
2258
         * calculate the master secret later.
2259
         */
2260
0
        ret = SSL_TICKET_NO_DECRYPT;
2261
0
        goto end;
2262
0
    }
2263
2264
    /* Need at least keyname + iv */
2265
2.75k
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
2266
800
        ret = SSL_TICKET_NO_DECRYPT;
2267
800
        goto end;
2268
800
    }
2269
2270
    /* Initialize session ticket encryption and HMAC contexts */
2271
1.95k
    hctx = ssl_hmac_new(tctx);
2272
1.95k
    if (hctx == NULL) {
2273
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2274
0
        goto end;
2275
0
    }
2276
1.95k
    ctx = EVP_CIPHER_CTX_new();
2277
1.95k
    if (ctx == NULL) {
2278
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2279
0
        goto end;
2280
0
    }
2281
1.95k
#ifndef OPENSSL_NO_DEPRECATED_3_0
2282
1.95k
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
2283
#else
2284
    if (tctx->ext.ticket_key_evp_cb != NULL)
2285
#endif
2286
0
    {
2287
0
        unsigned char *nctick = (unsigned char *)etick;
2288
0
        int rv = 0;
2289
2290
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
2291
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
2292
0
                                             nctick,
2293
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
2294
0
                                             ctx,
2295
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
2296
0
                                             0);
2297
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
2298
0
        else if (tctx->ext.ticket_key_cb != NULL)
2299
            /* if 0 is returned, write an empty ticket */
2300
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
2301
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
2302
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
2303
0
#endif
2304
0
        if (rv < 0) {
2305
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2306
0
            goto end;
2307
0
        }
2308
0
        if (rv == 0) {
2309
0
            ret = SSL_TICKET_NO_DECRYPT;
2310
0
            goto end;
2311
0
        }
2312
0
        if (rv == 2)
2313
0
            renew_ticket = 1;
2314
1.95k
    } else {
2315
1.95k
        EVP_CIPHER *aes256cbc = NULL;
2316
2317
        /* Check key name matches */
2318
1.95k
        if (memcmp(etick, tctx->ext.tick_key_name,
2319
1.95k
                   TLSEXT_KEYNAME_LENGTH) != 0) {
2320
619
            ret = SSL_TICKET_NO_DECRYPT;
2321
619
            goto end;
2322
619
        }
2323
2324
1.33k
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
2325
1.33k
                                     sctx->propq);
2326
1.33k
        if (aes256cbc == NULL
2327
1.33k
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
2328
1.33k
                             sizeof(tctx->ext.secure->tick_hmac_key),
2329
1.33k
                             "SHA256") <= 0
2330
1.33k
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
2331
1.33k
                                  tctx->ext.secure->tick_aes_key,
2332
1.33k
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
2333
0
            EVP_CIPHER_free(aes256cbc);
2334
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2335
0
            goto end;
2336
0
        }
2337
1.33k
        EVP_CIPHER_free(aes256cbc);
2338
1.33k
        if (SSL_CONNECTION_IS_TLS13(s))
2339
634
            renew_ticket = 1;
2340
1.33k
    }
2341
    /*
2342
     * Attempt to process session ticket, first conduct sanity and integrity
2343
     * checks on ticket.
2344
     */
2345
1.33k
    mlen = ssl_hmac_size(hctx);
2346
1.33k
    if (mlen == 0) {
2347
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2348
0
        goto end;
2349
0
    }
2350
2351
1.33k
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
2352
1.33k
    if (ivlen < 0) {
2353
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2354
0
        goto end;
2355
0
    }
2356
2357
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
2358
1.33k
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
2359
103
        ret = SSL_TICKET_NO_DECRYPT;
2360
103
        goto end;
2361
103
    }
2362
1.23k
    eticklen -= mlen;
2363
    /* Check HMAC of encrypted ticket */
2364
1.23k
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
2365
1.23k
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
2366
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2367
0
        goto end;
2368
0
    }
2369
2370
1.23k
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2371
179
        ret = SSL_TICKET_NO_DECRYPT;
2372
179
        goto end;
2373
179
    }
2374
    /* Attempt to decrypt session data */
2375
    /* Move p after IV to start of encrypted ticket, update length */
2376
1.05k
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
2377
1.05k
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
2378
1.05k
    sdec = OPENSSL_malloc(eticklen);
2379
1.05k
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
2380
1.05k
                                          (int)eticklen) <= 0) {
2381
0
        OPENSSL_free(sdec);
2382
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2383
0
        goto end;
2384
0
    }
2385
1.05k
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
2386
72
        OPENSSL_free(sdec);
2387
72
        ret = SSL_TICKET_NO_DECRYPT;
2388
72
        goto end;
2389
72
    }
2390
979
    slen += declen;
2391
979
    p = sdec;
2392
2393
979
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
2394
979
    slen -= p - sdec;
2395
979
    OPENSSL_free(sdec);
2396
979
    if (sess) {
2397
        /* Some additional consistency checks */
2398
813
        if (slen != 0) {
2399
12
            SSL_SESSION_free(sess);
2400
12
            sess = NULL;
2401
12
            ret = SSL_TICKET_NO_DECRYPT;
2402
12
            goto end;
2403
12
        }
2404
        /*
2405
         * The session ID, if non-empty, is used by some clients to detect
2406
         * that the ticket has been accepted. So we copy it to the session
2407
         * structure. If it is empty set length to zero as required by
2408
         * standard.
2409
         */
2410
801
        if (sesslen) {
2411
292
            memcpy(sess->session_id, sess_id, sesslen);
2412
292
            sess->session_id_length = sesslen;
2413
292
        }
2414
801
        if (renew_ticket)
2415
490
            ret = SSL_TICKET_SUCCESS_RENEW;
2416
311
        else
2417
311
            ret = SSL_TICKET_SUCCESS;
2418
801
        goto end;
2419
813
    }
2420
166
    ERR_clear_error();
2421
    /*
2422
     * For session parse failure, indicate that we need to send a new ticket.
