/src/openssl35/crypto/ml_dsa/ml_dsa_sign.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <openssl/core_dispatch.h> |
11 | | #include <openssl/core_names.h> |
12 | | #include <openssl/params.h> |
13 | | #include <openssl/rand.h> |
14 | | #include "ml_dsa_local.h" |
15 | | #include "ml_dsa_key.h" |
16 | | #include "ml_dsa_matrix.h" |
17 | | #include "ml_dsa_sign.h" |
18 | | #include "ml_dsa_hash.h" |
19 | | |
20 | | #define ML_DSA_MAX_LAMBDA 256 /* bit strength for ML-DSA-87 */ |
21 | | |
22 | | /* |
23 | | * @brief Initialize a Signature object by pointing all of its objects to |
24 | | * preallocated blocks. The values passed for hint, z and |
25 | | * c_tilde values are not owned/freed by the |sig| object. |
26 | | * |
27 | | * @param sig The ML_DSA_SIG to initialize. |
28 | | * @param hint A preallocated array of |k| polynomial blocks |
29 | | * @param k The number of |hint| polynomials |
30 | | * @param z A preallocated array of |l| polynomial blocks |
31 | | * @param l The number of |z| polynomials |
32 | | * @param c_tilde A preallocated buffer |
33 | | * @param c_tilde_len The size of |c_tilde| |
34 | | */ |
35 | | static void signature_init(ML_DSA_SIG *sig, |
36 | | POLY *hint, uint32_t k, POLY *z, uint32_t l, |
37 | | uint8_t *c_tilde, size_t c_tilde_len) |
38 | 798 | { |
39 | 798 | vector_init(&sig->z, z, l); |
40 | 798 | vector_init(&sig->hint, hint, k); |
41 | 798 | sig->c_tilde = c_tilde; |
42 | 798 | sig->c_tilde_len = c_tilde_len; |
43 | 798 | } |
44 | | |
45 | | /* |
46 | | * FIPS 204, Algorithm 7, ML-DSA.Sign_internal() |
47 | | * @returns 1 on success and 0 on failure. |
48 | | */ |
49 | | static int ml_dsa_sign_internal(const ML_DSA_KEY *priv, int msg_is_mu, |
50 | | const uint8_t *encoded_msg, |
51 | | size_t encoded_msg_len, |
52 | | const uint8_t *rnd, size_t rnd_len, |
53 | | uint8_t *out_sig) |
54 | 201 | { |
55 | 201 | int ret = 0; |
56 | 201 | const ML_DSA_PARAMS *params = priv->params; |
57 | 201 | EVP_MD_CTX *md_ctx = NULL; |
58 | 201 | uint32_t k = params->k, l = params->l; |
59 | 201 | uint32_t gamma1 = params->gamma1, gamma2 = params->gamma2; |
60 | 201 | uint8_t *alloc = NULL, *w1_encoded; |
61 | 201 | size_t alloc_len, w1_encoded_len; |
62 | 201 | size_t num_polys_sig_k = 2 * k; |
63 | 201 | size_t num_polys_k = 5 * k; |
64 | 201 | size_t num_polys_l = 3 * l; |
65 | 201 | size_t num_polys_k_by_l = k * l; |
66 | 201 | POLY *polys = NULL, *p, *c_ntt; |
67 | 201 | VECTOR s1_ntt, s2_ntt, t0_ntt, w, w1, cs1, cs2, y; |
68 | 201 | MATRIX a_ntt; |
69 | 201 | ML_DSA_SIG sig; |
70 | 201 | uint8_t mu[ML_DSA_MU_BYTES], *mu_ptr = mu; |
71 | 201 | const size_t mu_len = sizeof(mu); |
72 | 201 | uint8_t rho_prime[ML_DSA_RHO_PRIME_BYTES]; |
73 | 201 | uint8_t c_tilde[ML_DSA_MAX_LAMBDA / 4]; |
74 | 201 | size_t c_tilde_len = params->bit_strength >> 2; |
75 | 201 | size_t kappa; |
76 | | |
77 | | /* |
