Coverage Report

Created: 2025-08-28 07:07

/src/openssl34/ssl/t1_lib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <openssl/objects.h>
13
#include <openssl/evp.h>
14
#include <openssl/hmac.h>
15
#include <openssl/core_names.h>
16
#include <openssl/ocsp.h>
17
#include <openssl/conf.h>
18
#include <openssl/x509v3.h>
19
#include <openssl/dh.h>
20
#include <openssl/bn.h>
21
#include <openssl/provider.h>
22
#include <openssl/param_build.h>
23
#include "internal/nelem.h"
24
#include "internal/sizes.h"
25
#include "internal/tlsgroups.h"
26
#include "ssl_local.h"
27
#include "quic/quic_local.h"
28
#include <openssl/ct.h>
29
30
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
31
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
32
33
SSL3_ENC_METHOD const TLSv1_enc_data = {
34
    tls1_setup_key_block,
35
    tls1_generate_master_secret,
36
    tls1_change_cipher_state,
37
    tls1_final_finish_mac,
38
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40
    tls1_alert_code,
41
    tls1_export_keying_material,
42
    0,
43
    ssl3_set_handshake_header,
44
    tls_close_construct_packet,
45
    ssl3_handshake_write
46
};
47
48
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49
    tls1_setup_key_block,
50
    tls1_generate_master_secret,
51
    tls1_change_cipher_state,
52
    tls1_final_finish_mac,
53
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
54
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
55
    tls1_alert_code,
56
    tls1_export_keying_material,
57
    0,
58
    ssl3_set_handshake_header,
59
    tls_close_construct_packet,
60
    ssl3_handshake_write
61
};
62
63
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
64
    tls1_setup_key_block,
65
    tls1_generate_master_secret,
66
    tls1_change_cipher_state,
67
    tls1_final_finish_mac,
68
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
69
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
70
    tls1_alert_code,
71
    tls1_export_keying_material,
72
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
73
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
74
    ssl3_set_handshake_header,
75
    tls_close_construct_packet,
76
    ssl3_handshake_write
77
};
78
79
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
80
    tls13_setup_key_block,
81
    tls13_generate_master_secret,
82
    tls13_change_cipher_state,
83
    tls13_final_finish_mac,
84
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
85
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
86
    tls13_alert_code,
87
    tls13_export_keying_material,
88
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
89
    ssl3_set_handshake_header,
90
    tls_close_construct_packet,
91
    ssl3_handshake_write
92
};
93
94
OSSL_TIME tls1_default_timeout(void)
95
116k
{
96
    /*
97
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
98
     * http, the cache would over fill
99
     */
100
116k
    return ossl_seconds2time(60 * 60 * 2);
101
116k
}
102
103
int tls1_new(SSL *s)
104
116k
{
105
116k
    if (!ssl3_new(s))
106
0
        return 0;
107
116k
    if (!s->method->ssl_clear(s))
108
0
        return 0;
109
110
116k
    return 1;
111
116k
}
112
113
void tls1_free(SSL *s)
114
57.6k
{
115
57.6k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
116
117
57.6k
    if (sc == NULL)
118
0
        return;
119
120
57.6k
    OPENSSL_free(sc->ext.session_ticket);
121
57.6k
    ssl3_free(s);
122
57.6k
}
123
124
int tls1_clear(SSL *s)
125
250k
{
126
250k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
127
128
250k
    if (sc == NULL)
129
0
        return 0;
130
131
250k
    if (!ssl3_clear(s))
132
0
        return 0;
133
134
250k
    if (s->method->version == TLS_ANY_VERSION)
135
250k
        sc->version = TLS_MAX_VERSION_INTERNAL;
136
0
    else
137
0
        sc->version = s->method->version;
138
139
250k
    return 1;
140
250k
}
141
142
/* Legacy NID to group_id mapping. Only works for groups we know about */
143
static const struct {
144
    int nid;
145
    uint16_t group_id;
146
} nid_to_group[] = {
147
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
148
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
149
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
150
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
151
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
152
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
153
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
154
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
155
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
156
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
157
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
158
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
159
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
160
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
161
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
162
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
163
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
164
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
165
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
166
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
167
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
168
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
169
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
170
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
171
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
172
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
173
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
174
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
175
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
176
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
177
    {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
178
    {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
179
    {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
180
    {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
181
    {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
182
    {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
183
    {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
184
    {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
185
    {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
186
    {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
187
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
188
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
189
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
190
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
191
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
192
};
193
194
static const unsigned char ecformats_default[] = {
195
    TLSEXT_ECPOINTFORMAT_uncompressed,
196
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
197
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
198
};
199
200
/* The default curves */
201
static const uint16_t supported_groups_default[] = {
202
    OSSL_TLS_GROUP_ID_x25519,        /* X25519 (29) */
203
    OSSL_TLS_GROUP_ID_secp256r1,     /* secp256r1 (23) */
204
    OSSL_TLS_GROUP_ID_x448,          /* X448 (30) */
205
    OSSL_TLS_GROUP_ID_secp521r1,     /* secp521r1 (25) */
206
    OSSL_TLS_GROUP_ID_secp384r1,     /* secp384r1 (24) */
207
    OSSL_TLS_GROUP_ID_gc256A,        /* GC256A (34) */
208
    OSSL_TLS_GROUP_ID_gc256B,        /* GC256B (35) */
209
    OSSL_TLS_GROUP_ID_gc256C,        /* GC256C (36) */
210
    OSSL_TLS_GROUP_ID_gc256D,        /* GC256D (37) */
211
    OSSL_TLS_GROUP_ID_gc512A,        /* GC512A (38) */
212
    OSSL_TLS_GROUP_ID_gc512B,        /* GC512B (39) */
213
    OSSL_TLS_GROUP_ID_gc512C,        /* GC512C (40) */
214
    OSSL_TLS_GROUP_ID_ffdhe2048,     /* ffdhe2048 (0x100) */
215
    OSSL_TLS_GROUP_ID_ffdhe3072,     /* ffdhe3072 (0x101) */
216
    OSSL_TLS_GROUP_ID_ffdhe4096,     /* ffdhe4096 (0x102) */
217
    OSSL_TLS_GROUP_ID_ffdhe6144,     /* ffdhe6144 (0x103) */
218
    OSSL_TLS_GROUP_ID_ffdhe8192,     /* ffdhe8192 (0x104) */
219
};
220
221
static const uint16_t suiteb_curves[] = {
222
    OSSL_TLS_GROUP_ID_secp256r1,
223
    OSSL_TLS_GROUP_ID_secp384r1,
224
};
225
226
struct provider_ctx_data_st {
227
    SSL_CTX *ctx;
228
    OSSL_PROVIDER *provider;
229
};
230
231
1.03M
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
232
static OSSL_CALLBACK add_provider_groups;
233
static int add_provider_groups(const OSSL_PARAM params[], void *data)
234
4.61M
{
235
4.61M
    struct provider_ctx_data_st *pgd = data;
236
4.61M
    SSL_CTX *ctx = pgd->ctx;
237
4.61M
    OSSL_PROVIDER *provider = pgd->provider;
238
4.61M
    const OSSL_PARAM *p;
239
4.61M
    TLS_GROUP_INFO *ginf = NULL;
240
4.61M
    EVP_KEYMGMT *keymgmt;
241
4.61M
    unsigned int gid;
242
4.61M
    unsigned int is_kem = 0;
243
4.61M
    int ret = 0;
244
245
4.61M
    if (ctx->group_list_max_len == ctx->group_list_len) {
246
515k
        TLS_GROUP_INFO *tmp = NULL;
247
248
515k
        if (ctx->group_list_max_len == 0)
249
87.8k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
250
515k
                                 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251
427k
        else
252
427k
            tmp = OPENSSL_realloc(ctx->group_list,
253
515k
                                  (ctx->group_list_max_len
254
515k
                                   + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
255
515k
                                  * sizeof(TLS_GROUP_INFO));
256
515k
        if (tmp == NULL)
257
0
            return 0;
258
515k
        ctx->group_list = tmp;
259
515k
        memset(tmp + ctx->group_list_max_len,
260
515k
               0,
261
515k
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
262
515k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
263
515k
    }
264
265
4.61M
    ginf = &ctx->group_list[ctx->group_list_len];
266
267
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
268
4.61M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
269
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
270
0
        goto err;
271
0
    }
272
4.61M
    ginf->tlsname = OPENSSL_strdup(p->data);
273
4.61M
    if (ginf->tlsname == NULL)
274
0
        goto err;
275
276
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
277
4.61M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
278
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
279
0
        goto err;
280
0
    }
281
4.61M
    ginf->realname = OPENSSL_strdup(p->data);
282
4.61M
    if (ginf->realname == NULL)
283
0
        goto err;
284
285
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286
4.61M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288
0
        goto err;
289
0
    }
290
4.61M
    ginf->group_id = (uint16_t)gid;
291
292
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293
4.61M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295
0
        goto err;
296
0
    }
297
4.61M
    ginf->algorithm = OPENSSL_strdup(p->data);
298
4.61M
    if (ginf->algorithm == NULL)
299
0
        goto err;
300
301
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
302
4.61M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
303
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
304
0
        goto err;
305
0
    }
306
307
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
308
4.61M
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
309
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310
0
        goto err;
311
0
    }
312
4.61M
    ginf->is_kem = 1 & is_kem;
313
314
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
315
4.61M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
316
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
317
0
        goto err;
318
0
    }
319
320
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
321
4.61M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
322
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
323
0
        goto err;
324
0
    }
325
326
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
327
4.61M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
328
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
329
0
        goto err;
330
0
    }
331
332
4.61M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
333
4.61M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
334
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
335
0
        goto err;
336
0
    }
337
    /*
338
     * Now check that the algorithm is actually usable for our property query
339
     * string. Regardless of the result we still return success because we have
340
     * successfully processed this group, even though we may decide not to use
341
     * it.
342
     */
343
4.61M
    ret = 1;
344
4.61M
    ERR_set_mark();
345
4.61M
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
346
4.61M
    if (keymgmt != NULL) {
347
        /*
348
         * We have successfully fetched the algorithm - however if the provider
349
         * doesn't match this one then we ignore it.
350
         *
351
         * Note: We're cheating a little here. Technically if the same algorithm
352
         * is available from more than one provider then it is undefined which
353
         * implementation you will get back. Theoretically this could be
354
         * different every time...we assume here that you'll always get the
355
         * same one back if you repeat the exact same fetch. Is this a reasonable
356
         * assumption to make (in which case perhaps we should document this
357
         * behaviour)?
358
         */
359
4.61M
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
360
            /* We have a match - so we will use this group */
361
4.61M
            ctx->group_list_len++;
362
4.61M
            ginf = NULL;
363
4.61M
        }
364
4.61M
        EVP_KEYMGMT_free(keymgmt);
365
4.61M
    }
366
4.61M
    ERR_pop_to_mark();
367
4.61M
 err:
368
4.61M
    if (ginf != NULL) {
369
0
        OPENSSL_free(ginf->tlsname);
370
0
        OPENSSL_free(ginf->realname);
371
0
        OPENSSL_free(ginf->algorithm);
372
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
373
0
    }
374
4.61M
    return ret;
375
4.61M
}
376
377
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
378
293k
{
379
293k
    struct provider_ctx_data_st pgd;
380
381
293k
    pgd.ctx = vctx;
382
293k
    pgd.provider = provider;
383
293k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
384
293k
                                          add_provider_groups, &pgd);
385
293k
}
386
387
int ssl_load_groups(SSL_CTX *ctx)
388
87.8k
{
389
87.8k
    size_t i, j, num_deflt_grps = 0;
390
87.8k
    uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
391
392
87.8k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
393
0
        return 0;
394
395
1.58M
    for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
396
72.7M
        for (j = 0; j < ctx->group_list_len; j++) {
397
72.1M
            if (ctx->group_list[j].group_id == supported_groups_default[i]) {
398
878k
                tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
399
878k
                break;
400
878k
            }
401
72.1M
        }
402
1.49M
    }
403
404
87.8k
    if (num_deflt_grps == 0)
405
0
        return 1;
406
407
87.8k
    ctx->ext.supported_groups_default
408
87.8k
        = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
409
410
87.8k
    if (ctx->ext.supported_groups_default == NULL)
411
0
        return 0;
412
413
87.8k
    memcpy(ctx->ext.supported_groups_default,
414
87.8k
           tmp_supp_groups,
415
87.8k
           num_deflt_grps * sizeof(tmp_supp_groups[0]));
416
87.8k
    ctx->ext.supported_groups_default_len = num_deflt_grps;
417
418
87.8k
    return 1;
419
87.8k
}
420
421
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10
422
static OSSL_CALLBACK add_provider_sigalgs;
423
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
424
{
425
    struct provider_ctx_data_st *pgd = data;
426
    SSL_CTX *ctx = pgd->ctx;
427
    OSSL_PROVIDER *provider = pgd->provider;
428
    const OSSL_PARAM *p;
429
    TLS_SIGALG_INFO *sinf = NULL;
430
    EVP_KEYMGMT *keymgmt;
431
    const char *keytype;
432
    unsigned int code_point = 0;
433
    int ret = 0;
434
435
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
436
        TLS_SIGALG_INFO *tmp = NULL;
437
438
        if (ctx->sigalg_list_max_len == 0)
439
            tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
440
                                 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
441
        else
442
            tmp = OPENSSL_realloc(ctx->sigalg_list,
443
                                  (ctx->sigalg_list_max_len
444
                                   + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
445
                                  * sizeof(TLS_SIGALG_INFO));
446
        if (tmp == NULL)
447
            return 0;
448
        ctx->sigalg_list = tmp;
449
        memset(tmp + ctx->sigalg_list_max_len, 0,
450
               sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
451
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
452
    }
453
454
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
455
456
    /* First, mandatory parameters */
457
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
458
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
459
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
460
        goto err;
461
    }
462
    OPENSSL_free(sinf->sigalg_name);
463
    sinf->sigalg_name = OPENSSL_strdup(p->data);
464
    if (sinf->sigalg_name == NULL)
465
        goto err;
466
467
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
468
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
469
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
470
        goto err;
471
    }
472
    OPENSSL_free(sinf->name);
473
    sinf->name = OPENSSL_strdup(p->data);
474
    if (sinf->name == NULL)
475
        goto err;
476
477
    p = OSSL_PARAM_locate_const(params,
478
                                OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
479
    if (p == NULL
480
        || !OSSL_PARAM_get_uint(p, &code_point)
481
        || code_point > UINT16_MAX) {
482
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
483
        goto err;
484
    }
485
    sinf->code_point = (uint16_t)code_point;
486
487
    p = OSSL_PARAM_locate_const(params,
488
                                OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
489
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
490
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
491
        goto err;
492
    }
493
494
    /* Now, optional parameters */
495
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
496
    if (p == NULL) {
497
        sinf->sigalg_oid = NULL;
498
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
499
        goto err;
500
    } else {
501
        OPENSSL_free(sinf->sigalg_oid);
502
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
503
        if (sinf->sigalg_oid == NULL)
504
            goto err;
505
    }
506
507
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
508
    if (p == NULL) {
509
        sinf->sig_name = NULL;
510
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
511
        goto err;
512
    } else {
513
        OPENSSL_free(sinf->sig_name);
514
        sinf->sig_name = OPENSSL_strdup(p->data);
515
        if (sinf->sig_name == NULL)
516
            goto err;
517
    }
518
519
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
520
    if (p == NULL) {
521
        sinf->sig_oid = NULL;
522
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
523
        goto err;
524
    } else {
525
        OPENSSL_free(sinf->sig_oid);
526
        sinf->sig_oid = OPENSSL_strdup(p->data);
527
        if (sinf->sig_oid == NULL)
528
            goto err;
529
    }
530
531
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
532
    if (p == NULL) {
533
        sinf->hash_name = NULL;
534
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
535
        goto err;
536
    } else {
537
        OPENSSL_free(sinf->hash_name);
538
        sinf->hash_name = OPENSSL_strdup(p->data);
539
        if (sinf->hash_name == NULL)
540
            goto err;
541
    }
542
543
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
544
    if (p == NULL) {
545
        sinf->hash_oid = NULL;
546
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
547
        goto err;
548
    } else {
549
        OPENSSL_free(sinf->hash_oid);
550
        sinf->hash_oid = OPENSSL_strdup(p->data);
551
        if (sinf->hash_oid == NULL)
552
            goto err;
553
    }
554
555
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
556
    if (p == NULL) {
557
        sinf->keytype = NULL;
558
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
559
        goto err;
560
    } else {
561
        OPENSSL_free(sinf->keytype);
562
        sinf->keytype = OPENSSL_strdup(p->data);
563
        if (sinf->keytype == NULL)
564
            goto err;
565
    }
566
567
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
568
    if (p == NULL) {
569
        sinf->keytype_oid = NULL;
570
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
571
        goto err;
572
    } else {
573
        OPENSSL_free(sinf->keytype_oid);
574
        sinf->keytype_oid = OPENSSL_strdup(p->data);
575
        if (sinf->keytype_oid == NULL)
576
            goto err;
577
    }
578
579
    /* The remaining parameters below are mandatory again */
580
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
581
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
582
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
583
        goto err;
584
    }
585
    if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
586
        ((sinf->mintls < TLS1_3_VERSION))) {
587
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
588
        ret = 1;
589
        goto err;
590
    }
591
592
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
593
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
594
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
595
        goto err;
596
    }
597
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
598
        ((sinf->maxtls < sinf->mintls))) {
599
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
600
        goto err;
601
    }
602
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
603
        ((sinf->maxtls < TLS1_3_VERSION))) {
604
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
605
        ret = 1;
606
        goto err;
607
    }
608
609
    /*
610
     * Now check that the algorithm is actually usable for our property query
611
     * string. Regardless of the result we still return success because we have
612
     * successfully processed this signature, even though we may decide not to
613
     * use it.