2423
     */
2424
166
    ret = SSL_TICKET_NO_DECRYPT;
2425
2426
6.23k
 end:
2427
6.23k
    EVP_CIPHER_CTX_free(ctx);
2428
6.23k
    ssl_hmac_free(hctx);
2429
2430
    /*
2431
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
2432
     * detected above. The callback is responsible for checking |ret| before it
2433
     * performs any action
2434
     */
2435
6.23k
    if (s->session_ctx->decrypt_ticket_cb != NULL
2436
6.23k
            && (ret == SSL_TICKET_EMPTY
2437
0
                || ret == SSL_TICKET_NO_DECRYPT
2438
0
                || ret == SSL_TICKET_SUCCESS
2439
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
2440
0
        size_t keyname_len = eticklen;
2441
0
        int retcb;
2442
2443
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2444
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
2445
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
2446
0
                                                  sess, etick, keyname_len,
2447
0
                                                  ret,
2448
0
                                                  s->session_ctx->ticket_cb_data);
2449
0
        switch (retcb) {
2450
0
        case SSL_TICKET_RETURN_ABORT:
2451
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2452
0
            break;
2453
2454
0
        case SSL_TICKET_RETURN_IGNORE:
2455
0
            ret = SSL_TICKET_NONE;
2456
0
            SSL_SESSION_free(sess);
2457
0
            sess = NULL;
2458
0
            break;
2459
2460
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
2461
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2462
0
                ret = SSL_TICKET_NO_DECRYPT;
2463
            /* else the value of |ret| will already do the right thing */
2464
0
            SSL_SESSION_free(sess);
2465
0
            sess = NULL;
2466
0
            break;
2467
2468
0
        case SSL_TICKET_RETURN_USE:
2469
0
        case SSL_TICKET_RETURN_USE_RENEW:
2470
0
            if (ret != SSL_TICKET_SUCCESS
2471
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
2472
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
2473
0
            else if (retcb == SSL_TICKET_RETURN_USE)
2474
0
                ret = SSL_TICKET_SUCCESS;
2475
0
            else
2476
0
                ret = SSL_TICKET_SUCCESS_RENEW;
2477
0
            break;
2478
2479
0
        default:
2480
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2481
0
        }
2482
0
    }
2483
2484
6.23k
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
2485
6.23k
        switch (ret) {
2486
1.95k
        case SSL_TICKET_NO_DECRYPT:
2487
2.44k
        case SSL_TICKET_SUCCESS_RENEW:
2488
5.92k
        case SSL_TICKET_EMPTY:
2489
5.92k
            s->ext.ticket_expected = 1;
2490
6.23k
        }
2491
6.23k
    }
2492
2493
6.23k
    *psess = sess;
2494
2495
6.23k
    return ret;
2496
6.23k
}
2497
2498
/* Check to see if a signature algorithm is allowed */
2499
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
2500
                                const SIGALG_LOOKUP *lu)
2501
4.30M
{
2502
4.30M
    unsigned char sigalgstr[2];
2503
4.30M
    int secbits;
2504
2505
4.30M
    if (lu == NULL || !lu->enabled)
2506
0
        return 0;
2507
    /* DSA is not allowed in TLS 1.3 */
2508
4.30M
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2509
8.17k
        return 0;
2510
    /*
2511
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2512
     * spec
2513
     */
2514
4.29M
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
2515
4.29M
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
2516
4.29M
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2517
1.82M
            || lu->hash_idx == SSL_MD_MD5_IDX
2518
1.82M
            || lu->hash_idx == SSL_MD_SHA224_IDX))
2519
745k
        return 0;
2520
2521
    /* See if public key algorithm allowed */
2522
3.54M
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
2523
0
        return 0;
2524
2525
3.54M
    if (lu->sig == NID_id_GostR3410_2012_256
2526
3.54M
            || lu->sig == NID_id_GostR3410_2012_512
2527
3.54M
            || lu->sig == NID_id_GostR3410_2001) {
2528
        /* We never allow GOST sig algs on the server with TLSv1.3 */
2529
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
2530
0
            return 0;
2531
0
        if (!s->server
2532
0
                && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
2533
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2534
0
            int i, num;
2535
0
            STACK_OF(SSL_CIPHER) *sk;
2536
2537
            /*
2538
             * We're a client that could negotiate TLSv1.3. We only allow GOST
2539
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2540
             * ciphersuites enabled.
2541
             */
2542
2543
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2544
0
                return 0;
2545
2546
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
2547
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2548
0
            for (i = 0; i < num; i++) {
2549
0
                const SSL_CIPHER *c;
2550
2551
0
                c = sk_SSL_CIPHER_value(sk, i);
2552
                /* Skip disabled ciphers */
2553
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2554
0
                    continue;
2555
2556
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2557
0
                    break;
2558
0
            }
2559
0
            if (i == num)
2560
0
                return 0;
2561
0
        }
2562
0
    }
2563
2564
    /* Finally see if security callback allows it */
2565
3.54M
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2566
3.54M
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2567
3.54M
    sigalgstr[1] = lu->sigalg & 0xff;
2568
3.54M
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2569
3.54M
}
2570
2571
/*
2572
 * Get a mask of disabled public key algorithms based on supported signature
2573
 * algorithms. For example if no signature algorithm supports RSA then RSA is
2574
 * disabled.
2575
 */
2576
2577
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
2578
324k
{
2579
324k
    const uint16_t *sigalgs;
2580
324k
    size_t i, sigalgslen;
2581
324k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2582
    /*
2583
     * Go through all signature algorithms seeing if we support any
2584
     * in disabled_mask.
2585
     */
2586
324k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2587
9.97M
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
2588
9.65M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2589
9.65M
        const SSL_CERT_LOOKUP *clu;
2590
2591
9.65M
        if (lu == NULL)
2592
977k
            continue;
2593
2594
8.67M
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
2595
8.67M
                                     SSL_CONNECTION_GET_CTX(s));
2596
8.67M
        if (clu == NULL)
2597
0
                continue;
2598
2599
        /* If algorithm is disabled see if we can enable it */
2600
8.67M
        if ((clu->amask & disabled_mask) != 0
2601
8.67M
                && tls12_sigalg_allowed(s, op, lu))
2602
877k
            disabled_mask &= ~clu->amask;
2603
8.67M
    }
2604
324k
    *pmask_a |= disabled_mask;
2605
324k
}
2606
2607
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
2608
                       const uint16_t *psig, size_t psiglen)
2609
107k
{
2610
107k
    size_t i;
2611
107k
    int rv = 0;
2612
2613
3.30M
    for (i = 0; i < psiglen; i++, psig++) {
2614
3.19M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2615
2616
3.19M
        if (lu == NULL
2617
3.19M
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2618
789k
            continue;
2619
2.40M
        if (!WPACKET_put_bytes_u16(pkt, *psig))
2620
0
            return 0;
2621
        /*
2622
         * If TLS 1.3 must have at least one valid TLS 1.3 message
2623
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2624
         */
2625
2.40M
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
2626
107k
            || (lu->sig != EVP_PKEY_RSA
2627
0
                && lu->hash != NID_sha1
2628
0
                && lu->hash != NID_sha224)))
2629
107k
            rv = 1;
2630
2.40M
    }
2631
107k
    if (rv == 0)
2632
107k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2633
107k
    return rv;
2634
107k
}
2635
2636
/* Given preference and allowed sigalgs set shared sigalgs */
2637
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
2638
                                   const SIGALG_LOOKUP **shsig,
2639
                                   const uint16_t *pref, size_t preflen,
2640
                                   const uint16_t *allow, size_t allowlen)
2641
14.6k
{
2642
14.6k
    const uint16_t *ptmp, *atmp;
2643
14.6k
    size_t i, j, nmatch = 0;
2644
375k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2645
361k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2646
2647
        /* Skip disabled hashes or signature algorithms */
2648
361k
        if (lu == NULL
2649
361k
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2650
199k
            continue;
2651
2.50M
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2652
2.50M
            if (*ptmp == *atmp) {
2653
162k
