Coverage Report

Created: 2025-08-28 07:07

/src/openssl35/ssl/t1_lib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <ctype.h>
13
#include <openssl/objects.h>
14
#include <openssl/evp.h>
15
#include <openssl/hmac.h>
16
#include <openssl/core_names.h>
17
#include <openssl/ocsp.h>
18
#include <openssl/conf.h>
19
#include <openssl/x509v3.h>
20
#include <openssl/dh.h>
21
#include <openssl/bn.h>
22
#include <openssl/provider.h>
23
#include <openssl/param_build.h>
24
#include "internal/nelem.h"
25
#include "internal/sizes.h"
26
#include "internal/tlsgroups.h"
27
#include "internal/ssl_unwrap.h"
28
#include "ssl_local.h"
29
#include "quic/quic_local.h"
30
#include <openssl/ct.h>
31
32
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
33
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
34
35
SSL3_ENC_METHOD const TLSv1_enc_data = {
36
    tls1_setup_key_block,
37
    tls1_generate_master_secret,
38
    tls1_change_cipher_state,
39
    tls1_final_finish_mac,
40
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42
    tls1_alert_code,
43
    tls1_export_keying_material,
44
    0,
45
    ssl3_set_handshake_header,
46
    tls_close_construct_packet,
47
    ssl3_handshake_write
48
};
49
50
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51
    tls1_setup_key_block,
52
    tls1_generate_master_secret,
53
    tls1_change_cipher_state,
54
    tls1_final_finish_mac,
55
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57
    tls1_alert_code,
58
    tls1_export_keying_material,
59
    0,
60
    ssl3_set_handshake_header,
61
    tls_close_construct_packet,
62
    ssl3_handshake_write
63
};
64
65
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66
    tls1_setup_key_block,
67
    tls1_generate_master_secret,
68
    tls1_change_cipher_state,
69
    tls1_final_finish_mac,
70
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
71
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
72
    tls1_alert_code,
73
    tls1_export_keying_material,
74
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
75
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
76
    ssl3_set_handshake_header,
77
    tls_close_construct_packet,
78
    ssl3_handshake_write
79
};
80
81
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
82
    tls13_setup_key_block,
83
    tls13_generate_master_secret,
84
    tls13_change_cipher_state,
85
    tls13_final_finish_mac,
86
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88
    tls13_alert_code,
89
    tls13_export_keying_material,
90
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91
    ssl3_set_handshake_header,
92
    tls_close_construct_packet,
93
    ssl3_handshake_write
94
};
95
96
OSSL_TIME tls1_default_timeout(void)
97
116k
{
98
    /*
99
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100
     * http, the cache would over fill
101
     */
102
116k
    return ossl_seconds2time(60 * 60 * 2);
103
116k
}
104
105
int tls1_new(SSL *s)
106
116k
{
107
116k
    if (!ssl3_new(s))
108
0
        return 0;
109
116k
    if (!s->method->ssl_clear(s))
110
0
        return 0;
111
112
116k
    return 1;
113
116k
}
114
115
void tls1_free(SSL *s)
116
38.6k
{
117
38.6k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
118
119
38.6k
    if (sc == NULL)
120
0
        return;
121
122
38.6k
    OPENSSL_free(sc->ext.session_ticket);
123
38.6k
    ssl3_free(s);
124
38.6k
}
125
126
int tls1_clear(SSL *s)
127
169k
{
128
169k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
129
130
169k
    if (sc == NULL)
131
0
        return 0;
132
133
169k
    if (!ssl3_clear(s))
134
0
        return 0;
135
136
169k
    if (s->method->version == TLS_ANY_VERSION)
137
169k
        sc->version = TLS_MAX_VERSION_INTERNAL;
138
0
    else
139
0
        sc->version = s->method->version;
140
141
169k
    return 1;
142
169k
}
143
144
/* Legacy NID to group_id mapping. Only works for groups we know about */
145
static const struct {
146
    int nid;
147
    uint16_t group_id;
148
} nid_to_group[] = {
149
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
150
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
151
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
152
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
153
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
154
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
155
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
156
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
157
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
158
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
159
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
160
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
161
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
162
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
163
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
164
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
165
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
166
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
167
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
168
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
169
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
170
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
171
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
172
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
173
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
174
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
175
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
176
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
177
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
178
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
179
    {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
180
    {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
181
    {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
182
    {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
183
    {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
184
    {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
185
    {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
186
    {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
187
    {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
188
    {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
189
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
190
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
191
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
192
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
193
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
194
};
195
196
static const unsigned char ecformats_default[] = {
197
    TLSEXT_ECPOINTFORMAT_uncompressed,
198
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
199
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
200
};
201
202
/* Group list string of the built-in pseudo group DEFAULT */
203
#define DEFAULT_GROUP_NAME "DEFAULT"
204
#define TLS_DEFAULT_GROUP_LIST \
205
    "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
206
207
static const uint16_t suiteb_curves[] = {
208
    OSSL_TLS_GROUP_ID_secp256r1,
209
    OSSL_TLS_GROUP_ID_secp384r1,
210
};
211
212
/* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
213
#define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
214
#define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
215
216
struct provider_ctx_data_st {
217
    SSL_CTX *ctx;
218
    OSSL_PROVIDER *provider;
219
};
220
221
708k
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
222
static OSSL_CALLBACK add_provider_groups;
223
static int add_provider_groups(const OSSL_PARAM params[], void *data)
224
3.48M
{
225
3.48M
    struct provider_ctx_data_st *pgd = data;
226
3.48M
    SSL_CTX *ctx = pgd->ctx;
227
3.48M
    const OSSL_PARAM *p;
228
3.48M
    TLS_GROUP_INFO *ginf = NULL;
229
3.48M
    EVP_KEYMGMT *keymgmt;
230
3.48M
    unsigned int gid;
231
3.48M
    unsigned int is_kem = 0;
232
3.48M
    int ret = 0;
233
234
3.48M
    if (ctx->group_list_max_len == ctx->group_list_len) {
235
354k
        TLS_GROUP_INFO *tmp = NULL;
236
237
354k
        if (ctx->group_list_max_len == 0)
238
59.0k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
239
354k
                                 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
240
295k
        else
241
295k
            tmp = OPENSSL_realloc(ctx->group_list,
242
354k
                                  (ctx->group_list_max_len
243
354k
                                   + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
244
354k
                                  * sizeof(TLS_GROUP_INFO));
245
354k
        if (tmp == NULL)
246
0
            return 0;
247
354k
        ctx->group_list = tmp;
248
354k
        memset(tmp + ctx->group_list_max_len,
249
354k
               0,
250
354k
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251
354k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
252
354k
    }
253
254
3.48M
    ginf = &ctx->group_list[ctx->group_list_len];
255
256
3.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
257
3.48M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
258
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
259
0
        goto err;
260
0
    }
261
3.48M
    ginf->tlsname = OPENSSL_strdup(p->data);
262
3.48M
    if (ginf->tlsname == NULL)
263
0
        goto err;
264
265
3.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
266
3.48M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
267
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
268
0
        goto err;
269
0
    }
270
3.48M
    ginf->realname = OPENSSL_strdup(p->data);
271
3.48M
    if (ginf->realname == NULL)
272
0
        goto err;
273
274
3.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
275
3.48M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
276
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
277
0
        goto err;
278
0
    }
279
3.48M
    ginf->group_id = (uint16_t)gid;
280
281
3.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
282
3.48M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
283
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
284
0
        goto err;
285
0
    }
286
3.48M
    ginf->algorithm = OPENSSL_strdup(p->data);
287
3.48M
    if (ginf->algorithm == NULL)
288
0
        goto err;
289
290
3.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
291
3.48M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
292
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
293
0
        goto err;
294
0
    }
295
296
3.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
297
3.48M
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
298
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
299
0
        goto err;
300
0
    }
301
3.48M
    ginf->is_kem = 1 & is_kem;
302
303
3.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
304
3.48M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
305
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
306
0
        goto err;
307
0
    }
308
309
3.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
310
3.48M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
311
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
312
0
        goto err;
313
0
    }
314
315
3.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
316
3.48M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
317
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
318
0
        goto err;
319
0
    }
320
321
3.48M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
322
3.48M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
323
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
324
0
        goto err;
325
0
    }
326
    /*
327
     * Now check that the algorithm is actually usable for our property query
328
     * string. Regardless of the result we still return success because we have
329
     * successfully processed this group, even though we may decide not to use
330
     * it.
331
     */
332
3.48M
    ret = 1;
333
3.48M
    ERR_set_mark();
334
3.48M
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
335
3.48M
    if (keymgmt != NULL) {
336
        /* We have successfully fetched the algorithm, we can use the group. */
337
3.48M
        ctx->group_list_len++;
338
3.48M
        ginf = NULL;
339
3.48M
        EVP_KEYMGMT_free(keymgmt);
340
3.48M
    }
341
3.48M
    ERR_pop_to_mark();
342
3.48M
 err:
343
3.48M
    if (ginf != NULL) {
344
0
        OPENSSL_free(ginf->tlsname);
345
0
        OPENSSL_free(ginf->realname);
346
0
        OPENSSL_free(ginf->algorithm);
347
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
348
0
    }
349
3.48M
    return ret;
350
3.48M
}
351
352
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
353
293k
{
354
293k
    struct provider_ctx_data_st pgd;
355
356
293k
    pgd.ctx = vctx;
357
293k
    pgd.provider = provider;
358
293k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
359
293k
                                          add_provider_groups, &pgd);
360
293k
}
361
362
int ssl_load_groups(SSL_CTX *ctx)
363
59.0k
{
364
59.0k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
365
0
        return 0;
366
367
59.0k
    return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
368
59.0k
}
369
370
118k
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10
371
static OSSL_CALLBACK add_provider_sigalgs;
372
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
373
177k
{
374
177k
    struct provider_ctx_data_st *pgd = data;
375
177k
    SSL_CTX *ctx = pgd->ctx;
376
177k
    OSSL_PROVIDER *provider = pgd->provider;
377
177k
    const OSSL_PARAM *p;
378
177k
    TLS_SIGALG_INFO *sinf = NULL;
379
177k
    EVP_KEYMGMT *keymgmt;
380
177k
    const char *keytype;
381
177k
    unsigned int code_point = 0;
382
177k
    int ret = 0;
383
384
177k
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
385
59.0k
        TLS_SIGALG_INFO *tmp = NULL;
386
387
59.0k
        if (ctx->sigalg_list_max_len == 0)
388
59.0k
            tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
389
59.0k
                                 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
390
0
        else
391
0
            tmp = OPENSSL_realloc(ctx->sigalg_list,
392
59.0k
                                  (ctx->sigalg_list_max_len
393
59.0k
                                   + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
394
59.0k
                                  * sizeof(TLS_SIGALG_INFO));
395
59.0k
        if (tmp == NULL)
396
0
            return 0;
397
59.0k
        ctx->sigalg_list = tmp;
398
59.0k
        memset(tmp + ctx->sigalg_list_max_len, 0,
399
59.0k
               sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
400
59.0k
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
401
59.0k
    }
402
403
177k
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
404
405
    /* First, mandatory parameters */
406
177k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
407
177k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
408
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
409
0
        goto err;
410
0
    }
411
177k
    OPENSSL_free(sinf->sigalg_name);
412
177k
    sinf->sigalg_name = OPENSSL_strdup(p->data);
413
177k
    if (sinf->sigalg_name == NULL)
414
0
        goto err;
415
416
177k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
417
177k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
418
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
419
0
        goto err;
420
0
    }
421
177k
    OPENSSL_free(sinf->name);
422
177k
    sinf->name = OPENSSL_strdup(p->data);
423
177k
    if (sinf->name == NULL)
424
0
        goto err;
425
426
177k
    p = OSSL_PARAM_locate_const(params,
427
177k
                                OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
428
177k
    if (p == NULL
429
177k
        || !OSSL_PARAM_get_uint(p, &code_point)
430
177k
        || code_point > UINT16_MAX) {
431
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
432
0
        goto err;
433
0
    }
434
177k
    sinf->code_point = (uint16_t)code_point;
435
436
177k
    p = OSSL_PARAM_locate_const(params,
437
177k
                                OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
438
177k
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
439
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
440
0
        goto err;
441
0
    }
442
443
    /* Now, optional parameters */
444
177k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
445
177k
    if (p == NULL) {
446
0
        sinf->sigalg_oid = NULL;
447
177k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
448
0
        goto err;
449
177k
    } else {
450
177k
        OPENSSL_free(sinf->sigalg_oid);
451
177k
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
452
177k
        if (sinf->sigalg_oid == NULL)
453
0
            goto err;
454
177k
    }
455
456
177k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
457
177k
    if (p == NULL) {
458
177k
        sinf->sig_name = NULL;
459
177k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
460
0
        goto err;
461
0
    } else {
462
0
        OPENSSL_free(sinf->sig_name);
463
0
        sinf->sig_name = OPENSSL_strdup(p->data);
464
0
        if (sinf->sig_name == NULL)
465
0
            goto err;
466
0
    }
467
468
177k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
469
177k
    if (p == NULL) {
470
177k
        sinf->sig_oid = NULL;
471
177k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
472
0
        goto err;
473
0
    } else {
474
0
        OPENSSL_free(sinf->sig_oid);
475
0
        sinf->sig_oid = OPENSSL_strdup(p->data);
476
0
        if (sinf->sig_oid == NULL)
477
0
            goto err;
478
0
    }
479
480
177k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
481
177k
    if (p == NULL) {
482
177k
        sinf->hash_name = NULL;
483
177k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
484
0
        goto err;
485
0
    } else {
486
0
        OPENSSL_free(sinf->hash_name);
487
0
        sinf->hash_name = OPENSSL_strdup(p->data);
488
0
        if (sinf->hash_name == NULL)
489
0
            goto err;
490
0
    }
491
492
177k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
493
177k
    if (p == NULL) {
494
177k
        sinf->hash_oid = NULL;
495
177k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
496
0
        goto err;
497
0
    } else {
498
0
        OPENSSL_free(sinf->hash_oid);
499
0
        sinf->hash_oid = OPENSSL_strdup(p->data);
500
0
        if (sinf->hash_oid == NULL)
501
0
            goto err;
502
0
    }
503
504
177k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
505
177k
    if (p == NULL) {
506
177k
        sinf->keytype = NULL;
507
177k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
508
0
        goto err;
509
0
    } else {
510
0
        OPENSSL_free(sinf->keytype);
511
0
        sinf->keytype = OPENSSL_strdup(p->data);
512
0
        if (sinf->keytype == NULL)
513
0
            goto err;
514
0
    }
515
516
177k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
517
177k
    if (p == NULL) {
518
177k
        sinf->keytype_oid = NULL;
519
177k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
520
0
        goto err;
521
0
    } else {
522
0
        OPENSSL_free(sinf->keytype_oid);
523
0
        sinf->keytype_oid = OPENSSL_strdup(p->data);
524
0
        if (sinf->keytype_oid == NULL)
525
0
            goto err;
526
0
    }
527
528
    /* Optional, not documented prior to 3.5 */
529
177k
    sinf->mindtls = sinf->maxdtls = -1;
530
177k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
531
177k
    if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
532
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
533
0
        goto err;
534
0
    }
535
177k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
536
177k
    if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
537
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
538
0
        goto err;
539
0
    }
540
    /* DTLS version numbers grow downward */
541
177k
    if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) &&
542
177k
        ((sinf->maxdtls > sinf->mindtls))) {
543
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
544
0
        goto err;
545
0
    }
546
    /* No provider sigalgs are supported in DTLS, reset after checking. */
547
177k
    sinf->mindtls = sinf->maxdtls = -1;
548
549
    /* The remaining parameters below are mandatory again */
550
177k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
551
177k
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
552
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
553
0
        goto err;
554
0
    }
555
177k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
556
177k
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
557
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
558
0
        goto err;
559
0
    }
560
177k
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
561
177k
        ((sinf->maxtls < sinf->mintls))) {
562
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
563
0
        goto err;
564
0
    }
565
177k
    if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
566
177k
        ((sinf->mintls > TLS1_3_VERSION)))
567
0
        sinf->mintls = sinf->maxtls = -1;
568
177k
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
569
177k
        ((sinf->maxtls < TLS1_3_VERSION)))
570
0
        sinf->mintls = sinf->maxtls = -1;
571
572
    /* Ignore unusable sigalgs */
573
177k
    if (sinf->mintls == -1 && sinf->mindtls == -1) {
574
0
        ret = 1;
575
0
        goto err;
576
0
    }
577
578
    /*
579
     * Now check that the algorithm is actually usable for our property query
580
     * string. Regardless of the result we still return success because we have
581
     * successfully processed this signature, even though we may decide not to
582
     * use it.