614
     */
615
    ret = 1;
616
    ERR_set_mark();
617
    keytype = (sinf->keytype != NULL
618
               ? sinf->keytype
619
               : (sinf->sig_name != NULL
620
                  ? sinf->sig_name
621
                  : sinf->sigalg_name));
622
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
623
    if (keymgmt != NULL) {
624
        /*
625
         * We have successfully fetched the algorithm - however if the provider
626
         * doesn't match this one then we ignore it.
627
         *
628
         * Note: We're cheating a little here. Technically if the same algorithm
629
         * is available from more than one provider then it is undefined which
630
         * implementation you will get back. Theoretically this could be
631
         * different every time...we assume here that you'll always get the
632
         * same one back if you repeat the exact same fetch. Is this a reasonable
633
         * assumption to make (in which case perhaps we should document this
634
         * behaviour)?
635
         */
636
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
637
            /*
638
             * We have a match - so we could use this signature;
639
             * Check proper object registration first, though.
640
             * Don't care about return value as this may have been
641
             * done within providers or previous calls to
642
             * add_provider_sigalgs.
643
             */
644
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
645
            /* sanity check: Without successful registration don't use alg */
646
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
647
                (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
648
                    ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
649
                    goto err;
650
            }
651
            if (sinf->sig_name != NULL)
652
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
653
            if (sinf->keytype != NULL)
654
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
655
            if (sinf->hash_name != NULL)
656
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
657
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
658
                          (sinf->hash_name != NULL
659
                           ? OBJ_txt2nid(sinf->hash_name)
660
                           : NID_undef),
661
                          OBJ_txt2nid(keytype));
662
            ctx->sigalg_list_len++;
663
            sinf = NULL;
664
        }
665
        EVP_KEYMGMT_free(keymgmt);
666
    }
667
    ERR_pop_to_mark();
668
 err:
669
    if (sinf != NULL) {
670
        OPENSSL_free(sinf->name);
671
        sinf->name = NULL;
672
        OPENSSL_free(sinf->sigalg_name);
673
        sinf->sigalg_name = NULL;
674
        OPENSSL_free(sinf->sigalg_oid);
675
        sinf->sigalg_oid = NULL;
676
        OPENSSL_free(sinf->sig_name);
677
        sinf->sig_name = NULL;
678
        OPENSSL_free(sinf->sig_oid);
679
        sinf->sig_oid = NULL;
680
        OPENSSL_free(sinf->hash_name);
681
        sinf->hash_name = NULL;
682
        OPENSSL_free(sinf->hash_oid);
683
        sinf->hash_oid = NULL;
684
        OPENSSL_free(sinf->keytype);
685
        sinf->keytype = NULL;
686
        OPENSSL_free(sinf->keytype_oid);
687
        sinf->keytype_oid = NULL;
688
    }
689
    return ret;
690
}
691
692
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
693
270k
{
694
270k
    struct provider_ctx_data_st pgd;
695
696
270k
    pgd.ctx = vctx;
697
270k
    pgd.provider = provider;
698
270k
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
699
270k
                                   add_provider_sigalgs, &pgd);
700
    /*
701
     * Always OK, even if provider doesn't support the capability:
702
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
703
     */
704
270k
    return 1;
705
270k
}
706
707
int ssl_load_sigalgs(SSL_CTX *ctx)
708
135k
{
709
135k
    size_t i;
710
135k
    SSL_CERT_LOOKUP lu;
711
712
135k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
713
0
        return 0;
714
715
    /* now populate ctx->ssl_cert_info */
716
135k
    if (ctx->sigalg_list_len > 0) {
717
59.0k
        OPENSSL_free(ctx->ssl_cert_info);
718
59.0k
        ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
719
59.0k
        if (ctx->ssl_cert_info == NULL)
720
0
            return 0;
721
236k
        for(i = 0; i < ctx->sigalg_list_len; i++) {
722
177k
            ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
723
177k
            ctx->ssl_cert_info[i].amask = SSL_aANY;
724
177k
        }
725
59.0k
    }
726
727
    /*
728
     * For now, leave it at this: legacy sigalgs stay in their own
729
     * data structures until "legacy cleanup" occurs.
730
     */
731
732
135k
    return 1;
733
135k
}
734
735
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
736
472k
{
737
472k
    size_t i;
738
739
2.65M
    for (i = 0; i < ctx->group_list_len; i++) {
740
2.65M
        if (strcmp(ctx->group_list[i].tlsname, name) == 0
741
2.65M
                || strcmp(ctx->group_list[i].realname, name) == 0)
742
472k
            return ctx->group_list[i].group_id;
743
2.65M
    }
744
745
0
    return 0;
746
472k
}
747
748
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
749
2.94M
{
750
2.94M
    size_t i;
751
752
83.6M
    for (i = 0; i < ctx->group_list_len; i++) {
753
83.6M
        if (ctx->group_list[i].group_id == group_id)
754
2.94M
            return &ctx->group_list[i];
755
83.6M
    }
756
757
0
    return NULL;
758
2.94M
}
759
760
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
761
0
{
762
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
763
764
0
    if (tls_group_info == NULL)
765
0
        return NULL;
766
767
0
    return tls_group_info->tlsname;
768
0
}
769
770
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
771
1.32M
{
772
1.32M
    size_t i;
773
774
1.32M
    if (group_id == 0)
775
0
        return NID_undef;
776
777
    /*
778
     * Return well known Group NIDs - for backwards compatibility. This won't
779
     * work for groups we don't know about.
780
     */
781
42.4M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
782
42.3M
    {
783
42.3M
        if (nid_to_group[i].group_id == group_id)
784
1.25M
            return nid_to_group[i].nid;
785
42.3M
    }
786
65.8k
    if (!include_unknown)
787
65.8k
        return NID_undef;
788
0
    return TLSEXT_nid_unknown | (int)group_id;
789
65.8k
}
790
791
uint16_t tls1_nid2group_id(int nid)
792
23.4k
{
793
23.4k
    size_t i;
794
795
    /*
796
     * Return well known Group ids - for backwards compatibility. This won't
797
     * work for groups we don't know about.
798
     */
799
540k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
800
540k
    {
801
540k
        if (nid_to_group[i].nid == nid)
802
23.4k
            return nid_to_group[i].group_id;
803
540k
    }
804
805
6
    return 0;
806
23.4k
}
807
808
/*
809
 * Set *pgroups to the supported groups list and *pgroupslen to
810
 * the number of groups supported.
811
 */
812
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
813
                               size_t *pgroupslen)
814
433k
{
815
433k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
816
817
    /* For Suite B mode only include P-256, P-384 */
818
433k
    switch (tls1_suiteb(s)) {
819
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
820
0
        *pgroups = suiteb_curves;
821
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
822
0
        break;
823
824
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
825
0
        *pgroups = suiteb_curves;
826
0
        *pgroupslen = 1;
827
0
        break;
828
829
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
830
0
        *pgroups = suiteb_curves + 1;
831
0
        *pgroupslen = 1;
832
0
        break;
833
834
433k
    default:
835
433k
        if (s->ext.supportedgroups == NULL) {
836
286k
            *pgroups = sctx->ext.supported_groups_default;
837
286k
            *pgroupslen = sctx->ext.supported_groups_default_len;
838
286k
        } else {
839
146k
            *pgroups = s->ext.supportedgroups;
840
146k
            *pgroupslen = s->ext.supportedgroups_len;
841
146k
        }
842
433k
        break;
843
433k
    }
844
433k
}
845
846
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
847
                    int minversion, int maxversion,
848
                    int isec, int *okfortls13)
849
1.11M
{
850
1.11M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
851
1.11M
                                                       group_id);
852
1.11M
    int ret;
853
1.11M
    int group_minversion, group_maxversion;
854
855
1.11M
    if (okfortls13 != NULL)
856
746k
        *okfortls13 = 0;
857
858
1.11M
    if (ginfo == NULL)
859
0
        return 0;
860
861
1.11M
    group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
862
1.11M
    group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
863
864
1.11M
    if (group_minversion < 0 || group_maxversion < 0)
865
97.5k
        return 0;
866
1.01M
    if (group_maxversion == 0)
867
1.01M
        ret = 1;
868
0
    else
869
0
        ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
870
1.01M
    if (group_minversion > 0)
871
1.01M
        ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
872
873
1.01M
    if (!SSL_CONNECTION_IS_DTLS(s)) {
874
876k
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
875
568k
            *okfortls13 = (group_maxversion == 0)
876
568k
                          || (group_maxversion >= TLS1_3_VERSION);
877
876k
    }
878
1.01M
    ret &= !isec
879
1.01M
           || strcmp(ginfo->algorithm, "EC") == 0
880
1.01M
           || strcmp(ginfo->algorithm, "X25519") == 0
881
1.01M
           || strcmp(ginfo->algorithm, "X448") == 0;
882
883
1.01M
    return ret;
884
1.11M
}
885
886
/* See if group is allowed by security callback */
887
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
888
1.32M
{
889
1.32M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
890
1.32M
                                                       group);
891
1.32M
    unsigned char gtmp[2];
892
893
1.32M
    if (ginfo == NULL)
894
0
        return 0;
895
896
1.32M
    gtmp[0] = group >> 8;
897
1.32M
    gtmp[1] = group & 0xff;
898
1.32M
    return ssl_security(s, op, ginfo->secbits,
899
1.32M
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
900
1.32M
}
901
902
/* Return 1 if "id" is in "list" */
903
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
904
82.5k
{
905
82.5k
    size_t i;
906
566k
    for (i = 0; i < listlen; i++)
907
520k
        if (list[i] == id)
908
36.4k
            return 1;
909
46.1k
    return 0;
910
82.5k
}
911
912
/*-
913
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
914
 * if there is no match.
915
 * For nmatch == -1, return number of matches
916
 * For nmatch == -2, return the id of the group to use for
917
 * a tmp key, or 0 if there is no match.
918
 */
919
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
920
28.4k
{
921
28.4k
    const uint16_t *pref, *supp;
922
28.4k
    size_t num_pref, num_supp, i;
923
28.4k
    int k;
924
28.4k
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
925
926
    /* Can't do anything on client side */
927
28.4k
    if (s->server == 0)
928
0
        return 0;
929
28.4k
    if (nmatch == -2) {
930
6.45k
        if (tls1_suiteb(s)) {
931
            /*
932
             * For Suite B ciphersuite determines curve: we already know
933
             * these are acceptable due to previous checks.
934
             */
935
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
936
937
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
938
0
                return OSSL_TLS_GROUP_ID_secp256r1;
939
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
940
0
                return OSSL_TLS_GROUP_ID_secp384r1;
941
            /* Should never happen */
942
0
            return 0;
943
0
        }
944
        /* If not Suite B just return first preference shared curve */
945
6.45k
        nmatch = 0;
946
6.45k
    }
947
    /*
948
     * If server preference set, our groups are the preference order
949
     * otherwise peer decides.
950
     */
951
28.4k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
952
0
        tls1_get_supported_groups(s, &pref, &num_pref);
953
0
        tls1_get_peer_groups(s, &supp, &num_supp);
954
28.4k
    } else {
955
28.4k
        tls1_get_peer_groups(s, &pref, &num_pref);
956
28.4k
        tls1_get_supported_groups(s, &supp, &num_supp);
957
28.4k
    }
958
959
63.6k
    for (k = 0, i = 0; i < num_pref; i++) {
960
48.4k
        uint16_t id = pref[i];
961
48.4k
        const TLS_GROUP_INFO *inf;
962
48.4k
        int minversion, maxversion;
963
964
48.4k
        if (!tls1_in_list(id, supp, num_supp)
965
48.4k
                || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
966
31.9k
            continue;
967
16.5k
        inf = tls1_group_id_lookup(ctx, id);
968
16.5k
        if (!ossl_assert(inf != NULL))
969
0
            return 0;
970
971
16.5k
        minversion = SSL_CONNECTION_IS_DTLS(s)
972
16.5k
                         ? inf->mindtls : inf->mintls;
973
16.5k
        maxversion = SSL_CONNECTION_IS_DTLS(s)
974
16.5k
                         ? inf->maxdtls : inf->maxtls;
975
16.5k
        if (maxversion == -1)
976
1.33k
            continue;
977
15.1k
        if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
978
15.1k
            || (maxversion != 0
979
13.1k
                && ssl_version_cmp(s, s->version, maxversion) > 0))
980
2.01k
            continue;
981
982
13.1k
        if (nmatch == k)
983
13.1k
            return id;
984
0
         k++;
985
0
    }
986
15.2k
    if (nmatch == -1)
987
0
        return k;
988
    /* Out of range (nmatch > k). */
989
15.2k
    return 0;
990
15.2k
}
991
992
int tls1_set_groups(uint16_t **pext, size_t *pextlen,
993
                    int *groups, size_t ngroups)
994
0
{
995
0
    uint16_t *glist;
996
0
    size_t i;
997
    /*
998
     * Bitmap of groups included to detect duplicates: two variables are added
999
     * to detect duplicates as some values are more than 32.
1000
     */
1001
0
    unsigned long *dup_list = NULL;
1002
0
    unsigned long dup_list_egrp = 0;
1003
0
    unsigned long dup_list_dhgrp = 0;
1004
1005
0
    if (ngroups == 0) {
1006
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1007
0
        return 0;
1008
0
    }
1009
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1010
0
        return 0;
1011
0
    for (i = 0; i < ngroups; i++) {
1012
0
        unsigned long idmask;
1013
0
        uint16_t id;
1014
0
        id = tls1_nid2group_id(groups[i]);
1015
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1016
0
            goto err;
1017
0
        idmask = 1L << (id & 0x00FF);
1018
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1019
0
        if (!id || ((*dup_list) & idmask))
1020
0
            goto err;
1021
0
        *dup_list |= idmask;
1022
0
        glist[i] = id;
1023
0
    }
1024
0
    OPENSSL_free(*pext);
1025
0
    *pext = glist;
1026
0
    *pextlen = ngroups;
1027
0
    return 1;
1028
0
err:
1029
0
    OPENSSL_free(glist);
1030
0
    return 0;
1031
0
}
1032
1033
0
# define GROUPLIST_INCREMENT   40
1034
# define GROUP_NAME_BUFFER_LENGTH 64
1035
typedef struct {
1036
    SSL_CTX *ctx;
1037
    size_t gidcnt;
1038
    size_t gidmax;
1039
    uint16_t *gid_arr;
1040
} gid_cb_st;
1041
1042
static int gid_cb(const char *elem, int len, void *arg)
1043
{
1044
    gid_cb_st *garg = arg;
1045
    size_t i;
1046
    uint16_t gid = 0;
1047
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1048
    int ignore_unknown = 0;
1049
1050
    if (elem == NULL)
1051
        return 0;
1052
    if (elem[0] == '?') {
1053
        ignore_unknown = 1;
1054
        ++elem;
1055
        --len;
1056
    }
1057
    if (garg->gidcnt == garg->gidmax) {
1058
        uint16_t *tmp =
1059
            OPENSSL_realloc(garg->gid_arr,
1060
                            (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1061
        if (tmp == NULL)
1062
            return 0;
1063
        garg->gidmax += GROUPLIST_INCREMENT;
1064
        garg->gid_arr = tmp;
1065
    }
1066
    if (len > (int)(sizeof(etmp) - 1))
1067
        return 0;
1068
    memcpy(etmp, elem, len);
1069
    etmp[len] = 0;
1070
1071
    gid = tls1_group_name2id(garg->ctx, etmp);
1072
    if (gid == 0) {
1073
        /* Unknown group - ignore, if ignore_unknown */
1074
        return ignore_unknown;
1075
    }
1076
    for (i = 0; i < garg->gidcnt; i++)
1077
        if (garg->gid_arr[i] == gid) {
1078
            /* Duplicate group - ignore */
1079
            return 1;
1080
        }
1081
    garg->gid_arr[garg->gidcnt++] = gid;
1082
    return 1;
1083
}
1084
1085
/* Set groups based on a colon separated list */
1086
int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
1087
                         const char *str)
1088
0
{
1089
0
    gid_cb_st gcb;
1090
0
    uint16_t *tmparr;
1091
0
    int ret = 0;
1092
1093
0
    gcb.gidcnt = 0;
1094
0
    gcb.gidmax = GROUPLIST_INCREMENT;
1095
0
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1096
0
    if (gcb.gid_arr == NULL)
1097
0
        return 0;
1098
0
    gcb.ctx = ctx;
1099
0
    if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
1100
0
        goto end;
1101
0
    if (gcb.gidcnt == 0) {
1102
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1103
0
                       "No valid groups in '%s'", str);
1104
0
        goto end;
1105
0
    }
1106
0
    if (pext == NULL) {
1107
0
        ret = 1;
1108
0
        goto end;
1109
0
    }
1110
1111
    /*
1112
     * gid_cb ensurse there are no duplicates so we can just go ahead and set
1113
     * the result
1114
     */
1115
0
    tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
1116
0
    if (tmparr == NULL)
1117
0
        goto end;
1118
0
    OPENSSL_free(*pext);
1119
0
    *pext = tmparr;
1120
0
    *pextlen = gcb.gidcnt;
1121
0
    ret = 1;
1122
0
 end:
1123
0
    OPENSSL_free(gcb.gid_arr);
1124
0
    return ret;
1125
0
}
1126
1127
/* Check a group id matches preferences */
1128
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1129
                        int check_own_groups)
1130
33.8k
    {
1131
33.8k
    const uint16_t *groups;
1132
33.8k
    size_t groups_len;
1133
1134
33.8k
    if (group_id == 0)
1135
17
        return 0;
1136
1137
    /* Check for Suite B compliance */
1138
33.8k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1139
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1140
1141
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1142
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1143
0
                return 0;
1144
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1145
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1146
0
                return 0;
1147
0
        } else {
1148
            /* Should never happen */
1149
0
            return 0;
1150
0
        }
1151
0
    }
1152
1153
33.8k
    if (check_own_groups) {
1154
        /* Check group is one of our preferences */
1155
10.6k
        tls1_get_supported_groups(s, &groups, &groups_len);
1156
10.6k
        if (!tls1_in_list(group_id, groups, groups_len))
1157
134
            return 0;
1158
10.6k
    }
1159
1160
33.6k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1161
0
        return 0;
1162
1163
    /* For clients, nothing more to check */
1164
33.6k
    if (!s->server)
1165
10.4k
        return 1;
1166
1167
    /* Check group is one of peers preferences */
1168
23.1k
    tls1_get_peer_groups(s, &groups, &groups_len);
1169
1170
    /*
1171
     * RFC 4492 does not require the supported elliptic curves extension
1172
     * so if it is not sent we can just choose any curve.