                nmatch++;
2654
162k
                if (shsig)
2655
81.0k
                    *shsig++ = lu;
2656
162k
                break;
2657
162k
            }
2658
2.50M
        }
2659
162k
    }
2660
14.6k
    return nmatch;
2661
14.6k
}
2662
2663
/* Set shared signature algorithms for SSL structures */
2664
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
2665
7.40k
{
2666
7.40k
    const uint16_t *pref, *allow, *conf;
2667
7.40k
    size_t preflen, allowlen, conflen;
2668
7.40k
    size_t nmatch;
2669
7.40k
    const SIGALG_LOOKUP **salgs = NULL;
2670
7.40k
    CERT *c = s->cert;
2671
7.40k
    unsigned int is_suiteb = tls1_suiteb(s);
2672
2673
7.40k
    OPENSSL_free(s->shared_sigalgs);
2674
7.40k
    s->shared_sigalgs = NULL;
2675
7.40k
    s->shared_sigalgslen = 0;
2676
    /* If client use client signature algorithms if not NULL */
2677
7.40k
    if (!s->server && c->client_sigalgs && !is_suiteb) {
2678
0
        conf = c->client_sigalgs;
2679
0
        conflen = c->client_sigalgslen;
2680
7.40k
    } else if (c->conf_sigalgs && !is_suiteb) {
2681
0
        conf = c->conf_sigalgs;
2682
0
        conflen = c->conf_sigalgslen;
2683
0
    } else
2684
7.40k
        conflen = tls12_get_psigalgs(s, 0, &conf);
2685
7.40k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2686
0
        pref = conf;
2687
0
        preflen = conflen;
2688
0
        allow = s->s3.tmp.peer_sigalgs;
2689
0
        allowlen = s->s3.tmp.peer_sigalgslen;
2690
7.40k
    } else {
2691
7.40k
        allow = conf;
2692
7.40k
        allowlen = conflen;
2693
7.40k
        pref = s->s3.tmp.peer_sigalgs;
2694
7.40k
        preflen = s->s3.tmp.peer_sigalgslen;
2695
7.40k
    }
2696
7.40k
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2697
7.40k
    if (nmatch) {
2698
7.22k
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
2699
0
            return 0;
2700
7.22k
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2701
7.22k
    } else {
2702
178
        salgs = NULL;
2703
178
    }
2704
7.40k
    s->shared_sigalgs = salgs;
2705
7.40k
    s->shared_sigalgslen = nmatch;
2706
7.40k
    return 1;
2707
7.40k
}
2708
2709
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2710
23.7k
{
2711
23.7k
    unsigned int stmp;
2712
23.7k
    size_t size, i;
2713
23.7k
    uint16_t *buf;
2714
2715
23.7k
    size = PACKET_remaining(pkt);
2716
2717
    /* Invalid data length */
2718
23.7k
    if (size == 0 || (size & 1) != 0)
2719
53
        return 0;
2720
2721
23.6k
    size >>= 1;
2722
2723
23.6k
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
2724
0
        return 0;
2725
266k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2726
242k
        buf[i] = stmp;
2727
2728
23.6k
    if (i != size) {
2729
0
        OPENSSL_free(buf);
2730
0
        return 0;
2731
0
    }
2732
2733
23.6k
    OPENSSL_free(*pdest);
2734
23.6k
    *pdest = buf;
2735
23.6k
    *pdestlen = size;
2736
2737
23.6k
    return 1;
2738
23.6k
}
2739
2740
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
2741
9.04k
{
2742
    /* Extension ignored for inappropriate versions */
2743
9.04k
    if (!SSL_USE_SIGALGS(s))
2744
149
        return 1;
2745
    /* Should never happen */
2746
8.89k
    if (s->cert == NULL)
2747
0
        return 0;
2748
2749
8.89k
    if (cert)
2750
803
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2751
803
                             &s->s3.tmp.peer_cert_sigalgslen);
2752
8.09k
    else
2753
8.09k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2754
8.09k
                             &s->s3.tmp.peer_sigalgslen);
2755
2756
8.89k
}
2757
2758
/* Set preferred digest for each key type */
2759
2760
int tls1_process_sigalgs(SSL_CONNECTION *s)
2761
7.40k
{
2762
7.40k
    size_t i;
2763
7.40k
    uint32_t *pvalid = s->s3.tmp.valid_flags;
2764
2765
7.40k
    if (!tls1_set_shared_sigalgs(s))
2766
0
        return 0;
2767
2768
83.1k
    for (i = 0; i < s->ssl_pkey_num; i++)
2769
75.7k
        pvalid[i] = 0;
2770
2771
88.4k
    for (i = 0; i < s->shared_sigalgslen; i++) {
2772
81.0k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2773
81.0k
        int idx = sigptr->sig_idx;
2774
2775
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
2776
81.0k
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2777
2.41k
            continue;
2778
        /* If not disabled indicate we can explicitly sign */
2779
78.5k
        if (pvalid[idx] == 0
2780
78.5k
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
2781
13.6k
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2782
78.5k
    }
2783
7.40k
    return 1;
2784
7.40k
}
2785
2786
int SSL_get_sigalgs(SSL *s, int idx,
2787
                    int *psign, int *phash, int *psignhash,
2788
                    unsigned char *rsig, unsigned char *rhash)
2789
0
{
2790
0
    uint16_t *psig;
2791
0
    size_t numsigalgs;
2792
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2793
2794
0
    if (sc == NULL)
2795
0
        return 0;
2796
2797
0
    psig = sc->s3.tmp.peer_sigalgs;
2798
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
2799
2800
0
    if (psig == NULL || numsigalgs > INT_MAX)
2801
0
        return 0;
2802
0
    if (idx >= 0) {
2803
0
        const SIGALG_LOOKUP *lu;
2804
2805
0
        if (idx >= (int)numsigalgs)
2806
0
            return 0;
2807
0
        psig += idx;
2808
0
        if (rhash != NULL)
2809
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
2810
0
        if (rsig != NULL)
2811
0
            *rsig = (unsigned char)(*psig & 0xff);
2812
0
        lu = tls1_lookup_sigalg(sc, *psig);
2813
0
        if (psign != NULL)
2814
0
            *psign = lu != NULL ? lu->sig : NID_undef;
2815
0
        if (phash != NULL)
2816
0
            *phash = lu != NULL ? lu->hash : NID_undef;
2817
0
        if (psignhash != NULL)
2818
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2819
0
    }
2820
0
    return (int)numsigalgs;
2821
0
}
2822
2823
int SSL_get_shared_sigalgs(SSL *s, int idx,
2824
                           int *psign, int *phash, int *psignhash,
2825
                           unsigned char *rsig, unsigned char *rhash)
2826
0
{
2827
0
    const SIGALG_LOOKUP *shsigalgs;
2828
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2829
2830
0
    if (sc == NULL)
2831
0
        return 0;
2832
2833
0
    if (sc->shared_sigalgs == NULL
2834
0
        || idx < 0
2835
0
        || idx >= (int)sc->shared_sigalgslen
2836
0
        || sc->shared_sigalgslen > INT_MAX)
2837
0
        return 0;
2838
0
    shsigalgs = sc->shared_sigalgs[idx];
2839
0
    if (phash != NULL)
2840
0
        *phash = shsigalgs->hash;
2841
0
    if (psign != NULL)
2842
0
        *psign = shsigalgs->sig;
2843
0
    if (psignhash != NULL)
2844
0
        *psignhash = shsigalgs->sigandhash;
2845
0
    if (rsig != NULL)
2846
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2847
0
    if (rhash != NULL)
2848
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2849
0
    return (int)sc->shared_sigalgslen;
2850
0
}
2851
2852
/* Maximum possible number of unique entries in sigalgs array */
2853
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2854
2855
typedef struct {
2856
    size_t sigalgcnt;
2857
    /* TLSEXT_SIGALG_XXX values */
2858
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2859
    SSL_CTX *ctx;
2860
} sig_cb_st;
2861
2862
static void get_sigorhash(int *psig, int *phash, const char *str)
2863
0
{
2864
0
    if (strcmp(str, "RSA") == 0) {
2865
0
        *psig = EVP_PKEY_RSA;
2866
0
    } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2867
0
        *psig = EVP_PKEY_RSA_PSS;
2868
0
    } else if (strcmp(str, "DSA") == 0) {
2869
0
        *psig = EVP_PKEY_DSA;
2870
0
    } else if (strcmp(str, "ECDSA") == 0) {
2871
0
        *psig = EVP_PKEY_EC;
2872
0
    } else {
2873
0
        *phash = OBJ_sn2nid(str);
2874
0
        if (*phash == NID_undef)
2875
0
            *phash = OBJ_ln2nid(str);
2876
0
    }
2877
0
}
2878
/* Maximum length of a signature algorithm string component */
2879
#define TLS_MAX_SIGSTRING_LEN   40
2880
2881
static int sig_cb(const char *elem, int len, void *arg)
2882
0
{
2883
0
    sig_cb_st *sarg = arg;
2884
0
    size_t i = 0;
2885
0
    const SIGALG_LOOKUP *s;
2886
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2887
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
2888
0
    int ignore_unknown = 0;
2889
2890
0
    if (elem == NULL)
2891
0
        return 0;
2892
0
    if (elem[0] == '?') {
2893
0
        ignore_unknown = 1;
2894
0
        ++elem;
2895
0
        --len;
2896
0
    }
2897
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2898
0
        return 0;
2899
0
    if (len > (int)(sizeof(etmp) - 1))
2900
0
        return 0;
2901
0
    memcpy(etmp, elem, len);
2902
0
    etmp[len] = 0;
2903
0
    p = strchr(etmp, '+');
2904
    /*
2905
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2906
     * if there's no '+' in the provided name, look for the new-style combined
2907
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2908
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2909
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
2910
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
2911
     * in the table.