78 | | * Allocate a single blob for most of the variable size temporary variables. |
79 | | * Mostly used for VECTOR POLYNOMIALS (every POLY is 1K). |
80 | | */ |
81 | 201 | w1_encoded_len = k * (gamma2 == ML_DSA_GAMMA2_Q_MINUS1_DIV88 ? 192 : 128); |
82 | 201 | alloc_len = w1_encoded_len |
83 | 201 | + sizeof(*polys) * (1 + num_polys_k + num_polys_l |
84 | 201 | + num_polys_k_by_l + num_polys_sig_k); |
85 | 201 | alloc = OPENSSL_malloc(alloc_len); |
86 | 201 | if (alloc == NULL) |
87 | 0 | return 0; |
88 | 201 | md_ctx = EVP_MD_CTX_new(); |
89 | 201 | if (md_ctx == NULL) |
90 | 0 | goto err; |
91 | | |
92 | 201 | w1_encoded = alloc; |
93 | | /* Init the temp vectors to point to the allocated polys blob */ |
94 | 201 | p = (POLY *)(w1_encoded + w1_encoded_len); |
95 | 201 | c_ntt = p++; |
96 | 201 | matrix_init(&a_ntt, p, k, l); |
97 | 201 | p += num_polys_k_by_l; |
98 | 201 | vector_init(&s2_ntt, p, k); |
99 | 201 | vector_init(&t0_ntt, s2_ntt.poly + k, k); |
100 | 201 | vector_init(&w, t0_ntt.poly + k, k); |
101 | 201 | vector_init(&w1, w.poly + k, k); |
102 | 201 | vector_init(&cs2, w1.poly + k, k); |
103 | 201 | p += num_polys_k; |
104 | 201 | vector_init(&s1_ntt, p, l); |
105 | 201 | vector_init(&y, p + l, l); |
106 | 201 | vector_init(&cs1, p + 2 * l, l); |
107 | 201 | p += num_polys_l; |
108 | 201 | signature_init(&sig, p, k, p + k, l, c_tilde, c_tilde_len); |
109 | | /* End of the allocated blob setup */ |
110 | | |
111 | 201 | if (!matrix_expand_A(md_ctx, priv->shake128_md, priv->rho, &a_ntt)) |
112 | 0 | goto err; |
113 | 201 | if (msg_is_mu) { |
114 | 0 | if (encoded_msg_len != mu_len) |
115 | 0 | goto err; |
116 | 0 | mu_ptr = (uint8_t *)encoded_msg; |
117 | 201 | } else { |
118 | 201 | if (!shake_xof_2(md_ctx, priv->shake256_md, priv->tr, sizeof(priv->tr), |
119 | 201 | encoded_msg, encoded_msg_len, mu_ptr, mu_len)) |
120 | 0 | goto err; |
121 | 201 | } |
122 | 201 | if (!shake_xof_3(md_ctx, priv->shake256_md, priv->K, sizeof(priv->K), |
123 | 201 | rnd, rnd_len, mu_ptr, mu_len, |
124 | 201 | rho_prime, sizeof(rho_prime))) |
125 | 0 | goto err; |
126 | | |
127 | 201 | vector_copy(&s1_ntt, &priv->s1); |
128 | 201 | vector_ntt(&s1_ntt); |
129 | 201 | vector_copy(&s2_ntt, &priv->s2); |
130 | 201 | vector_ntt(&s2_ntt); |
131 | 201 | vector_copy(&t0_ntt, &priv->t0); |
132 | 201 | vector_ntt(&t0_ntt); |
133 | | |
134 | | /* |
135 | | * kappa must not exceed 2^16. But the probability of it |
136 | | * exceeding even 1000 iterations is vanishingly small. |
137 | | */ |
138 | 824 | for (kappa = 0; ; kappa += l) { |
139 | 824 | VECTOR *y_ntt = &cs1; |
140 | 824 | VECTOR *r0 = &w1; |
141 | 824 | VECTOR *ct0 = &w1; |
142 | 824 | uint32_t z_max, r0_max, ct0_max, h_ones; |
143 | | |
144 | 824 | vector_expand_mask(&y, rho_prime, sizeof(rho_prime), kappa, |
145 | 824 | gamma1, md_ctx, priv->shake256_md); |
146 | 824 | vector_copy(y_ntt, &y); |
147 | 824 | vector_ntt(y_ntt); |