1173
     * It is invalid to send an empty list in the supported groups
1174
     * extension, so groups_len == 0 always means no extension.
1175
     */
1176
23.1k
    if (groups_len == 0)
1177
13.1k
            return 1;
1178
10.0k
    return tls1_in_list(group_id, groups, groups_len);
1179
23.1k
}
1180
1181
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1182
                         size_t *num_formats)
1183
89.1k
{
1184
    /*
1185
     * If we have a custom point format list use it otherwise use default
1186
     */
1187
89.1k
    if (s->ext.ecpointformats) {
1188
0
        *pformats = s->ext.ecpointformats;
1189
0
        *num_formats = s->ext.ecpointformats_len;
1190
89.1k
    } else {
1191
89.1k
        *pformats = ecformats_default;
1192
        /* For Suite B we don't support char2 fields */
1193
89.1k
        if (tls1_suiteb(s))
1194
0
            *num_formats = sizeof(ecformats_default) - 1;
1195
89.1k
        else
1196
89.1k
            *num_formats = sizeof(ecformats_default);
1197
89.1k
    }
1198
89.1k
}
1199
1200
/* Check a key is compatible with compression extension */
1201
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1202
24.1k
{
1203
24.1k
    unsigned char comp_id;
1204
24.1k
    size_t i;
1205
24.1k
    int point_conv;
1206
1207
    /* If not an EC key nothing to check */
1208
24.1k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1209
0
        return 1;
1210
1211
1212
    /* Get required compression id */
1213
24.1k
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1214
24.1k
    if (point_conv == 0)
1215
0
        return 0;
1216
24.1k
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1217
24.0k
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1218
24.0k
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1219
        /*
1220
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1221
         * this check.
1222
         */
1223
0
        return 1;
1224
88
    } else {
1225
88
        int field_type = EVP_PKEY_get_field_type(pkey);
1226
1227
88
        if (field_type == NID_X9_62_prime_field)
1228
82
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1229
6
        else if (field_type == NID_X9_62_characteristic_two_field)
1230
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1231
6
        else
1232
6
            return 0;
1233
88
    }
1234
    /*
1235
     * If point formats extension present check it, otherwise everything is
1236
     * supported (see RFC4492).
1237
     */
1238
24.1k
    if (s->ext.peer_ecpointformats == NULL)
1239
19.1k
        return 1;
1240
1241
8.39k
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1242
7.76k
        if (s->ext.peer_ecpointformats[i] == comp_id)
1243
4.39k
            return 1;
1244
7.76k
    }
1245
629
    return 0;
1246
5.02k
}
1247
1248
/* Return group id of a key */
1249
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1250
23.4k
{
1251
23.4k
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1252
1253
23.4k
    if (curve_nid == NID_undef)
1254
0
        return 0;
1255
23.4k
    return tls1_nid2group_id(curve_nid);
1256
23.4k
}
1257
1258
/*
1259
 * Check cert parameters compatible with extensions: currently just checks EC
1260
 * certificates have compatible curves and compression.
1261
 */
1262
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1263
71.4k
{
1264
71.4k
    uint16_t group_id;
1265
71.4k
    EVP_PKEY *pkey;
1266
71.4k
    pkey = X509_get0_pubkey(x);
1267
71.4k
    if (pkey == NULL)
1268
0
        return 0;
1269
    /* If not EC nothing to do */
1270
71.4k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1271
47.6k
        return 1;
1272
    /* Check compression */
1273
23.8k
    if (!tls1_check_pkey_comp(s, pkey))
1274
614
        return 0;
1275
23.1k
    group_id = tls1_get_group_id(pkey);
1276
    /*
1277
     * For a server we allow the certificate to not be in our list of supported
1278
     * groups.
1279
     */
1280
23.1k
    if (!tls1_check_group_id(s, group_id, !s->server))
1281
5.77k
        return 0;
1282
    /*
1283
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1284
     * SHA384+P-384.
1285
     */
1286
17.4k
    if (check_ee_md && tls1_suiteb(s)) {
1287
0
        int check_md;
1288
0
        size_t i;
1289
1290
        /* Check to see we have necessary signing algorithm */
1291
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1292
0
            check_md = NID_ecdsa_with_SHA256;
1293
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1294
0
            check_md = NID_ecdsa_with_SHA384;
1295
0
        else
1296
0
            return 0;           /* Should never happen */
1297
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1298
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1299
0
                return 1;
1300
0
        }
1301
0
        return 0;
1302
0
    }
1303
17.4k
    return 1;
1304
17.4k
}
1305
1306
/*
1307
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1308
 * @s: SSL connection
1309
 * @cid: Cipher ID we're considering using
1310
 *
1311
 * Checks that the kECDHE cipher suite we're considering using
1312
 * is compatible with the client extensions.
1313
 *
1314
 * Returns 0 when the cipher can't be used or 1 when it can.
1315
 */
1316
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1317
27.6k
{
1318
    /* If not Suite B just need a shared group */
1319
27.6k
    if (!tls1_suiteb(s))
1320
27.6k
        return tls1_shared_group(s, 0) != 0;
1321
    /*
1322
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1323
     * curves permitted.
1324
     */
1325
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1326
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1327
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1328
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1329
1330
0
    return 0;
1331
0
}
1332
1333
/* Default sigalg schemes */
1334
static const uint16_t tls12_sigalgs[] = {
1335
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1336
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1337
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1338
    TLSEXT_SIGALG_ed25519,
1339
    TLSEXT_SIGALG_ed448,
1340
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1341
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1342
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1343
1344
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1345
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1346
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1347
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1348
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1349
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1350
1351
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1352
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1353
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1354
1355
    TLSEXT_SIGALG_ecdsa_sha224,
1356
    TLSEXT_SIGALG_ecdsa_sha1,
1357
1358
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1359
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1360
1361
    TLSEXT_SIGALG_dsa_sha224,
1362
    TLSEXT_SIGALG_dsa_sha1,
1363
1364
    TLSEXT_SIGALG_dsa_sha256,
1365
    TLSEXT_SIGALG_dsa_sha384,
1366
    TLSEXT_SIGALG_dsa_sha512,
1367
1368
#ifndef OPENSSL_NO_GOST
1369
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1370
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1371
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1372
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1373
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1374
#endif
1375
};
1376
1377
1378
static const uint16_t suiteb_sigalgs[] = {
1379
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1380
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1381
};
1382
1383
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1384
    {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name, TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1385
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1386
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1387
    {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name, TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1388
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1389
     NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1390
    {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name, TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1391
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1392
     NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1393
    {TLSEXT_SIGALG_ed25519_name, TLSEXT_SIGALG_ed25519,
1394
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1395
     NID_undef, NID_undef, 1},
1396
    {TLSEXT_SIGALG_ed448_name, TLSEXT_SIGALG_ed448,
1397
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1398
     NID_undef, NID_undef, 1},
1399
    {TLSEXT_SIGALG_ecdsa_sha224_name, TLSEXT_SIGALG_ecdsa_sha224,
1400
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1401
     NID_ecdsa_with_SHA224, NID_undef, 1},
1402
    {TLSEXT_SIGALG_ecdsa_sha1_name, TLSEXT_SIGALG_ecdsa_sha1,
1403
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1404
     NID_ecdsa_with_SHA1, NID_undef, 1},
1405
    {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name, TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1406
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1407
     NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
1408
    {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name, TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1409
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1410
     NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
1411
    {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name, TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1412
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1413
     NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
1414
    {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name, TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1415
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1416
     NID_undef, NID_undef, 1},
1417
    {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name, TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1418
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1419
     NID_undef, NID_undef, 1},
1420
    {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name, TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1421
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1422
     NID_undef, NID_undef, 1},
1423
    {TLSEXT_SIGALG_rsa_pss_pss_sha256_name, TLSEXT_SIGALG_rsa_pss_pss_sha256,
1424
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1425
     NID_undef, NID_undef, 1},
1426
    {TLSEXT_SIGALG_rsa_pss_pss_sha384_name, TLSEXT_SIGALG_rsa_pss_pss_sha384,
1427
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1428
     NID_undef, NID_undef, 1},
1429
    {TLSEXT_SIGALG_rsa_pss_pss_sha512_name, TLSEXT_SIGALG_rsa_pss_pss_sha512,
1430
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1431
     NID_undef, NID_undef, 1},
1432
    {TLSEXT_SIGALG_rsa_pkcs1_sha256_name, TLSEXT_SIGALG_rsa_pkcs1_sha256,
1433
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1434
     NID_sha256WithRSAEncryption, NID_undef, 1},
1435
    {TLSEXT_SIGALG_rsa_pkcs1_sha384_name, TLSEXT_SIGALG_rsa_pkcs1_sha384,
1436
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1437
     NID_sha384WithRSAEncryption, NID_undef, 1},
1438
    {TLSEXT_SIGALG_rsa_pkcs1_sha512_name, TLSEXT_SIGALG_rsa_pkcs1_sha512,
1439
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1440
     NID_sha512WithRSAEncryption, NID_undef, 1},
1441
    {TLSEXT_SIGALG_rsa_pkcs1_sha224_name, TLSEXT_SIGALG_rsa_pkcs1_sha224,
1442
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1443
     NID_sha224WithRSAEncryption, NID_undef, 1},
1444
    {TLSEXT_SIGALG_rsa_pkcs1_sha1_name, TLSEXT_SIGALG_rsa_pkcs1_sha1,
1445
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1446
     NID_sha1WithRSAEncryption, NID_undef, 1},
1447
    {TLSEXT_SIGALG_dsa_sha256_name, TLSEXT_SIGALG_dsa_sha256,
1448
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1449
     NID_dsa_with_SHA256, NID_undef, 1},
1450
    {TLSEXT_SIGALG_dsa_sha384_name, TLSEXT_SIGALG_dsa_sha384,
1451
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1452
     NID_undef, NID_undef, 1},
1453
    {TLSEXT_SIGALG_dsa_sha512_name, TLSEXT_SIGALG_dsa_sha512,
1454
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1455
     NID_undef, NID_undef, 1},
1456
    {TLSEXT_SIGALG_dsa_sha224_name, TLSEXT_SIGALG_dsa_sha224,
1457
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1458
     NID_undef, NID_undef, 1},
1459
    {TLSEXT_SIGALG_dsa_sha1_name, TLSEXT_SIGALG_dsa_sha1,
1460
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1461
     NID_dsaWithSHA1, NID_undef, 1},
1462
#ifndef OPENSSL_NO_GOST
1463
    {TLSEXT_SIGALG_gostr34102012_256_intrinsic_name, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1464
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1465
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1466
     NID_undef, NID_undef, 1},
1467
    {TLSEXT_SIGALG_gostr34102012_512_intrinsic_name, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1468
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1469
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1470
     NID_undef, NID_undef, 1},
1471
    {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1472
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1473
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1474
     NID_undef, NID_undef, 1},
1475
    {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1476
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1477
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1478
     NID_undef, NID_undef, 1},
1479
    {TLSEXT_SIGALG_gostr34102001_gostr3411_name, TLSEXT_SIGALG_gostr34102001_gostr3411,
1480
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1481
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1482
     NID_undef, NID_undef, 1}
1483
#endif
1484
};
1485
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1486
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1487
    "rsa_pkcs1_md5_sha1", 0,
1488
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1489
     EVP_PKEY_RSA, SSL_PKEY_RSA,
1490
     NID_undef, NID_undef, 1
1491
};
1492
1493
/*
1494
 * Default signature algorithm values used if signature algorithms not present.
1495
 * From RFC5246. Note: order must match certificate index order.
1496
 */
1497
static const uint16_t tls_default_sigalg[] = {
1498
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1499
    0, /* SSL_PKEY_RSA_PSS_SIGN */
1500
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1501
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1502
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1503
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1504
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1505
    0, /* SSL_PKEY_ED25519 */
1506
    0, /* SSL_PKEY_ED448 */
1507
};
1508
1509
int ssl_setup_sigalgs(SSL_CTX *ctx)
1510
76.2k
{
1511
76.2k
    size_t i, cache_idx, sigalgs_len;
1512
76.2k
    const SIGALG_LOOKUP *lu;
1513
76.2k
    SIGALG_LOOKUP *cache = NULL;
1514
76.2k
    uint16_t *tls12_sigalgs_list = NULL;
1515
76.2k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1516
76.2k
    int ret = 0;
1517
1518
76.2k
    if (ctx == NULL)
1519
0
        goto err;
1520
1521
76.2k
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
1522
1523
76.2k
    cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
1524
76.2k
    if (cache == NULL || tmpkey == NULL)
1525
0
        goto err;
1526
1527
76.2k
    tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
1528
76.2k
    if (tls12_sigalgs_list == NULL)
1529
0
        goto err;
1530
1531
76.2k
    ERR_set_mark();
1532
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
1533
76.2k
    for (i = 0, lu = sigalg_lookup_tbl;
1534
2.44M
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1535
2.36M
        EVP_PKEY_CTX *pctx;
1536
1537
2.36M
        cache[i] = *lu;
1538
2.36M
        tls12_sigalgs_list[i] = tls12_sigalgs[i];
1539
1540
        /*
1541
         * Check hash is available.
1542
         * This test is not perfect. A provider could have support
1543
         * for a signature scheme, but not a particular hash. However the hash
1544
         * could be available from some other loaded provider. In that case it
1545
         * could be that the signature is available, and the hash is available
1546
         * independently - but not as a combination. We ignore this for now.