2912
     */
2913
0
    if (p == NULL) {
2914
        /* Load provider sigalgs */
2915
0
        if (sarg->ctx != NULL) {
2916
            /* Check if a provider supports the sigalg */
2917
0
            for (i = 0; i < sarg->ctx->sigalg_list_len; i++) {
2918
0
                if (sarg->ctx->sigalg_list[i].sigalg_name != NULL
2919
0
                    && strcmp(etmp,
2920
0
                              sarg->ctx->sigalg_list[i].sigalg_name) == 0) {
2921
0
                    sarg->sigalgs[sarg->sigalgcnt++] =
2922
0
                        sarg->ctx->sigalg_list[i].code_point;
2923
0
                    break;
2924
0
                }
2925
0
            }
2926
0
        }
2927
        /* Check the built-in sigalgs */
2928
0
        if (sarg->ctx == NULL || i == sarg->ctx->sigalg_list_len) {
2929
0
            for (i = 0, s = sigalg_lookup_tbl;
2930
0
                 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
2931
0
                if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2932
0
                    sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2933
0
                    break;
2934
0
                }
2935
0
            }
2936
0
            if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
2937
                /* Ignore unknown algorithms if ignore_unknown */
2938
0
                return ignore_unknown;
2939
0
            }
2940
0
        }
2941
0
    } else {
2942
0
        *p = 0;
2943
0
        p++;
2944
0
        if (*p == 0)
2945
0
            return 0;
2946
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
2947
0
        get_sigorhash(&sig_alg, &hash_alg, p);
2948
0
        if (sig_alg == NID_undef || hash_alg == NID_undef) {
2949
            /* Ignore unknown algorithms if ignore_unknown */
2950
0
            return ignore_unknown;
2951
0
        }
2952
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2953
0
             i++, s++) {
2954
0
            if (s->hash == hash_alg && s->sig == sig_alg) {
2955
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2956
0
                break;
2957
0
            }
2958
0
        }
2959
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
2960
            /* Ignore unknown algorithms if ignore_unknown */
2961
0
            return ignore_unknown;
2962
0
        }
2963
0
    }
2964
2965
    /* Ignore duplicates */
2966
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2967
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2968
0
            sarg->sigalgcnt--;
2969
0
            return 1;
2970
0
        }
2971
0
    }
2972
0
    return 1;
2973
0
}
2974
2975
/*
2976
 * Set supported signature algorithms based on a colon separated list of the
2977
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2978
 */
2979
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
2980
0
{
2981
0
    sig_cb_st sig;
2982
0
    sig.sigalgcnt = 0;
2983
2984
0
    if (ctx != NULL)
2985
0
        sig.ctx = ctx;
2986
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2987
0
        return 0;
2988
0
    if (sig.sigalgcnt == 0) {
2989
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
2990
0
                       "No valid signature algorithms in '%s'", str);
2991
0
        return 0;
2992
0
    }
2993
0
    if (c == NULL)
2994
0
        return 1;
2995
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2996
0
}
2997
2998
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2999
                     int client)
3000
0
{
3001
0
    uint16_t *sigalgs;
3002
3003
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3004
0
        return 0;
3005
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3006
3007
0
    if (client) {
3008
0
        OPENSSL_free(c->client_sigalgs);
3009
0
        c->client_sigalgs = sigalgs;
3010
0
        c->client_sigalgslen = salglen;
3011
0
    } else {
3012
0
        OPENSSL_free(c->conf_sigalgs);
3013
0
        c->conf_sigalgs = sigalgs;
3014
0
        c->conf_sigalgslen = salglen;
3015
0
    }
3016
3017
0
    return 1;
3018
0
}
3019
3020
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3021
0
{
3022
0
    uint16_t *sigalgs, *sptr;
3023
0
    size_t i;
3024
3025
0
    if (salglen & 1)
3026
0
        return 0;
3027
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3028
0
        return 0;
3029
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3030
0
        size_t j;
3031
0
        const SIGALG_LOOKUP *curr;
3032
0
        int md_id = *psig_nids++;
3033
0
        int sig_id = *psig_nids++;
3034
3035
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3036
0
             j++, curr++) {
3037
0
            if (curr->hash == md_id && curr->sig == sig_id) {
3038
0
                *sptr++ = curr->sigalg;
3039
0
                break;
3040
0
            }
3041
0
        }
3042
3043
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3044
0
            goto err;
3045
0
    }
3046
3047
0
    if (client) {
3048
0
        OPENSSL_free(c->client_sigalgs);
3049
0
        c->client_sigalgs = sigalgs;
3050
0
        c->client_sigalgslen = salglen / 2;
3051
0
    } else {
3052
0
        OPENSSL_free(c->conf_sigalgs);
3053
0
        c->conf_sigalgs = sigalgs;
3054
0
        c->conf_sigalgslen = salglen / 2;
3055
0
    }
3056
3057
0
    return 1;
3058
3059
0
 err:
3060
0
    OPENSSL_free(sigalgs);
3061
0
    return 0;
3062
0
}
3063
3064
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3065
0
{
3066
0
    int sig_nid, use_pc_sigalgs = 0;
3067
0
    size_t i;
3068
0
    const SIGALG_LOOKUP *sigalg;
3069
0
    size_t sigalgslen;
3070
3071
0
    if (default_nid == -1)
3072
0
        return 1;
3073
0
    sig_nid = X509_get_signature_nid(x);
3074
0
    if (default_nid)
3075
0
        return sig_nid == default_nid ? 1 : 0;
3076
3077
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3078
        /*
3079
         * If we're in TLSv1.3 then we only get here if we're checking the
3080
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3081
         * otherwise we default to normal sigalgs.
3082
         */
3083
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3084
0
        use_pc_sigalgs = 1;
3085
0
    } else {
3086
0
        sigalgslen = s->shared_sigalgslen;
3087
0
    }
3088
0
    for (i = 0; i < sigalgslen; i++) {
3089
0
        sigalg = use_pc_sigalgs
3090
0
                 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
3091
0
                 : s->shared_sigalgs[i];
3092
0
        if (sigalg != NULL && sig_nid == sigalg->sigandhash)
3093
0
            return 1;
3094
0
    }
3095
0
    return 0;
3096
0
}
3097
3098
/* Check to see if a certificate issuer name matches list of CA names */
3099
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3100
0
{
3101
0
    const X509_NAME *nm;
3102
0
    int i;
3103
0
    nm = X509_get_issuer_name(x);
3104
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
3105
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3106
0
            return 1;
3107
0
    }
3108
0
    return 0;
3109
0
}
3110
3111
/*
3112
 * Check certificate chain is consistent with TLS extensions and is usable by
3113
 * server. This servers two purposes: it allows users to check chains before
3114
 * passing them to the server and it allows the server to check chains before
3115
 * attempting to use them.