583
     */
584
177k
    ret = 1;
585
177k
    ERR_set_mark();
586
177k
    keytype = (sinf->keytype != NULL
587
177k
               ? sinf->keytype
588
177k
               : (sinf->sig_name != NULL
589
177k
                  ? sinf->sig_name
590
177k
                  : sinf->sigalg_name));
591
177k
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
592
177k
    if (keymgmt != NULL) {
593
        /*
594
         * We have successfully fetched the algorithm - however if the provider
595
         * doesn't match this one then we ignore it.
596
         *
597
         * Note: We're cheating a little here. Technically if the same algorithm
598
         * is available from more than one provider then it is undefined which
599
         * implementation you will get back. Theoretically this could be
600
         * different every time...we assume here that you'll always get the
601
         * same one back if you repeat the exact same fetch. Is this a reasonable
602
         * assumption to make (in which case perhaps we should document this
603
         * behaviour)?
604
         */
605
177k
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
606
            /*
607
             * We have a match - so we could use this signature;
608
             * Check proper object registration first, though.
609
             * Don't care about return value as this may have been
610
             * done within providers or previous calls to
611
             * add_provider_sigalgs.
612
             */
613
177k
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
614
            /* sanity check: Without successful registration don't use alg */
615
177k
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
616
177k
                (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
617
0
                    ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
618
0
                    goto err;
619
0
            }
620
177k
            if (sinf->sig_name != NULL)
621
0
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
622
177k
            if (sinf->keytype != NULL)
623
0
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
624
177k
            if (sinf->hash_name != NULL)
625
0
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
626
177k
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
627
177k
                          (sinf->hash_name != NULL
628
177k
                           ? OBJ_txt2nid(sinf->hash_name)
629
177k
                           : NID_undef),
630
177k
                          OBJ_txt2nid(keytype));
631
177k
            ctx->sigalg_list_len++;
632
177k
            sinf = NULL;
633
177k
        }
634
177k
        EVP_KEYMGMT_free(keymgmt);
635
177k
    }
636
177k
    ERR_pop_to_mark();
637
177k
 err:
638
177k
    if (sinf != NULL) {
639
0
        OPENSSL_free(sinf->name);
640
0
        sinf->name = NULL;
641
0
        OPENSSL_free(sinf->sigalg_name);
642
0
        sinf->sigalg_name = NULL;
643
0
        OPENSSL_free(sinf->sigalg_oid);
644
0
        sinf->sigalg_oid = NULL;
645
0
        OPENSSL_free(sinf->sig_name);
646
0
        sinf->sig_name = NULL;
647
0
        OPENSSL_free(sinf->sig_oid);
648
0
        sinf->sig_oid = NULL;
649
0
        OPENSSL_free(sinf->hash_name);
650
0
        sinf->hash_name = NULL;
651
0
        OPENSSL_free(sinf->hash_oid);
652
0
        sinf->hash_oid = NULL;
653
0
        OPENSSL_free(sinf->keytype);
654
0
        sinf->keytype = NULL;
655
0
        OPENSSL_free(sinf->keytype_oid);
656
0
        sinf->keytype_oid = NULL;
657
0
    }
658
177k
    return ret;
659
177k
}
660
661
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
662
270k
{
663
270k
    struct provider_ctx_data_st pgd;
664
665
270k
    pgd.ctx = vctx;
666
270k
    pgd.provider = provider;
667
270k
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
668
270k
                                   add_provider_sigalgs, &pgd);
669
    /*
670
     * Always OK, even if provider doesn't support the capability:
671
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
672
     */
673
270k
    return 1;
674
270k
}
675
676
int ssl_load_sigalgs(SSL_CTX *ctx)
677
135k
{
678
135k
    size_t i;
679
135k
    SSL_CERT_LOOKUP lu;
680
681
135k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
682
0
        return 0;
683
684
    /* now populate ctx->ssl_cert_info */
685
135k
    if (ctx->sigalg_list_len > 0) {
686
59.0k
        OPENSSL_free(ctx->ssl_cert_info);
687
59.0k
        ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
688
59.0k
        if (ctx->ssl_cert_info == NULL)
689
0
            return 0;
690
236k
        for(i = 0; i < ctx->sigalg_list_len; i++) {
691
177k
            ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
692
177k
            ctx->ssl_cert_info[i].amask = SSL_aANY;
693
177k
        }
694
59.0k
    }
695
696
    /*
697
     * For now, leave it at this: legacy sigalgs stay in their own
698
     * data structures until "legacy cleanup" occurs.
699
     */
700
701
135k
    return 1;
702
135k
}
703
704
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
705
472k
{
706
472k
    size_t i;
707
708
2.65M
    for (i = 0; i < ctx->group_list_len; i++) {
709
2.65M
        if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
710
2.65M
                || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
711
472k
            return ctx->group_list[i].group_id;
712
2.65M
    }
713
714
0
    return 0;
715
472k
}
716
717
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
718
2.94M
{
719
2.94M
    size_t i;
720
721
83.6M
    for (i = 0; i < ctx->group_list_len; i++) {
722
83.6M
        if (ctx->group_list[i].group_id == group_id)
723
2.94M
            return &ctx->group_list[i];
724
83.6M
    }
725
726
0
    return NULL;
727
2.94M
}
728
729
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
730
0
{
731
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
732
733
0
    if (tls_group_info == NULL)
734
0
        return NULL;
735
736
0
    return tls_group_info->tlsname;
737
0
}
738
739
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
740
1.32M
{
741
1.32M
    size_t i;
742
743
1.32M
    if (group_id == 0)
744
0
        return NID_undef;
745
746
    /*
747
     * Return well known Group NIDs - for backwards compatibility. This won't
748
     * work for groups we don't know about.
749
     */
750
42.4M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
751
42.3M
    {
752
42.3M
        if (nid_to_group[i].group_id == group_id)
753
1.25M
            return nid_to_group[i].nid;
754
42.3M
    }
755
65.8k
    if (!include_unknown)
756
65.8k
        return NID_undef;
757
0
    return TLSEXT_nid_unknown | (int)group_id;
758
65.8k
}
759
760
uint16_t tls1_nid2group_id(int nid)
761
23.4k
{
762
23.4k
    size_t i;
763
764
    /*
765
     * Return well known Group ids - for backwards compatibility. This won't
766
     * work for groups we don't know about.
767
     */
768
540k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
769
540k
    {
770
540k
        if (nid_to_group[i].nid == nid)
771
23.4k
            return nid_to_group[i].group_id;
772
540k
    }
773
774
6
    return 0;
775
23.4k
}
776
777
/*
778
 * Set *pgroups to the supported groups list and *pgroupslen to
779
 * the number of groups supported.
780
 */
781
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
782
                               size_t *pgroupslen)
783
433k
{
784
433k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
785
786
    /* For Suite B mode only include P-256, P-384 */
787
433k
    switch (tls1_suiteb(s)) {
788
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
789
0
        *pgroups = suiteb_curves;
790
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
791
0
        break;
792
793
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
794
0
        *pgroups = suiteb_curves;
795
0
        *pgroupslen = 1;
796
0
        break;
797
798
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
799
0
        *pgroups = suiteb_curves + 1;
800
0
        *pgroupslen = 1;
801
0
        break;
802
803
433k
    default:
804
433k
        if (s->ext.supportedgroups == NULL) {
805
286k
            *pgroups = sctx->ext.supportedgroups;
806
286k
            *pgroupslen = sctx->ext.supportedgroups_len;
807
286k
        } else {
808
146k
            *pgroups = s->ext.supportedgroups;
809
146k
            *pgroupslen = s->ext.supportedgroups_len;
810
146k
        }
811
433k
        break;
812
433k
    }
813
433k
}
814
815
/*
816
 * Some comments for the function below:
817
 * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
818
 * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
819
 * eligible group from the legacy list. Therefore, we provide the entire list of supported
820
 * groups in this case.
821
 *
822
 * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
823
 * but the groupID to 0.
824
 * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
825
 * the "list of requested key share groups" is used, or the "list of supported groups" in
826
 * combination with setting add_only_one = 1 is applied.
827
 */
828
void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
829
                                        size_t *pgroupslen)
830
32.3k
{
831
32.3k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
832
833
32.3k
    if (s->ext.supportedgroups == NULL) {
834
0
        *pgroups = sctx->ext.supportedgroups;
835
0
        *pgroupslen = sctx->ext.supportedgroups_len;
836
32.3k
    } else {
837
32.3k
        *pgroups = s->ext.keyshares;
838
32.3k
        *pgroupslen = s->ext.keyshares_len;
839
32.3k
    }
840
32.3k
}
841
842
void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
843
                           size_t *ptupleslen)
844
1.38k
{
845
1.38k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
846
847
1.38k
    if (s->ext.supportedgroups == NULL) {
848
0
        *ptuples = sctx->ext.tuples;
849
0
        *ptupleslen = sctx->ext.tuples_len;
850
1.38k
    } else {
851
1.38k
        *ptuples = s->ext.tuples;
852
1.38k
        *ptupleslen = s->ext.tuples_len;
853
1.38k
    }
854
1.38k
}
855
856
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
857
                    int minversion, int maxversion,
858
                    int isec, int *okfortls13)
859
1.11M
{
860
1.11M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
861
1.11M
                                                       group_id);
862
1.11M
    int ret;
863
1.11M
    int group_minversion, group_maxversion;
864
865
1.11M
    if (okfortls13 != NULL)
866
746k
        *okfortls13 = 0;
867
868
1.11M
    if (ginfo == NULL)
869
0
        return 0;
870
871
1.11M
    group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
872
1.11M
    group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
873
874
1.11M
    if (group_minversion < 0 || group_maxversion < 0)
875
97.5k
        return 0;
876
1.01M
    if (group_maxversion == 0)
877
1.01M
        ret = 1;
878
0
    else
879
0
        ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
880
1.01M
    if (group_minversion > 0)
881
1.01M
        ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
882
883
1.01M
    if (!SSL_CONNECTION_IS_DTLS(s)) {
884
876k
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
885
568k
            *okfortls13 = (group_maxversion == 0)
886
568k
                          || (group_maxversion >= TLS1_3_VERSION);
887
876k
    }
888
1.01M
    ret &= !isec
889
1.01M
           || strcmp(ginfo->algorithm, "EC") == 0
890
1.01M
           || strcmp(ginfo->algorithm, "X25519") == 0
891
1.01M
           || strcmp(ginfo->algorithm, "X448") == 0;
892
893
1.01M
    return ret;
894
1.11M
}
895
896
/* See if group is allowed by security callback */
897
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
898
1.32M
{
899
1.32M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
900
1.32M
                                                       group);
901
1.32M
    unsigned char gtmp[2];
902
903
1.32M
    if (ginfo == NULL)
904
0
        return 0;
905
906
1.32M
    gtmp[0] = group >> 8;
907
1.32M
    gtmp[1] = group & 0xff;
908
1.32M
    return ssl_security(s, op, ginfo->secbits,
909
1.32M
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
910
1.32M
}
911
912
/* Return 1 if "id" is in "list" */
913
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
914
82.5k
{
915
82.5k
    size_t i;
916
566k
    for (i = 0; i < listlen; i++)
917
520k
        if (list[i] == id)
918
36.4k
            return 1;
919
46.1k
    return 0;
920
82.5k
}
921
922
typedef struct {
923
    TLS_GROUP_INFO *grp;
924
    size_t ix;
925
} TLS_GROUP_IX;
926
927
DEFINE_STACK_OF(TLS_GROUP_IX)
928
929
static void free_wrapper(TLS_GROUP_IX *a)
930
0
{
931
0
    OPENSSL_free(a);
932
0
}
933
934
static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
935
                            const TLS_GROUP_IX *const *b)
936
0
{
937
0
    int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
938
0
    int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
939
0
    int ixcmpab = (*a)->ix < (*b)->ix;
940
0
    int ixcmpba = (*b)->ix < (*a)->ix;
941
942
    /* Ascending by group id */
943
0
    if (idcmpab != idcmpba)
944
0
        return (idcmpba - idcmpab);
945
    /* Ascending by original appearance index */
946
0
    return ixcmpba - ixcmpab;
947
0
}
948
949
int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
950
                                 TLS_GROUP_INFO *grps, size_t num, long all,
951
                                 STACK_OF(OPENSSL_CSTRING) *out)
952
0
{
953
0
    STACK_OF(TLS_GROUP_IX) *collect = NULL;
954
0
    TLS_GROUP_IX *gix;
955
0
    uint16_t id = 0;
956
0
    int ret = 0;
957
0
    size_t ix;
958
959
0
    if (grps == NULL || out == NULL)
960
0
        return 0;
961
0
    if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
962
0
        return 0;
963
0
    for (ix = 0; ix < num; ++ix, ++grps) {
964
0
        if (grps->mintls > 0 && max_proto_version > 0
965
0
             && grps->mintls > max_proto_version)
966
0
            continue;
967
0
        if (grps->maxtls > 0 && min_proto_version > 0
968
0
            && grps->maxtls < min_proto_version)
969
0
            continue;
970
971
0
        if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
972
0
            goto end;
973
0
        gix->grp = grps;
974
0
        gix->ix = ix;
975
0
        if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
976
0
            OPENSSL_free(gix);
977
0
            goto end;
978
0
        }
979
0
    }
980
981
0
    sk_TLS_GROUP_IX_sort(collect);
982
0
    num = sk_TLS_GROUP_IX_num(collect);
983
0
    for (ix = 0; ix < num; ++ix) {
984
0
        gix = sk_TLS_GROUP_IX_value(collect, ix);
985
0
        if (!all && gix->grp->group_id == id)
986
0
            continue;
987
0
        id = gix->grp->group_id;
988
0
        if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
989
0
            goto end;
990
0
    }
991
0
    ret = 1;
992
993
0
 end:
994
0
    sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
995
0
    return ret;
996
0
}
997
998
/*-
999
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
1000
 * if there is no match.
1001
 * For nmatch == -1, return number of matches
1002
 * For nmatch == -2, return the id of the group to use for
1003
 * a tmp key, or 0 if there is no match.
1004
 */
1005
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
1006
28.4k
{
1007
28.4k
    const uint16_t *pref, *supp;
1008
28.4k
    size_t num_pref, num_supp, i;
1009
28.4k
    int k;
1010
28.4k
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
1011
1012
    /* Can't do anything on client side */
1013
28.4k
    if (s->server == 0)
1014
0
        return 0;
1015
28.4k
    if (nmatch == -2) {
1016
6.45k
        if (tls1_suiteb(s)) {
1017
            /*
1018
             * For Suite B ciphersuite determines curve: we already know
1019
             * these are acceptable due to previous checks.
1020
             */
1021
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
1022
1023
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1024
0
                return OSSL_TLS_GROUP_ID_secp256r1;
1025
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1026
0
                return OSSL_TLS_GROUP_ID_secp384r1;
1027
            /* Should never happen */
1028
0
            return 0;
1029
0
        }
1030
        /* If not Suite B just return first preference shared curve */
1031
6.45k
        nmatch = 0;
1032
6.45k
    }
1033
    /*
1034
     * If server preference set, our groups are the preference order
1035
     * otherwise peer decides.
1036
     */
1037
28.4k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
1038
0
        tls1_get_supported_groups(s, &pref, &num_pref);
1039
0
        tls1_get_peer_groups(s, &supp, &num_supp);
1040
28.4k
    } else {
1041
28.4k
        tls1_get_peer_groups(s, &pref, &num_pref);
1042
28.4k
        tls1_get_supported_groups(s, &supp, &num_supp);
1043
28.4k
    }
1044
1045
63.6k
    for (k = 0, i = 0; i < num_pref; i++) {
1046
48.4k
        uint16_t id = pref[i];
1047
48.4k
        const TLS_GROUP_INFO *inf;
1048
48.4k
        int minversion, maxversion;
1049
1050
48.4k
        if (!tls1_in_list(id, supp, num_supp)
1051
48.4k
                || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
1052
31.9k
            continue;
1053
16.5k
        inf = tls1_group_id_lookup(ctx, id);
1054
16.5k
        if (!ossl_assert(inf != NULL))
1055
0
            return 0;
1056
1057
16.5k
        minversion = SSL_CONNECTION_IS_DTLS(s)
1058
16.5k
                         ? inf->mindtls : inf->mintls;
1059
16.5k
        maxversion = SSL_CONNECTION_IS_DTLS(s)
1060
16.5k
                         ? inf->maxdtls : inf->maxtls;
1061
16.5k
        if (maxversion == -1)
1062
1.33k
            continue;
1063
15.1k
        if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
1064
15.1k
            || (maxversion != 0
1065
13.1k
                && ssl_version_cmp(s, s->version, maxversion) > 0))
1066
2.01k
            continue;
1067
1068
13.1k
        if (nmatch == k)
1069
13.1k
            return id;
1070
0
         k++;
1071
0
    }
1072
15.2k
    if (nmatch == -1)
1073
0
        return k;
1074
    /* Out of range (nmatch > k). */
1075
15.2k
    return 0;
1076
15.2k
}
1077
1078
int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
1079
                    uint16_t **ksext, size_t *ksextlen,
1080
                    size_t **tplext, size_t *tplextlen,
1081
                    int *groups, size_t ngroups)
1082
0
{
1083
0
    uint16_t *glist = NULL, *kslist = NULL;
1084
0
    size_t *tpllist = NULL;
1085
0
    size_t i;
1086
    /*
1087
     * Bitmap of groups included to detect duplicates: two variables are added
1088
     * to detect duplicates as some values are more than 32.