148 | | |
149 | 824 | matrix_mult_vector(&a_ntt, y_ntt, &w); |
150 | 824 | vector_ntt_inverse(&w); |
151 | | |
152 | 824 | vector_high_bits(&w, gamma2, &w1); |
153 | 824 | ossl_ml_dsa_w1_encode(&w1, gamma2, w1_encoded, w1_encoded_len); |
154 | | |
155 | 824 | if (!shake_xof_2(md_ctx, priv->shake256_md, mu_ptr, mu_len, |
156 | 824 | w1_encoded, w1_encoded_len, c_tilde, c_tilde_len)) |
157 | 0 | break; |
158 | | |
159 | 824 | if (!poly_sample_in_ball_ntt(c_ntt, c_tilde, c_tilde_len, |
160 | 824 | md_ctx, priv->shake256_md, params->tau)) |
161 | 0 | break; |
162 | | |
163 | 824 | vector_mult_scalar(&s1_ntt, c_ntt, &cs1); |
164 | 824 | vector_ntt_inverse(&cs1); |
165 | 824 | vector_mult_scalar(&s2_ntt, c_ntt, &cs2); |
166 | 824 | vector_ntt_inverse(&cs2); |
167 | | |
168 | 824 | vector_add(&y, &cs1, &sig.z); |
169 | | |
170 | | /* r0 = lowbits(w - cs2) */ |
171 | 824 | vector_sub(&w, &cs2, r0); |
172 | 824 | vector_low_bits(r0, gamma2, r0); |
173 | | |
174 | | /* |
175 | | * Leaking that the signature is rejected is fine as the next attempt at a |
176 | | * signature will be (indistinguishable from) independent of this one. |
177 | | */ |
178 | 824 | z_max = vector_max(&sig.z); |
179 | 824 | r0_max = vector_max_signed(r0); |
180 | 824 | if (value_barrier_32(constant_time_ge(z_max, gamma1 - params->beta) |
181 | 824 | | constant_time_ge(r0_max, gamma2 - params->beta))) |
182 | 621 | continue; |
183 | | |
184 | 203 | vector_mult_scalar(&t0_ntt, c_ntt, ct0); |
185 | 203 | vector_ntt_inverse(ct0); |
186 | 203 | vector_make_hint(ct0, &cs2, &w, gamma2, &sig.hint); |
187 | | |
188 | 203 | ct0_max = vector_max(ct0); |
189 | 203 | h_ones = vector_count_ones(&sig.hint); |
190 | | /* Same reasoning applies to the leak as above */ |
191 | 203 | if (value_barrier_32(constant_time_ge(ct0_max, gamma2) |
192 | 203 | | constant_time_lt(params->omega, h_ones))) |
193 | 2 | continue; |
194 | 201 | ret = ossl_ml_dsa_sig_encode(&sig, params, out_sig); |
195 | 201 | break; |
196 | 203 | } |
197 | 201 | err: |
198 | 201 | EVP_MD_CTX_free(md_ctx); |
199 | 201 | OPENSSL_clear_free(alloc, alloc_len); |
200 | 201 | OPENSSL_cleanse(rho_prime, sizeof(rho_prime)); |
201 | 201 | return ret; |
202 | 201 | } |
203 | | |
204 | | /* |
205 | | * See FIPS 204, Algorithm 8, ML-DSA.Verify_internal(). |
206 | | */ |
207 | | static int ml_dsa_verify_internal(const ML_DSA_KEY *pub, int msg_is_mu, |
208 | | const uint8_t *msg_enc, size_t msg_enc_len, |
209 | | const uint8_t *sig_enc, size_t sig_enc_len) |
210 | 201 | { |
211 | 201 | int ret = 0; |
212 | 201 | uint8_t *alloc = NULL, *w1_encoded; |
213 | 201 | POLY *polys = NULL, *p, *c_ntt; |
214 | 201 | MATRIX a_ntt; |
215 | 201 | VECTOR az_ntt, ct1_ntt, *z_ntt, *w1, *w_approx; |
216 | 201 | ML_DSA_SIG sig; |
217 | 201 | const ML_DSA_PARAMS *params = pub->params; |
218 | 201 | uint32_t k = pub->params->k; |