3116
 */
3117
3118
/* Flags which need to be set for a certificate when strict mode not set */
3119
3120
#define CERT_PKEY_VALID_FLAGS \
3121
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3122
/* Strict mode flags */
3123
#define CERT_PKEY_STRICT_FLAGS \
3124
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3125
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3126
3127
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3128
                     STACK_OF(X509) *chain, int idx)
3129
192k
{
3130
192k
    int i;
3131
192k
    int rv = 0;
3132
192k
    int check_flags = 0, strict_mode;
3133
192k
    CERT_PKEY *cpk = NULL;
3134
192k
    CERT *c = s->cert;
3135
192k
    uint32_t *pvalid;
3136
192k
    unsigned int suiteb_flags = tls1_suiteb(s);
3137
3138
    /*
3139
     * Meaning of idx:
3140
     * idx == -1 means SSL_check_chain() invocation
3141
     * idx == -2 means checking client certificate chains
3142
     * idx >= 0 means checking SSL_PKEY index
3143
     *
3144
     * For RPK, where there may be no cert, we ignore -1
3145
     */
3146
192k
    if (idx != -1) {
3147
192k
        if (idx == -2) {
3148
0
            cpk = c->key;
3149
0
            idx = (int)(cpk - c->pkeys);
3150
0
        } else
3151
192k
            cpk = c->pkeys + idx;
3152
192k
        pvalid = s->s3.tmp.valid_flags + idx;
3153
192k
        x = cpk->x509;
3154
192k
        pk = cpk->privatekey;
3155
192k
        chain = cpk->chain;
3156
192k
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3157
192k
        if (tls12_rpk_and_privkey(s, idx)) {
3158
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
3159
0
                return 0;
3160
0
            *pvalid = rv = CERT_PKEY_RPK;
3161
0
            return rv;
3162
0
        }
3163
        /* If no cert or key, forget it */
3164
192k
        if (x == NULL || pk == NULL)
3165
128k
            goto end;
3166
192k
    } else {
3167
0
        size_t certidx;
3168
3169
0
        if (x == NULL || pk == NULL)
3170
0
            return 0;
3171
3172
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
3173
0
                                    SSL_CONNECTION_GET_CTX(s)) == NULL)
3174
0
            return 0;
3175
0
        idx = certidx;
3176
0
        pvalid = s->s3.tmp.valid_flags + idx;
3177
3178
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3179
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
3180
0
        else
3181
0
            check_flags = CERT_PKEY_VALID_FLAGS;
3182
0
        strict_mode = 1;
3183
0
    }
3184
3185
64.1k
    if (suiteb_flags) {
3186
0
        int ok;
3187
0
        if (check_flags)
3188
0
            check_flags |= CERT_PKEY_SUITEB;
3189
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3190
0
        if (ok == X509_V_OK)
3191
0
            rv |= CERT_PKEY_SUITEB;
3192
0
        else if (!check_flags)
3193
0
            goto end;
3194
0
    }
3195
3196
    /*
3197
     * Check all signature algorithms are consistent with signature
3198
     * algorithms extension if TLS 1.2 or later and strict mode.
3199
     */
3200
64.1k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
3201
64.1k
        && strict_mode) {
3202
0
        int default_nid;
3203
0
        int rsign = 0;
3204
3205
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
3206
0
                || s->s3.tmp.peer_sigalgs != NULL) {
3207
0
            default_nid = 0;
3208
        /* If no sigalgs extension use defaults from RFC5246 */
3209
0
        } else {
3210
0
            switch (idx) {
3211
0
            case SSL_PKEY_RSA:
3212
0
                rsign = EVP_PKEY_RSA;
3213
0
                default_nid = NID_sha1WithRSAEncryption;
3214
0
                break;
3215
3216
0
            case SSL_PKEY_DSA_SIGN:
3217
0
                rsign = EVP_PKEY_DSA;
3218
0
                default_nid = NID_dsaWithSHA1;
3219
0
                break;
3220
3221
0
            case SSL_PKEY_ECC:
3222
0
                rsign = EVP_PKEY_EC;
3223
0
                default_nid = NID_ecdsa_with_SHA1;
3224
0
                break;
3225
3226
0
            case SSL_PKEY_GOST01:
3227
0
                rsign = NID_id_GostR3410_2001;
3228
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
3229
0
                break;
3230
3231
0
            case SSL_PKEY_GOST12_256:
3232
0
                rsign = NID_id_GostR3410_2012_256;
3233
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
3234
0
                break;
3235
3236
0
            case SSL_PKEY_GOST12_512:
3237
0
                rsign = NID_id_GostR3410_2012_512;
3238
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
3239
0
                break;
3240
3241
0
            default:
3242
0
                default_nid = -1;
3243
0
                break;
3244
0
            }
3245
0
        }
3246
        /*
3247
         * If peer sent no signature algorithms extension and we have set
3248
         * preferred signature algorithms check we support sha1.
3249
         */
3250
0
        if (default_nid > 0 && c->conf_sigalgs) {
3251
0
            size_t j;
3252
0
            const uint16_t *p = c->conf_sigalgs;
3253
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
3254
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
3255
3256
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
3257
0
                    break;
3258
0
            }
3259
0
            if (j == c->conf_sigalgslen) {
3260
0
                if (check_flags)
3261
0
                    goto skip_sigs;
3262
0
                else
3263
0
                    goto end;
3264
0
            }
3265
0
        }
3266
        /* Check signature algorithm of each cert in chain */
3267
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
3268
            /*
3269
             * We only get here if the application has called SSL_check_chain(),
3270
             * so check_flags is always set.
3271
             */
3272
0
            if (find_sig_alg(s, x, pk) != NULL)
3273
0
                rv |= CERT_PKEY_EE_SIGNATURE;
3274
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
3275
0
            if (!check_flags)
3276
0
                goto end;
3277
0
        } else
3278
0
            rv |= CERT_PKEY_EE_SIGNATURE;
3279
0
        rv |= CERT_PKEY_CA_SIGNATURE;
3280
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3281
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
3282
0
                if (check_flags) {
3283
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
3284
0
                    break;
3285
0
                } else
3286
0
                    goto end;
3287
0
            }
3288
0
        }
3289
0
    }
3290
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
3291
64.1k
    else if (check_flags)
3292
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
3293
64.1k
 skip_sigs:
3294
    /* Check cert parameters are consistent */
3295
64.1k
    if (tls1_check_cert_param(s, x, 1))
3296
58.3k
        rv |= CERT_PKEY_EE_PARAM;
3297
5.82k
    else if (!check_flags)
3298
5.82k
        goto end;
3299
58.3k
    if (!s->server)
3300
0
        rv |= CERT_PKEY_CA_PARAM;
3301
    /* In strict mode check rest of chain too */
3302
58.3k
    else if (strict_mode) {
3303
0
        rv |= CERT_PKEY_CA_PARAM;
3304
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3305
0
            X509 *ca = sk_X509_value(chain, i);
3306
0
            if (!tls1_check_cert_param(s, ca, 0)) {
3307
0
                if (check_flags) {
3308
0
                    rv &= ~CERT_PKEY_CA_PARAM;
3309
0
                    break;
3310
0
                } else
3311
0
                    goto end;
3312
0
            }
3313
0
        }
3314
0
    }
3315
58.3k
    if (!s->server && strict_mode) {
3316
0
        STACK_OF(X509_NAME) *ca_dn;
3317
0
        int check_type = 0;
3318
3319
0
        if (EVP_PKEY_is_a(pk, "RSA"))
3320
0
            check_type = TLS_CT_RSA_SIGN;
3321
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
3322
0
            check_type = TLS_CT_DSS_SIGN;
3323
0
        else if (EVP_PKEY_is_a(pk, "EC"))
3324
0
            check_type = TLS_CT_ECDSA_SIGN;
3325
3326
0
        if (check_type) {
3327
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
3328
0
            size_t j;
3329
3330
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
3331
0
                if (*ctypes == check_type) {
3332
0
                    rv |= CERT_PKEY_CERT_TYPE;
3333
0
                    break;
3334
0
                }
3335
0
            }
3336
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
3337
0
                goto end;
3338
0
        } else {
3339
0
            rv |= CERT_PKEY_CERT_TYPE;
3340
0
        }
3341
3342
0
        ca_dn = s->s3.tmp.peer_ca_names;
3343
3344
0
        if (ca_dn == NULL
3345
0
            || sk_X509_NAME_num(ca_dn) == 0
3346
0
            || ssl_check_ca_name(ca_dn, x))
3347
0
            rv |= CERT_PKEY_ISSUER_NAME;
3348
0
        else
3349
0
            for (i = 0; i < sk_X509_num(chain); i++) {
3350
0
                X509 *xtmp = sk_X509_value(chain, i);
3351
3352
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
3353
0
                    rv |= CERT_PKEY_ISSUER_NAME;
3354
0
                    break;
3355
0
                }
3356
0
            }
3357
3358
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
3359
0
            goto end;
3360
0
    } else
3361
58.3k
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
3362
3363
58.3k
    if (!check_flags || (rv & check_flags) == check_flags)
3364
58.3k
        rv |= CERT_PKEY_VALID;
3365
3366
192k
 end:
3367
3368
192k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
3369
76.0k
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
3370
116k
    else
3371
116k
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
3372
3373
    /*
3374
     * When checking a CERT_PKEY structure all flags are irrelevant if the
3375
     * chain is invalid.