1089
     */
1090
0
    unsigned long *dup_list = NULL;
1091
0
    unsigned long dup_list_egrp = 0;
1092
0
    unsigned long dup_list_dhgrp = 0;
1093
1094
0
    if (ngroups == 0) {
1095
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1096
0
        return 0;
1097
0
    }
1098
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1099
0
        goto err;
1100
0
    if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL)
1101
0
        goto err;
1102
0
    if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL)
1103
0
        goto err;
1104
0
    for (i = 0; i < ngroups; i++) {
1105
0
        unsigned long idmask;
1106
0
        uint16_t id;
1107
0
        id = tls1_nid2group_id(groups[i]);
1108
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1109
0
            goto err;
1110
0
        idmask = 1L << (id & 0x00FF);
1111
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1112
0
        if (!id || ((*dup_list) & idmask))
1113
0
            goto err;
1114
0
        *dup_list |= idmask;
1115
0
        glist[i] = id;
1116
0
    }
1117
0
    OPENSSL_free(*grpext);
1118
0
    OPENSSL_free(*ksext);
1119
0
    OPENSSL_free(*tplext);
1120
0
    *grpext = glist;
1121
0
    *grpextlen = ngroups;
1122
0
    kslist[0] = glist[0];
1123
0
    *ksext = kslist;
1124
0
    *ksextlen = 1;
1125
0
    tpllist[0] = ngroups;
1126
0
    *tplext = tpllist;
1127
0
    *tplextlen = 1;
1128
0
    return 1;
1129
0
err:
1130
0
    OPENSSL_free(glist);
1131
0
    OPENSSL_free(kslist);
1132
0
    OPENSSL_free(tpllist);
1133
0
    return 0;
1134
0
}
1135
1136
/*
1137
 * Definition of DEFAULT[_XYZ] pseudo group names.
1138
 * A pseudo group name is actually a full list of groups, including prefixes
1139
 * and or tuple delimiters. It can be hierarchically defined (for potential future use).
1140
 * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
1141
 * groups not backed by a provider will always silently be ignored, even without '?' prefix
1142
 */
1143
typedef struct {
1144
    const char *list_name; /* The name of this pseudo group */
1145
    const char *group_string; /* The group string of this pseudo group */
1146
} default_group_string_st;    /* (can include '?', '*'. '-', '/' as needed) */
1147
1148
/* Built-in pseudo group-names must start with a (D or d) */
1149
static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
1150
1151
/* The list of all built-in pseudo-group-name structures */
1152
static const default_group_string_st default_group_strings[] = {
1153
    {DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST},
1154
    {SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST}
1155
};
1156
1157
/*
1158
 * Some GOST names are not resolved by tls1_group_name2id,
1159
 * hence we'll check for those manually
1160
 */
1161
typedef struct {
1162
    const char *group_name;
1163
    uint16_t groupID;
1164
} name2id_st;
1165
static const name2id_st name2id_arr[] = {
1166
    {"GC256A", OSSL_TLS_GROUP_ID_gc256A },
1167
    {"GC256B", OSSL_TLS_GROUP_ID_gc256B },
1168
    {"GC256C", OSSL_TLS_GROUP_ID_gc256C },
1169
    {"GC256D", OSSL_TLS_GROUP_ID_gc256D },
1170
    {"GC512A", OSSL_TLS_GROUP_ID_gc512A },
1171
    {"GC512B", OSSL_TLS_GROUP_ID_gc512B },
1172
    {"GC512C", OSSL_TLS_GROUP_ID_gc512C },
1173
};
1174
1175
/*
1176
 * Group list management:
1177
 * We establish three lists along with their related size counters:
1178
 * 1) List of (unique) groups
1179
 * 2) List of number of groups per group-priority-tuple
1180
 * 3) List of (unique) key share groups
1181
 */
1182
177k
#define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
1183
#define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
1184
1185
/*
1186
 * Preparation of the prefix used to indicate the desire to send a key share,
1187
 * the characters used as separators between groups or tuples of groups, the
1188
 * character to indicate that an unknown group should be ignored, and the
1189
 * character to indicate that a group should be deleted from a list
1190
 */
1191
#ifndef TUPLE_DELIMITER_CHARACTER
1192
/* The prefix characters to indicate group tuple boundaries */
1193
59.0k
# define TUPLE_DELIMITER_CHARACTER '/'
1194
#endif
1195
#ifndef GROUP_DELIMITER_CHARACTER
1196
/* The prefix characters to indicate group tuple boundaries */
1197
236k
# define GROUP_DELIMITER_CHARACTER ':'
1198
#endif
1199
#ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
1200
/* The prefix character to ignore unknown groups */
1201
472k
# define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
1202
#endif
1203
#ifndef KEY_SHARE_INDICATOR_CHARACTER
1204
/* The prefix character to trigger a key share addition */
1205
118k
# define KEY_SHARE_INDICATOR_CHARACTER '*'
1206
#endif
1207
#ifndef REMOVE_GROUP_INDICATOR_CHARACTER
1208
/* The prefix character to trigger a key share removal */
1209
0
# define REMOVE_GROUP_INDICATOR_CHARACTER '-'
1210
#endif
1211
static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER,
1212
                                GROUP_DELIMITER_CHARACTER,
1213
                                IGNORE_UNKNOWN_GROUP_CHARACTER,
1214
                                KEY_SHARE_INDICATOR_CHARACTER,
1215
                                REMOVE_GROUP_INDICATOR_CHARACTER,
1216
                                '\0'};
1217
1218
/*
1219
 * High-level description of how group strings are analyzed:
1220
 * A first call back function (tuple_cb) is used to process group tuples, and a
1221
 * second callback function (gid_cb) is used to process the groups inside a tuple.
1222
 * Those callback functions are (indirectly) called by CONF_parse_list with
1223
 * different separators (nominally ':' or '/'), a variable based on gid_cb_st
1224
 * is used to keep track of the parsing results between the various calls
1225
 */
1226
1227
typedef struct {
1228
    SSL_CTX *ctx;
1229
    /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
1230
    size_t gidmax; /* The memory allocation chunk size for the group IDs */
1231
    size_t gidcnt; /* Number of groups */
1232
    uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
1233
    size_t tplmax; /* The memory allocation chunk size for the tuple counters */
1234
    size_t tplcnt; /* Number of tuples */
1235
    size_t *tuplcnt_arr; /* The number of groups inside a tuple */
1236
    size_t ksidmax; /* The memory allocation chunk size */
1237
    size_t ksidcnt; /* Number of key shares */
1238
    uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
1239
    /* Variable to keep state between execution of callback or helper functions */
1240
    size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
1241
    int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
1242
} gid_cb_st;
1243
1244
/* Forward declaration of tuple callback function */
1245
static int tuple_cb(const char *tuple, int len, void *arg);
1246
1247
/*
1248
 * Extract and process the individual groups (and their prefixes if present)
1249
 * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
1250
 * and must be appended by a \0 if used as \0-terminated string
1251
 */
1252
static int gid_cb(const char *elem, int len, void *arg)
1253
472k
{
1254
472k
    gid_cb_st *garg = arg;
1255
472k
    size_t i, j, k;
1256
472k
    uint16_t gid = 0;
1257
472k
    int found_group = 0;
1258
472k
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1259
472k
    int retval = 1; /* We assume success */
1260
472k
    char *current_prefix;
1261
472k
    int ignore_unknown = 0;
1262
472k
    int add_keyshare = 0;
1263
472k
    int remove_group = 0;
1264
472k
    size_t restored_prefix_index = 0;
1265
472k
    char *restored_default_group_string;
1266
472k
    int continue_while_loop = 1;
1267
1268
    /* Sanity checks */
1269
472k
    if (garg == NULL || elem == NULL || len <= 0) {
1270
0
        ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1271
0
        return 0;
1272
0
    }
1273
1274
    /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
1275
1.06M
    while (continue_while_loop && len > 0
1276
1.06M
           && ((current_prefix = strchr(prefixes, elem[0])) != NULL
1277
1.06M
               || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
1278
1279
590k
        switch (*current_prefix) {
1280
0
        case TUPLE_DELIMITER_CHARACTER:
1281
            /* tuple delimiter not allowed here -> syntax error */
1282
0
            return -1;
1283
0
            break;
1284
0
        case GROUP_DELIMITER_CHARACTER:
1285
0
            return -1; /* Not a valid prefix for a single group name-> syntax error */
1286
0
            break;
1287
118k
        case KEY_SHARE_INDICATOR_CHARACTER:
1288
118k
            if (add_keyshare)
1289
0
                return -1; /* Only single key share prefix allowed -> syntax error */
1290
118k
            add_keyshare = 1;
1291
118k
            ++elem;
1292
118k
            --len;
1293
118k
            break;
1294
0
        case REMOVE_GROUP_INDICATOR_CHARACTER:
1295
0
            if (remove_group)
1296
0
                return -1; /* Only single remove group prefix allowed -> syntax error */
1297
0
            remove_group = 1;
1298
0
            ++elem;
1299
0
            --len;
1300
0
            break;
1301
472k
        case IGNORE_UNKNOWN_GROUP_CHARACTER:
1302
472k
            if (ignore_unknown)
1303
0
                return -1; /* Only single ? allowed -> syntax error */
1304
472k
            ignore_unknown = 1;
1305
472k
            ++elem;
1306
472k
            --len;
1307
472k
            break;
1308
0
        default:
1309
            /*
1310
             * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
1311
             * list of groups) should be added
1312
             */
1313
0
            for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
1314
0
                if ((size_t)len == (strlen(default_group_strings[i].list_name))
1315
0
                    && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
1316
                    /*
1317
                     * We're asked to insert an entire list of groups from a
1318
                     * DEFAULT[_XYZ] 'pseudo group' which we do by
1319
                     * recursively calling this function (indirectly via
1320
                     * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
1321
                     * group string like a tuple which is appended to the current tuple
1322
                     * rather then starting a new tuple. Variable tuple_mode is the flag which
1323
                     * controls append tuple vs start new tuple.
1324
                     */
1325
1326
0
                    if (ignore_unknown || remove_group)
1327
0
                        return -1; /* removal or ignore not allowed here -> syntax error */
1328
1329
                    /*
1330
                     * First, we restore any keyshare prefix in a new zero-terminated string
1331
                     * (if not already present)
1332
                     */
1333
0
                    restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ +
1334
0
                                                                    strlen(default_group_strings[i].group_string) +
1335
0
                                                                    1 /* \0 */) * sizeof(char));
1336
0
                    if (restored_default_group_string == NULL)
1337
0
                        return 0;
1338
0
                    if (add_keyshare
1339
                        /* Remark: we tolerate a duplicated keyshare indicator here */
1340
0
                        && default_group_strings[i].group_string[0]
1341
0
                        != KEY_SHARE_INDICATOR_CHARACTER)
1342
0
                        restored_default_group_string[restored_prefix_index++] =
1343
0
                            KEY_SHARE_INDICATOR_CHARACTER;
1344
1345
0
                    memcpy(restored_default_group_string + restored_prefix_index,
1346
0
                           default_group_strings[i].group_string,
1347
0
                           strlen(default_group_strings[i].group_string));
1348
0
                    restored_default_group_string[strlen(default_group_strings[i].group_string) +
1349
0
                                                  restored_prefix_index] = '\0';
1350
                    /* We execute the recursive call */
1351
0
                    garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
1352
                    /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
1353
0
                    garg->tuple_mode = 0;
1354
                    /* We use the tuple_cb callback to process the pseudo group tuple */
1355
0
                    retval = CONF_parse_list(restored_default_group_string,
1356
0
                                             TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
1357
0
                    garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
1358
0
                    garg->ignore_unknown_default = 0; /* reset to original value */
1359
                    /* We don't need the \0-terminated string anymore */
1360
0
                    OPENSSL_free(restored_default_group_string);
1361
1362
0
                    return retval;
1363
0
                }
1364
0
            }
1365
            /*
1366
             * If we reached this point, a group name started with a 'd' or 'D', but no request
1367
             * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
1368
             * name can continue as usual (= the while loop checking prefixes can end)
1369
             */
1370
0
            continue_while_loop = 0;
1371
0
            break;
1372
590k
        }
1373
590k
    }
1374
1375
472k
    if (len == 0)
1376
0
        return -1; /* Seems we have prefxes without a group name -> syntax error */
1377
1378
472k
    if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
1379
0
        ignore_unknown = 1;
1380
1381
    /* Memory management in case more groups are present compared to initial allocation */
1382
472k
    if (garg->gidcnt == garg->gidmax) {
1383
0
        uint16_t *tmp =
1384
0
            OPENSSL_realloc(garg->gid_arr,
1385
0
                            (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1386
1387
0
        if (tmp == NULL)
1388
0
            return 0;
1389
1390
0
        garg->gidmax += GROUPLIST_INCREMENT;
1391
0
        garg->gid_arr = tmp;
1392
0
    }
1393
    /* Memory management for key share groups */
1394
472k
    if (garg->ksidcnt == garg->ksidmax) {
1395
0
        uint16_t *tmp =
1396
0
            OPENSSL_realloc(garg->ksid_arr,
1397
0
                            (garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr));
1398
1399
0
        if (tmp == NULL)
1400
0
            return 0;
1401
0
        garg->ksidmax += GROUPLIST_INCREMENT;
1402
0
        garg->ksid_arr = tmp;
1403
0
    }
1404
1405
472k
    if (len > (int)(sizeof(etmp) - 1))
1406
0
        return -1; /* group name to long  -> syntax error */
1407
1408
    /*
1409
     * Prepare addition or removal of a single group by converting
1410
     * a group name into its groupID equivalent
1411
     */
1412
1413
    /* Create a \0-terminated string and get the gid for this group if possible */
1414
472k
    memcpy(etmp, elem, len);
1415
472k
    etmp[len] = 0;
1416
1417
    /* Get the groupID */
1418
472k
    gid = tls1_group_name2id(garg->ctx, etmp);
1419
    /*
1420
     * Handle the case where no valid groupID was returned
1421
     * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
1422
     */
1423
472k
    if (gid == 0) {
1424
        /* Is it one of the GOST groups ? */
1425
0
        for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
1426
0
            if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
1427
0
                gid = name2id_arr[i].groupID;
1428
0
                break;
1429
0
            }
1430
0
        }
1431
0
        if (gid == 0) { /* still not found */
1432
            /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
1433
0
            retval = ignore_unknown;
1434
0
            goto done;
1435
0
        }
1436
0
    }
1437
1438
    /* Make sure that at least one provider is supporting this groupID */
1439
472k
    found_group = 0;
1440
2.65M
    for (j = 0; j < garg->ctx->group_list_len; j++)
1441
2.65M
        if (garg->ctx->group_list[j].group_id == gid) {
1442
472k
            found_group = 1;
1443
472k
            break;
1444
472k
        }
1445
1446
    /*
1447
     * No provider supports this group - ignore if
1448
     * ignore_unknown; trigger error otherwise
1449
     */
1450
472k
    if (found_group == 0) {
1451
0
        retval = ignore_unknown;
1452
0
        goto done;
1453
0
    }
1454
    /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
1455
472k
    if (remove_group) {
1456
        /* Is the current group specified anywhere in the entire list so far? */
1457
0
        found_group = 0;
1458
0
        for (i = 0; i < garg->gidcnt; i++)
1459
0
            if (garg->gid_arr[i] == gid) {
1460
0
                found_group = 1;
1461
0
                break;
1462
0
            }
1463
        /* The group to remove is at position i in the list of (zero indexed) groups */
1464
0
        if (found_group) {
1465
            /* We remove that group from its position (which is at i)... */
1466
0
            for (j = i; j < (garg->gidcnt - 1); j++)
1467
0
                garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
1468
0
            garg->gidcnt--; /* ..and update the book keeping for the number of groups */
1469
1470
            /*
1471
             * We also must update the number of groups either in a previous tuple (which we
1472
             * must identify and check whether it becomes empty due to the deletion) or in
1473
             * the current tuple, pending where the deleted group resides
1474
             */
1475
0
            k = 0;
1476
0
            for (j = 0; j < garg->tplcnt; j++) {
1477
0
                k += garg->tuplcnt_arr[j];
1478
                /* Remark: i is zero-indexed, k is one-indexed */
1479
0
                if (k > i) { /* remove from one of the previous tuples */
1480
0
                    garg->tuplcnt_arr[j]--;
1481
0
                    break; /* We took care not to have group duplicates, hence we can stop here */
1482
0
                }
1483
0
            }
1484
0
            if (k <= i) /* remove from current tuple */
1485
0
                garg->tuplcnt_arr[j]--;
1486
1487
            /* We also remove the group from the list of keyshares (if present) */
1488
0
            found_group = 0;
1489
0
            for (i = 0; i < garg->ksidcnt; i++)
1490
0
                if (garg->ksid_arr[i] == gid) {
1491
0
                    found_group = 1;
1492
0
                    break;
1493
0
                }
1494
0
            if (found_group) {
1495
                /* Found, hence we remove that keyshare from its position (which is at i)... */
1496
0
                for (j = i; j < (garg->ksidcnt - 1); j++)
1497
0
                    garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
1498
                /* ... and update the book keeping */
1499
0
                garg->ksidcnt--;
1500
0
            }
1501
0
        }
1502
472k
    } else { /* Processing addition of a single new group */
1503
1504
        /* Check for duplicates */
1505
2.12M
        for (i = 0; i < garg->gidcnt; i++)
1506
1.65M
            if (garg->gid_arr[i] == gid) {
1507
                /* Duplicate group anywhere in the list of groups - ignore */
1508
0
                goto done;
1509
0
            }
1510
1511
        /* Add the current group to the 'flat' list of groups */
1512
472k
        garg->gid_arr[garg->gidcnt++] = gid;
1513
        /* and update the book keeping for the number of groups in current tuple */
1514
472k
        garg->tuplcnt_arr[garg->tplcnt]++;
1515
1516
        /* We memorize if needed that we want to add a key share for the current group */
1517
472k
        if (add_keyshare)
1518
118k
            garg->ksid_arr[garg->ksidcnt++] = gid;
1519
472k
    }
1520
1521
472k
done:
1522
472k
    return retval;
1523
472k
}
1524
1525
/* Extract and process a tuple of groups */
1526
static int tuple_cb(const char *tuple, int len, void *arg)
1527
236k
{
1528
236k
    gid_cb_st *garg = arg;
1529
236k
    int retval = 1; /* We assume success */
1530
236k
    char *restored_tuple_string;
1531
1532
    /* Sanity checks */
1533
236k
    if (garg == NULL || tuple == NULL || len <= 0) {
1534
0
        ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1535
0
        return 0;
1536
0
    }
1537
1538
    /* Memory management for tuples */
1539
236k
    if (garg->tplcnt == garg->tplmax) {
1540
0
        size_t *tmp =
1541
0
            OPENSSL_realloc(garg->tuplcnt_arr,
1542
0
                            (garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr));
1543
1544
0
        if (tmp == NULL)
1545
0
            return 0;
1546
0
        garg->tplmax += GROUPLIST_INCREMENT;
1547
0
        garg->tuplcnt_arr = tmp;
1548
0
    }
1549
1550
    /* Convert to \0-terminated string */
1551
236k
    restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char));
1552
236k
    if (restored_tuple_string == NULL)
1553
0
        return 0;
1554
236k
    memcpy(restored_tuple_string, tuple, len);
1555
236k
    restored_tuple_string[len] = '\0';
1556
1557
    /* Analyze group list of this tuple */
1558
236k
    retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
1559
1560
    /* We don't need the \o-terminated string anymore */
1561
236k
    OPENSSL_free(restored_tuple_string);
1562
1563
236k
    if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
1564
236k
        if (garg->tuple_mode) {
1565
            /* We 'close' the tuple */
1566
236k
            garg->tplcnt++;
1567
236k
            garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
1568
236k
            garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
1569
236k
        }
1570
236k
    }
1571
1572
236k
    return retval;
1573
236k
}
1574
1575
/*
1576
 * Set groups and prepare generation of keyshares based on a string of groupnames,
1577
 * names separated by the group or the tuple delimiter, with per-group prefixes to
1578
 * (1) add a key share for this group, (2) ignore the group if unkown to the current
1579
 * context, (3) delete a previous occurrence of the group in the current tuple.