1547
         */
1548
2.36M
        if (lu->hash != NID_undef
1549
2.36M
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1550
381k
            cache[i].enabled = 0;
1551
381k
            continue;
1552
381k
        }
1553
1554
1.98M
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1555
0
            cache[i].enabled = 0;
1556
0
            continue;
1557
0
        }
1558
1.98M
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1559
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1560
1.98M
        if (pctx == NULL)
1561
0
            cache[i].enabled = 0;
1562
1.98M
        EVP_PKEY_CTX_free(pctx);
1563
1.98M
    }
1564
1565
    /* Now complete cache and tls12_sigalgs list with provider sig information */
1566
76.2k
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
1567
76.2k
    for (i = 0; i < ctx->sigalg_list_len; i++) {
1568
0
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
1569
0
        cache[cache_idx].name = si.name;
1570
0
        cache[cache_idx].sigalg = si.code_point;
1571
0
        tls12_sigalgs_list[cache_idx] = si.code_point;
1572
0
        cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
1573
0
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
1574
0
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
1575
0
        cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
1576
0
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
1577
0
        cache[cache_idx].curve = NID_undef;
1578
        /* all provided sigalgs are enabled by load */
1579
0
        cache[cache_idx].enabled = 1;
1580
0
        cache_idx++;
1581
0
    }
1582
76.2k
    ERR_pop_to_mark();
1583
76.2k
    ctx->sigalg_lookup_cache = cache;
1584
76.2k
    ctx->tls12_sigalgs = tls12_sigalgs_list;
1585
76.2k
    ctx->tls12_sigalgs_len = sigalgs_len;
1586
76.2k
    cache = NULL;
1587
76.2k
    tls12_sigalgs_list = NULL;
1588
1589
76.2k
    ret = 1;
1590
76.2k
 err:
1591
76.2k
    OPENSSL_free(cache);
1592
76.2k
    OPENSSL_free(tls12_sigalgs_list);
1593
76.2k
    EVP_PKEY_free(tmpkey);
1594
76.2k
    return ret;
1595
76.2k
}
1596
1597
0
#define SIGLEN_BUF_INCREMENT 100
1598
1599
char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
1600
0
{
1601
0
    size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
1602
0
    const SIGALG_LOOKUP *lu;
1603
0
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1604
0
    char *retval = OPENSSL_malloc(maxretlen);
1605
1606
0
    if (retval == NULL)
1607
0
        return NULL;
1608
1609
    /* ensure retval string is NUL terminated */
1610
0
    retval[0] = (char)0;
1611
1612
0
    for (i = 0, lu = sigalg_lookup_tbl;
1613
0
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1614
0
        EVP_PKEY_CTX *pctx;
1615
0
        int enabled = 1;
1616
1617
0
        ERR_set_mark();
1618
        /* Check hash is available in some provider. */
1619
0
        if (lu->hash != NID_undef) {
1620
0
            EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
1621
1622
            /* If unable to create we assume the hash algorithm is unavailable */
1623
0
            if (hash == NULL) {
1624
0
                enabled = 0;
1625
0
                ERR_pop_to_mark();
1626
0
                continue;
1627
0
            }
1628
0
            EVP_MD_free(hash);
1629
0
        }
1630
1631
0
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1632
0
            enabled = 0;
1633
0
            ERR_pop_to_mark();
1634
0
            continue;
1635
0
        }
1636
0
        pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
1637
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1638
0
        if (pctx == NULL)
1639
0
            enabled = 0;
1640
0
        ERR_pop_to_mark();
1641
0
        EVP_PKEY_CTX_free(pctx);
1642
1643
0
        if (enabled) {
1644
0
            const char *sa = lu->name;
1645
1646
0
            if (sa != NULL) {
1647
0
                if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
1648
0
                    char *tmp;
1649
1650
0
                    maxretlen += SIGLEN_BUF_INCREMENT;
1651
0
                    tmp = OPENSSL_realloc(retval, maxretlen);
1652
0
                    if (tmp == NULL) {
1653
0
                        OPENSSL_free(retval);
1654
0
                        return NULL;
1655
0
                    }
1656
0
                    retval = tmp;
1657
0
                }
1658
0
                if (strlen(retval) > 0)
1659
0
                    OPENSSL_strlcat(retval, ":", maxretlen);
1660
0
                OPENSSL_strlcat(retval, sa, maxretlen);
1661
0
            } else {
1662
                /* lu->name must not be NULL */
1663
0
                ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1664
0
            }
1665
0
        }
1666
0
    }
1667
1668
0
    EVP_PKEY_free(tmpkey);
1669
0
    return retval;
1670
0
}
1671
1672
/* Lookup TLS signature algorithm */
1673
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
1674
                                               uint16_t sigalg)
1675
13.5M
{
1676
13.5M
    size_t i;
1677
13.5M
    const SIGALG_LOOKUP *lu;
1678
1679
13.5M
    for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
1680
216M
         i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1681
215M
         lu++, i++) {
1682
215M
        if (lu->sigalg == sigalg) {
1683
13.2M
            if (!lu->enabled)
1684
1.37M
                return NULL;
1685
11.8M
            return lu;
1686
13.2M
        }
1687
215M
    }
1688
301k
    return NULL;
1689
13.5M
}
1690
/* Lookup hash: return 0 if invalid or not enabled */
1691
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1692
3.68M
{
1693
3.68M
    const EVP_MD *md;
1694
1695
3.68M
    if (lu == NULL)
1696
0
        return 0;
1697
    /* lu->hash == NID_undef means no associated digest */
1698
3.68M
    if (lu->hash == NID_undef) {
1699
330k
        md = NULL;
1700
3.35M
    } else {
1701
3.35M
        md = ssl_md(ctx, lu->hash_idx);
1702
3.35M
        if (md == NULL)
1703
0
            return 0;
1704
3.35M
    }
1705
3.68M
    if (pmd)
1706
3.61M
        *pmd = md;
1707
3.68M
    return 1;
1708
3.68M
}
1709
1710
/*
1711
 * Check if key is large enough to generate RSA-PSS signature.
1712
 *
1713
 * The key must greater than or equal to 2 * hash length + 2.
1714
 * SHA512 has a hash length of 64 bytes, which is incompatible
1715
 * with a 128 byte (1024 bit) key.
1716
 */
1717
872
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1718
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1719
                                      const SIGALG_LOOKUP *lu)
1720
872
{
1721
872
    const EVP_MD *md;
1722
1723
872
    if (pkey == NULL)
1724
0
        return 0;
1725
872
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1726
0
        return 0;
1727
872
    if (EVP_MD_get_size(md) <= 0)
1728
0
        return 0;
1729
872
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1730
0
        return 0;
1731
872
    return 1;
1732
872
}
1733
1734
/*
1735
 * Returns a signature algorithm when the peer did not send a list of supported
1736
 * signature algorithms. The signature algorithm is fixed for the certificate
1737
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1738
 * certificate type from |s| will be used.
1739
 * Returns the signature algorithm to use, or NULL on error.
1740
 */
1741
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
1742
                                                   int idx)
1743
228k
{
1744
228k
    if (idx == -1) {
1745
17.7k
        if (s->server) {
1746
17.7k
            size_t i;
1747
1748
            /* Work out index corresponding to ciphersuite */
1749
22.1k
            for (i = 0; i < s->ssl_pkey_num; i++) {
1750
22.1k
                const SSL_CERT_LOOKUP *clu
1751
22.1k
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
1752
1753
22.1k
                if (clu == NULL)
1754
0
                    continue;
1755
22.1k
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1756
17.7k
                    idx = i;
1757
17.7k
                    break;
1758
17.7k
                }
1759
22.1k
            }
1760
1761
            /*
1762
             * Some GOST ciphersuites allow more than one signature algorithms
1763
             * */
1764
17.7k
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1765
0
                int real_idx;
1766
1767
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1768
0
                     real_idx--) {
1769
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1770
0
                        idx = real_idx;
1771
0
                        break;
1772
0
                    }
1773
0
                }
1774
0
            }
1775
            /*
1776
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1777
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1778
             */
1779
17.7k
            else if (idx == SSL_PKEY_GOST12_256) {
1780
0
                int real_idx;
1781
1782
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1783
0
                     real_idx--) {
1784
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
1785
0
                         idx = real_idx;
1786
0
                         break;
1787
0
                     }
1788
0
                }
1789
0
            }
1790
17.7k
        } else {
1791
0
            idx = s->cert->key - s->cert->pkeys;
1792
0
        }
1793
17.7k
    }
1794
228k
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1795
25.1k
        return NULL;
1796
1797
203k
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1798
189k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1799
1800
189k
        if (lu == NULL)
1801
122k
            return NULL;
1802
66.8k
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
1803
0
            return NULL;
1804
66.8k
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1805
0
            return NULL;
1806
66.8k
        return lu;
1807
66.8k
    }
1808
13.6k
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1809
0
        return NULL;
1810
13.6k
    return &legacy_rsa_sigalg;
1811
13.6k
}
1812
/* Set peer sigalg based key type */
1813
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
1814
1.36k
{
1815
1.36k
    size_t idx;
1816
1.36k
    const SIGALG_LOOKUP *lu;
1817
1818
1.36k
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
1819
0
        return 0;
1820
1.36k
    lu = tls1_get_legacy_sigalg(s, idx);
1821
1.36k
    if (lu == NULL)
1822
9
        return 0;
1823
1.35k
    s->s3.tmp.peer_sigalg = lu;
1824
1.35k
    return 1;
1825
1.36k
}
1826
1827
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
1828
489k
{
1829
    /*
1830
     * If Suite B mode use Suite B sigalgs only, ignore any other
1831
     * preferences.
1832
     */
1833
489k
    switch (tls1_suiteb(s)) {
1834
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
1835
0
        *psigs = suiteb_sigalgs;
1836
0
        return OSSL_NELEM(suiteb_sigalgs);
1837
1838
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1839
0
        *psigs = suiteb_sigalgs;
1840
0
        return 1;
1841
1842
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
1843
0
        *psigs = suiteb_sigalgs + 1;
1844
0
        return 1;
1845
489k
    }
1846
    /*
1847
     *  We use client_sigalgs (if not NULL) if we're a server
1848
     *  and sending a certificate request or if we're a client and
1849
     *  determining which shared algorithm to use.
1850
     */
1851
489k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1852
0
        *psigs = s->cert->client_sigalgs;
1853
0
        return s->cert->client_sigalgslen;
1854
489k
    } else if (s->cert->conf_sigalgs) {
1855
0
        *psigs = s->cert->conf_sigalgs;
1856
0
        return s->cert->conf_sigalgslen;
1857
489k
    } else {
1858
489k
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1859
489k
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1860
489k
    }
1861
489k
}
1862
1863
/*
1864
 * Called by servers only. Checks that we have a sig alg that supports the
1865
 * specified EC curve.
1866
 */
1867
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
1868
0
{
1869
0
   const uint16_t *sigs;
1870
0
   size_t siglen, i;
1871
1872
0
    if (s->cert->conf_sigalgs) {
1873
0
        sigs = s->cert->conf_sigalgs;
1874
0
        siglen = s->cert->conf_sigalgslen;
1875
0
    } else {
1876
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1877
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1878
0
    }
1879
1880
0
    for (i = 0; i < siglen; i++) {
1881
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1882
1883
0
        if (lu == NULL)
1884
0
            continue;
1885
0
        if (lu->sig == EVP_PKEY_EC
1886
0
                && lu->curve != NID_undef
1887
0
                && curve == lu->curve)
1888
0
            return 1;
1889
0
    }
1890
1891
0
    return 0;
1892
0
}
1893
1894
/*
1895
 * Return the number of security bits for the signature algorithm, or 0 on
1896
 * error.
1897
 */
1898
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1899
2.15M
{
1900
2.15M
    const EVP_MD *md = NULL;
1901
2.15M
    int secbits = 0;
1902
1903
2.15M
    if (!tls1_lookup_md(ctx, lu, &md))
1904
0
        return 0;
1905
2.15M
    if (md != NULL)
1906
1.91M
    {
1907
1.91M
        int md_type = EVP_MD_get_type(md);
1908
1909
        /* Security bits: half digest bits */
1910
1.91M
        secbits = EVP_MD_get_size(md) * 4;
1911
1.91M
        if (secbits <= 0)
1912
0
            return 0;
1913
        /*
1914
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
1915
         * they're no longer accepted at security level 1. The real values don't
1916
         * really matter as long as they're lower than 80, which is our
1917
         * security level 1.
1918
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1919
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1920
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1921
         * puts a chosen-prefix attack for MD5 at 2^39.
1922
         */
1923
1.91M
        if (md_type == NID_sha1)
1924
175k
            secbits = 64;
1925
1.74M
        else if (md_type == NID_md5_sha1)
1926
7.34k
            secbits = 67;
1927
1.73M
        else if (md_type == NID_md5)
1928
0
            secbits = 39;
1929
1.91M
    } else {
1930
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1931
235k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1932
64.6k
            secbits = 128;
1933
171k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1934
73.6k
            secbits = 224;
1935
235k
    }
1936
    /*
1937
     * For provider-based sigalgs we have secbits information available
1938
     * in the (provider-loaded) sigalg_list structure
1939
     */
1940
2.15M
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
1941
2.15M
               && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
1942
97.4k
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
1943
97.4k
    }
1944
2.15M
    return secbits;
1945
2.15M
}
1946
1947
/*
1948
 * Check signature algorithm is consistent with sent supported signature
1949
 * algorithms and if so set relevant digest and signature scheme in
1950
 * s.
1951
 */
1952
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
1953
10.9k
{
1954
10.9k
    const uint16_t *sent_sigs;
1955
10.9k
    const EVP_MD *md = NULL;
1956
10.9k
    char sigalgstr[2];
1957
10.9k
    size_t sent_sigslen, i, cidx;
1958
10.9k
    int pkeyid = -1;
1959
10.9k
    const SIGALG_LOOKUP *lu;
1960
10.9k
    int secbits = 0;
1961
1962
10.9k
    pkeyid = EVP_PKEY_get_id(pkey);
1963
1964
10.9k
    if (SSL_CONNECTION_IS_TLS13(s)) {
1965
        /* Disallow DSA for TLS 1.3 */
1966
9.48k
        if (pkeyid == EVP_PKEY_DSA) {
1967
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1968
0
            return 0;
1969
0
        }
1970
        /* Only allow PSS for TLS 1.3 */
1971
9.48k
        if (pkeyid == EVP_PKEY_RSA)
1972
9.47k
            pkeyid = EVP_PKEY_RSA_PSS;
1973
9.48k
    }
1974
10.9k
    lu = tls1_lookup_sigalg(s, sig);
1975
    /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
1976
10.9k
    if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
1977
0
        pkeyid = lu->sig;
1978
1979
    /* Should never happen */
1980
10.9k
    if (pkeyid == -1)
1981
0
        return -1;
1982
1983
    /*
1984
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1985
     * is consistent with signature: RSA keys can be used for RSA-PSS
1986
     */
1987
10.9k
    if (lu == NULL
1988
10.9k
        || (SSL_CONNECTION_IS_TLS13(s)
1989
10.8k
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1990
10.9k
        || (pkeyid != lu->sig
1991
10.8k
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1992
97
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1993
97
        return 0;
1994
97
    }
1995
    /* Check the sigalg is consistent with the key OID */
1996
10.8k
    if (!ssl_cert_lookup_by_nid(
1997
10.8k
                 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
1998
10.8k
                 &cidx, SSL_CONNECTION_GET_CTX(s))
1999
10.8k
            || lu->sig_idx != (int)cidx) {
2000
6
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2001
6
        return 0;
2002
6
    }
2003
2004
10.8k
    if (pkeyid == EVP_PKEY_EC) {
2005
2006
        /* Check point compression is permitted */
2007
120
        if (!tls1_check_pkey_comp(s, pkey)) {
2008
11
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2009
11
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
2010
11
            return 0;
2011
11
        }
2012
2013
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2014
109
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2015
0
            int curve = ssl_get_EC_curve_nid(pkey);
2016
2017
0
            if (lu->curve != NID_undef && curve != lu->curve) {
2018
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2019
0
                return 0;
2020
0
            }
2021
0
        }
2022
109
        if (!SSL_CONNECTION_IS_TLS13(s)) {
2023
            /* Check curve matches extensions */
2024
109
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2025
6
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2026
6
                return 0;
2027
6
            }
2028
103
            if (tls1_suiteb(s)) {
2029
                /* Check sigalg matches a permissible Suite B value */
2030
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2031
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2032
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2033
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
2034
0
                    return 0;
2035
0
                }
2036
0
            }
2037
103
        }
2038
10.7k
    } else if (tls1_suiteb(s)) {
2039
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2040
0
        return 0;
2041
0
    }
2042
2043
    /* Check signature matches a type we sent */
2044
10.8k
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2045
141k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2046
141k
        if (sig == *sent_sigs)
2047
10.8k
            break;
2048
141k
    }
2049
    /* Allow fallback to SHA1 if not strict mode */
2050
10.8k
    if (i == sent_sigslen && (lu->hash != NID_sha1
2051
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2052
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2053
0
        return 0;
2054
0
    }
2055
10.8k
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2056
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2057
0
        return 0;
2058
0
    }
2059
    /*
2060
     * Make sure security callback allows algorithm. For historical
2061
     * reasons we have to pass the sigalg as a two byte char array.
2062
     */
2063
10.8k
    sigalgstr[0] = (sig >> 8) & 0xff;
2064
10.8k
    sigalgstr[1] = sig & 0xff;
2065
10.8k
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2066
10.8k
    if (secbits == 0 ||
2067
10.8k
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
2068
10.8k
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
2069
10.8k
                      (void *)sigalgstr)) {
2070
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2071
0
        return 0;
2072
0
    }
2073
    /* Store the sigalg the peer uses */
2074
10.8k
    s->s3.tmp.peer_sigalg = lu;
2075
10.8k
    return 1;
2076
10.8k
}
2077
2078
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2079
0
{
2080
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2081
2082
0
    if (sc == NULL)
2083
0
        return 0;
2084
2085
0
    if (sc->s3.tmp.peer_sigalg == NULL)
2086
0
        return 0;
2087
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2088
0
    return 1;
2089
0
}
2090
2091
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2092
0
{
2093
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2094
2095
0
    if (sc == NULL)
2096
0
        return 0;
2097
2098
0
    if (sc->s3.tmp.sigalg == NULL)
2099
0
        return 0;
2100
0
    *pnid = sc->s3.tmp.sigalg->sig;
2101
0
    return 1;
2102
0
}
2103
2104
/*
2105
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2106
 * supported, doesn't appear in supported signature algorithms, isn't supported
2107
 * by the enabled protocol versions or by the security level.
2108
 *
2109
 * This function should only be used for checking which ciphers are supported
2110
 * by the client.
2111
 *
2112
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2113
 */
2114
int ssl_set_client_disabled(SSL_CONNECTION *s)
2115
324k
{
2116
324k
    s->s3.tmp.mask_a = 0;
2117
324k
    s->s3.tmp.mask_k = 0;
2118
324k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2119
324k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2120
324k
                                &s->s3.tmp.max_ver, NULL) != 0)
2121
0
        return 0;
2122
324k
#ifndef OPENSSL_NO_PSK
2123
    /* with PSK there must be client callback set */
2124
324k
    if (!s->psk_client_callback) {
2125
324k
        s->s3.tmp.mask_a |= SSL_aPSK;
2126
324k
        s->s3.tmp.mask_k |= SSL_PSK;
2127
324k
    }
2128
324k
#endif                          /* OPENSSL_NO_PSK */
2129
324k
#ifndef OPENSSL_NO_SRP
2130
324k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2131
324k
        s->s3.tmp.mask_a |= SSL_aSRP;
2132
324k
        s->s3.tmp.mask_k |= SSL_kSRP;
2133
324k
    }
2134
324k
#endif
2135
324k
    return 1;
2136
324k
}
2137
2138
/*
2139
 * ssl_cipher_disabled - check that a cipher is disabled or not
2140
 * @s: SSL connection that you want to use the cipher on
2141
 * @c: cipher to check
2142
 * @op: Security check that you want to do
2143
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2144
 *
2145
 * Returns 1 when it's disabled, 0 when enabled.