3376
     */
3377
192k
    if (!check_flags) {
3378
192k
        if (rv & CERT_PKEY_VALID) {
3379
58.3k
            *pvalid = rv;
3380
134k
        } else {
3381
            /* Preserve sign and explicit sign flag, clear rest */
3382
134k
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3383
134k
            return 0;
3384
134k
        }
3385
192k
    }
3386
58.3k
    return rv;
3387
192k
}
3388
3389
/* Set validity of certificates in an SSL structure */
3390
void tls1_set_cert_validity(SSL_CONNECTION *s)
3391
23.8k
{
3392
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
3393
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
3394
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
3395
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
3396
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
3397
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
3398
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
3399
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
3400
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
3401
23.8k
}
3402
3403
/* User level utility function to check a chain is suitable */
3404
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
3405
0
{
3406
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3407
3408
0
    if (sc == NULL)
3409
0
        return 0;
3410
3411
0
    return tls1_check_chain(sc, x, pk, chain, -1);
3412
0
}
3413
3414
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
3415
0
{
3416
0
    EVP_PKEY *dhp = NULL;
3417
0
    BIGNUM *p;
3418
0
    int dh_secbits = 80, sec_level_bits;
3419
0
    EVP_PKEY_CTX *pctx = NULL;
3420
0
    OSSL_PARAM_BLD *tmpl = NULL;
3421
0
    OSSL_PARAM *params = NULL;
3422
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3423
3424
0
    if (s->cert->dh_tmp_auto != 2) {
3425
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
3426
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
3427
0
                dh_secbits = 128;
3428
0
            else
3429
0
                dh_secbits = 80;
3430
0
        } else {
3431
0
            if (s->s3.tmp.cert == NULL)
3432
0
                return NULL;
3433
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
3434
0
        }
3435
0
    }
3436
3437
    /* Do not pick a prime that is too weak for the current security level */
3438
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
3439
0
                                                 NULL, NULL);
3440
0
    if (dh_secbits < sec_level_bits)
3441
0
        dh_secbits = sec_level_bits;
3442
3443
0
    if (dh_secbits >= 192)
3444
0
        p = BN_get_rfc3526_prime_8192(NULL);
3445
0
    else if (dh_secbits >= 152)
3446
0
        p = BN_get_rfc3526_prime_4096(NULL);
3447
0
    else if (dh_secbits >= 128)
3448
0
        p = BN_get_rfc3526_prime_3072(NULL);
3449
0
    else if (dh_secbits >= 112)
3450
0
        p = BN_get_rfc3526_prime_2048(NULL);
3451
0
    else
3452
0
        p = BN_get_rfc2409_prime_1024(NULL);
3453
0
    if (p == NULL)
3454
0
        goto err;
3455
3456
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
3457
0
    if (pctx == NULL
3458
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
3459
0
        goto err;
3460
3461
0
    tmpl = OSSL_PARAM_BLD_new();
3462
0
    if (tmpl == NULL
3463
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
3464
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
3465
0
        goto err;
3466
3467
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
3468
0
    if (params == NULL
3469
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
3470
0
        goto err;
3471
3472
0
err:
3473
0
    OSSL_PARAM_free(params);
3474
0
    OSSL_PARAM_BLD_free(tmpl);
3475
0
    EVP_PKEY_CTX_free(pctx);
3476
0
    BN_free(p);
3477
0
    return dhp;
3478
0
}
3479
3480
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3481
                                 int op)
3482
136k
{
3483
136k
    int secbits = -1;
3484
136k
    EVP_PKEY *pkey = X509_get0_pubkey(x);
3485
3486
136k
    if (pkey) {
3487
        /*
3488
         * If no parameters this will return -1 and fail using the default
3489
         * security callback for any non-zero security level. This will
3490
         * reject keys which omit parameters but this only affects DSA and
3491
         * omission of parameters is never (?) done in practice.
3492
         */
3493
136k
        secbits = EVP_PKEY_get_security_bits(pkey);
3494
136k
    }
3495
136k
    if (s != NULL)
3496
20.2k
        return ssl_security(s, op, secbits, 0, x);
3497
116k
    else
3498
116k
        return ssl_ctx_security(ctx, op, secbits, 0, x);
3499
136k
}
3500
3501
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3502
                                 int op)
3503
136k
{
3504
    /* Lookup signature algorithm digest */
3505
136k
    int secbits, nid, pknid;
3506
3507
    /* Don't check signature if self signed */
3508
136k
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3509
136k
        return 1;
3510
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3511
0
        secbits = -1;
3512
    /* If digest NID not defined use signature NID */
3513
0
    if (nid == NID_undef)
3514
0
        nid = pknid;
3515
0
    if (s != NULL)
3516
0
        return ssl_security(s, op, secbits, nid, x);
3517
0
    else
3518
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
3519
0
}
3520
3521
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
3522
                      int is_ee)
3523
153k
{
3524
153k
    if (vfy)
3525
0
        vfy = SSL_SECOP_PEER;
3526
153k
    if (is_ee) {
3527
153k
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3528
0
            return SSL_R_EE_KEY_TOO_SMALL;
3529
153k
    } else {
3530
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3531
0
            return SSL_R_CA_KEY_TOO_SMALL;
3532
0
    }
3533
153k
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3534
0
        return SSL_R_CA_MD_TOO_WEAK;
3535
153k
    return 1;
3536
153k
}
3537
3538
/*
3539
 * Check security of a chain, if |sk| includes the end entity certificate then
3540
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3541
 * one to the peer. Return values: 1 if ok otherwise error code to use
3542
 */
3543
3544
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
3545
                            X509 *x, int vfy)
3546
22.5k
{
3547
22.5k
    int rv, start_idx, i;
3548
3549
22.5k
    if (x == NULL) {
3550
22.5k
        x = sk_X509_value(sk, 0);
3551
22.5k
        if (x == NULL)
3552
0
            return ERR_R_INTERNAL_ERROR;
3553
22.5k
        start_idx = 1;
3554
22.5k
    } else
3555
0
        start_idx = 0;
3556
3557
22.5k
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
3558
22.5k
    if (rv != 1)
3559
0
        return rv;
3560
3561
22.5k
    for (i = start_idx; i < sk_X509_num(sk); i++) {
3562
0
        x = sk_X509_value(sk, i);
3563
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
3564
0
        if (rv != 1)
3565
0
            return rv;
3566
0
    }
3567
22.5k
    return 1;
3568
22.5k
}
3569
3570
/*
3571
 * For TLS 1.2 servers check if we have a certificate which can be used
3572
 * with the signature algorithm "lu" and return index of certificate.
3573
 */
3574
3575
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
3576
                                     const SIGALG_LOOKUP *lu)
3577
24.7k
{
3578
24.7k
    int sig_idx = lu->sig_idx;
3579
24.7k
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
3580
24.7k
                                                        SSL_CONNECTION_GET_CTX(s));
3581
3582
    /* If not recognised or not supported by cipher mask it is not suitable */
3583
24.7k
    if (clu == NULL
3584
24.7k
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3585
24.7k
            || (clu->nid == EVP_PKEY_RSA_PSS
3586
16.0k
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3587
9.53k
        return -1;
3588
3589
    /* If doing RPK, the CERT_PKEY won't be "valid" */
3590
15.2k
    if (tls12_rpk_and_privkey(s, sig_idx))
3591
0
        return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
3592
3593
15.2k
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3594
15.2k
}
3595
3596
/*
3597
 * Checks the given cert against signature_algorithm_cert restrictions sent by
3598
 * the peer (if any) as well as whether the hash from the sigalg is usable with
3599
 * the key.