1580
 *
1581
 * The list parsing is done in two hierachical steps: The top-level step extracts the
1582
 * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
1583
 * parse and process the groups inside a tuple
1584
 */
1585
int tls1_set_groups_list(SSL_CTX *ctx,
1586
                         uint16_t **grpext, size_t *grpextlen,
1587
                         uint16_t **ksext, size_t *ksextlen,
1588
                         size_t **tplext, size_t *tplextlen,
1589
                         const char *str)
1590
59.0k
{
1591
59.0k
    size_t i = 0, j;
1592
59.0k
    int ret = 0, parse_ret = 0;
1593
59.0k
    gid_cb_st gcb;
1594
1595
    /* Sanity check */
1596
59.0k
    if (ctx == NULL) {
1597
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1598
0
        return 0;
1599
0
    }
1600
1601
59.0k
    memset(&gcb, 0, sizeof(gcb));
1602
59.0k
    gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
1603
59.0k
    gcb.ignore_unknown_default = 0;
1604
59.0k
    gcb.gidmax = GROUPLIST_INCREMENT;
1605
59.0k
    gcb.tplmax = GROUPLIST_INCREMENT;
1606
59.0k
    gcb.ksidmax = GROUPLIST_INCREMENT;
1607
59.0k
    gcb.ctx = ctx;
1608
1609
    /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
1610
59.0k
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1611
59.0k
    if (gcb.gid_arr == NULL)
1612
0
        goto end;
1613
59.0k
    gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr));
1614
59.0k
    if (gcb.tuplcnt_arr == NULL)
1615
0
        goto end;
1616
59.0k
    gcb.tuplcnt_arr[0] = 0;
1617
59.0k
    gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr));
1618
59.0k
    if (gcb.ksid_arr == NULL)
1619
0
        goto end;
1620
1621
59.0k
    while (str[0] != '\0' && isspace((unsigned char)*str))
1622
0
        str++;
1623
59.0k
    if (str[0] == '\0')
1624
0
        goto empty_list;
1625
1626
    /*
1627
     * Start the (potentially recursive) tuple processing by calling CONF_parse_list
1628
     * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
1629
     */
1630
59.0k
    parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
1631
1632
59.0k
    if (parse_ret == 0)
1633
0
        goto end;
1634
59.0k
    if (parse_ret == -1) {
1635
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1636
0
                       "Syntax error in '%s'", str);
1637
0
        goto end;
1638
0
    }
1639
1640
    /*
1641
     * We check whether a tuple was completly emptied by using "-" prefix
1642
     * excessively, in which case we remove the tuple
1643
     */
1644
295k
    for (i = j = 0; j < gcb.tplcnt; j++) {
1645
236k
        if (gcb.tuplcnt_arr[j] == 0)
1646
0
            continue;
1647
        /* If there's a gap, move to first unfilled slot */
1648
236k
        if (j == i)
1649
236k
            ++i;
1650
0
        else
1651
0
            gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
1652
236k
    }
1653
59.0k
    gcb.tplcnt = i;
1654
1655
59.0k
    if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
1656
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1657
0
                       "To many keyshares requested in '%s' (max = %d)",
1658
0
                       str, OPENSSL_CLIENT_MAX_KEY_SHARES);
1659
0
        goto end;
1660
0
    }
1661
1662
    /*
1663
     * For backward compatibility we let the rest of the code know that a key share
1664
     * for the first valid group should be added if no "*" prefix was used anywhere
1665
     */
1666
59.0k
    if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
1667
        /*
1668
         * No key share group prefix character was used, hence we indicate that a single
1669
         * key share should be sent and flag that it should come from the supported_groups list
1670
         */
1671
0
        gcb.ksidcnt = 1;
1672
0
        gcb.ksid_arr[0] = 0;
1673
0
    }
1674
1675
59.0k
 empty_list:
1676
    /*
1677
     * A call to tls1_set_groups_list with any of the args (other than ctx) set
1678
     * to NULL only does a syntax check, hence we're done here and report success
1679
     */
1680
59.0k
    if (grpext == NULL || ksext == NULL || tplext == NULL ||
1681
59.0k
        grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
1682
0
        ret = 1;
1683
0
        goto end;
1684
0
    }
1685
1686
    /*
1687
     * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
1688
     * can just go ahead and set the results (after diposing the existing)
1689
     */
1690
59.0k
    OPENSSL_free(*grpext);
1691
59.0k
    *grpext = gcb.gid_arr;
1692
59.0k
    *grpextlen = gcb.gidcnt;
1693
59.0k
    OPENSSL_free(*ksext);
1694
59.0k
    *ksext = gcb.ksid_arr;
1695
59.0k
    *ksextlen = gcb.ksidcnt;
1696
59.0k
    OPENSSL_free(*tplext);
1697
59.0k
    *tplext = gcb.tuplcnt_arr;
1698
59.0k
    *tplextlen = gcb.tplcnt;
1699
1700
59.0k
    return 1;
1701
1702
0
 end:
1703
0
    OPENSSL_free(gcb.gid_arr);
1704
0
    OPENSSL_free(gcb.tuplcnt_arr);
1705
0
    OPENSSL_free(gcb.ksid_arr);
1706
0
    return ret;
1707
59.0k
}
1708
1709
/* Check a group id matches preferences */
1710
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1711
                        int check_own_groups)
1712
33.8k
    {
1713
33.8k
    const uint16_t *groups;
1714
33.8k
    size_t groups_len;
1715
1716
33.8k
    if (group_id == 0)
1717
17
        return 0;
1718
1719
    /* Check for Suite B compliance */
1720
33.8k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1721
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1722
1723
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1724
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1725
0
                return 0;
1726
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1727
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1728
0
                return 0;
1729
0
        } else {
1730
            /* Should never happen */
1731
0
            return 0;
1732
0
        }
1733
0
    }
1734
1735
33.8k
    if (check_own_groups) {
1736
        /* Check group is one of our preferences */
1737
10.6k
        tls1_get_supported_groups(s, &groups, &groups_len);
1738
10.6k
        if (!tls1_in_list(group_id, groups, groups_len))
1739
134
            return 0;
1740
10.6k
    }
1741
1742
33.6k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1743
0
        return 0;
1744
1745
    /* For clients, nothing more to check */
1746
33.6k
    if (!s->server)
1747
10.4k
        return 1;
1748
1749
    /* Check group is one of peers preferences */
1750
23.1k
    tls1_get_peer_groups(s, &groups, &groups_len);
1751
1752
    /*
1753
     * RFC 4492 does not require the supported elliptic curves extension
1754
     * so if it is not sent we can just choose any curve.
1755
     * It is invalid to send an empty list in the supported groups
1756
     * extension, so groups_len == 0 always means no extension.
1757
     */
1758
23.1k
    if (groups_len == 0)
1759
13.1k
            return 1;
1760
10.0k
    return tls1_in_list(group_id, groups, groups_len);
1761
23.1k
}
1762
1763
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1764
                         size_t *num_formats)
1765
89.1k
{
1766
    /*
1767
     * If we have a custom point format list use it otherwise use default
1768
     */
1769
89.1k
    if (s->ext.ecpointformats) {
1770
0
        *pformats = s->ext.ecpointformats;
1771
0
        *num_formats = s->ext.ecpointformats_len;
1772
89.1k
    } else {
1773
89.1k
        *pformats = ecformats_default;
1774
        /* For Suite B we don't support char2 fields */
1775
89.1k
        if (tls1_suiteb(s))
1776
0
            *num_formats = sizeof(ecformats_default) - 1;
1777
89.1k
        else
1778
89.1k
            *num_formats = sizeof(ecformats_default);
1779
89.1k
    }
1780
89.1k
}
1781
1782
/* Check a key is compatible with compression extension */
1783
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1784
24.1k
{
1785
24.1k
    unsigned char comp_id;
1786
24.1k
    size_t i;
1787
24.1k
    int point_conv;
1788
1789
    /* If not an EC key nothing to check */
1790
24.1k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1791
0
        return 1;
1792
1793
1794
    /* Get required compression id */
1795
24.1k
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1796
24.1k
    if (point_conv == 0)
1797
0
        return 0;
1798
24.1k
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1799
24.0k
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1800
24.0k
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1801
        /*
1802
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1803
         * this check.
1804
         */
1805
0
        return 1;
1806
88
    } else {
1807
88
        int field_type = EVP_PKEY_get_field_type(pkey);
1808
1809
88
        if (field_type == NID_X9_62_prime_field)
1810
82
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1811
6
        else if (field_type == NID_X9_62_characteristic_two_field)
1812
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1813
6
        else
1814
6
            return 0;
1815
88
    }
1816
    /*
1817
     * If point formats extension present check it, otherwise everything is
1818
     * supported (see RFC4492).
1819
     */
1820
24.1k
    if (s->ext.peer_ecpointformats == NULL)
1821
19.1k
        return 1;
1822
1823
8.39k
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1824
7.76k
        if (s->ext.peer_ecpointformats[i] == comp_id)
1825
4.39k
            return 1;
1826
7.76k
    }
1827
629
    return 0;
1828
5.02k
}
1829
1830
/* Return group id of a key */
1831
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1832
23.4k
{
1833
23.4k
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1834
1835
23.4k
    if (curve_nid == NID_undef)
1836
0
        return 0;
1837
23.4k
    return tls1_nid2group_id(curve_nid);
1838
23.4k
}
1839
1840
/*
1841
 * Check cert parameters compatible with extensions: currently just checks EC
1842
 * certificates have compatible curves and compression.
1843
 */
1844
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1845
71.4k
{
1846
71.4k
    uint16_t group_id;
1847
71.4k
    EVP_PKEY *pkey;
1848
71.4k
    pkey = X509_get0_pubkey(x);
1849
71.4k
    if (pkey == NULL)
1850
0
        return 0;
1851
    /* If not EC nothing to do */
1852
71.4k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1853
47.6k
        return 1;
1854
    /* Check compression */
1855
23.8k
    if (!tls1_check_pkey_comp(s, pkey))
1856
614
        return 0;
1857
23.1k
    group_id = tls1_get_group_id(pkey);
1858
    /*
1859
     * For a server we allow the certificate to not be in our list of supported
1860
     * groups.
1861
     */
1862
23.1k
    if (!tls1_check_group_id(s, group_id, !s->server))
1863
5.77k
        return 0;
1864
    /*
1865
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1866
     * SHA384+P-384.
1867
     */
1868
17.4k
    if (check_ee_md && tls1_suiteb(s)) {
1869
0
        int check_md;
1870
0
        size_t i;
1871
1872
        /* Check to see we have necessary signing algorithm */
1873
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1874
0
            check_md = NID_ecdsa_with_SHA256;
1875
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1876
0
            check_md = NID_ecdsa_with_SHA384;
1877
0
        else
1878
0
            return 0;           /* Should never happen */
1879
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1880
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1881
0
                return 1;
1882
0
        }
1883
0
        return 0;
1884
0
    }
1885
17.4k
    return 1;
1886
17.4k
}
1887
1888
/*
1889
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1890
 * @s: SSL connection
1891
 * @cid: Cipher ID we're considering using
1892
 *
1893
 * Checks that the kECDHE cipher suite we're considering using
1894
 * is compatible with the client extensions.
1895
 *
1896
 * Returns 0 when the cipher can't be used or 1 when it can.
1897
 */
1898
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1899
27.6k
{
1900
    /* If not Suite B just need a shared group */
1901
27.6k
    if (!tls1_suiteb(s))
1902
27.6k
        return tls1_shared_group(s, 0) != 0;
1903
    /*
1904
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1905
     * curves permitted.