2146
 */
2147
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2148
                        int op, int ecdhe)
2149
24.0M
{
2150
24.0M
    int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2151
24.0M
    int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2152
2153
24.0M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2154
24.0M
        || c->algorithm_auth & s->s3.tmp.mask_a)
2155
10.0M
        return 1;
2156
14.0M
    if (s->s3.tmp.max_ver == 0)
2157
0
        return 1;
2158
2159
14.0M
    if (SSL_IS_QUIC_HANDSHAKE(s))
2160
        /* For QUIC, only allow these ciphersuites. */
2161
357k
        switch (SSL_CIPHER_get_id(c)) {
2162
113k
        case TLS1_3_CK_AES_128_GCM_SHA256:
2163
242k
        case TLS1_3_CK_AES_256_GCM_SHA384:
2164
357k
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2165
357k
            break;
2166
30
        default:
2167
30
            return 1;
2168
357k
        }
2169
2170
    /*
2171
     * For historical reasons we will allow ECHDE to be selected by a server
2172
     * in SSLv3 if we are a client
2173
     */
2174
14.0M
    if (minversion == TLS1_VERSION
2175
14.0M
            && ecdhe
2176
14.0M
            && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2177
5.67k
        minversion = SSL3_VERSION;
2178
2179
14.0M
    if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2180
14.0M
        || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2181
325k
        return 1;
2182
2183
13.7M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2184
14.0M
}
2185
2186
int tls_use_ticket(SSL_CONNECTION *s)
2187
145k
{
2188
145k
    if ((s->options & SSL_OP_NO_TICKET))
2189
0
        return 0;
2190
145k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2191
145k
}
2192
2193
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2194
24.3k
{
2195
24.3k
    size_t i;
2196
2197
    /* Clear any shared signature algorithms */
2198
24.3k
    OPENSSL_free(s->shared_sigalgs);
2199
24.3k
    s->shared_sigalgs = NULL;
2200
24.3k
    s->shared_sigalgslen = 0;
2201
2202
    /* Clear certificate validity flags */
2203
24.3k
    if (s->s3.tmp.valid_flags)
2204
114
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2205
24.2k
    else
2206
24.2k
        s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2207
24.3k
    if (s->s3.tmp.valid_flags == NULL)
2208
0
        return 0;
2209
    /*
2210
     * If peer sent no signature algorithms check to see if we support
2211
     * the default algorithm for each certificate type
2212
     */
2213
24.3k
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2214
24.3k
            && s->s3.tmp.peer_sigalgs == NULL) {
2215
18.4k
        const uint16_t *sent_sigs;
2216
18.4k
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2217
2218
209k
        for (i = 0; i < s->ssl_pkey_num; i++) {
2219
190k
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2220
190k
            size_t j;
2221
2222
190k
            if (lu == NULL)
2223
135k
                continue;
2224
            /* Check default matches a type we sent */
2225
1.25M
            for (j = 0; j < sent_sigslen; j++) {
2226
1.24M
                if (lu->sigalg == sent_sigs[j]) {
2227
48.9k
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2228
48.9k
                        break;
2229
48.9k
                }
2230
1.24M
            }
2231
55.2k
        }
2232
18.4k
        return 1;
2233
18.4k
    }
2234
2235
5.91k
    if (!tls1_process_sigalgs(s)) {
2236
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2237
0
        return 0;
2238
0
    }
2239
5.91k
    if (s->shared_sigalgs != NULL)
2240
5.81k
        return 1;
2241
2242
    /* Fatal error if no shared signature algorithms */
2243
5.91k
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2244
94
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2245
94
    return 0;
2246
5.91k
}
2247
2248
/*-
2249
 * Gets the ticket information supplied by the client if any.
2250
 *
2251
 *   hello: The parsed ClientHello data
2252
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
2253
 *       point to the resulting session.
2254
 */
2255
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2256
                                             CLIENTHELLO_MSG *hello,
2257
                                             SSL_SESSION **ret)
2258
23.2k
{
2259
23.2k
    size_t size;
2260
23.2k
    RAW_EXTENSION *ticketext;
2261
2262
23.2k
    *ret = NULL;
2263
23.2k
    s->ext.ticket_expected = 0;
2264
2265
    /*
2266
     * If tickets disabled or not supported by the protocol version
2267
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
2268
     * resumption.
2269
     */
2270
23.2k
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
2271
159
        return SSL_TICKET_NONE;
2272
2273
23.0k
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
2274
23.0k
    if (!ticketext->present)
2275
17.7k
        return SSL_TICKET_NONE;
2276
2277
5.27k
    size = PACKET_remaining(&ticketext->data);
2278
2279
5.27k
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
2280
5.27k
                              hello->session_id, hello->session_id_len, ret);
2281
23.0k
}
2282
2283
/*-
2284
 * tls_decrypt_ticket attempts to decrypt a session ticket.
2285
 *
2286
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
2287
 * expecting a pre-shared key ciphersuite, in which case we have no use for
2288
 * session tickets and one will never be decrypted, nor will
2289
 * s->ext.ticket_expected be set to 1.
2290
 *
2291
 * Side effects:
2292
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
2293
 *   a new session ticket to the client because the client indicated support
2294
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2295
 *   a session ticket or we couldn't use the one it gave us, or if
2296
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
2297
 *   Otherwise, s->ext.ticket_expected is set to 0.
2298
 *
2299
 *   etick: points to the body of the session ticket extension.
2300
 *   eticklen: the length of the session tickets extension.
2301
 *   sess_id: points at the session ID.
2302
 *   sesslen: the length of the session ID.
2303
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
2304
 *       point to the resulting session.
2305
 */
2306
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
2307
                                     const unsigned char *etick,
2308
                                     size_t eticklen,
2309
                                     const unsigned char *sess_id,
2310
                                     size_t sesslen, SSL_SESSION **psess)
2311
6.23k
{
2312
6.23k
    SSL_SESSION *sess = NULL;
2313
6.23k
    unsigned char *sdec;
2314
6.23k
    const unsigned char *p;
2315
6.23k
    int slen, ivlen, renew_ticket = 0, declen;
2316
6.23k
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
2317
6.23k
    size_t mlen;
2318
6.23k
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
2319
6.23k
    SSL_HMAC *hctx = NULL;
2320
6.23k
    EVP_CIPHER_CTX *ctx = NULL;
2321
6.23k
    SSL_CTX *tctx = s->session_ctx;
2322
6.23k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
2323
2324
6.23k
    if (eticklen == 0) {
2325
        /*
2326
         * The client will accept a ticket but doesn't currently have
2327
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
2328
         */
2329
3.47k
        ret = SSL_TICKET_EMPTY;
2330
3.47k
        goto end;
2331
3.47k
    }
2332
2.75k
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
2333
        /*
2334
         * Indicate that the ticket couldn't be decrypted rather than
2335
         * generating the session from ticket now, trigger
2336
         * abbreviated handshake based on external mechanism to
2337
         * calculate the master secret later.
2338
         */
2339
0
        ret = SSL_TICKET_NO_DECRYPT;
2340
0
        goto end;
2341
0
    }
2342
2343
    /* Need at least keyname + iv */
2344
2.75k
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
2345
800
        ret = SSL_TICKET_NO_DECRYPT;
2346
800
        goto end;
2347
800
    }
2348
2349
    /* Initialize session ticket encryption and HMAC contexts */
2350
1.95k
    hctx = ssl_hmac_new(tctx);
2351
1.95k
    if (hctx == NULL) {
2352
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2353
0
        goto end;
2354
0
    }
2355
1.95k
    ctx = EVP_CIPHER_CTX_new();
2356
1.95k
    if (ctx == NULL) {
2357
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2358
0
        goto end;
2359
0
    }
2360
1.95k
#ifndef OPENSSL_NO_DEPRECATED_3_0
2361
1.95k
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
2362
#else
2363
    if (tctx->ext.ticket_key_evp_cb != NULL)
2364
#endif
2365
0
    {
2366
0
        unsigned char *nctick = (unsigned char *)etick;
2367
0
        int rv = 0;
2368
2369
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
2370
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
2371
0
                                             nctick,
2372
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
2373
0
                                             ctx,
2374
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
2375
0
                                             0);
2376
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
2377
0
        else if (tctx->ext.ticket_key_cb != NULL)
2378
            /* if 0 is returned, write an empty ticket */
2379
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
2380
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
2381
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
2382
0
#endif
2383
0
        if (rv < 0) {
2384
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2385
0
            goto end;
2386
0
        }
2387
0
        if (rv == 0) {
2388
0
            ret = SSL_TICKET_NO_DECRYPT;
2389
0
            goto end;
2390
0
        }
2391
0
        if (rv == 2)
2392
0
            renew_ticket = 1;
2393
1.95k
    } else {
2394
1.95k
        EVP_CIPHER *aes256cbc = NULL;
2395
2396
        /* Check key name matches */
2397
1.95k
        if (memcmp(etick, tctx->ext.tick_key_name,
2398
1.95k
                   TLSEXT_KEYNAME_LENGTH) != 0) {
2399
619
            ret = SSL_TICKET_NO_DECRYPT;
2400
619
            goto end;
2401
619
        }
2402
2403
1.33k
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
2404
1.33k
                                     sctx->propq);
2405
1.33k
        if (aes256cbc == NULL
2406
1.33k
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
2407
1.33k
                             sizeof(tctx->ext.secure->tick_hmac_key),
2408
1.33k
                             "SHA256") <= 0
2409
1.33k
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
2410
1.33k
                                  tctx->ext.secure->tick_aes_key,
2411
1.33k
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
2412
0
            EVP_CIPHER_free(aes256cbc);
2413
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2414
0
            goto end;
2415
0
        }
2416
1.33k
        EVP_CIPHER_free(aes256cbc);
2417
1.33k
        if (SSL_CONNECTION_IS_TLS13(s))
2418
634
            renew_ticket = 1;
2419
1.33k
    }
2420
    /*
2421
     * Attempt to process session ticket, first conduct sanity and integrity
2422
     * checks on ticket.
2423
     */
2424
1.33k
    mlen = ssl_hmac_size(hctx);
2425
1.33k
    if (mlen == 0) {
2426
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2427
0
        goto end;
2428
0
    }
2429
2430
1.33k
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
2431
1.33k
    if (ivlen < 0) {
2432
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2433
0
        goto end;
2434
0
    }
2435
2436
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
2437
1.33k
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
2438
103
        ret = SSL_TICKET_NO_DECRYPT;
2439
103
        goto end;
2440
103
    }
2441
1.23k
    eticklen -= mlen;
2442
    /* Check HMAC of encrypted ticket */
2443
1.23k
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
2444
1.23k
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
2445
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2446
0
        goto end;
2447
0
    }
2448
2449
1.23k
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2450
179
        ret = SSL_TICKET_NO_DECRYPT;
2451
179
        goto end;
2452
179
    }
2453
    /* Attempt to decrypt session data */
2454
    /* Move p after IV to start of encrypted ticket, update length */
2455
1.05k
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
2456
1.05k
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
2457
1.05k
    sdec = OPENSSL_malloc(eticklen);
2458
1.05k
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
2459
1.05k
                                          (int)eticklen) <= 0) {
2460
0
        OPENSSL_free(sdec);
2461
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2462
0
        goto end;
2463
0
    }
2464
1.05k
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
2465
72
        OPENSSL_free(sdec);
2466
72
        ret = SSL_TICKET_NO_DECRYPT;
2467
72
        goto end;
2468
72
    }
2469
979
    slen += declen;
2470
979
    p = sdec;
2471
2472
979
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
2473
979
    slen -= p - sdec;
2474
979
    OPENSSL_free(sdec);
2475
979
    if (sess) {
2476
        /* Some additional consistency checks */
2477
813
        if (slen != 0) {
2478
12
            SSL_SESSION_free(sess);
2479
12
            sess = NULL;
2480
12
            ret = SSL_TICKET_NO_DECRYPT;
2481
12
            goto end;
2482
12
        }
2483
        /*
2484
         * The session ID, if non-empty, is used by some clients to detect
2485
         * that the ticket has been accepted. So we copy it to the session
2486
         * structure. If it is empty set length to zero as required by
2487
         * standard.
2488
         */
2489
801
        if (sesslen) {
2490
292
            memcpy(sess->session_id, sess_id, sesslen);
2491
292
            sess->session_id_length = sesslen;
2492
292
        }
2493
801
        if (renew_ticket)
2494
490
            ret = SSL_TICKET_SUCCESS_RENEW;
2495
311
        else
2496
311
            ret = SSL_TICKET_SUCCESS;
2497
801
        goto end;
2498
813
    }
2499
166
    ERR_clear_error();
2500
    /*
2501
     * For session parse failure, indicate that we need to send a new ticket.
2502
     */
2503
166
    ret = SSL_TICKET_NO_DECRYPT;
2504
2505
6.23k
 end:
2506
6.23k
    EVP_CIPHER_CTX_free(ctx);
2507
6.23k
    ssl_hmac_free(hctx);
2508
2509
    /*
2510
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
2511
     * detected above. The callback is responsible for checking |ret| before it
2512
     * performs any action
2513
     */
2514
6.23k
    if (s->session_ctx->decrypt_ticket_cb != NULL
2515
6.23k
            && (ret == SSL_TICKET_EMPTY
2516
0
                || ret == SSL_TICKET_NO_DECRYPT
2517
0
                || ret == SSL_TICKET_SUCCESS
2518
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
2519
0
        size_t keyname_len = eticklen;
2520
0
        int retcb;
2521
2522
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2523
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
2524
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
2525
0
                                                  sess, etick, keyname_len,
2526
0
                                                  ret,
2527
0
                                                  s->session_ctx->ticket_cb_data);
2528
0
        switch (retcb) {
2529
0
        case SSL_TICKET_RETURN_ABORT:
2530
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2531
0
            break;
2532
2533
0
        case SSL_TICKET_RETURN_IGNORE:
2534
0
            ret = SSL_TICKET_NONE;
2535
0
            SSL_SESSION_free(sess);
2536
0
            sess = NULL;
2537
0
            break;
2538
2539
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
2540
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2541
0
                ret = SSL_TICKET_NO_DECRYPT;
2542
            /* else the value of |ret| will already do the right thing */
2543
0
            SSL_SESSION_free(sess);
2544
0
            sess = NULL;
2545
0
            break;
2546
2547
0
        case SSL_TICKET_RETURN_USE:
2548
0
        case SSL_TICKET_RETURN_USE_RENEW:
2549
0
            if (ret != SSL_TICKET_SUCCESS
2550
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
2551
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
2552
0
            else if (retcb == SSL_TICKET_RETURN_USE)
2553
0
                ret = SSL_TICKET_SUCCESS;
2554
0
            else
2555
0
                ret = SSL_TICKET_SUCCESS_RENEW;
2556
0
            break;
2557
2558
0
        default:
2559
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2560
0
        }
2561
0
    }
2562
2563
6.23k
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
2564
6.23k
        switch (ret) {
2565
1.95k
        case SSL_TICKET_NO_DECRYPT:
2566
2.44k
        case SSL_TICKET_SUCCESS_RENEW:
2567
5.92k
        case SSL_TICKET_EMPTY:
2568
5.92k
            s->ext.ticket_expected = 1;
2569
6.23k
        }
2570
6.23k
    }
2571
2572
6.23k
    *psess = sess;
2573
2574
6.23k
    return ret;
2575
6.23k
}
2576
2577
/* Check to see if a signature algorithm is allowed */
2578
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
2579
                                const SIGALG_LOOKUP *lu)
2580
4.30M
{
2581
4.30M
    unsigned char sigalgstr[2];
2582
4.30M
    int secbits;
2583
2584
4.30M
    if (lu == NULL || !lu->enabled)
2585
0
        return 0;
2586
    /* DSA is not allowed in TLS 1.3 */
2587
4.30M
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2588
8.17k
        return 0;
2589
    /*
2590
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2591
     * spec
2592
     */
2593
4.29M
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
2594
4.29M
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
2595
4.29M
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2596
1.82M
            || lu->hash_idx == SSL_MD_MD5_IDX
2597
1.82M
            || lu->hash_idx == SSL_MD_SHA224_IDX))
2598
745k
        return 0;
2599
2600
    /* See if public key algorithm allowed */
2601
3.54M
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
2602
0
        return 0;
2603
2604
3.54M
    if (lu->sig == NID_id_GostR3410_2012_256
2605
3.54M
            || lu->sig == NID_id_GostR3410_2012_512
2606
3.54M
            || lu->sig == NID_id_GostR3410_2001) {
2607
        /* We never allow GOST sig algs on the server with TLSv1.3 */
2608
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
2609
0
            return 0;
2610
0
        if (!s->server
2611
0
                && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
2612
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2613
0
            int i, num;
2614
0
            STACK_OF(SSL_CIPHER) *sk;
2615
2616
            /*
2617
             * We're a client that could negotiate TLSv1.3. We only allow GOST
2618
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2619
             * ciphersuites enabled.