3600
 * Returns true if the cert is usable and false otherwise.
3601
 */
3602
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
3603
                             X509 *x, EVP_PKEY *pkey)
3604
40.2k
{
3605
40.2k
    const SIGALG_LOOKUP *lu;
3606
40.2k
    int mdnid, pknid, supported;
3607
40.2k
    size_t i;
3608
40.2k
    const char *mdname = NULL;
3609
40.2k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3610
3611
    /*
3612
     * If the given EVP_PKEY cannot support signing with this digest,
3613
     * the answer is simply 'no'.
3614
     */
3615
40.2k
    if (sig->hash != NID_undef)
3616
40.2k
        mdname = OBJ_nid2sn(sig->hash);
3617
40.2k
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
3618
40.2k
                                                    mdname,
3619
40.2k
                                                    sctx->propq);
3620
40.2k
    if (supported <= 0)
3621
0
        return 0;
3622
3623
    /*
3624
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
3625
     * on the sigalg with which the certificate was signed (by its issuer).
3626
     */
3627
40.2k
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3628
20.4k
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3629
0
            return 0;
3630
107k
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3631
87.5k
            lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3632
87.5k
            if (lu == NULL)
3633
60.4k
                continue;
3634
3635
            /*
3636
             * This does not differentiate between the
3637
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3638
             * have a chain here that lets us look at the key OID in the
3639
             * signing certificate.
3640
             */
3641
27.1k
            if (mdnid == lu->hash && pknid == lu->sig)
3642
41
                return 1;
3643
27.1k
        }
3644
20.4k
        return 0;
3645
20.4k
    }
3646
3647
    /*
3648
     * Without signat_algorithms_cert, any certificate for which we have
3649
     * a viable public key is permitted.
3650
     */
3651
19.7k
    return 1;
3652
40.2k
}
3653
3654
/*
3655
 * Returns true if |s| has a usable certificate configured for use
3656
 * with signature scheme |sig|.
3657
 * "Usable" includes a check for presence as well as applying
3658
 * the signature_algorithm_cert restrictions sent by the peer (if any).
3659
 * Returns false if no usable certificate is found.
3660
 */
3661
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
3662
40.5k
{
3663
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3664
40.5k
    if (idx == -1)
3665
6.72k
        idx = sig->sig_idx;
3666
40.5k
    if (!ssl_has_cert(s, idx))
3667
315
        return 0;
3668
3669
40.2k
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3670
40.2k
                             s->cert->pkeys[idx].privatekey);
3671
40.5k
}
3672
3673
/*
3674
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3675
 * specified signature scheme |sig|, or false otherwise.
3676
 */
3677
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
3678
                          EVP_PKEY *pkey)
3679
0
{
3680
0
    size_t idx;
3681
3682
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
3683
0
        return 0;
3684
3685
    /* Check the key is consistent with the sig alg */
3686
0
    if ((int)idx != sig->sig_idx)
3687
0
        return 0;
3688
3689
0
    return check_cert_usable(s, sig, x, pkey);
3690
0
}
3691
3692
/*
3693
 * Find a signature scheme that works with the supplied certificate |x| and key
3694
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3695
 * available certs/keys to find one that works.
3696
 */
3697
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
3698
                                         EVP_PKEY *pkey)
3699
2.19k
{
3700
2.19k
    const SIGALG_LOOKUP *lu = NULL;
3701
2.19k
    size_t i;
3702
2.19k
    int curve = -1;
3703
2.19k
    EVP_PKEY *tmppkey;
3704
2.19k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3705
3706
    /* Look for a shared sigalgs matching possible certificates */
3707
7.09k
    for (i = 0; i < s->shared_sigalgslen; i++) {
3708
6.98k
        lu = s->shared_sigalgs[i];
3709
3710
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3711
6.98k
        if (lu->hash == NID_sha1
3712
6.98k
            || lu->hash == NID_sha224
3713
6.98k
            || lu->sig == EVP_PKEY_DSA
3714
6.98k
            || lu->sig == EVP_PKEY_RSA)
3715
2.56k
            continue;
3716
        /* Check that we have a cert, and signature_algorithms_cert */
3717
4.42k
        if (!tls1_lookup_md(sctx, lu, NULL))
3718
0
            continue;
3719
4.42k
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3720
4.42k
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3721
243
            continue;
3722
3723
4.17k
        tmppkey = (pkey != NULL) ? pkey
3724
4.17k
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
3725
3726
4.17k
        if (lu->sig == EVP_PKEY_EC) {
3727
3.93k
            if (curve == -1)
3728
2.02k
                curve = ssl_get_EC_curve_nid(tmppkey);
3729
3.93k
            if (lu->curve != NID_undef && curve != lu->curve)
3730
2.08k
                continue;
3731
3.93k
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3732
            /* validate that key is large enough for the signature algorithm */
3733
247
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
3734
0
                continue;
3735
247
        }
3736
2.08k
        break;
3737
4.17k
    }
3738
3739
2.19k
    if (i == s->shared_sigalgslen)
3740
104
        return NULL;
3741
3742
2.08k
    return lu;
3743
2.19k
}
3744
3745
/*
3746
 * Choose an appropriate signature algorithm based on available certificates
3747
 * Sets chosen certificate and signature algorithm.
3748
 *
3749
 * For servers if we fail to find a required certificate it is a fatal error,
3750
 * an appropriate error code is set and a TLS alert is sent.
3751
 *
3752
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3753
 * a fatal error: we will either try another certificate or not present one
3754
 * to the server. In this case no error is set.
3755
 */
3756
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
3757
12.5k
{
3758
12.5k
    const SIGALG_LOOKUP *lu = NULL;
3759
12.5k
    int sig_idx = -1;
3760
3761
12.5k
    s->s3.tmp.cert = NULL;
3762
12.5k
    s->s3.tmp.sigalg = NULL;
3763
3764
12.5k
    if (SSL_CONNECTION_IS_TLS13(s)) {
3765
1.59k
        lu = find_sig_alg(s, NULL, NULL);
3766
1.59k
        if (lu == NULL) {
3767
77
            if (!fatalerrs)
3768
0
                return 1;
3769
77
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3770
77
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3771
77
            return 0;
3772
77
        }
3773
10.9k
    } else {
3774
        /* If ciphersuite doesn't require a cert nothing to do */
3775
10.9k
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3776
906
            return 1;
3777
10.0k
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3778
15
                return 1;
3779
3780
10.0k
        if (SSL_USE_SIGALGS(s)) {
3781
6.79k
            size_t i;
3782
6.79k
            if (s->s3.tmp.peer_sigalgs != NULL) {
3783
1.39k
                int curve = -1;
3784
1.39k
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3785
3786
                /* For Suite B need to match signature algorithm to curve */
3787
1.39k
                if (tls1_suiteb(s))
3788
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3789
0
                                                 .privatekey);
3790
3791
                /*
3792
                 * Find highest preference signature algorithm matching
3793
                 * cert type
3794
                 */
3795
12.2k
                for (i = 0; i < s->shared_sigalgslen; i++) {
3796
11.8k
                    lu = s->shared_sigalgs[i];
3797
3798
11.8k
                    if (s->server) {
3799
11.8k
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3800
5.30k
                            continue;
3801
11.8k
                    } else {
3802
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
3803
3804
0
                        sig_idx = lu->sig_idx;
3805
0
                        if (cc_idx != sig_idx)
3806
0
                            continue;
3807
0
                    }
3808
                    /* Check that we have a cert, and sig_algs_cert */
3809
6.50k
                    if (!has_usable_cert(s, lu, sig_idx))
3810
5.51k
                        continue;
3811
981
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
3812
                        /* validate that key is large enough for the signature algorithm */
3813
279
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3814
3815
279
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
3816
0
                            continue;
3817
279
                    }
3818
981
                    if (curve == -1 || lu->curve == curve)
3819
981
                        break;
3820
981
                }
3821
1.39k
#ifndef OPENSSL_NO_GOST
3822
                /*
3823
                 * Some Windows-based implementations do not send GOST algorithms indication
3824
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3825
                 * we have to assume GOST support.