1906
     */
1907
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1908
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1909
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1910
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1911
1912
0
    return 0;
1913
0
}
1914
1915
/* Default sigalg schemes */
1916
static const uint16_t tls12_sigalgs[] = {
1917
    TLSEXT_SIGALG_mldsa65,
1918
    TLSEXT_SIGALG_mldsa87,
1919
    TLSEXT_SIGALG_mldsa44,
1920
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1921
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1922
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1923
    TLSEXT_SIGALG_ed25519,
1924
    TLSEXT_SIGALG_ed448,
1925
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1926
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1927
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1928
1929
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1930
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1931
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1932
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1933
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1934
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1935
1936
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1937
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1938
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1939
1940
    TLSEXT_SIGALG_ecdsa_sha224,
1941
    TLSEXT_SIGALG_ecdsa_sha1,
1942
1943
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1944
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1945
1946
    TLSEXT_SIGALG_dsa_sha224,
1947
    TLSEXT_SIGALG_dsa_sha1,
1948
1949
    TLSEXT_SIGALG_dsa_sha256,
1950
    TLSEXT_SIGALG_dsa_sha384,
1951
    TLSEXT_SIGALG_dsa_sha512,
1952
1953
#ifndef OPENSSL_NO_GOST
1954
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1955
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1956
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1957
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1958
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1959
#endif
1960
};
1961
1962
1963
static const uint16_t suiteb_sigalgs[] = {
1964
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1965
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1966
};
1967
1968
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1969
    {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
1970
     "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1971
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1972
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
1973
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1974
    {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
1975
     "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1976
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1977
     NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
1978
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1979
    {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
1980
     "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1981
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1982
     NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
1983
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1984
1985
    {TLSEXT_SIGALG_ed25519_name,
1986
     NULL, TLSEXT_SIGALG_ed25519,
1987
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1988
     NID_undef, NID_undef, 1, 0,
1989
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1990
    {TLSEXT_SIGALG_ed448_name,
1991
     NULL, TLSEXT_SIGALG_ed448,
1992
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1993
     NID_undef, NID_undef, 1, 0,
1994
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1995
1996
    {TLSEXT_SIGALG_ecdsa_sha224_name,
1997
     "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
1998
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1999
     NID_ecdsa_with_SHA224, NID_undef, 1, 0,
2000
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2001
    {TLSEXT_SIGALG_ecdsa_sha1_name,
2002
     "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
2003
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2004
     NID_ecdsa_with_SHA1, NID_undef, 1, 0,
2005
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2006
2007
    {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
2008
     TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
2009
     TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
2010
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2011
     NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
2012
     TLS1_3_VERSION, 0, -1, -1},
2013
    {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
2014
     TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
2015
     TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
2016
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2017
     NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
2018
     TLS1_3_VERSION, 0, -1, -1},
2019
    {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
2020
     TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
2021
     TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
2022
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2023
     NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
2024
     TLS1_3_VERSION, 0, -1, -1},
2025
2026
    {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
2027
     "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
2028
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2029
     NID_undef, NID_undef, 1, 0,
2030
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2031
    {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
2032
     "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
2033
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2034
     NID_undef, NID_undef, 1, 0,
2035
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2036
    {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
2037
     "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
2038
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2039
     NID_undef, NID_undef, 1, 0,
2040
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2041
2042
    {TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
2043
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
2044
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2045
     NID_undef, NID_undef, 1, 0,
2046
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2047
    {TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
2048
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
2049
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2050
     NID_undef, NID_undef, 1, 0,
2051
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2052
    {TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
2053
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
2054
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2055
     NID_undef, NID_undef, 1, 0,
2056
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2057
2058
    {TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
2059
     "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
2060
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2061
     NID_sha256WithRSAEncryption, NID_undef, 1, 0,
2062
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2063
    {TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
2064
     "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
2065
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2066
     NID_sha384WithRSAEncryption, NID_undef, 1, 0,
2067
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2068
    {TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
2069
     "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
2070
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2071
     NID_sha512WithRSAEncryption, NID_undef, 1, 0,
2072
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2073
2074
    {TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
2075
     "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
2076
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2077
     NID_sha224WithRSAEncryption, NID_undef, 1, 0,
2078
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2079
    {TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
2080
     "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
2081
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2082
     NID_sha1WithRSAEncryption, NID_undef, 1, 0,
2083
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2084
2085
    {TLSEXT_SIGALG_dsa_sha256_name,
2086
     "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
2087
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2088
     NID_dsa_with_SHA256, NID_undef, 1, 0,
2089
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2090
    {TLSEXT_SIGALG_dsa_sha384_name,
2091
     "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
2092
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2093
     NID_undef, NID_undef, 1, 0,
2094
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2095
    {TLSEXT_SIGALG_dsa_sha512_name,
2096
     "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
2097
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2098
     NID_undef, NID_undef, 1, 0,
2099
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2100
    {TLSEXT_SIGALG_dsa_sha224_name,
2101
     "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
2102
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2103
     NID_undef, NID_undef, 1, 0,
2104
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2105
    {TLSEXT_SIGALG_dsa_sha1_name,
2106
     "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
2107
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2108
     NID_dsaWithSHA1, NID_undef, 1, 0,
2109
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2110
2111
#ifndef OPENSSL_NO_GOST
2112
    {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2113
     TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2114
     TLSEXT_SIGALG_gostr34102012_256_intrinsic,
2115
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2116
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2117
     NID_undef, NID_undef, 1, 0,
2118
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2119
    {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2120
     TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2121
     TLSEXT_SIGALG_gostr34102012_512_intrinsic,
2122
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2123
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2124
     NID_undef, NID_undef, 1, 0,
2125
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2126
2127
    {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
2128
     NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
2129
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2130
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2131
     NID_undef, NID_undef, 1, 0,
2132
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2133
    {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
2134
     NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
2135
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2136
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2137
     NID_undef, NID_undef, 1, 0,
2138
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2139
    {TLSEXT_SIGALG_gostr34102001_gostr3411_name,
2140
     NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
2141
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
2142
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
2143
     NID_undef, NID_undef, 1, 0,
2144
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2145
#endif
2146
};
2147
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
2148
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
2149
    "rsa_pkcs1_md5_sha1", NULL, 0,
2150
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
2151
     EVP_PKEY_RSA, SSL_PKEY_RSA,
2152
     NID_undef, NID_undef, 1, 0,
2153
     TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
2154
};
2155
2156
/*
2157
 * Default signature algorithm values used if signature algorithms not present.
2158
 * From RFC5246. Note: order must match certificate index order.
2159
 */
2160
static const uint16_t tls_default_sigalg[] = {
2161
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
2162
    0, /* SSL_PKEY_RSA_PSS_SIGN */
2163
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
2164
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
2165
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
2166
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
2167
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
2168
    0, /* SSL_PKEY_ED25519 */
2169
    0, /* SSL_PKEY_ED448 */
2170
};
2171
2172
int ssl_setup_sigalgs(SSL_CTX *ctx)
2173
59.0k
{
2174
59.0k
    size_t i, cache_idx, sigalgs_len, enabled;
2175
59.0k
    const SIGALG_LOOKUP *lu;
2176
59.0k
    SIGALG_LOOKUP *cache = NULL;
2177
59.0k
    uint16_t *tls12_sigalgs_list = NULL;
2178
59.0k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
2179
59.0k
    int istls;
2180
59.0k
    int ret = 0;
2181
2182
59.0k
    if (ctx == NULL)
2183
0
        goto err;
2184
2185
59.0k
    istls = !SSL_CTX_IS_DTLS(ctx);
2186
2187
59.0k
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
2188
2189
59.0k
    cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
2190
59.0k
    if (cache == NULL || tmpkey == NULL)
2191
0
        goto err;
2192
2193
59.0k
    tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len);
2194
59.0k
    if (tls12_sigalgs_list == NULL)
2195
0
        goto err;
2196
2197
59.0k
    ERR_set_mark();
2198
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
2199
59.0k
    for (i = 0, lu = sigalg_lookup_tbl;
2200
1.88M
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2201
1.82M
        EVP_PKEY_CTX *pctx;
2202
2203
1.82M
        cache[i] = *lu;
2204
2205
        /*
2206
         * Check hash is available.
2207
         * This test is not perfect. A provider could have support
2208
         * for a signature scheme, but not a particular hash. However the hash
2209
         * could be available from some other loaded provider. In that case it
2210
         * could be that the signature is available, and the hash is available
2211
         * independently - but not as a combination. We ignore this for now.
2212
         */
2213
1.82M
        if (lu->hash != NID_undef
2214
1.82M
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
2215
295k
            cache[i].available = 0;
2216
295k
            continue;
2217
295k
        }
2218
2219
1.53M
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2220
0
            cache[i].available = 0;
2221
0
            continue;
2222
0
        }
2223
1.53M
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
2224
        /* If unable to create pctx we assume the sig algorithm is unavailable */
2225
1.53M
        if (pctx == NULL)
2226
0
            cache[i].available = 0;
2227
1.53M
        EVP_PKEY_CTX_free(pctx);
2228
1.53M
    }
2229
2230
    /* Now complete cache and tls12_sigalgs list with provider sig information */
2231
59.0k
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
2232
236k
    for (i = 0; i < ctx->sigalg_list_len; i++) {
2233
177k
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
2234
177k
        cache[cache_idx].name = si.name;
2235
177k
        cache[cache_idx].name12 = si.sigalg_name;
2236
177k
        cache[cache_idx].sigalg = si.code_point;
2237
177k
        tls12_sigalgs_list[cache_idx] = si.code_point;
2238
177k
        cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
2239
177k
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
2240
177k
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
2241
177k
        cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
2242
177k
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
2243
177k
        cache[cache_idx].curve = NID_undef;
2244
177k
        cache[cache_idx].mintls = TLS1_3_VERSION;
2245
177k
        cache[cache_idx].maxtls = TLS1_3_VERSION;
2246
177k
        cache[cache_idx].mindtls = -1;
2247
177k
        cache[cache_idx].maxdtls = -1;
2248
        /* Compatibility with TLS 1.3 is checked on load */
2249
177k
        cache[cache_idx].available = istls;
2250
177k
        cache[cache_idx].advertise = 0;
2251
177k
        cache_idx++;
2252
177k
    }
2253
59.0k
    ERR_pop_to_mark();
2254
2255
59.0k
    enabled = 0;
2256
2.06M
    for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
2257
2.00M
        SIGALG_LOOKUP *ent = cache;
2258
2.00M
        size_t j;
2259
2260
35.1M
        for (j = 0; j < sigalgs_len; ent++, j++) {
2261
35.1M
            if (ent->sigalg != tls12_sigalgs[i])
2262
33.1M
                continue;
2263
            /* Dedup by marking cache entry as default enabled. */
2264
2.00M
            if (ent->available && !ent->advertise) {
2265
1.66M
                ent->advertise = 1;
2266
1.66M
                tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
2267
1.66M
            }
2268
2.00M
            break;
2269
35.1M
        }
2270
2.00M
    }
2271
2272
    /* Append any provider sigalgs not yet handled */
2273
236k
    for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
2274
177k
        SIGALG_LOOKUP *ent = &cache[i];
2275
2276
177k
        if (ent->available && !ent->advertise)
2277
0
            tls12_sigalgs_list[enabled++] = ent->sigalg;
2278
177k
    }
2279
2280
59.0k
    ctx->sigalg_lookup_cache = cache;
2281
59.0k
    ctx->sigalg_lookup_cache_len = sigalgs_len;
2282
59.0k
    ctx->tls12_sigalgs = tls12_sigalgs_list;
2283
59.0k
    ctx->tls12_sigalgs_len = enabled;
2284
59.0k
    cache = NULL;
2285
59.0k
    tls12_sigalgs_list = NULL;
2286
2287
59.0k
    ret = 1;
2288
59.0k
 err:
2289
59.0k
    OPENSSL_free(cache);
2290
59.0k
    OPENSSL_free(tls12_sigalgs_list);
2291
59.0k
    EVP_PKEY_free(tmpkey);
2292
59.0k
    return ret;
2293
59.0k
}
2294
2295
0
#define SIGLEN_BUF_INCREMENT 100
2296
2297
char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
2298
0
{
2299
0
    size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
2300
0
    const SIGALG_LOOKUP *lu;
2301
0
    EVP_PKEY *tmpkey = EVP_PKEY_new();
2302
0
    char *retval = OPENSSL_malloc(maxretlen);
2303
2304
0
    if (retval == NULL)
2305
0
        return NULL;
2306
2307
    /* ensure retval string is NUL terminated */
2308
0
    retval[0] = (char)0;
2309
2310
0
    for (i = 0, lu = sigalg_lookup_tbl;
2311
0
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2312
0
        EVP_PKEY_CTX *pctx;
2313
0
        int enabled = 1;
2314
2315
0
        ERR_set_mark();
2316
        /* Check hash is available in some provider. */
2317
0
        if (lu->hash != NID_undef) {
2318
0
            EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
2319
2320
            /* If unable to create we assume the hash algorithm is unavailable */
2321
0
            if (hash == NULL) {
2322
0
                enabled = 0;
2323
0
                ERR_pop_to_mark();
2324
0
                continue;
2325
0
            }
2326
0
            EVP_MD_free(hash);
2327
0
        }
2328
2329
0
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2330
0
            enabled = 0;
2331
0
            ERR_pop_to_mark();
2332
0
            continue;
2333
0
        }
2334
0
        pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
2335
        /* If unable to create pctx we assume the sig algorithm is unavailable */
2336
0
        if (pctx == NULL)
2337
0
            enabled = 0;
2338
0
        ERR_pop_to_mark();
2339
0
        EVP_PKEY_CTX_free(pctx);
2340
2341
0
        if (enabled) {
2342
0
            const char *sa = lu->name;
2343
2344
0
            if (sa != NULL) {
2345
0
                if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
2346
0
                    char *tmp;
2347
2348
0
                    maxretlen += SIGLEN_BUF_INCREMENT;
2349
0
                    tmp = OPENSSL_realloc(retval, maxretlen);
2350
0
                    if (tmp == NULL) {
2351
0
                        OPENSSL_free(retval);
2352
0
                        return NULL;
2353
0
                    }
2354
0
                    retval = tmp;
2355
0
                }
2356
0
                if (strlen(retval) > 0)
2357
0
                    OPENSSL_strlcat(retval, ":", maxretlen);
2358
0
                OPENSSL_strlcat(retval, sa, maxretlen);
2359
0
            } else {
2360
                /* lu->name must not be NULL */
2361
0
                ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
2362
0
            }
2363
0
        }
2364
0
    }
2365
2366
0
    EVP_PKEY_free(tmpkey);
2367
0
    return retval;
2368
0
}
2369
2370
/* Lookup TLS signature algorithm */
2371
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
2372
                                               uint16_t sigalg)
2373
13.5M
{
2374
13.5M
    size_t i;
2375
13.5M
    const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
2376
2377
216M
    for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
2378
215M
        if (lu->sigalg == sigalg) {
2379
13.2M
            if (!lu->available)
2380
1.37M
                return NULL;
2381
11.8M
            return lu;
2382
13.2M
        }
2383
215M
    }
2384
301k
    return NULL;
2385
13.5M
}
2386
2387
/* Lookup hash: return 0 if invalid or not enabled */
2388
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
2389
3.68M
{
2390
3.68M
    const EVP_MD *md;
2391
2392
3.68M
    if (lu == NULL)
2393
0
        return 0;
2394
    /* lu->hash == NID_undef means no associated digest */
2395
3.68M
    if (lu->hash == NID_undef) {
2396
330k
        md = NULL;
2397
3.35M
    } else {
2398
3.35M
        md = ssl_md(ctx, lu->hash_idx);
2399
3.35M
        if (md == NULL)
2400
0
            return 0;
2401
3.35M
    }
2402
3.68M
    if (pmd)
2403
3.61M
        *pmd = md;
2404
3.68M
    return 1;
2405
3.68M
}
2406
2407
/*
2408
 * Check if key is large enough to generate RSA-PSS signature.
2409
 *
2410
 * The key must greater than or equal to 2 * hash length + 2.
2411
 * SHA512 has a hash length of 64 bytes, which is incompatible
2412
 * with a 128 byte (1024 bit) key.
2413
 */
2414
872
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
2415
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
2416
                                      const SIGALG_LOOKUP *lu)
2417
872
{
2418
872
    const EVP_MD *md;
2419
2420
872
    if (pkey == NULL)
2421
0
        return 0;
2422
872
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
2423
0
        return 0;
2424
872
    if (EVP_MD_get_size(md) <= 0)
2425
0
        return 0;
2426
872
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
2427
0
        return 0;
2428
872
    return 1;
2429
872
}
2430
2431
/*
2432
 * Returns a signature algorithm when the peer did not send a list of supported
2433
 * signature algorithms. The signature algorithm is fixed for the certificate
2434
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
2435
 * certificate type from |s| will be used.
2436
 * Returns the signature algorithm to use, or NULL on error.