2620
             */
2621
2622
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2623
0
                return 0;
2624
2625
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
2626
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2627
0
            for (i = 0; i < num; i++) {
2628
0
                const SSL_CIPHER *c;
2629
2630
0
                c = sk_SSL_CIPHER_value(sk, i);
2631
                /* Skip disabled ciphers */
2632
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2633
0
                    continue;
2634
2635
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2636
0
                    break;
2637
0
            }
2638
0
            if (i == num)
2639
0
                return 0;
2640
0
        }
2641
0
    }
2642
2643
    /* Finally see if security callback allows it */
2644
3.54M
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2645
3.54M
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2646
3.54M
    sigalgstr[1] = lu->sigalg & 0xff;
2647
3.54M
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2648
3.54M
}
2649
2650
/*
2651
 * Get a mask of disabled public key algorithms based on supported signature
2652
 * algorithms. For example if no signature algorithm supports RSA then RSA is
2653
 * disabled.
2654
 */
2655
2656
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
2657
324k
{
2658
324k
    const uint16_t *sigalgs;
2659
324k
    size_t i, sigalgslen;
2660
324k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2661
    /*
2662
     * Go through all signature algorithms seeing if we support any
2663
     * in disabled_mask.
2664
     */
2665
324k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2666
9.97M
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
2667
9.65M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2668
9.65M
        const SSL_CERT_LOOKUP *clu;
2669
2670
9.65M
        if (lu == NULL)
2671
977k
            continue;
2672
2673
8.67M
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
2674
8.67M
                                     SSL_CONNECTION_GET_CTX(s));
2675
8.67M
        if (clu == NULL)
2676
0
                continue;
2677
2678
        /* If algorithm is disabled see if we can enable it */
2679
8.67M
        if ((clu->amask & disabled_mask) != 0
2680
8.67M
                && tls12_sigalg_allowed(s, op, lu))
2681
877k
            disabled_mask &= ~clu->amask;
2682
8.67M
    }
2683
324k
    *pmask_a |= disabled_mask;
2684
324k
}
2685
2686
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
2687
                       const uint16_t *psig, size_t psiglen)
2688
107k
{
2689
107k
    size_t i;
2690
107k
    int rv = 0;
2691
2692
3.30M
    for (i = 0; i < psiglen; i++, psig++) {
2693
3.19M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2694
2695
3.19M
        if (lu == NULL
2696
3.19M
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2697
789k
            continue;
2698
2.40M
        if (!WPACKET_put_bytes_u16(pkt, *psig))
2699
0
            return 0;
2700
        /*
2701
         * If TLS 1.3 must have at least one valid TLS 1.3 message
2702
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2703
         */
2704
2.40M
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
2705
107k
            || (lu->sig != EVP_PKEY_RSA
2706
0
                && lu->hash != NID_sha1
2707
0
                && lu->hash != NID_sha224)))
2708
107k
            rv = 1;
2709
2.40M
    }
2710
107k
    if (rv == 0)
2711
107k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2712
107k
    return rv;
2713
107k
}
2714
2715
/* Given preference and allowed sigalgs set shared sigalgs */
2716
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
2717
                                   const SIGALG_LOOKUP **shsig,
2718
                                   const uint16_t *pref, size_t preflen,
2719
                                   const uint16_t *allow, size_t allowlen)
2720
14.6k
{
2721
14.6k
    const uint16_t *ptmp, *atmp;
2722
14.6k
    size_t i, j, nmatch = 0;
2723
375k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2724
361k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2725
2726
        /* Skip disabled hashes or signature algorithms */
2727
361k
        if (lu == NULL
2728
361k
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2729
199k
            continue;
2730
2.50M
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2731
2.50M
            if (*ptmp == *atmp) {
2732
162k
                nmatch++;
2733
162k
                if (shsig)
2734
81.0k
                    *shsig++ = lu;
2735
162k
                break;
2736
162k
            }
2737
2.50M
        }
2738
162k
    }
2739
14.6k
    return nmatch;
2740
14.6k
}
2741
2742
/* Set shared signature algorithms for SSL structures */
2743
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
2744
7.40k
{
2745
7.40k
    const uint16_t *pref, *allow, *conf;
2746
7.40k
    size_t preflen, allowlen, conflen;
2747
7.40k
    size_t nmatch;
2748
7.40k
    const SIGALG_LOOKUP **salgs = NULL;
2749
7.40k
    CERT *c = s->cert;
2750
7.40k
    unsigned int is_suiteb = tls1_suiteb(s);
2751
2752
7.40k
    OPENSSL_free(s->shared_sigalgs);
2753
7.40k
    s->shared_sigalgs = NULL;
2754
7.40k
    s->shared_sigalgslen = 0;
2755
    /* If client use client signature algorithms if not NULL */
2756
7.40k
    if (!s->server && c->client_sigalgs && !is_suiteb) {
2757
0
        conf = c->client_sigalgs;
2758
0
        conflen = c->client_sigalgslen;
2759
7.40k
    } else if (c->conf_sigalgs && !is_suiteb) {
2760
0
        conf = c->conf_sigalgs;
2761
0
        conflen = c->conf_sigalgslen;
2762
0
    } else
2763
7.40k
        conflen = tls12_get_psigalgs(s, 0, &conf);
2764
7.40k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2765
0
        pref = conf;
2766
0
        preflen = conflen;
2767
0
        allow = s->s3.tmp.peer_sigalgs;
2768
0
        allowlen = s->s3.tmp.peer_sigalgslen;
2769
7.40k
    } else {
2770
7.40k
        allow = conf;
2771
7.40k
        allowlen = conflen;
2772
7.40k
        pref = s->s3.tmp.peer_sigalgs;
2773
7.40k
        preflen = s->s3.tmp.peer_sigalgslen;
2774
7.40k
    }
2775
7.40k
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2776
7.40k
    if (nmatch) {
2777
7.22k
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
2778
0
            return 0;
2779
7.22k
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2780
7.22k
    } else {
2781
178
        salgs = NULL;
2782
178
    }
2783
7.40k
    s->shared_sigalgs = salgs;
2784
7.40k
    s->shared_sigalgslen = nmatch;
2785
7.40k
    return 1;
2786
7.40k
}
2787
2788
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2789
23.7k
{
2790
23.7k
    unsigned int stmp;
2791
23.7k
    size_t size, i;
2792
23.7k
    uint16_t *buf;
2793
2794
23.7k
    size = PACKET_remaining(pkt);
2795
2796
    /* Invalid data length */
2797
23.7k
    if (size == 0 || (size & 1) != 0)
2798
53
        return 0;
2799
2800
23.6k
    size >>= 1;
2801
2802
23.6k
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
2803
0
        return 0;
2804
266k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2805
242k
        buf[i] = stmp;
2806
2807
23.6k
    if (i != size) {
2808
0
        OPENSSL_free(buf);
2809
0
        return 0;
2810
0
    }
2811
2812
23.6k
    OPENSSL_free(*pdest);
2813
23.6k
    *pdest = buf;
2814
23.6k
    *pdestlen = size;
2815
2816
23.6k
    return 1;
2817
23.6k
}
2818
2819
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
2820
9.04k
{
2821
    /* Extension ignored for inappropriate versions */
2822
9.04k
    if (!SSL_USE_SIGALGS(s))
2823
149
        return 1;
2824
    /* Should never happen */
2825
8.89k
    if (s->cert == NULL)
2826
0
        return 0;
2827
2828
8.89k
    if (cert)
2829
803
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2830
803
                             &s->s3.tmp.peer_cert_sigalgslen);
2831
8.09k
    else
2832
8.09k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2833
8.09k
                             &s->s3.tmp.peer_sigalgslen);
2834
2835
8.89k
}
2836
2837
/* Set preferred digest for each key type */
2838
2839
int tls1_process_sigalgs(SSL_CONNECTION *s)
2840
7.40k
{
2841
7.40k
    size_t i;
2842
7.40k
    uint32_t *pvalid = s->s3.tmp.valid_flags;
2843
2844
7.40k
    if (!tls1_set_shared_sigalgs(s))
2845
0
        return 0;
2846
2847
83.1k
    for (i = 0; i < s->ssl_pkey_num; i++)
2848
75.7k
        pvalid[i] = 0;
2849
2850
88.4k
    for (i = 0; i < s->shared_sigalgslen; i++) {
2851
81.0k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2852
81.0k
        int idx = sigptr->sig_idx;
2853
2854
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
2855
81.0k
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2856
2.41k
            continue;
2857
        /* If not disabled indicate we can explicitly sign */
2858
78.5k
        if (pvalid[idx] == 0
2859
78.5k
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
2860
13.6k
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2861
78.5k
    }
2862
7.40k
    return 1;
2863
7.40k
}
2864
2865
int SSL_get_sigalgs(SSL *s, int idx,
2866
                    int *psign, int *phash, int *psignhash,
2867
                    unsigned char *rsig, unsigned char *rhash)
2868
0
{
2869
0
    uint16_t *psig;
2870
0
    size_t numsigalgs;
2871
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2872
2873
0
    if (sc == NULL)
2874
0
        return 0;
2875
2876
0
    psig = sc->s3.tmp.peer_sigalgs;
2877
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
2878
2879
0
    if (psig == NULL || numsigalgs > INT_MAX)
2880
0
        return 0;
2881
0
    if (idx >= 0) {
2882
0
        const SIGALG_LOOKUP *lu;
2883
2884
0
        if (idx >= (int)numsigalgs)
2885
0
            return 0;
2886
0
        psig += idx;
2887
0
        if (rhash != NULL)
2888
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
2889
0
        if (rsig != NULL)
2890
0
            *rsig = (unsigned char)(*psig & 0xff);
2891
0
        lu = tls1_lookup_sigalg(sc, *psig);
2892
0
        if (psign != NULL)
2893
0
            *psign = lu != NULL ? lu->sig : NID_undef;
2894
0
        if (phash != NULL)
2895
0
            *phash = lu != NULL ? lu->hash : NID_undef;
2896
0
        if (psignhash != NULL)
2897
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2898
0
    }
2899
0
    return (int)numsigalgs;
2900
0
}
2901
2902
int SSL_get_shared_sigalgs(SSL *s, int idx,
2903
                           int *psign, int *phash, int *psignhash,
2904
                           unsigned char *rsig, unsigned char *rhash)
2905
0
{
2906
0
    const SIGALG_LOOKUP *shsigalgs;
2907
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2908
2909
0
    if (sc == NULL)
2910
0
        return 0;
2911
2912
0
    if (sc->shared_sigalgs == NULL
2913
0
        || idx < 0
2914
0
        || idx >= (int)sc->shared_sigalgslen
2915
0
        || sc->shared_sigalgslen > INT_MAX)
2916
0
        return 0;
2917
0
    shsigalgs = sc->shared_sigalgs[idx];
2918
0
    if (phash != NULL)
2919
0
        *phash = shsigalgs->hash;
2920
0
    if (psign != NULL)
2921
0
        *psign = shsigalgs->sig;
2922
0
    if (psignhash != NULL)
2923
0
        *psignhash = shsigalgs->sigandhash;
2924
0
    if (rsig != NULL)
2925
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2926
0
    if (rhash != NULL)
2927
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2928
0
    return (int)sc->shared_sigalgslen;
2929
0
}
2930
2931
/* Maximum possible number of unique entries in sigalgs array */
2932
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2933
2934
typedef struct {
2935
    size_t sigalgcnt;
2936
    /* TLSEXT_SIGALG_XXX values */
2937
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2938
    SSL_CTX *ctx;
2939
} sig_cb_st;
2940
2941
static void get_sigorhash(int *psig, int *phash, const char *str)
2942
0
{
2943
0
    if (strcmp(str, "RSA") == 0) {
2944
0
        *psig = EVP_PKEY_RSA;
2945
0
    } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2946
0
        *psig = EVP_PKEY_RSA_PSS;
2947
0
    } else if (strcmp(str, "DSA") == 0) {
2948
0
        *psig = EVP_PKEY_DSA;
2949
0
    } else if (strcmp(str, "ECDSA") == 0) {
2950
0
        *psig = EVP_PKEY_EC;
2951
0
    } else {
2952
0
        *phash = OBJ_sn2nid(str);
2953
0
        if (*phash == NID_undef)
2954
0
            *phash = OBJ_ln2nid(str);
2955
0
    }
2956
0
}
2957
/* Maximum length of a signature algorithm string component */
2958
#define TLS_MAX_SIGSTRING_LEN   40
2959
2960
static int sig_cb(const char *elem, int len, void *arg)
2961
0
{
2962
0
    sig_cb_st *sarg = arg;
2963
0
    size_t i = 0;
2964
0
    const SIGALG_LOOKUP *s;
2965
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2966
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
2967
0
    int ignore_unknown = 0;
2968
2969
0
    if (elem == NULL)
2970
0
        return 0;
2971
0
    if (elem[0] == '?') {
2972
0
        ignore_unknown = 1;
2973
0
        ++elem;
2974
0
        --len;
2975
0
    }
2976
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2977
0
        return 0;
2978
0
    if (len > (int)(sizeof(etmp) - 1))
2979
0
        return 0;
2980
0
    memcpy(etmp, elem, len);
2981
0
    etmp[len] = 0;
2982
0
    p = strchr(etmp, '+');
2983
    /*
2984
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2985
     * if there's no '+' in the provided name, look for the new-style combined
2986
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2987
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2988
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
2989
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
2990
     * in the table.
2991
     */
2992
0
    if (p == NULL) {
2993
        /* Load provider sigalgs */
2994
0
        if (sarg->ctx != NULL) {
2995
            /* Check if a provider supports the sigalg */
2996
0
            for (i = 0; i < sarg->ctx->sigalg_list_len; i++) {
2997
0
                if (sarg->ctx->sigalg_list[i].sigalg_name != NULL
2998
0
                    && strcmp(etmp,
2999
0
                              sarg->ctx->sigalg_list[i].sigalg_name) == 0) {
3000
0
                    sarg->sigalgs[sarg->sigalgcnt++] =
3001
0
                        sarg->ctx->sigalg_list[i].code_point;
3002
0
                    break;
3003
0
                }
3004
0
            }
3005
0
        }
3006
        /* Check the built-in sigalgs */
3007
0
        if (sarg->ctx == NULL || i == sarg->ctx->sigalg_list_len) {
3008
0
            for (i = 0, s = sigalg_lookup_tbl;
3009
0
                 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3010
0
                if (s->name != NULL && strcmp(etmp, s->name) == 0) {
3011
0
                    sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3012
0
                    break;
3013
0
                }
3014
0
            }
3015
0
            if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
3016
                /* Ignore unknown algorithms if ignore_unknown */
3017
0
                return ignore_unknown;
3018
0
            }
3019
0
        }
3020
0
    } else {
3021
0
        *p = 0;
3022
0
        p++;
3023
0
        if (*p == 0)
3024
0
            return 0;
3025
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
3026
0
        get_sigorhash(&sig_alg, &hash_alg, p);
3027
0
        if (sig_alg == NID_undef || hash_alg == NID_undef) {
3028
            /* Ignore unknown algorithms if ignore_unknown */
3029
0
            return ignore_unknown;
3030
0
        }
3031
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
3032
0
             i++, s++) {
3033
0
            if (s->hash == hash_alg && s->sig == sig_alg) {
3034
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3035
0
                break;
3036
0
            }
3037
0
        }
3038
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
3039
            /* Ignore unknown algorithms if ignore_unknown */
3040
0
            return ignore_unknown;
3041
0
        }
3042
0
    }
3043
3044
    /* Ignore duplicates */
3045
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3046
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3047
0
            sarg->sigalgcnt--;
3048
0
            return 1;
3049
0
        }
3050
0
    }
3051
0
    return 1;
3052
0
}
3053
3054
/*
3055
 * Set supported signature algorithms based on a colon separated list of the
3056
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3057
 */
3058
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3059
0
{
3060
0
    sig_cb_st sig;
3061
0
    sig.sigalgcnt = 0;
3062
3063
0
    if (ctx != NULL)
3064
0
        sig.ctx = ctx;
3065
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3066
0
        return 0;
3067
0
    if (sig.sigalgcnt == 0) {
3068
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3069
0
                       "No valid signature algorithms in '%s'", str);
3070
0
        return 0;
3071
0
    }
3072
0
    if (c == NULL)
3073
0
        return 1;
3074
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3075
0
}
3076
3077
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3078
                     int client)
3079
0
{
3080
0
    uint16_t *sigalgs;
3081
3082
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3083
0
        return 0;
3084
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3085
3086
0
    if (client) {
3087
0
        OPENSSL_free(c->client_sigalgs);
3088
0
        c->client_sigalgs = sigalgs;
3089
0
        c->client_sigalgslen = salglen;
3090
0
    } else {
3091
0
        OPENSSL_free(c->conf_sigalgs);
3092
0
        c->conf_sigalgs = sigalgs;
3093
0
        c->conf_sigalgslen = salglen;
3094
0
    }
3095
3096
0
    return 1;
3097
0
}
3098
3099
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3100
0
{
3101
0
    uint16_t *sigalgs, *sptr;
3102
0
    size_t i;
3103
3104
0
    if (salglen & 1)
3105
0
        return 0;
3106
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3107
0
        return 0;
3108
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3109
0
        size_t j;
3110
0
        const SIGALG_LOOKUP *curr;
3111
0
        int md_id = *psig_nids++;
3112
0
        int sig_id = *psig_nids++;
3113
3114
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3115
0
             j++, curr++) {
3116
0
            if (curr->hash == md_id && curr->sig == sig_id) {
3117
0
                *sptr++ = curr->sigalg;
3118
0
                break;
3119
0
            }
3120
0
        }
3121
3122
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3123
0
            goto err;
3124
0
    }
3125
3126
0
    if (client) {
3127
0
        OPENSSL_free(c->client_sigalgs);
3128
0
        c->client_sigalgs = sigalgs;
3129
0
        c->client_sigalgslen = salglen / 2;
3130
0
    } else {
3131
0
        OPENSSL_free(c->conf_sigalgs);
3132
0
        c->conf_sigalgs = sigalgs;
3133
0
        c->conf_sigalgslen = salglen / 2;
3134
0
    }
3135
3136
0
    return 1;
3137
3138
0
 err:
3139
0
    OPENSSL_free(sigalgs);
3140
0
    return 0;
3141
0
}
3142
3143
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3144
0
{
3145
0
    int sig_nid, use_pc_sigalgs = 0;
3146
0
    size_t i;
3147
0
    const SIGALG_LOOKUP *sigalg;
3148
0
    size_t sigalgslen;
3149
3150
0
    if (default_nid == -1)
3151
0
        return 1;
3152
0
    sig_nid = X509_get_signature_nid(x);
3153
0
    if (default_nid)
3154
0
        return sig_nid == default_nid ? 1 : 0;
3155
3156
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3157
        /*
3158
         * If we're in TLSv1.3 then we only get here if we're checking the
3159
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3160
         * otherwise we default to normal sigalgs.