219 | 201 | uint32_t l = pub->params->l; |
220 | 201 | uint32_t gamma2 = params->gamma2; |
221 | 201 | size_t w1_encoded_len; |
222 | 201 | size_t num_polys_sig = k + l; |
223 | 201 | size_t num_polys_k = 2 * k; |
224 | 201 | size_t num_polys_l = 1 * l; |
225 | 201 | size_t num_polys_k_by_l = k * l; |
226 | 201 | uint8_t mu[ML_DSA_MU_BYTES], *mu_ptr = mu; |
227 | 201 | const size_t mu_len = sizeof(mu); |
228 | 201 | uint8_t c_tilde[ML_DSA_MAX_LAMBDA / 4]; |
229 | 201 | uint8_t c_tilde_sig[ML_DSA_MAX_LAMBDA / 4]; |
230 | 201 | EVP_MD_CTX *md_ctx = NULL; |
231 | 201 | size_t c_tilde_len = params->bit_strength >> 2; |
232 | 201 | uint32_t z_max; |
233 | | |
234 | | /* Allocate space for all the POLYNOMIALS used by temporary VECTORS */ |
235 | 201 | w1_encoded_len = k * (gamma2 == ML_DSA_GAMMA2_Q_MINUS1_DIV88 ? 192 : 128); |
236 | 201 | alloc = OPENSSL_malloc(w1_encoded_len |
237 | 201 | + sizeof(*polys) * (1 + num_polys_k |
238 | 201 | + num_polys_l |
239 | 201 | + num_polys_k_by_l |
240 | 201 | + num_polys_sig)); |
241 | 201 | if (alloc == NULL) |
242 | 0 | return 0; |
243 | 201 | md_ctx = EVP_MD_CTX_new(); |
244 | 201 | if (md_ctx == NULL) |
245 | 0 | goto err; |
246 | | |
247 | 201 | w1_encoded = alloc; |
248 | | /* Init the temp vectors to point to the allocated polys blob */ |
249 | 201 | p = (POLY *)(w1_encoded + w1_encoded_len); |
250 | 201 | c_ntt = p++; |
251 | 201 | matrix_init(&a_ntt, p, k, l); |
252 | 201 | p += num_polys_k_by_l; |
253 | 201 | signature_init(&sig, p, k, p + k, l, c_tilde_sig, c_tilde_len); |
254 | 201 | p += num_polys_sig; |
255 | 201 | vector_init(&az_ntt, p, k); |
256 | 201 | vector_init(&ct1_ntt, p + k, k); |
257 | | |
258 | 201 | if (!ossl_ml_dsa_sig_decode(&sig, sig_enc, sig_enc_len, pub->params) |
259 | 201 | || !matrix_expand_A(md_ctx, pub->shake128_md, pub->rho, &a_ntt)) |
260 | 0 | goto err; |
261 | 201 | if (msg_is_mu) { |
262 | 0 | if (msg_enc_len != mu_len) |
263 | 0 | goto err; |
264 | 0 | mu_ptr = (uint8_t *)msg_enc; |
265 | 201 | } else { |
266 | 201 | if (!shake_xof_2(md_ctx, pub->shake256_md, pub->tr, sizeof(pub->tr), |
267 | 201 | msg_enc, msg_enc_len, mu_ptr, mu_len)) |
268 | 0 | goto err; |
269 | 201 | } |
270 | | /* Compute verifiers challenge c_ntt = NTT(SampleInBall(c_tilde) */ |
271 | 201 | if (!poly_sample_in_ball_ntt(c_ntt, c_tilde_sig, c_tilde_len, |
272 | 201 | md_ctx, pub->shake256_md, params->tau)) |
273 | 0 | goto err; |
274 | | |
275 | | /* ct1_ntt = NTT(c) * NTT(t1 * 2^d) */ |
276 | 201 | vector_scale_power2_round_ntt(&pub->t1, &ct1_ntt); |
277 | 201 | vector_mult_scalar(&ct1_ntt, c_ntt, &ct1_ntt); |
278 | | |
279 | | /* compute z_max early in order to reuse sig.z */ |
280 | 201 | z_max = vector_max(&sig.z); |
281 | | |
282 | | /* w_approx = NTT_inverse(A * NTT(z) - ct1_ntt) */ |
283 | 201 | z_ntt = &sig.z; |
284 | 201 | vector_ntt(z_ntt); |
285 | 201 | matrix_mult_vector(&a_ntt, z_ntt, &az_ntt); |