2437
 */
2438
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
2439
                                                   int idx)
2440
228k
{
2441
228k
    if (idx == -1) {
2442
17.7k
        if (s->server) {
2443
17.7k
            size_t i;
2444
2445
            /* Work out index corresponding to ciphersuite */
2446
22.1k
            for (i = 0; i < s->ssl_pkey_num; i++) {
2447
22.1k
                const SSL_CERT_LOOKUP *clu
2448
22.1k
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
2449
2450
22.1k
                if (clu == NULL)
2451
0
                    continue;
2452
22.1k
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
2453
17.7k
                    idx = i;
2454
17.7k
                    break;
2455
17.7k
                }
2456
22.1k
            }
2457
2458
            /*
2459
             * Some GOST ciphersuites allow more than one signature algorithms
2460
             * */
2461
17.7k
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
2462
0
                int real_idx;
2463
2464
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
2465
0
                     real_idx--) {
2466
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
2467
0
                        idx = real_idx;
2468
0
                        break;
2469
0
                    }
2470
0
                }
2471
0
            }
2472
            /*
2473
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
2474
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
2475
             */
2476
17.7k
            else if (idx == SSL_PKEY_GOST12_256) {
2477
0
                int real_idx;
2478
2479
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
2480
0
                     real_idx--) {
2481
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
2482
0
                         idx = real_idx;
2483
0
                         break;
2484
0
                     }
2485
0
                }
2486
0
            }
2487
17.7k
        } else {
2488
0
            idx = s->cert->key - s->cert->pkeys;
2489
0
        }
2490
17.7k
    }
2491
228k
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
2492
25.1k
        return NULL;
2493
2494
203k
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
2495
189k
        const SIGALG_LOOKUP *lu =
2496
189k
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
2497
189k
                               tls_default_sigalg[idx]);
2498
2499
189k
        if (lu == NULL)
2500
122k
            return NULL;
2501
66.8k
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
2502
0
            return NULL;
2503
66.8k
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2504
0
            return NULL;
2505
66.8k
        return lu;
2506
66.8k
    }
2507
13.6k
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
2508
0
        return NULL;
2509
13.6k
    return &legacy_rsa_sigalg;
2510
13.6k
}
2511
/* Set peer sigalg based key type */
2512
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
2513
1.36k
{
2514
1.36k
    size_t idx;
2515
1.36k
    const SIGALG_LOOKUP *lu;
2516
2517
1.36k
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
2518
0
        return 0;
2519
1.36k
    lu = tls1_get_legacy_sigalg(s, idx);
2520
1.36k
    if (lu == NULL)
2521
9
        return 0;
2522
1.35k
    s->s3.tmp.peer_sigalg = lu;
2523
1.35k
    return 1;
2524
1.36k
}
2525
2526
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
2527
489k
{
2528
    /*
2529
     * If Suite B mode use Suite B sigalgs only, ignore any other
2530
     * preferences.
2531
     */
2532
489k
    switch (tls1_suiteb(s)) {
2533
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
2534
0
        *psigs = suiteb_sigalgs;
2535
0
        return OSSL_NELEM(suiteb_sigalgs);
2536
2537
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
2538
0
        *psigs = suiteb_sigalgs;
2539
0
        return 1;
2540
2541
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
2542
0
        *psigs = suiteb_sigalgs + 1;
2543
0
        return 1;
2544
489k
    }
2545
    /*
2546
     *  We use client_sigalgs (if not NULL) if we're a server
2547
     *  and sending a certificate request or if we're a client and
2548
     *  determining which shared algorithm to use.
2549
     */
2550
489k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
2551
0
        *psigs = s->cert->client_sigalgs;
2552
0
        return s->cert->client_sigalgslen;
2553
489k
    } else if (s->cert->conf_sigalgs) {
2554
0
        *psigs = s->cert->conf_sigalgs;
2555
0
        return s->cert->conf_sigalgslen;
2556
489k
    } else {
2557
489k
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2558
489k
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2559
489k
    }
2560
489k
}
2561
2562
/*
2563
 * Called by servers only. Checks that we have a sig alg that supports the
2564
 * specified EC curve.
2565
 */
2566
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
2567
0
{
2568
0
   const uint16_t *sigs;
2569
0
   size_t siglen, i;
2570
2571
0
    if (s->cert->conf_sigalgs) {
2572
0
        sigs = s->cert->conf_sigalgs;
2573
0
        siglen = s->cert->conf_sigalgslen;
2574
0
    } else {
2575
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2576
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2577
0
    }
2578
2579
0
    for (i = 0; i < siglen; i++) {
2580
0
        const SIGALG_LOOKUP *lu =
2581
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
2582
2583
0
        if (lu == NULL)
2584
0
            continue;
2585
0
        if (lu->sig == EVP_PKEY_EC
2586
0
                && lu->curve != NID_undef
2587
0
                && curve == lu->curve)
2588
0
            return 1;
2589
0
    }
2590
2591
0
    return 0;
2592
0
}
2593
2594
/*
2595
 * Return the number of security bits for the signature algorithm, or 0 on
2596
 * error.
2597
 */
2598
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
2599
2.15M
{
2600
2.15M
    const EVP_MD *md = NULL;
2601
2.15M
    int secbits = 0;
2602
2603
2.15M
    if (!tls1_lookup_md(ctx, lu, &md))
2604
0
        return 0;
2605
2.15M
    if (md != NULL)
2606
1.91M
    {
2607
1.91M
        int md_type = EVP_MD_get_type(md);
2608
2609
        /* Security bits: half digest bits */
2610
1.91M
        secbits = EVP_MD_get_size(md) * 4;
2611
1.91M
        if (secbits <= 0)
2612
0
            return 0;
2613
        /*
2614
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
2615
         * they're no longer accepted at security level 1. The real values don't
2616
         * really matter as long as they're lower than 80, which is our
2617
         * security level 1.
2618
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
2619
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
2620
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
2621
         * puts a chosen-prefix attack for MD5 at 2^39.
2622
         */
2623
1.91M
        if (md_type == NID_sha1)
2624
175k
            secbits = 64;
2625
1.74M
        else if (md_type == NID_md5_sha1)
2626
7.34k
            secbits = 67;
2627
1.73M
        else if (md_type == NID_md5)
2628
0
            secbits = 39;
2629
1.91M
    } else {
2630
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
2631
235k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
2632
64.6k
            secbits = 128;
2633
171k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
2634
73.6k
            secbits = 224;
2635
235k
    }
2636
    /*
2637
     * For provider-based sigalgs we have secbits information available
2638
     * in the (provider-loaded) sigalg_list structure
2639
     */
2640
2.15M
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2641
2.15M
               && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2642
97.4k
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2643
97.4k
    }
2644
2.15M
    return secbits;
2645
2.15M
}
2646
2647
static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
2648
1.22M
{
2649
1.22M
    int minversion, maxversion;
2650
1.22M
    int minproto, maxproto;
2651
2652
1.22M
    if (!lu->available)
2653
0
        return 0;
2654
2655
1.22M
    if (SSL_CONNECTION_IS_DTLS(sc)) {
2656
262k
        if (sc->ssl.method->version == DTLS_ANY_VERSION) {
2657
256k
            minproto = sc->min_proto_version;
2658
256k
            maxproto = sc->max_proto_version;
2659
256k
        } else {
2660
5.82k
            maxproto = minproto = sc->version;
2661
5.82k
        }
2662
262k
        minversion = lu->mindtls;
2663
262k
        maxversion = lu->maxdtls;
2664
965k
    } else {
2665
965k
        if (sc->ssl.method->version == TLS_ANY_VERSION) {
2666
939k
            minproto = sc->min_proto_version;
2667
939k
            maxproto = sc->max_proto_version;
2668
939k
        } else {
2669
25.8k
            maxproto = minproto = sc->version;
2670
25.8k
        }
2671
965k
        minversion = lu->mintls;
2672
965k
        maxversion = lu->maxtls;
2673
965k
    }
2674
1.22M
    if (minversion == -1 || maxversion == -1
2675
1.22M
        || (minversion != 0 && maxproto != 0
2676
1.19M
            && ssl_version_cmp(sc, minversion, maxproto) > 0)
2677
1.22M
        || (maxversion != 0 && minproto != 0
2678
1.19M
            && ssl_version_cmp(sc, maxversion, minproto) < 0)
2679
1.22M
        || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
2680
202k
        return 0;
2681
1.02M
    return 1;
2682
1.22M
}
2683
2684
/*
2685
 * Check signature algorithm is consistent with sent supported signature
2686
 * algorithms and if so set relevant digest and signature scheme in
2687
 * s.
2688
 */
2689
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2690
7.65k
{
2691
7.65k
    const uint16_t *sent_sigs;
2692
7.65k
    const EVP_MD *md = NULL;
2693
7.65k
    char sigalgstr[2];
2694
7.65k
    size_t sent_sigslen, i, cidx;
2695
7.65k
    int pkeyid = -1;
2696
7.65k
    const SIGALG_LOOKUP *lu;
2697
7.65k
    int secbits = 0;
2698
2699
7.65k
    pkeyid = EVP_PKEY_get_id(pkey);
2700
2701
7.65k
    if (SSL_CONNECTION_IS_TLS13(s)) {
2702
        /* Disallow DSA for TLS 1.3 */
2703
6.18k
        if (pkeyid == EVP_PKEY_DSA) {
2704
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2705
0
            return 0;
2706
0
        }
2707
        /* Only allow PSS for TLS 1.3 */
2708
6.18k
        if (pkeyid == EVP_PKEY_RSA)
2709
6.17k
            pkeyid = EVP_PKEY_RSA_PSS;
2710
6.18k
    }
2711
2712
    /* Is this code point available and compatible with the protocol */
2713
7.65k
    lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
2714
7.65k
    if (lu == NULL || !tls_sigalg_compat(s, lu)) {
2715
84
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2716
84
        return 0;
2717
84
    }
2718
2719
    /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
2720
7.57k
    if (pkeyid == EVP_PKEY_KEYMGMT)
2721
0
        pkeyid = lu->sig;
2722
2723
    /* Should never happen */
2724
7.57k
    if (pkeyid == -1) {
2725
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2726
0
        return -1;
2727
0
    }
2728
2729
    /*
2730
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2731
     * is consistent with signature: RSA keys can be used for RSA-PSS
2732
     */
2733
7.57k
    if ((SSL_CONNECTION_IS_TLS13(s)
2734
7.57k
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2735
7.57k
        || (pkeyid != lu->sig
2736
7.57k
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2737
25
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2738
25
        return 0;
2739
25
    }
2740
    /* Check the sigalg is consistent with the key OID */
2741
7.54k
    if (!ssl_cert_lookup_by_nid(
2742
7.54k
                 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2743
7.54k
                 &cidx, SSL_CONNECTION_GET_CTX(s))
2744
7.54k
            || lu->sig_idx != (int)cidx) {
2745
6
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2746
6
        return 0;
2747
6
    }
2748
2749
7.54k
    if (pkeyid == EVP_PKEY_EC) {
2750
2751
        /* Check point compression is permitted */
2752
69
        if (!tls1_check_pkey_comp(s, pkey)) {
2753
5
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2754
5
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
2755
5
            return 0;
2756
5
        }
2757
2758
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2759
64
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2760
0
            int curve = ssl_get_EC_curve_nid(pkey);
2761
2762
0
            if (lu->curve != NID_undef && curve != lu->curve) {
2763
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2764
0
                return 0;
2765
0
            }
2766
0
        }
2767
64
        if (!SSL_CONNECTION_IS_TLS13(s)) {
2768
            /* Check curve matches extensions */
2769
64
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2770
4
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2771
4
                return 0;
2772
4
            }
2773
60
            if (tls1_suiteb(s)) {
2774
                /* Check sigalg matches a permissible Suite B value */
2775
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2776
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2777
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2778
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
2779
0
                    return 0;
2780
0
                }
2781
0
            }
2782
60
        }
2783
7.47k
    } else if (tls1_suiteb(s)) {
2784
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2785
0
        return 0;
2786
0
    }
2787
2788
    /* Check signature matches a type we sent */
2789
7.53k
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2790
123k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2791
123k
        if (sig == *sent_sigs)
2792
7.53k
            break;
2793
123k
    }
2794
    /* Allow fallback to SHA1 if not strict mode */
2795
7.53k
    if (i == sent_sigslen && (lu->hash != NID_sha1
2796
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2797
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2798
0
        return 0;
2799
0
    }
2800
7.53k
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2801
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2802
0
        return 0;
2803
0
    }
2804
    /*
2805
     * Make sure security callback allows algorithm. For historical
2806
     * reasons we have to pass the sigalg as a two byte char array.
2807
     */
2808
7.53k
    sigalgstr[0] = (sig >> 8) & 0xff;
2809
7.53k
    sigalgstr[1] = sig & 0xff;
2810
7.53k
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2811
7.53k
    if (secbits == 0 ||
2812
7.53k
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
2813
7.53k
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
2814
7.53k
                      (void *)sigalgstr)) {
2815
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2816
0
        return 0;
2817
0
    }
2818
    /* Store the sigalg the peer uses */
2819
7.53k
    s->s3.tmp.peer_sigalg = lu;
2820
7.53k
    return 1;
2821
7.53k
}
2822
2823
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2824
0
{
2825
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2826
2827
0
    if (sc == NULL)
2828
0
        return 0;
2829
2830
0
    if (sc->s3.tmp.peer_sigalg == NULL)
2831
0
        return 0;
2832
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2833
0
    return 1;
2834
0
}
2835
2836
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2837
0
{
2838
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2839
2840
0
    if (sc == NULL)
2841
0
        return 0;
2842
2843
0
    if (sc->s3.tmp.sigalg == NULL)
2844
0
        return 0;
2845
0
    *pnid = sc->s3.tmp.sigalg->sig;
2846
0
    return 1;
2847
0
}
2848
2849
/*
2850
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2851
 * supported, doesn't appear in supported signature algorithms, isn't supported
2852
 * by the enabled protocol versions or by the security level.
2853
 *
2854
 * This function should only be used for checking which ciphers are supported
2855
 * by the client.
2856
 *
2857
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2858
 */
2859
int ssl_set_client_disabled(SSL_CONNECTION *s)
2860
324k
{
2861
324k
    s->s3.tmp.mask_a = 0;
2862
324k
    s->s3.tmp.mask_k = 0;
2863
324k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2864
324k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2865
324k
                                &s->s3.tmp.max_ver, NULL) != 0)
2866
0
        return 0;
2867
324k
#ifndef OPENSSL_NO_PSK
2868
    /* with PSK there must be client callback set */
2869
324k
    if (!s->psk_client_callback) {
2870
324k
        s->s3.tmp.mask_a |= SSL_aPSK;
2871
324k
        s->s3.tmp.mask_k |= SSL_PSK;
2872
324k
    }
2873
324k
#endif                          /* OPENSSL_NO_PSK */
2874
324k
#ifndef OPENSSL_NO_SRP
2875
324k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2876
324k
        s->s3.tmp.mask_a |= SSL_aSRP;
2877
324k
        s->s3.tmp.mask_k |= SSL_kSRP;
2878
324k
    }
2879
324k
#endif
2880
324k
    return 1;
2881
324k
}
2882
2883
/*
2884
 * ssl_cipher_disabled - check that a cipher is disabled or not
2885
 * @s: SSL connection that you want to use the cipher on
2886
 * @c: cipher to check
2887
 * @op: Security check that you want to do
2888
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2889
 *
2890
 * Returns 1 when it's disabled, 0 when enabled.