3826
                 */
3827
1.39k
                if (i == s->shared_sigalgslen
3828
1.39k
                    && (s->s3.tmp.new_cipher->algorithm_auth
3829
412
                        & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
3830
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3831
0
                    if (!fatalerrs)
3832
0
                      return 1;
3833
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3834
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3835
0
                    return 0;
3836
0
                  } else {
3837
0
                    i = 0;
3838
0
                    sig_idx = lu->sig_idx;
3839
0
                  }
3840
0
                }
3841
1.39k
#endif
3842
1.39k
                if (i == s->shared_sigalgslen) {
3843
412
                    if (!fatalerrs)
3844
0
                        return 1;
3845
412
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3846
412
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3847
412
                    return 0;
3848
412
                }
3849
5.40k
            } else {
3850
                /*
3851
                 * If we have no sigalg use defaults
3852
                 */
3853
5.40k
                const uint16_t *sent_sigs;
3854
5.40k
                size_t sent_sigslen;
3855
3856
5.40k
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3857
0
                    if (!fatalerrs)
3858
0
                        return 1;
3859
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3860
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3861
0
                    return 0;
3862
0
                }
3863
3864
                /* Check signature matches a type we sent */
3865
5.40k
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3866
112k
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3867
112k
                    if (lu->sigalg == *sent_sigs
3868
112k
                            && has_usable_cert(s, lu, lu->sig_idx))
3869
5.40k
                        break;
3870
112k
                }
3871
5.40k
                if (i == sent_sigslen) {
3872
0
                    if (!fatalerrs)
3873
0
                        return 1;
3874
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3875
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
3876
0
                    return 0;
3877
0
                }
3878
5.40k
            }
3879
6.79k
        } else {
3880
3.25k
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3881
0
                if (!fatalerrs)
3882
0
                    return 1;
3883
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3884
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3885
0
                return 0;
3886
0
            }
3887
3.25k
        }
3888
10.0k
    }
3889
11.1k
    if (sig_idx == -1)
3890
10.1k
        sig_idx = lu->sig_idx;
3891
11.1k
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3892
11.1k
    s->cert->key = s->s3.tmp.cert;
3893
11.1k
    s->s3.tmp.sigalg = lu;
3894
11.1k
    return 1;
3895
12.5k
}
3896
3897
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3898
0
{
3899
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3900
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3901
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3902
0
        return 0;
3903
0
    }
3904
3905
0
    ctx->ext.max_fragment_len_mode = mode;
3906
0
    return 1;
3907
0
}
3908
3909
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3910
0
{
3911
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
3912
3913
0
    if (sc == NULL
3914
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
3915
0
        return 0;
3916
3917
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3918
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3919
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3920
0
        return 0;
3921
0
    }
3922
3923
0
    sc->ext.max_fragment_len_mode = mode;
3924
0
    return 1;
3925
0
}
3926
3927
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3928
0
{
3929
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
3930
0
        return TLSEXT_max_fragment_length_DISABLED;
3931
0
    return session->ext.max_fragment_len_mode;
3932
0
}
3933
3934
/*
3935
 * Helper functions for HMAC access with legacy support included.
3936
 */
3937
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3938
2.05k
{
3939
2.05k
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3940
2.05k
    EVP_MAC *mac = NULL;
3941
3942
2.05k
    if (ret == NULL)
3943
0
        return NULL;
3944
2.05k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3945
2.05k
    if (ctx->ext.ticket_key_evp_cb == NULL
3946
2.05k
            && ctx->ext.ticket_key_cb != NULL) {
3947
0
        if (!ssl_hmac_old_new(ret))
3948
0
            goto err;
3949
0
        return ret;
3950
0
    }
3951
2.05k
#endif
3952
2.05k
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3953
2.05k
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3954
0
        goto err;
3955
2.05k
    EVP_MAC_free(mac);
3956
2.05k
    return ret;
3957
0
 err:
3958
0
    EVP_MAC_CTX_free(ret->ctx);
3959
0
    EVP_MAC_free(mac);
3960
0
    OPENSSL_free(ret);
3961
0
    return NULL;
3962
2.05k
}
3963
3964
void ssl_hmac_free(SSL_HMAC *ctx)
3965
6.33k
{
3966
6.33k
    if (ctx != NULL) {
3967
2.05k
        EVP_MAC_CTX_free(ctx->ctx);
3968
2.05k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3969
2.05k
        ssl_hmac_old_free(ctx);
3970
2.05k
#endif
3971
2.05k
        OPENSSL_free(ctx);
3972
2.05k
    }
3973
6.33k
}
3974
3975
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3976
0
{
3977
0
    return ctx->ctx;
3978
0
}
3979
3980
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3981
1.43k
{
3982
1.43k
    OSSL_PARAM params[2], *p = params;
3983
3984
1.43k
    if (ctx->ctx != NULL) {
3985
1.43k
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3986
1.43k
        *p = OSSL_PARAM_construct_end();
3987
1.43k
        if (EVP_MAC_init(ctx->ctx, key, len, params))
3988
1.43k
            return 1;
3989
1.43k
    }
3990
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3991
0
    if (ctx->old_ctx != NULL)
3992
0
        return ssl_hmac_old_init(ctx, key, len, md);
3993
0
#endif
3994
0
    return 0;
3995
0
}
3996
3997
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3998
1.33k
{
3999
1.33k
    if (ctx->ctx != NULL)
4000
1.33k
        return EVP_MAC_update(ctx->ctx, data, len);
4001
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4002
0
    if (ctx->old_ctx != NULL)
4003
0
        return ssl_hmac_old_update(ctx, data, len);
4004
0
#endif
4005
0
    return 0;
4006
0
}
4007
4008
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4009
                   size_t max_size)
4010
1.33k
{
4011
1.33k
    if (ctx->ctx != NULL)
4012
1.33k
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
4013
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4014
0
    if (ctx->old_ctx != NULL)
4015
0
        return ssl_hmac_old_final(ctx, md, len);
4016
0
#endif
4017
0
    return 0;
4018
0
}
4019
4020
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4021
1.33k
{
4022
1.33k
    if (ctx->ctx != NULL)
4023
1.33k
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4024
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4025
0
    if (ctx->old_ctx != NULL)
4026
0
        return ssl_hmac_old_size(ctx);
4027
0
#endif
4028
0
    return 0;
4029
0
}
4030
4031
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4032
26.4k
{
4033
26.4k
    char gname[OSSL_MAX_NAME_SIZE];
4034
4035
26.4k
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4036
26.4k
        return OBJ_txt2nid(gname);
4037
4038
0
    return NID_undef;
4039
26.4k
}
4040
4041
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4042
                                     const unsigned char *enckey,
4043
                                     size_t enckeylen)
4044
27.2k
{
4045
27.2k
    if (EVP_PKEY_is_a(pkey, "DH")) {
4046
149
        int bits = EVP_PKEY_get_bits(pkey);
4047
4048
149
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4049
            /* the encoded key must be padded to the length of the p */
4050
12
            return 0;
4051
27.0k
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4052
190
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4053
190
            || enckey[0] != 0x04)
4054
44
            return 0;
4055
190
    }
4056
4057
27.1k
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4058
27.2k
}