286 | 201 | w_approx = &az_ntt; |
287 | 201 | vector_sub(&az_ntt, &ct1_ntt, w_approx); |
288 | 201 | vector_ntt_inverse(w_approx); |
289 | | |
290 | | /* compute w1_encoded */ |
291 | 201 | w1 = w_approx; |
292 | 201 | vector_use_hint(&sig.hint, w_approx, gamma2, w1); |
293 | 201 | ossl_ml_dsa_w1_encode(w1, gamma2, w1_encoded, w1_encoded_len); |
294 | | |
295 | 201 | if (!shake_xof_3(md_ctx, pub->shake256_md, mu_ptr, mu_len, |
296 | 201 | w1_encoded, w1_encoded_len, NULL, 0, c_tilde, c_tilde_len)) |
297 | 0 | goto err; |
298 | | |
299 | 201 | ret = (z_max < (uint32_t)(params->gamma1 - params->beta)) |
300 | 201 | && memcmp(c_tilde, sig.c_tilde, c_tilde_len) == 0; |
301 | 201 | err: |
302 | 201 | OPENSSL_free(alloc); |
303 | 201 | EVP_MD_CTX_free(md_ctx); |
304 | 201 | return ret; |
305 | 201 | } |
306 | | |
307 | | /** |
308 | | * @brief Encode a message |
309 | | * See FIPS 204 Algorithm 2 Step 10 (and algorithm 3 Step 5). |
310 | | * |
311 | | * ML_DSA pure signatures are encoded as M' = 00 || ctx_len || ctx || msg |
312 | | * Where ctx is the empty string by default and ctx_len <= 255. |
313 | | * |
314 | | * Note this code could be shared with SLH_DSA |
315 | | * |
316 | | * @param msg A message to encode |
317 | | * @param msg_len The size of |msg| |
318 | | * @param ctx An optional context to add to the message encoding. |
319 | | * @param ctx_len The size of |ctx|. It must be in the range 0..255 |
320 | | * @param encode Use the Pure signature encoding if this is 1, and dont encode |
321 | | * if this value is 0. |
322 | | * @param tmp A small buffer that may be used if the message is small. |
323 | | * @param tmp_len The size of |tmp| |
324 | | * @param out_len The size of the returned encoded buffer. |
325 | | * @returns A buffer containing the encoded message. If the passed in |
326 | | * |tmp| buffer is big enough to hold the encoded message then it returns |tmp| |
327 | | * otherwise it allocates memory which must be freed by the caller. If |encode| |
328 | | * is 0 then it returns |msg|. NULL is returned if there is a failure. |
329 | | */ |
330 | | static uint8_t *msg_encode(const uint8_t *msg, size_t msg_len, |
331 | | const uint8_t *ctx, size_t ctx_len, int encode, |
332 | | uint8_t *tmp, size_t tmp_len, size_t *out_len) |
333 | 402 | { |
334 | 402 | uint8_t *encoded = NULL; |
335 | 402 | size_t encoded_len; |
336 | | |
337 | 402 | if (encode == 0) { |
338 | | /* Raw message */ |
339 | 0 | *out_len = msg_len; |
340 | 0 | return (uint8_t *)msg; |
341 | 0 | } |
342 | 402 | if (ctx_len > ML_DSA_MAX_CONTEXT_STRING_LEN) |
343 | 0 | return NULL; |
344 | | |
345 | | /* Pure encoding */ |
346 | 402 | encoded_len = 1 + 1 + ctx_len + msg_len; |
347 | 402 | *out_len = encoded_len; |
348 | 402 | if (encoded_len <= tmp_len) { |
349 | 402 | encoded = tmp; |
350 | 402 | } else { |
351 | 0 | encoded = OPENSSL_malloc(encoded_len); |