2891
 */
2892
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2893
                        int op, int ecdhe)
2894
24.0M
{
2895
24.0M
    int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2896
24.0M
    int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2897
2898
24.0M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2899
24.0M
        || c->algorithm_auth & s->s3.tmp.mask_a)
2900
10.0M
        return 1;
2901
14.0M
    if (s->s3.tmp.max_ver == 0)
2902
0
        return 1;
2903
2904
14.0M
    if (SSL_IS_QUIC_INT_HANDSHAKE(s))
2905
        /* For QUIC, only allow these ciphersuites. */
2906
357k
        switch (SSL_CIPHER_get_id(c)) {
2907
113k
        case TLS1_3_CK_AES_128_GCM_SHA256:
2908
242k
        case TLS1_3_CK_AES_256_GCM_SHA384:
2909
357k
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2910
357k
            break;
2911
30
        default:
2912
30
            return 1;
2913
357k
        }
2914
2915
    /*
2916
     * For historical reasons we will allow ECHDE to be selected by a server
2917
     * in SSLv3 if we are a client
2918
     */
2919
14.0M
    if (minversion == TLS1_VERSION
2920
14.0M
            && ecdhe
2921
14.0M
            && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2922
5.67k
        minversion = SSL3_VERSION;
2923
2924
14.0M
    if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2925
14.0M
        || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2926
325k
        return 1;
2927
2928
13.7M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2929
14.0M
}
2930
2931
int tls_use_ticket(SSL_CONNECTION *s)
2932
145k
{
2933
145k
    if ((s->options & SSL_OP_NO_TICKET))
2934
0
        return 0;
2935
145k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2936
145k
}
2937
2938
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2939
24.3k
{
2940
24.3k
    size_t i;
2941
2942
    /* Clear any shared signature algorithms */
2943
24.3k
    OPENSSL_free(s->shared_sigalgs);
2944
24.3k
    s->shared_sigalgs = NULL;
2945
24.3k
    s->shared_sigalgslen = 0;
2946
2947
    /* Clear certificate validity flags */
2948
24.3k
    if (s->s3.tmp.valid_flags)
2949
114
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2950
24.2k
    else
2951
24.2k
        s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2952
24.3k
    if (s->s3.tmp.valid_flags == NULL)
2953
0
        return 0;
2954
    /*
2955
     * If peer sent no signature algorithms check to see if we support
2956
     * the default algorithm for each certificate type
2957
     */
2958
24.3k
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2959
24.3k
            && s->s3.tmp.peer_sigalgs == NULL) {
2960
18.4k
        const uint16_t *sent_sigs;
2961
18.4k
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2962
2963
209k
        for (i = 0; i < s->ssl_pkey_num; i++) {
2964
190k
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2965
190k
            size_t j;
2966
2967
190k
            if (lu == NULL)
2968
135k
                continue;
2969
            /* Check default matches a type we sent */
2970
1.25M
            for (j = 0; j < sent_sigslen; j++) {
2971
1.24M
                if (lu->sigalg == sent_sigs[j]) {
2972
48.9k
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2973
48.9k
                        break;
2974
48.9k
                }
2975
1.24M
            }
2976
55.2k
        }
2977
18.4k
        return 1;
2978
18.4k
    }
2979
2980
5.91k
    if (!tls1_process_sigalgs(s)) {
2981
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2982
0
        return 0;
2983
0
    }
2984
5.91k
    if (s->shared_sigalgs != NULL)
2985
5.81k
        return 1;
2986
2987
    /* Fatal error if no shared signature algorithms */
2988
5.91k
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2989
94
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2990
94
    return 0;
2991
5.91k
}
2992
2993
/*-
2994
 * Gets the ticket information supplied by the client if any.
2995
 *
2996
 *   hello: The parsed ClientHello data
2997
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
2998
 *       point to the resulting session.
2999
 */
3000
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
3001
                                             CLIENTHELLO_MSG *hello,
3002
                                             SSL_SESSION **ret)
3003
23.2k
{
3004
23.2k
    size_t size;
3005
23.2k
    RAW_EXTENSION *ticketext;
3006
3007
23.2k
    *ret = NULL;
3008
23.2k
    s->ext.ticket_expected = 0;
3009
3010
    /*
3011
     * If tickets disabled or not supported by the protocol version
3012
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
3013
     * resumption.
3014
     */
3015
23.2k
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
3016
159
        return SSL_TICKET_NONE;
3017
3018
23.0k
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
3019
23.0k
    if (!ticketext->present)
3020
17.7k
        return SSL_TICKET_NONE;
3021
3022
5.27k
    size = PACKET_remaining(&ticketext->data);
3023
3024
5.27k
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
3025
5.27k
                              hello->session_id, hello->session_id_len, ret);
3026
23.0k
}
3027
3028
/*-
3029
 * tls_decrypt_ticket attempts to decrypt a session ticket.
3030
 *
3031
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
3032
 * expecting a pre-shared key ciphersuite, in which case we have no use for
3033
 * session tickets and one will never be decrypted, nor will
3034
 * s->ext.ticket_expected be set to 1.
3035
 *
3036
 * Side effects:
3037
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
3038
 *   a new session ticket to the client because the client indicated support
3039
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3040
 *   a session ticket or we couldn't use the one it gave us, or if
3041
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
3042
 *   Otherwise, s->ext.ticket_expected is set to 0.
3043
 *
3044
 *   etick: points to the body of the session ticket extension.
3045
 *   eticklen: the length of the session tickets extension.
3046
 *   sess_id: points at the session ID.
3047
 *   sesslen: the length of the session ID.
3048
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
3049
 *       point to the resulting session.
3050
 */
3051
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
3052
                                     const unsigned char *etick,
3053
                                     size_t eticklen,
3054
                                     const unsigned char *sess_id,
3055
                                     size_t sesslen, SSL_SESSION **psess)
3056
6.23k
{
3057
6.23k
    SSL_SESSION *sess = NULL;
3058
6.23k
    unsigned char *sdec;
3059
6.23k
    const unsigned char *p;
3060
6.23k
    int slen, ivlen, renew_ticket = 0, declen;
3061
6.23k
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
3062
6.23k
    size_t mlen;
3063
6.23k
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3064
6.23k
    SSL_HMAC *hctx = NULL;
3065
6.23k
    EVP_CIPHER_CTX *ctx = NULL;
3066
6.23k
    SSL_CTX *tctx = s->session_ctx;
3067
6.23k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3068
3069
6.23k
    if (eticklen == 0) {
3070
        /*
3071
         * The client will accept a ticket but doesn't currently have
3072
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
3073
         */
3074
3.47k
        ret = SSL_TICKET_EMPTY;
3075
3.47k
        goto end;
3076
3.47k
    }
3077
2.75k
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
3078
        /*
3079
         * Indicate that the ticket couldn't be decrypted rather than
3080
         * generating the session from ticket now, trigger
3081
         * abbreviated handshake based on external mechanism to
3082
         * calculate the master secret later.
3083
         */
3084
0
        ret = SSL_TICKET_NO_DECRYPT;
3085
0
        goto end;
3086
0
    }
3087
3088
    /* Need at least keyname + iv */
3089
2.75k
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
3090
800
        ret = SSL_TICKET_NO_DECRYPT;
3091
800
        goto end;
3092
800
    }
3093
3094
    /* Initialize session ticket encryption and HMAC contexts */
3095
1.95k
    hctx = ssl_hmac_new(tctx);
3096
1.95k
    if (hctx == NULL) {
3097
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
3098
0
        goto end;
3099
0
    }
3100
1.95k
    ctx = EVP_CIPHER_CTX_new();
3101
1.95k
    if (ctx == NULL) {
3102
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
3103
0
        goto end;
3104
0
    }
3105
1.95k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3106
1.95k
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
3107
#else
3108
    if (tctx->ext.ticket_key_evp_cb != NULL)
3109
#endif
3110
0
    {
3111
0
        unsigned char *nctick = (unsigned char *)etick;
3112
0
        int rv = 0;
3113
3114
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
3115
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
3116
0
                                             nctick,
3117
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
3118
0
                                             ctx,
3119
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
3120
0
                                             0);
3121
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3122
0
        else if (tctx->ext.ticket_key_cb != NULL)
3123
            /* if 0 is returned, write an empty ticket */
3124
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
3125
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
3126
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
3127
0
#endif
3128
0
        if (rv < 0) {
3129
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3130
0
            goto end;
3131
0
        }
3132
0
        if (rv == 0) {
3133
0
            ret = SSL_TICKET_NO_DECRYPT;
3134
0
            goto end;
3135
0
        }
3136
0
        if (rv == 2)
3137
0
            renew_ticket = 1;
3138
1.95k
    } else {
3139
1.95k
        EVP_CIPHER *aes256cbc = NULL;
3140
3141
        /* Check key name matches */
3142
1.95k
        if (memcmp(etick, tctx->ext.tick_key_name,
3143
1.95k
                   TLSEXT_KEYNAME_LENGTH) != 0) {
3144
619
            ret = SSL_TICKET_NO_DECRYPT;
3145
619
            goto end;
3146
619
        }
3147
3148
1.33k
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
3149
1.33k
                                     sctx->propq);
3150
1.33k
        if (aes256cbc == NULL
3151
1.33k
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
3152
1.33k
                             sizeof(tctx->ext.secure->tick_hmac_key),
3153
1.33k
                             "SHA256") <= 0
3154
1.33k
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
3155
1.33k
                                  tctx->ext.secure->tick_aes_key,
3156
1.33k
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
3157
0
            EVP_CIPHER_free(aes256cbc);
3158
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3159
0
            goto end;
3160
0
        }
3161
1.33k
        EVP_CIPHER_free(aes256cbc);
3162
1.33k
        if (SSL_CONNECTION_IS_TLS13(s))
3163
634
            renew_ticket = 1;
3164
1.33k
    }
3165
    /*
3166
     * Attempt to process session ticket, first conduct sanity and integrity
3167
     * checks on ticket.
3168
     */
3169
1.33k
    mlen = ssl_hmac_size(hctx);
3170
1.33k
    if (mlen == 0) {
3171
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3172
0
        goto end;
3173
0
    }
3174
3175
1.33k
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
3176
1.33k
    if (ivlen < 0) {
3177
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3178
0
        goto end;
3179
0
    }
3180
3181
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
3182
1.33k
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
3183
103
        ret = SSL_TICKET_NO_DECRYPT;
3184
103
        goto end;
3185
103
    }
3186
1.23k
    eticklen -= mlen;
3187
    /* Check HMAC of encrypted ticket */
3188
1.23k
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
3189
1.23k
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
3190
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3191
0
        goto end;
3192
0
    }
3193
3194
1.23k
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3195
179
        ret = SSL_TICKET_NO_DECRYPT;
3196
179
        goto end;
3197
179
    }
3198
    /* Attempt to decrypt session data */
3199
    /* Move p after IV to start of encrypted ticket, update length */
3200
1.05k
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
3201
1.05k
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
3202
1.05k
    sdec = OPENSSL_malloc(eticklen);
3203
1.05k
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
3204
1.05k
                                          (int)eticklen) <= 0) {
3205
0
        OPENSSL_free(sdec);
3206
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3207
0
        goto end;
3208
0
    }
3209
1.05k
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
3210
72
        OPENSSL_free(sdec);
3211
72
        ret = SSL_TICKET_NO_DECRYPT;
3212
72
        goto end;
3213
72
    }
3214
979
    slen += declen;
3215
979
    p = sdec;
3216
3217
979
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
3218
979
    slen -= p - sdec;
3219
979
    OPENSSL_free(sdec);
3220
979
    if (sess) {
3221
        /* Some additional consistency checks */
3222
813
        if (slen != 0) {
3223
12
            SSL_SESSION_free(sess);
3224
12
            sess = NULL;
3225
12
            ret = SSL_TICKET_NO_DECRYPT;
3226
12
            goto end;
3227
12
        }
3228
        /*
3229
         * The session ID, if non-empty, is used by some clients to detect
3230
         * that the ticket has been accepted. So we copy it to the session
3231
         * structure. If it is empty set length to zero as required by
3232
         * standard.
3233
         */
3234
801
        if (sesslen) {
3235
292
            memcpy(sess->session_id, sess_id, sesslen);
3236
292
            sess->session_id_length = sesslen;
3237
292
        }
3238
801
        if (renew_ticket)
3239
490
            ret = SSL_TICKET_SUCCESS_RENEW;
3240
311
        else
3241
311
            ret = SSL_TICKET_SUCCESS;
3242
801
        goto end;
3243
813
    }
3244
166
    ERR_clear_error();
3245
    /*
3246
     * For session parse failure, indicate that we need to send a new ticket.
3247
     */
3248
166
    ret = SSL_TICKET_NO_DECRYPT;
3249
3250
6.23k
 end:
3251
6.23k
    EVP_CIPHER_CTX_free(ctx);
3252
6.23k
    ssl_hmac_free(hctx);
3253
3254
    /*
3255
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
3256
     * detected above. The callback is responsible for checking |ret| before it
3257
     * performs any action
3258
     */
3259
6.23k
    if (s->session_ctx->decrypt_ticket_cb != NULL
3260
6.23k
            && (ret == SSL_TICKET_EMPTY
3261
0
                || ret == SSL_TICKET_NO_DECRYPT
3262
0
                || ret == SSL_TICKET_SUCCESS
3263
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
3264
0
        size_t keyname_len = eticklen;
3265
0
        int retcb;
3266
3267
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
3268
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
3269
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
3270
0
                                                  sess, etick, keyname_len,
3271
0
                                                  ret,
3272
0
                                                  s->session_ctx->ticket_cb_data);
3273
0
        switch (retcb) {
3274
0
        case SSL_TICKET_RETURN_ABORT:
3275
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3276
0
            break;
3277
3278
0
        case SSL_TICKET_RETURN_IGNORE:
3279
0
            ret = SSL_TICKET_NONE;
3280
0
            SSL_SESSION_free(sess);
3281
0
            sess = NULL;
3282
0
            break;
3283
3284
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
3285
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
3286
0
                ret = SSL_TICKET_NO_DECRYPT;
3287
            /* else the value of |ret| will already do the right thing */
3288
0
            SSL_SESSION_free(sess);
3289
0
            sess = NULL;
3290
0
            break;
3291
3292
0
        case SSL_TICKET_RETURN_USE:
3293
0
        case SSL_TICKET_RETURN_USE_RENEW:
3294
0
            if (ret != SSL_TICKET_SUCCESS
3295
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
3296
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
3297
0
            else if (retcb == SSL_TICKET_RETURN_USE)
3298
0
                ret = SSL_TICKET_SUCCESS;
3299
0
            else
3300
0
                ret = SSL_TICKET_SUCCESS_RENEW;
3301
0
            break;
3302
3303
0
        default:
3304
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3305
0
        }
3306
0
    }
3307
3308
6.23k
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
3309
6.23k
        switch (ret) {
3310
1.95k
        case SSL_TICKET_NO_DECRYPT:
3311
2.44k
        case SSL_TICKET_SUCCESS_RENEW:
3312
5.92k
        case SSL_TICKET_EMPTY:
3313
5.92k
            s->ext.ticket_expected = 1;
3314
6.23k
        }
3315
6.23k
    }
3316
3317
6.23k
    *psess = sess;
3318
3319
6.23k
    return ret;
3320
6.23k
}
3321
3322
/* Check to see if a signature algorithm is allowed */
3323
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
3324
                                const SIGALG_LOOKUP *lu)
3325
4.30M
{
3326
4.30M
    unsigned char sigalgstr[2];
3327
4.30M
    int secbits;
3328
3329
4.30M
    if (lu == NULL || !lu->available)
3330
0
        return 0;
3331
    /* DSA is not allowed in TLS 1.3 */
3332
4.30M
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
3333
8.17k
        return 0;
3334
    /*
3335
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
3336
     * spec
3337
     */
3338
4.29M
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
3339
4.29M
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
3340
4.29M
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
3341
1.82M
            || lu->hash_idx == SSL_MD_MD5_IDX
3342
1.82M
            || lu->hash_idx == SSL_MD_SHA224_IDX))
3343
745k
        return 0;
3344
3345
    /* See if public key algorithm allowed */
3346
3.54M
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
3347
0
        return 0;
3348
3349
3.54M
    if (lu->sig == NID_id_GostR3410_2012_256
3350
3.54M
            || lu->sig == NID_id_GostR3410_2012_512
3351
3.54M
            || lu->sig == NID_id_GostR3410_2001) {
3352
        /* We never allow GOST sig algs on the server with TLSv1.3 */
3353
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
3354
0
            return 0;
3355
0
        if (!s->server
3356
0
                && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
3357
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
3358
0
            int i, num;
3359
0
            STACK_OF(SSL_CIPHER) *sk;
3360
3361
            /*
3362
             * We're a client that could negotiate TLSv1.3. We only allow GOST
3363
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
3364
             * ciphersuites enabled.
3365
             */
3366
3367
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
3368
0
                return 0;
3369
3370
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
3371
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
3372
0
            for (i = 0; i < num; i++) {
3373
0
                const SSL_CIPHER *c;
3374
3375
0
                c = sk_SSL_CIPHER_value(sk, i);
3376
                /* Skip disabled ciphers */
3377
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
3378
0
                    continue;
3379
3380
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
3381
0
                    break;
3382
0
            }
3383
0
            if (i == num)
3384
0
                return 0;
3385
0
        }
3386
0
    }
3387
3388
    /* Finally see if security callback allows it */
3389
3.54M
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
3390
3.54M
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
3391
3.54M
    sigalgstr[1] = lu->sigalg & 0xff;
3392
3.54M
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
3393
3.54M
}
3394
3395
/*
3396
 * Get a mask of disabled public key algorithms based on supported signature
3397
 * algorithms. For example if no signature algorithm supports RSA then RSA is
3398
 * disabled.