3161
         */
3162
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3163
0
        use_pc_sigalgs = 1;
3164
0
    } else {
3165
0
        sigalgslen = s->shared_sigalgslen;
3166
0
    }
3167
0
    for (i = 0; i < sigalgslen; i++) {
3168
0
        sigalg = use_pc_sigalgs
3169
0
                 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
3170
0
                 : s->shared_sigalgs[i];
3171
0
        if (sigalg != NULL && sig_nid == sigalg->sigandhash)
3172
0
            return 1;
3173
0
    }
3174
0
    return 0;
3175
0
}
3176
3177
/* Check to see if a certificate issuer name matches list of CA names */
3178
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3179
0
{
3180
0
    const X509_NAME *nm;
3181
0
    int i;
3182
0
    nm = X509_get_issuer_name(x);
3183
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
3184
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3185
0
            return 1;
3186
0
    }
3187
0
    return 0;
3188
0
}
3189
3190
/*
3191
 * Check certificate chain is consistent with TLS extensions and is usable by
3192
 * server. This servers two purposes: it allows users to check chains before
3193
 * passing them to the server and it allows the server to check chains before
3194
 * attempting to use them.
3195
 */
3196
3197
/* Flags which need to be set for a certificate when strict mode not set */
3198
3199
#define CERT_PKEY_VALID_FLAGS \
3200
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3201
/* Strict mode flags */
3202
#define CERT_PKEY_STRICT_FLAGS \
3203
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3204
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3205
3206
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3207
                     STACK_OF(X509) *chain, int idx)
3208
192k
{
3209
192k
    int i;
3210
192k
    int rv = 0;
3211
192k
    int check_flags = 0, strict_mode;
3212
192k
    CERT_PKEY *cpk = NULL;
3213
192k
    CERT *c = s->cert;
3214
192k
    uint32_t *pvalid;
3215
192k
    unsigned int suiteb_flags = tls1_suiteb(s);
3216
3217
    /*
3218
     * Meaning of idx:
3219
     * idx == -1 means SSL_check_chain() invocation
3220
     * idx == -2 means checking client certificate chains
3221
     * idx >= 0 means checking SSL_PKEY index
3222
     *
3223
     * For RPK, where there may be no cert, we ignore -1
3224
     */
3225
192k
    if (idx != -1) {
3226
192k
        if (idx == -2) {
3227
0
            cpk = c->key;
3228
0
            idx = (int)(cpk - c->pkeys);
3229
0
        } else
3230
192k
            cpk = c->pkeys + idx;
3231
192k
        pvalid = s->s3.tmp.valid_flags + idx;
3232
192k
        x = cpk->x509;
3233
192k
        pk = cpk->privatekey;
3234
192k
        chain = cpk->chain;
3235
192k
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3236
192k
        if (tls12_rpk_and_privkey(s, idx)) {
3237
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
3238
0
                return 0;
3239
0
            *pvalid = rv = CERT_PKEY_RPK;
3240
0
            return rv;
3241
0
        }
3242
        /* If no cert or key, forget it */
3243
192k
        if (x == NULL || pk == NULL)
3244
128k
            goto end;
3245
192k
    } else {
3246
0
        size_t certidx;
3247
3248
0
        if (x == NULL || pk == NULL)
3249
0
            return 0;
3250
3251
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
3252
0
                                    SSL_CONNECTION_GET_CTX(s)) == NULL)
3253
0
            return 0;
3254
0
        idx = certidx;
3255
0
        pvalid = s->s3.tmp.valid_flags + idx;
3256
3257
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3258
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
3259
0
        else
3260
0
            check_flags = CERT_PKEY_VALID_FLAGS;
3261
0
        strict_mode = 1;
3262
0
    }
3263
3264
64.1k
    if (suiteb_flags) {
3265
0
        int ok;
3266
0
        if (check_flags)
3267
0
            check_flags |= CERT_PKEY_SUITEB;
3268
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3269
0
        if (ok == X509_V_OK)
3270
0
            rv |= CERT_PKEY_SUITEB;
3271
0
        else if (!check_flags)
3272
0
            goto end;
3273
0
    }
3274
3275
    /*
3276
     * Check all signature algorithms are consistent with signature
3277
     * algorithms extension if TLS 1.2 or later and strict mode.
3278
     */
3279
64.1k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
3280
64.1k
        && strict_mode) {
3281
0
        int default_nid;
3282
0
        int rsign = 0;
3283
3284
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
3285
0
                || s->s3.tmp.peer_sigalgs != NULL) {
3286
0
            default_nid = 0;
3287
        /* If no sigalgs extension use defaults from RFC5246 */
3288
0
        } else {
3289
0
            switch (idx) {
3290
0
            case SSL_PKEY_RSA:
3291
0
                rsign = EVP_PKEY_RSA;
3292
0
                default_nid = NID_sha1WithRSAEncryption;
3293
0
                break;
3294
3295
0
            case SSL_PKEY_DSA_SIGN:
3296
0
                rsign = EVP_PKEY_DSA;
3297
0
                default_nid = NID_dsaWithSHA1;
3298
0
                break;
3299
3300
0
            case SSL_PKEY_ECC:
3301
0
                rsign = EVP_PKEY_EC;
3302
0
                default_nid = NID_ecdsa_with_SHA1;
3303
0
                break;
3304
3305
0
            case SSL_PKEY_GOST01:
3306
0
                rsign = NID_id_GostR3410_2001;
3307
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
3308
0
                break;
3309
3310
0
            case SSL_PKEY_GOST12_256:
3311
0
                rsign = NID_id_GostR3410_2012_256;
3312
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
3313
0
                break;
3314
3315
0
            case SSL_PKEY_GOST12_512:
3316
0
                rsign = NID_id_GostR3410_2012_512;
3317
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
3318
0
                break;
3319
3320
0
            default:
3321
0
                default_nid = -1;
3322
0
                break;
3323
0
            }
3324
0
        }
3325
        /*
3326
         * If peer sent no signature algorithms extension and we have set
3327
         * preferred signature algorithms check we support sha1.
3328
         */
3329
0
        if (default_nid > 0 && c->conf_sigalgs) {
3330
0
            size_t j;
3331
0
            const uint16_t *p = c->conf_sigalgs;
3332
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
3333
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
3334
3335
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
3336
0
                    break;
3337
0
            }
3338
0
            if (j == c->conf_sigalgslen) {
3339
0
                if (check_flags)
3340
0
                    goto skip_sigs;
3341
0
                else
3342
0
                    goto end;
3343
0
            }
3344
0
        }
3345
        /* Check signature algorithm of each cert in chain */
3346
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
3347
            /*
3348
             * We only get here if the application has called SSL_check_chain(),
3349
             * so check_flags is always set.
3350
             */
3351
0
            if (find_sig_alg(s, x, pk) != NULL)
3352
0
                rv |= CERT_PKEY_EE_SIGNATURE;
3353
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
3354
0
            if (!check_flags)
3355
0
                goto end;
3356
0
        } else
3357
0
            rv |= CERT_PKEY_EE_SIGNATURE;
3358
0
        rv |= CERT_PKEY_CA_SIGNATURE;
3359
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3360
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
3361
0
                if (check_flags) {
3362
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
3363
0
                    break;
3364
0
                } else
3365
0
                    goto end;
3366
0
            }
3367
0
        }
3368
0
    }
3369
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
3370
64.1k
    else if (check_flags)
3371
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
3372
64.1k
 skip_sigs:
3373
    /* Check cert parameters are consistent */
3374
64.1k
    if (tls1_check_cert_param(s, x, 1))
3375
58.3k
        rv |= CERT_PKEY_EE_PARAM;
3376
5.82k
    else if (!check_flags)
3377
5.82k
        goto end;
3378
58.3k
    if (!s->server)
3379
0
        rv |= CERT_PKEY_CA_PARAM;
3380
    /* In strict mode check rest of chain too */
3381
58.3k
    else if (strict_mode) {
3382
0
        rv |= CERT_PKEY_CA_PARAM;
3383
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3384
0
            X509 *ca = sk_X509_value(chain, i);
3385
0
            if (!tls1_check_cert_param(s, ca, 0)) {
3386
0
                if (check_flags) {
3387
0
                    rv &= ~CERT_PKEY_CA_PARAM;
3388
0
                    break;
3389
0
                } else
3390
0
                    goto end;
3391
0
            }
3392
0
        }
3393
0
    }
3394
58.3k
    if (!s->server && strict_mode) {
3395
0
        STACK_OF(X509_NAME) *ca_dn;
3396
0
        int check_type = 0;
3397
3398
0
        if (EVP_PKEY_is_a(pk, "RSA"))
3399
0
            check_type = TLS_CT_RSA_SIGN;
3400
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
3401
0
            check_type = TLS_CT_DSS_SIGN;
3402
0
        else if (EVP_PKEY_is_a(pk, "EC"))
3403
0
            check_type = TLS_CT_ECDSA_SIGN;
3404
3405
0
        if (check_type) {
3406
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
3407
0
            size_t j;
3408
3409
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
3410
0
                if (*ctypes == check_type) {
3411
0
                    rv |= CERT_PKEY_CERT_TYPE;
3412
0
                    break;
3413
0
                }
3414
0
            }
3415
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
3416
0
                goto end;
3417
0
        } else {
3418
0
            rv |= CERT_PKEY_CERT_TYPE;
3419
0
        }
3420
3421
0
        ca_dn = s->s3.tmp.peer_ca_names;
3422
3423
0
        if (ca_dn == NULL
3424
0
            || sk_X509_NAME_num(ca_dn) == 0
3425
0
            || ssl_check_ca_name(ca_dn, x))
3426
0
            rv |= CERT_PKEY_ISSUER_NAME;
3427
0
        else
3428
0
            for (i = 0; i < sk_X509_num(chain); i++) {
3429
0
                X509 *xtmp = sk_X509_value(chain, i);
3430
3431
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
3432
0
                    rv |= CERT_PKEY_ISSUER_NAME;
3433
0
                    break;
3434
0
                }
3435
0
            }
3436
3437
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
3438
0
            goto end;
3439
0
    } else
3440
58.3k
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
3441
3442
58.3k
    if (!check_flags || (rv & check_flags) == check_flags)
3443
58.3k
        rv |= CERT_PKEY_VALID;
3444
3445
192k
 end:
3446
3447
192k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
3448
76.0k
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
3449
116k
    else
3450
116k
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
3451
3452
    /*
3453
     * When checking a CERT_PKEY structure all flags are irrelevant if the
3454
     * chain is invalid.
3455
     */
3456
192k
    if (!check_flags) {
3457
192k
        if (rv & CERT_PKEY_VALID) {
3458
58.3k
            *pvalid = rv;
3459
134k
        } else {
3460
            /* Preserve sign and explicit sign flag, clear rest */
3461
134k
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3462
134k
            return 0;
3463
134k
        }
3464
192k
    }
3465
58.3k
    return rv;
3466
192k
}
3467
3468
/* Set validity of certificates in an SSL structure */
3469
void tls1_set_cert_validity(SSL_CONNECTION *s)
3470
23.8k
{
3471
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
3472
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
3473
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
3474
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
3475
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
3476
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
3477
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
3478
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
3479
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
3480
23.8k
}
3481
3482
/* User level utility function to check a chain is suitable */
3483
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
3484
0
{
3485
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3486
3487
0
    if (sc == NULL)
3488
0
        return 0;
3489
3490
0
    return tls1_check_chain(sc, x, pk, chain, -1);
3491
0
}
3492
3493
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
3494
0
{
3495
0
    EVP_PKEY *dhp = NULL;
3496
0
    BIGNUM *p;
3497
0
    int dh_secbits = 80, sec_level_bits;
3498
0
    EVP_PKEY_CTX *pctx = NULL;
3499
0
    OSSL_PARAM_BLD *tmpl = NULL;
3500
0
    OSSL_PARAM *params = NULL;
3501
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3502
3503
0
    if (s->cert->dh_tmp_auto != 2) {
3504
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
3505
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
3506
0
                dh_secbits = 128;
3507
0
            else
3508
0
                dh_secbits = 80;
3509
0
        } else {
3510
0
            if (s->s3.tmp.cert == NULL)
3511
0
                return NULL;
3512
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
3513
0
        }
3514
0
    }
3515
3516
    /* Do not pick a prime that is too weak for the current security level */
3517
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
3518
0
                                                 NULL, NULL);
3519
0
    if (dh_secbits < sec_level_bits)
3520
0
        dh_secbits = sec_level_bits;
3521
3522
0
    if (dh_secbits >= 192)
3523
0
        p = BN_get_rfc3526_prime_8192(NULL);
3524
0
    else if (dh_secbits >= 152)
3525
0
        p = BN_get_rfc3526_prime_4096(NULL);
3526
0
    else if (dh_secbits >= 128)
3527
0
        p = BN_get_rfc3526_prime_3072(NULL);
3528
0
    else if (dh_secbits >= 112)
3529
0
        p = BN_get_rfc3526_prime_2048(NULL);
3530
0
    else
3531
0
        p = BN_get_rfc2409_prime_1024(NULL);
3532
0
    if (p == NULL)
3533
0
        goto err;
3534
3535
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
3536
0
    if (pctx == NULL
3537
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
3538
0
        goto err;
3539
3540
0
    tmpl = OSSL_PARAM_BLD_new();
3541
0
    if (tmpl == NULL
3542
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
3543
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
3544
0
        goto err;
3545
3546
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
3547
0
    if (params == NULL
3548
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
3549
0
        goto err;
3550
3551
0
err:
3552
0
    OSSL_PARAM_free(params);
3553
0
    OSSL_PARAM_BLD_free(tmpl);
3554
0
    EVP_PKEY_CTX_free(pctx);
3555
0
    BN_free(p);
3556
0
    return dhp;
3557
0
}
3558
3559
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3560
                                 int op)
3561
136k
{
3562
136k
    int secbits = -1;
3563
136k
    EVP_PKEY *pkey = X509_get0_pubkey(x);
3564
3565
136k
    if (pkey) {
3566
        /*
3567
         * If no parameters this will return -1 and fail using the default
3568
         * security callback for any non-zero security level. This will
3569
         * reject keys which omit parameters but this only affects DSA and
3570
         * omission of parameters is never (?) done in practice.
3571
         */
3572
136k
        secbits = EVP_PKEY_get_security_bits(pkey);
3573
136k
    }
3574
136k
    if (s != NULL)
3575
20.2k
        return ssl_security(s, op, secbits, 0, x);
3576
116k
    else
3577
116k
        return ssl_ctx_security(ctx, op, secbits, 0, x);
3578
136k
}
3579
3580
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3581
                                 int op)
3582
136k
{
3583
    /* Lookup signature algorithm digest */
3584
136k
    int secbits, nid, pknid;
3585
3586
    /* Don't check signature if self signed */
3587
136k
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3588
136k
        return 1;
3589
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3590
0
        secbits = -1;
3591
    /* If digest NID not defined use signature NID */
3592
0
    if (nid == NID_undef)
3593
0
        nid = pknid;
3594
0
    if (s != NULL)
3595
0
        return ssl_security(s, op, secbits, nid, x);
3596
0
    else
3597
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
3598
0
}
3599
3600
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
3601
                      int is_ee)
3602
153k
{
3603
153k
    if (vfy)
3604
0
        vfy = SSL_SECOP_PEER;
3605
153k
    if (is_ee) {
3606
153k
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3607
0
            return SSL_R_EE_KEY_TOO_SMALL;
3608
153k
    } else {
3609
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3610
0
            return SSL_R_CA_KEY_TOO_SMALL;
3611
0
    }
3612
153k
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3613
0
        return SSL_R_CA_MD_TOO_WEAK;
3614
153k
    return 1;
3615
153k
}
3616
3617
/*
3618
 * Check security of a chain, if |sk| includes the end entity certificate then
3619
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3620
 * one to the peer. Return values: 1 if ok otherwise error code to use
3621
 */
3622
3623
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
3624
                            X509 *x, int vfy)
3625
22.5k
{
3626
22.5k
    int rv, start_idx, i;
3627
3628
22.5k
    if (x == NULL) {
3629
22.5k
        x = sk_X509_value(sk, 0);
3630
22.5k
        if (x == NULL)
3631
0
            return ERR_R_INTERNAL_ERROR;
3632
22.5k
        start_idx = 1;
3633
22.5k
    } else
3634
0
        start_idx = 0;
3635
3636
22.5k
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
3637
22.5k
    if (rv != 1)
3638
0
        return rv;
3639
3640
22.5k
    for (i = start_idx; i < sk_X509_num(sk); i++) {
3641
0
        x = sk_X509_value(sk, i);
3642
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
3643
0
        if (rv != 1)
3644
0
            return rv;
3645
0
    }
3646
22.5k
    return 1;
3647
22.5k
}
3648
3649
/*
3650
 * For TLS 1.2 servers check if we have a certificate which can be used
3651
 * with the signature algorithm "lu" and return index of certificate.