352 | 0 | if (encoded == NULL) |
353 | 0 | return NULL; |
354 | 0 | } |
355 | 402 | encoded[0] = 0; |
356 | 402 | encoded[1] = (uint8_t)ctx_len; |
357 | 402 | memcpy(&encoded[2], ctx, ctx_len); |
358 | 402 | memcpy(&encoded[2 + ctx_len], msg, msg_len); |
359 | 402 | return encoded; |
360 | 402 | } |
361 | | |
362 | | /** |
363 | | * See FIPS 204 Section 5.2 Algorithm 2 ML-DSA.Sign() |
364 | | * |
365 | | * @returns 1 on success, or 0 on error. |
366 | | */ |
367 | | int ossl_ml_dsa_sign(const ML_DSA_KEY *priv, int msg_is_mu, |
368 | | const uint8_t *msg, size_t msg_len, |
369 | | const uint8_t *context, size_t context_len, |
370 | | const uint8_t *rand, size_t rand_len, int encode, |
371 | | unsigned char *sig, size_t *sig_len, size_t sig_size) |
372 | 402 | { |
373 | 402 | int ret = 1; |
374 | 402 | uint8_t m_tmp[1024], *m = m_tmp, *alloced_m = NULL; |
375 | 402 | size_t m_len = 0; |
376 | | |
377 | 402 | if (ossl_ml_dsa_key_get_priv(priv) == NULL) |
378 | 0 | return 0; |
379 | 402 | if (sig != NULL) { |
380 | 201 | if (sig_size < priv->params->sig_len) |
381 | 0 | return 0; |
382 | 201 | if (msg_is_mu) { |
383 | 0 | m = (uint8_t *)msg; |
384 | 0 | m_len = msg_len; |
385 | 201 | } else { |
386 | 201 | m = msg_encode(msg, msg_len, context, context_len, encode, |
387 | 201 | m_tmp, sizeof(m_tmp), &m_len); |
388 | 201 | if (m == NULL) |
389 | 0 | return 0; |
390 | 201 | if (m != msg && m != m_tmp) |
391 | 0 | alloced_m = m; |
392 | 201 | } |
393 | 201 | ret = ml_dsa_sign_internal(priv, msg_is_mu, m, m_len, rand, rand_len, sig); |
394 | 201 | OPENSSL_free(alloced_m); |
395 | 201 | } |
396 | 402 | if (sig_len != NULL) |
397 | 402 | *sig_len = priv->params->sig_len; |
398 | 402 | return ret; |
399 | 402 | } |
400 | | |
401 | | /** |
402 | | * See FIPS 203 Section 5.3 Algorithm 3 ML-DSA.Verify() |
403 | | * @returns 1 on success, or 0 on error. |
404 | | */ |
405 | | int ossl_ml_dsa_verify(const ML_DSA_KEY *pub, int msg_is_mu, |
406 | | const uint8_t *msg, size_t msg_len, |
407 | | const uint8_t *context, size_t context_len, int encode, |
408 | | const uint8_t *sig, size_t sig_len) |
409 | 201 | { |
410 | 201 | uint8_t *m, *alloced_m = NULL; |
411 | 201 | size_t m_len; |
412 | 201 | uint8_t m_tmp[1024]; |
413 | 201 | int ret = 0; |
414 | | |
415 | 201 | if (ossl_ml_dsa_key_get_pub(pub) == NULL) |
416 | 0 | return 0; |
417 | | |
418 | 201 | if (msg_is_mu) { |
419 | 0 | m = (uint8_t *)msg; |
420 | 0 | m_len = msg_len; |
421 | 201 | } else { |
422 | 201 | m = msg_encode(msg, msg_len, context, context_len, encode, |
423 | 201 | m_tmp, sizeof(m_tmp), &m_len); |
424 | 201 | if (m == NULL) |
425 | 0 | return 0; |
426 | 201 | if (m != msg && m != m_tmp) |
427 | 0 | alloced_m = m; |
428 | 201 | } |
429 | | |
430 | 201 | ret = ml_dsa_verify_internal(pub, msg_is_mu, m, m_len, sig, sig_len); |
431 | 201 | OPENSSL_free(alloced_m); |
432 | 201 | return ret; |
433 | 201 | } |