3652
 */
3653
3654
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
3655
                                     const SIGALG_LOOKUP *lu)
3656
24.7k
{
3657
24.7k
    int sig_idx = lu->sig_idx;
3658
24.7k
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
3659
24.7k
                                                        SSL_CONNECTION_GET_CTX(s));
3660
3661
    /* If not recognised or not supported by cipher mask it is not suitable */
3662
24.7k
    if (clu == NULL
3663
24.7k
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3664
24.7k
            || (clu->nid == EVP_PKEY_RSA_PSS
3665
16.0k
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3666
9.53k
        return -1;
3667
3668
    /* If doing RPK, the CERT_PKEY won't be "valid" */
3669
15.2k
    if (tls12_rpk_and_privkey(s, sig_idx))
3670
0
        return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
3671
3672
15.2k
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3673
15.2k
}
3674
3675
/*
3676
 * Checks the given cert against signature_algorithm_cert restrictions sent by
3677
 * the peer (if any) as well as whether the hash from the sigalg is usable with
3678
 * the key.
3679
 * Returns true if the cert is usable and false otherwise.
3680
 */
3681
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
3682
                             X509 *x, EVP_PKEY *pkey)
3683
40.2k
{
3684
40.2k
    const SIGALG_LOOKUP *lu;
3685
40.2k
    int mdnid, pknid, supported;
3686
40.2k
    size_t i;
3687
40.2k
    const char *mdname = NULL;
3688
40.2k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3689
3690
    /*
3691
     * If the given EVP_PKEY cannot support signing with this digest,
3692
     * the answer is simply 'no'.
3693
     */
3694
40.2k
    if (sig->hash != NID_undef)
3695
40.2k
        mdname = OBJ_nid2sn(sig->hash);
3696
40.2k
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
3697
40.2k
                                                    mdname,
3698
40.2k
                                                    sctx->propq);
3699
40.2k
    if (supported <= 0)
3700
0
        return 0;
3701
3702
    /*
3703
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
3704
     * on the sigalg with which the certificate was signed (by its issuer).
3705
     */
3706
40.2k
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3707
20.4k
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3708
0
            return 0;
3709
107k
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3710
87.5k
            lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3711
87.5k
            if (lu == NULL)
3712
60.4k
                continue;
3713
3714
            /*
3715
             * This does not differentiate between the
3716
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3717
             * have a chain here that lets us look at the key OID in the
3718
             * signing certificate.
3719
             */
3720
27.1k
            if (mdnid == lu->hash && pknid == lu->sig)
3721
41
                return 1;
3722
27.1k
        }
3723
20.4k
        return 0;
3724
20.4k
    }
3725
3726
    /*
3727
     * Without signat_algorithms_cert, any certificate for which we have
3728
     * a viable public key is permitted.
3729
     */
3730
19.7k
    return 1;
3731
40.2k
}
3732
3733
/*
3734
 * Returns true if |s| has a usable certificate configured for use
3735
 * with signature scheme |sig|.
3736
 * "Usable" includes a check for presence as well as applying
3737
 * the signature_algorithm_cert restrictions sent by the peer (if any).
3738
 * Returns false if no usable certificate is found.
3739
 */
3740
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
3741
40.5k
{
3742
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3743
40.5k
    if (idx == -1)
3744
6.72k
        idx = sig->sig_idx;
3745
40.5k
    if (!ssl_has_cert(s, idx))
3746
315
        return 0;
3747
3748
40.2k
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3749
40.2k
                             s->cert->pkeys[idx].privatekey);
3750
40.5k
}
3751
3752
/*
3753
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3754
 * specified signature scheme |sig|, or false otherwise.
3755
 */
3756
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
3757
                          EVP_PKEY *pkey)
3758
0
{
3759
0
    size_t idx;
3760
3761
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
3762
0
        return 0;
3763
3764
    /* Check the key is consistent with the sig alg */
3765
0
    if ((int)idx != sig->sig_idx)
3766
0
        return 0;
3767
3768
0
    return check_cert_usable(s, sig, x, pkey);
3769
0
}
3770
3771
/*
3772
 * Find a signature scheme that works with the supplied certificate |x| and key
3773
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3774
 * available certs/keys to find one that works.
3775
 */
3776
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
3777
                                         EVP_PKEY *pkey)
3778
2.19k
{
3779
2.19k
    const SIGALG_LOOKUP *lu = NULL;
3780
2.19k
    size_t i;
3781
2.19k
    int curve = -1;
3782
2.19k
    EVP_PKEY *tmppkey;
3783
2.19k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3784
3785
    /* Look for a shared sigalgs matching possible certificates */
3786
7.09k
    for (i = 0; i < s->shared_sigalgslen; i++) {
3787
6.98k
        lu = s->shared_sigalgs[i];
3788
3789
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3790
6.98k
        if (lu->hash == NID_sha1
3791
6.98k
            || lu->hash == NID_sha224
3792
6.98k
            || lu->sig == EVP_PKEY_DSA
3793
6.98k
            || lu->sig == EVP_PKEY_RSA)
3794
2.56k
            continue;
3795
        /* Check that we have a cert, and signature_algorithms_cert */
3796
4.42k
        if (!tls1_lookup_md(sctx, lu, NULL))
3797
0
            continue;
3798
4.42k
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3799
4.42k
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3800
243
            continue;
3801
3802
4.17k
        tmppkey = (pkey != NULL) ? pkey
3803
4.17k
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
3804
3805
4.17k
        if (lu->sig == EVP_PKEY_EC) {
3806
3.93k
            if (curve == -1)
3807
2.02k
                curve = ssl_get_EC_curve_nid(tmppkey);
3808
3.93k
            if (lu->curve != NID_undef && curve != lu->curve)
3809
2.08k
                continue;
3810
3.93k
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3811
            /* validate that key is large enough for the signature algorithm */
3812
247
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
3813
0
                continue;
3814
247
        }
3815
2.08k
        break;
3816
4.17k
    }
3817
3818
2.19k
    if (i == s->shared_sigalgslen)
3819
104
        return NULL;
3820
3821
2.08k
    return lu;
3822
2.19k
}
3823
3824
/*
3825
 * Choose an appropriate signature algorithm based on available certificates
3826
 * Sets chosen certificate and signature algorithm.
3827
 *
3828
 * For servers if we fail to find a required certificate it is a fatal error,
3829
 * an appropriate error code is set and a TLS alert is sent.
3830
 *
3831
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3832
 * a fatal error: we will either try another certificate or not present one
3833
 * to the server. In this case no error is set.
3834
 */
3835
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
3836
12.5k
{
3837
12.5k
    const SIGALG_LOOKUP *lu = NULL;
3838
12.5k
    int sig_idx = -1;
3839
3840
12.5k
    s->s3.tmp.cert = NULL;
3841
12.5k
    s->s3.tmp.sigalg = NULL;
3842
3843
12.5k
    if (SSL_CONNECTION_IS_TLS13(s)) {
3844
1.59k
        lu = find_sig_alg(s, NULL, NULL);
3845
1.59k
        if (lu == NULL) {
3846
77
            if (!fatalerrs)
3847
0
                return 1;
3848
77
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3849
77
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3850
77
            return 0;
3851
77
        }
3852
10.9k
    } else {
3853
        /* If ciphersuite doesn't require a cert nothing to do */
3854
10.9k
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3855
906
            return 1;
3856
10.0k
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3857
15
                return 1;
3858
3859
10.0k
        if (SSL_USE_SIGALGS(s)) {
3860
6.79k
            size_t i;
3861
6.79k
            if (s->s3.tmp.peer_sigalgs != NULL) {
3862
1.39k
                int curve = -1;
3863
1.39k
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3864
3865
                /* For Suite B need to match signature algorithm to curve */
3866
1.39k
                if (tls1_suiteb(s))
3867
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3868
0
                                                 .privatekey);
3869
3870
                /*
3871
                 * Find highest preference signature algorithm matching
3872
                 * cert type
3873
                 */
3874
12.2k
                for (i = 0; i < s->shared_sigalgslen; i++) {
3875
11.8k
                    lu = s->shared_sigalgs[i];
3876
3877
11.8k
                    if (s->server) {
3878
11.8k
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3879
5.30k
                            continue;
3880
11.8k
                    } else {
3881
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
3882
3883
0
                        sig_idx = lu->sig_idx;
3884
0
                        if (cc_idx != sig_idx)
3885
0
                            continue;
3886
0
                    }
3887
                    /* Check that we have a cert, and sig_algs_cert */
3888
6.50k
                    if (!has_usable_cert(s, lu, sig_idx))
3889
5.51k
                        continue;
3890
981
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
3891
                        /* validate that key is large enough for the signature algorithm */
3892
279
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3893
3894
279
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
3895
0
                            continue;
3896
279
                    }
3897
981
                    if (curve == -1 || lu->curve == curve)
3898
981
                        break;
3899
981
                }
3900
1.39k
#ifndef OPENSSL_NO_GOST
3901
                /*
3902
                 * Some Windows-based implementations do not send GOST algorithms indication
3903
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3904
                 * we have to assume GOST support.
3905
                 */
3906
1.39k
                if (i == s->shared_sigalgslen
3907
1.39k
                    && (s->s3.tmp.new_cipher->algorithm_auth
3908
412
                        & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
3909
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3910
0
                    if (!fatalerrs)
3911
0
                      return 1;
3912
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3913
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3914
0
                    return 0;
3915
0
                  } else {
3916
0
                    i = 0;
3917
0
                    sig_idx = lu->sig_idx;
3918
0
                  }
3919
0
                }
3920
1.39k
#endif
3921
1.39k
                if (i == s->shared_sigalgslen) {
3922
412
                    if (!fatalerrs)
3923
0
                        return 1;
3924
412
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3925
412
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3926
412
                    return 0;
3927
412
                }
3928
5.40k
            } else {
3929
                /*
3930
                 * If we have no sigalg use defaults
3931
                 */
3932
5.40k
                const uint16_t *sent_sigs;
3933
5.40k
                size_t sent_sigslen;
3934
3935
5.40k
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3936
0
                    if (!fatalerrs)
3937
0
                        return 1;
3938
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3939
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3940
0
                    return 0;
3941
0
                }
3942
3943
                /* Check signature matches a type we sent */
3944
5.40k
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3945
112k
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3946
112k
                    if (lu->sigalg == *sent_sigs
3947
112k
                            && has_usable_cert(s, lu, lu->sig_idx))
3948
5.40k
                        break;
3949
112k
                }
3950
5.40k
                if (i == sent_sigslen) {
3951
0
                    if (!fatalerrs)
3952
0
                        return 1;
3953
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3954
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
3955
0
                    return 0;
3956
0
                }
3957
5.40k
            }
3958
6.79k
        } else {
3959
3.25k
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3960
0
                if (!fatalerrs)
3961
0
                    return 1;
3962
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3963
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3964
0
                return 0;
3965
0
            }
3966
3.25k
        }
3967
10.0k
    }
3968
11.1k
    if (sig_idx == -1)
3969
10.1k
        sig_idx = lu->sig_idx;
3970
11.1k
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3971
11.1k
    s->cert->key = s->s3.tmp.cert;
3972
11.1k
    s->s3.tmp.sigalg = lu;
3973
11.1k
    return 1;
3974
12.5k
}
3975
3976
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3977
0
{
3978
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3979
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3980
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3981
0
        return 0;
3982
0
    }
3983
3984
0
    ctx->ext.max_fragment_len_mode = mode;
3985
0
    return 1;
3986
0
}
3987
3988
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3989
0
{
3990
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
3991
3992
0
    if (sc == NULL
3993
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
3994
0
        return 0;
3995
3996
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3997
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3998
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3999
0
        return 0;
4000
0
    }
4001
4002
0
    sc->ext.max_fragment_len_mode = mode;
4003
0
    return 1;
4004
0
}
4005
4006
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4007
0
{
4008
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4009
0
        return TLSEXT_max_fragment_length_DISABLED;
4010
0
    return session->ext.max_fragment_len_mode;
4011
0
}
4012
4013
/*
4014
 * Helper functions for HMAC access with legacy support included.
4015
 */
4016
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4017
2.05k
{
4018
2.05k
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4019
2.05k
    EVP_MAC *mac = NULL;
4020
4021
2.05k
    if (ret == NULL)
4022
0
        return NULL;
4023
2.05k
#ifndef OPENSSL_NO_DEPRECATED_3_0
4024
2.05k
    if (ctx->ext.ticket_key_evp_cb == NULL
4025
2.05k
            && ctx->ext.ticket_key_cb != NULL) {
4026
0
        if (!ssl_hmac_old_new(ret))
4027
0
            goto err;
4028
0
        return ret;
4029
0
    }
4030
2.05k
#endif
4031
2.05k
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4032
2.05k
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4033
0
        goto err;
4034
2.05k
    EVP_MAC_free(mac);
4035
2.05k
    return ret;
4036
0
 err:
4037
0
    EVP_MAC_CTX_free(ret->ctx);
4038
0
    EVP_MAC_free(mac);
4039
0
    OPENSSL_free(ret);
4040
0
    return NULL;
4041
2.05k
}
4042
4043
void ssl_hmac_free(SSL_HMAC *ctx)
4044
6.33k
{
4045
6.33k
    if (ctx != NULL) {
4046
2.05k
        EVP_MAC_CTX_free(ctx->ctx);
4047
2.05k
#ifndef OPENSSL_NO_DEPRECATED_3_0
4048
2.05k
        ssl_hmac_old_free(ctx);
4049
2.05k
#endif
4050
2.05k
        OPENSSL_free(ctx);
4051
2.05k
    }
4052
6.33k
}
4053
4054
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4055
0
{
4056
0
    return ctx->ctx;
4057
0
}
4058
4059
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4060
1.43k
{
4061
1.43k
    OSSL_PARAM params[2], *p = params;
4062
4063
1.43k
    if (ctx->ctx != NULL) {
4064
1.43k
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4065
1.43k
        *p = OSSL_PARAM_construct_end();
4066
1.43k
        if (EVP_MAC_init(ctx->ctx, key, len, params))
4067
1.43k
            return 1;
4068
1.43k
    }
4069
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4070
0
    if (ctx->old_ctx != NULL)
4071
0
        return ssl_hmac_old_init(ctx, key, len, md);
4072
0
#endif
4073
0
    return 0;
4074
0
}
4075
4076
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4077
1.33k
{
4078
1.33k
    if (ctx->ctx != NULL)
4079
1.33k
        return EVP_MAC_update(ctx->ctx, data, len);
4080
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4081
0
    if (ctx->old_ctx != NULL)
4082
0
        return ssl_hmac_old_update(ctx, data, len);
4083
0
#endif
4084
0
    return 0;
4085
0
}
4086
4087
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4088
                   size_t max_size)
4089
1.33k
{
4090
1.33k
    if (ctx->ctx != NULL)
4091
1.33k
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
4092
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4093
0
    if (ctx->old_ctx != NULL)
4094
0
        return ssl_hmac_old_final(ctx, md, len);
4095
0
#endif
4096
0
    return 0;
4097
0
}
4098
4099
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4100
1.33k
{
4101
1.33k
    if (ctx->ctx != NULL)
4102
1.33k
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4103
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4104
0
    if (ctx->old_ctx != NULL)
4105
0
        return ssl_hmac_old_size(ctx);
4106
0
#endif
4107
0
    return 0;
4108
0
}
4109
4110
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4111
26.4k
{
4112
26.4k
    char gname[OSSL_MAX_NAME_SIZE];
4113
4114
26.4k
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4115
26.4k
        return OBJ_txt2nid(gname);
4116
4117
0
    return NID_undef;
4118
26.4k
}
4119
4120
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4121
                                     const unsigned char *enckey,
4122
                                     size_t enckeylen)
4123
27.2k
{
4124
27.2k
    if (EVP_PKEY_is_a(pkey, "DH")) {
4125
149
        int bits = EVP_PKEY_get_bits(pkey);
4126
4127
149
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4128
            /* the encoded key must be padded to the length of the p */
4129
12
            return 0;
4130
27.0k
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4131
190
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4132
190
            || enckey[0] != 0x04)
4133
44
            return 0;
4134
190
    }
4135
4136
27.1k
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4137
27.2k
}