3399
 */
3400
3401
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
3402
324k
{
3403
324k
    const uint16_t *sigalgs;
3404
324k
    size_t i, sigalgslen;
3405
324k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
3406
    /*
3407
     * Go through all signature algorithms seeing if we support any
3408
     * in disabled_mask.
3409
     */
3410
324k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
3411
9.97M
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
3412
9.65M
        const SIGALG_LOOKUP *lu =
3413
9.65M
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
3414
9.65M
        const SSL_CERT_LOOKUP *clu;
3415
3416
9.65M
        if (lu == NULL)
3417
977k
            continue;
3418
3419
8.67M
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
3420
8.67M
                                     SSL_CONNECTION_GET_CTX(s));
3421
8.67M
        if (clu == NULL)
3422
0
                continue;
3423
3424
        /* If algorithm is disabled see if we can enable it */
3425
8.67M
        if ((clu->amask & disabled_mask) != 0
3426
8.67M
                && tls12_sigalg_allowed(s, op, lu))
3427
877k
            disabled_mask &= ~clu->amask;
3428
8.67M
    }
3429
324k
    *pmask_a |= disabled_mask;
3430
324k
}
3431
3432
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
3433
                       const uint16_t *psig, size_t psiglen)
3434
107k
{
3435
107k
    size_t i;
3436
107k
    int rv = 0;
3437
3438
3.30M
    for (i = 0; i < psiglen; i++, psig++) {
3439
3.19M
        const SIGALG_LOOKUP *lu =
3440
3.19M
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
3441
3442
3.19M
        if (lu == NULL || !tls_sigalg_compat(s, lu))
3443
789k
            continue;
3444
2.40M
        if (!WPACKET_put_bytes_u16(pkt, *psig))
3445
0
            return 0;
3446
        /*
3447
         * If TLS 1.3 must have at least one valid TLS 1.3 message
3448
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
3449
         */
3450
2.40M
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
3451
107k
            || (lu->sig != EVP_PKEY_RSA
3452
0
                && lu->hash != NID_sha1
3453
0
                && lu->hash != NID_sha224)))
3454
107k
            rv = 1;
3455
2.40M
    }
3456
107k
    if (rv == 0)
3457
107k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3458
107k
    return rv;
3459
107k
}
3460
3461
/* Given preference and allowed sigalgs set shared sigalgs */
3462
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
3463
                                   const SIGALG_LOOKUP **shsig,
3464
                                   const uint16_t *pref, size_t preflen,
3465
                                   const uint16_t *allow, size_t allowlen)
3466
14.6k
{
3467
14.6k
    const uint16_t *ptmp, *atmp;
3468
14.6k
    size_t i, j, nmatch = 0;
3469
375k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
3470
361k
        const SIGALG_LOOKUP *lu =
3471
361k
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
3472
3473
        /* Skip disabled hashes or signature algorithms */
3474
361k
        if (lu == NULL
3475
361k
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
3476
199k
            continue;
3477
2.50M
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
3478
2.50M
            if (*ptmp == *atmp) {
3479
162k
                nmatch++;
3480
162k
                if (shsig)
3481
81.0k
                    *shsig++ = lu;
3482
162k
                break;
3483
162k
            }
3484
2.50M
        }
3485
162k
    }
3486
14.6k
    return nmatch;
3487
14.6k
}
3488
3489
/* Set shared signature algorithms for SSL structures */
3490
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
3491
7.40k
{
3492
7.40k
    const uint16_t *pref, *allow, *conf;
3493
7.40k
    size_t preflen, allowlen, conflen;
3494
7.40k
    size_t nmatch;
3495
7.40k
    const SIGALG_LOOKUP **salgs = NULL;
3496
7.40k
    CERT *c = s->cert;
3497
7.40k
    unsigned int is_suiteb = tls1_suiteb(s);
3498
3499
7.40k
    OPENSSL_free(s->shared_sigalgs);
3500
7.40k
    s->shared_sigalgs = NULL;
3501
7.40k
    s->shared_sigalgslen = 0;
3502
    /* If client use client signature algorithms if not NULL */
3503
7.40k
    if (!s->server && c->client_sigalgs && !is_suiteb) {
3504
0
        conf = c->client_sigalgs;
3505
0
        conflen = c->client_sigalgslen;
3506
7.40k
    } else if (c->conf_sigalgs && !is_suiteb) {
3507
0
        conf = c->conf_sigalgs;
3508
0
        conflen = c->conf_sigalgslen;
3509
0
    } else
3510
7.40k
        conflen = tls12_get_psigalgs(s, 0, &conf);
3511
7.40k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
3512
0
        pref = conf;
3513
0
        preflen = conflen;
3514
0
        allow = s->s3.tmp.peer_sigalgs;
3515
0
        allowlen = s->s3.tmp.peer_sigalgslen;
3516
7.40k
    } else {
3517
7.40k
        allow = conf;
3518
7.40k
        allowlen = conflen;
3519
7.40k
        pref = s->s3.tmp.peer_sigalgs;
3520
7.40k
        preflen = s->s3.tmp.peer_sigalgslen;
3521
7.40k
    }
3522
7.40k
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3523
7.40k
    if (nmatch) {
3524
7.22k
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
3525
0
            return 0;
3526
7.22k
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3527
7.22k
    } else {
3528
178
        salgs = NULL;
3529
178
    }
3530
7.40k
    s->shared_sigalgs = salgs;
3531
7.40k
    s->shared_sigalgslen = nmatch;
3532
7.40k
    return 1;
3533
7.40k
}
3534
3535
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
3536
23.7k
{
3537
23.7k
    unsigned int stmp;
3538
23.7k
    size_t size, i;
3539
23.7k
    uint16_t *buf;
3540
3541
23.7k
    size = PACKET_remaining(pkt);
3542
3543
    /* Invalid data length */
3544
23.7k
    if (size == 0 || (size & 1) != 0)
3545
53
        return 0;
3546
3547
23.6k
    size >>= 1;
3548
3549
23.6k
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
3550
0
        return 0;
3551
266k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
3552
242k
        buf[i] = stmp;
3553
3554
23.6k
    if (i != size) {
3555
0
        OPENSSL_free(buf);
3556
0
        return 0;
3557
0
    }
3558
3559
23.6k
    OPENSSL_free(*pdest);
3560
23.6k
    *pdest = buf;
3561
23.6k
    *pdestlen = size;
3562
3563
23.6k
    return 1;
3564
23.6k
}
3565
3566
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
3567
9.04k
{
3568
    /* Extension ignored for inappropriate versions */
3569
9.04k
    if (!SSL_USE_SIGALGS(s))
3570
149
        return 1;
3571
    /* Should never happen */
3572
8.89k
    if (s->cert == NULL)
3573
0
        return 0;
3574
3575
8.89k
    if (cert)
3576
803
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
3577
803
                             &s->s3.tmp.peer_cert_sigalgslen);
3578
8.09k
    else
3579
8.09k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
3580
8.09k
                             &s->s3.tmp.peer_sigalgslen);
3581
3582
8.89k
}
3583
3584
/* Set preferred digest for each key type */
3585
3586
int tls1_process_sigalgs(SSL_CONNECTION *s)
3587
7.40k
{
3588
7.40k
    size_t i;
3589
7.40k
    uint32_t *pvalid = s->s3.tmp.valid_flags;
3590
3591
7.40k
    if (!tls1_set_shared_sigalgs(s))
3592
0
        return 0;
3593
3594
83.1k
    for (i = 0; i < s->ssl_pkey_num; i++)
3595
75.7k
        pvalid[i] = 0;
3596
3597
88.4k
    for (i = 0; i < s->shared_sigalgslen; i++) {
3598
81.0k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
3599
81.0k
        int idx = sigptr->sig_idx;
3600
3601
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
3602
81.0k
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
3603
2.41k
            continue;
3604
        /* If not disabled indicate we can explicitly sign */
3605
78.5k
        if (pvalid[idx] == 0
3606
78.5k
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
3607
13.6k
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3608
78.5k
    }
3609
7.40k
    return 1;
3610
7.40k
}
3611
3612
int SSL_get_sigalgs(SSL *s, int idx,
3613
                    int *psign, int *phash, int *psignhash,
3614
                    unsigned char *rsig, unsigned char *rhash)
3615
0
{
3616
0
    uint16_t *psig;
3617
0
    size_t numsigalgs;
3618
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3619
3620
0
    if (sc == NULL)
3621
0
        return 0;
3622
3623
0
    psig = sc->s3.tmp.peer_sigalgs;
3624
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
3625
3626
0
    if (psig == NULL || numsigalgs > INT_MAX)
3627
0
        return 0;
3628
0
    if (idx >= 0) {
3629
0
        const SIGALG_LOOKUP *lu;
3630
3631
0
        if (idx >= (int)numsigalgs)
3632
0
            return 0;
3633
0
        psig += idx;
3634
0
        if (rhash != NULL)
3635
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
3636
0
        if (rsig != NULL)
3637
0
            *rsig = (unsigned char)(*psig & 0xff);
3638
0
        lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
3639
0
        if (psign != NULL)
3640
0
            *psign = lu != NULL ? lu->sig : NID_undef;
3641
0
        if (phash != NULL)
3642
0
            *phash = lu != NULL ? lu->hash : NID_undef;
3643
0
        if (psignhash != NULL)
3644
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
3645
0
    }
3646
0
    return (int)numsigalgs;
3647
0
}
3648
3649
int SSL_get_shared_sigalgs(SSL *s, int idx,
3650
                           int *psign, int *phash, int *psignhash,
3651
                           unsigned char *rsig, unsigned char *rhash)
3652
0
{
3653
0
    const SIGALG_LOOKUP *shsigalgs;
3654
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3655
3656
0
    if (sc == NULL)
3657
0
        return 0;
3658
3659
0
    if (sc->shared_sigalgs == NULL
3660
0
        || idx < 0
3661
0
        || idx >= (int)sc->shared_sigalgslen
3662
0
        || sc->shared_sigalgslen > INT_MAX)
3663
0
        return 0;
3664
0
    shsigalgs = sc->shared_sigalgs[idx];
3665
0
    if (phash != NULL)
3666
0
        *phash = shsigalgs->hash;
3667
0
    if (psign != NULL)
3668
0
        *psign = shsigalgs->sig;
3669
0
    if (psignhash != NULL)
3670
0
        *psignhash = shsigalgs->sigandhash;
3671
0
    if (rsig != NULL)
3672
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
3673
0
    if (rhash != NULL)
3674
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
3675
0
    return (int)sc->shared_sigalgslen;
3676
0
}
3677
3678
/* Maximum possible number of unique entries in sigalgs array */
3679
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
3680
3681
typedef struct {
3682
    size_t sigalgcnt;
3683
    /* TLSEXT_SIGALG_XXX values */
3684
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
3685
    SSL_CTX *ctx;
3686
} sig_cb_st;
3687
3688
static void get_sigorhash(int *psig, int *phash, const char *str)
3689
0
{
3690
0
    if (OPENSSL_strcasecmp(str, "RSA") == 0) {
3691
0
        *psig = EVP_PKEY_RSA;
3692
0
    } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
3693
0
               || OPENSSL_strcasecmp(str, "PSS") == 0) {
3694
0
        *psig = EVP_PKEY_RSA_PSS;
3695
0
    } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
3696
0
        *psig = EVP_PKEY_DSA;
3697
0
    } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
3698
0
        *psig = EVP_PKEY_EC;
3699
0
    } else {
3700
0
        *phash = OBJ_sn2nid(str);
3701
0
        if (*phash == NID_undef)
3702
0
            *phash = OBJ_ln2nid(str);
3703
0
    }
3704
0
}
3705
/* Maximum length of a signature algorithm string component */
3706
#define TLS_MAX_SIGSTRING_LEN   40
3707
3708
static int sig_cb(const char *elem, int len, void *arg)
3709
0
{
3710
0
    sig_cb_st *sarg = arg;
3711
0
    size_t i = 0;
3712
0
    const SIGALG_LOOKUP *s;
3713
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3714
0
    const char *iana, *alias;
3715
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
3716
0
    int ignore_unknown = 0;
3717
3718
0
    if (elem == NULL)
3719
0
        return 0;
3720
0
    if (elem[0] == '?') {
3721
0
        ignore_unknown = 1;
3722
0
        ++elem;
3723
0
        --len;
3724
0
    }
3725
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3726
0
        return 0;
3727
0
    if (len > (int)(sizeof(etmp) - 1))
3728
0
        return 0;
3729
0
    memcpy(etmp, elem, len);
3730
0
    etmp[len] = 0;
3731
0
    p = strchr(etmp, '+');
3732
    /*
3733
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3734
     * if there's no '+' in the provided name, look for the new-style combined
3735
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3736
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3737
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
3738
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
3739
     * in the table.
3740
     */
3741
0
    if (p == NULL) {
3742
0
        if (sarg->ctx != NULL) {
3743
0
            for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3744
0
                iana = sarg->ctx->sigalg_lookup_cache[i].name;
3745
0
                alias = sarg->ctx->sigalg_lookup_cache[i].name12;
3746
0
                if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3747
0
                    || OPENSSL_strcasecmp(etmp, iana) == 0) {
3748
                    /* Ignore known, but unavailable sigalgs. */
3749
0
                    if (!sarg->ctx->sigalg_lookup_cache[i].available)
3750
0
                        return 1;
3751
0
                    sarg->sigalgs[sarg->sigalgcnt++] =
3752
0
                        sarg->ctx->sigalg_lookup_cache[i].sigalg;
3753
0
                    goto found;
3754
0
                }
3755
0
            }
3756
0
        } else {
3757
            /* Syntax checks use the built-in sigalgs */
3758
0
            for (i = 0, s = sigalg_lookup_tbl;
3759
0
                 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3760
0
                iana = s->name;
3761
0
                alias = s->name12;
3762
0
                if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3763
0
                    || OPENSSL_strcasecmp(etmp, iana) == 0) {
3764
0
                    sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3765
0
                    goto found;
3766
0
                }
3767
0
            }
3768
0
        }
3769
0
    } else {
3770
0
        *p = 0;
3771
0
        p++;
3772
0
        if (*p == 0)
3773
0
            return 0;
3774
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
3775
0
        get_sigorhash(&sig_alg, &hash_alg, p);
3776
0
        if (sig_alg != NID_undef && hash_alg != NID_undef) {
3777
0
            if (sarg->ctx != NULL) {
3778
0
                for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3779
0
                    s = &sarg->ctx->sigalg_lookup_cache[i];
3780
0
                    if (s->hash == hash_alg && s->sig == sig_alg) {
3781
                        /* Ignore known, but unavailable sigalgs. */
3782
0
                        if (!sarg->ctx->sigalg_lookup_cache[i].available)
3783
0
                            return 1;
3784
0
                        sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3785
0
                        goto found;
3786
0
                    }
3787
0
                }
3788
0
            } else {
3789
0
                for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
3790
0
                    s = &sigalg_lookup_tbl[i];
3791
0
                    if (s->hash == hash_alg && s->sig == sig_alg) {
3792
0
                        sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3793
0
                        goto found;
3794
0
                    }
3795
0
                }
3796
0
            }
3797
0
        }
3798
0
    }
3799
    /* Ignore unknown algorithms if ignore_unknown */
3800
0
    return ignore_unknown;
3801
3802
0
 found:
3803
    /* Ignore duplicates */
3804
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3805
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3806
0
            sarg->sigalgcnt--;
3807
0
            return 1;
3808
0
        }
3809
0
    }
3810
0
    return 1;
3811
0
}
3812
3813
/*
3814
 * Set supported signature algorithms based on a colon separated list of the
3815
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3816
 */
3817
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3818
0
{
3819
0
    sig_cb_st sig;
3820
0
    sig.sigalgcnt = 0;
3821
3822
0
    if (ctx != NULL)
3823
0
        sig.ctx = ctx;
3824
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3825
0
        return 0;
3826
0
    if (sig.sigalgcnt == 0) {
3827
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3828
0
                       "No valid signature algorithms in '%s'", str);
3829
0
        return 0;
3830
0
    }
3831
0
    if (c == NULL)
3832
0
        return 1;
3833
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3834
0
}
3835
3836
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3837
                     int client)
3838
0
{
3839
0
    uint16_t *sigalgs;
3840
3841
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3842
0
        return 0;
3843
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3844
3845
0
    if (client) {
3846
0
        OPENSSL_free(c->client_sigalgs);
3847
0
        c->client_sigalgs = sigalgs;
3848
0
        c->client_sigalgslen = salglen;
3849
0
    } else {
3850
0
        OPENSSL_free(c->conf_sigalgs);
3851
0
        c->conf_sigalgs = sigalgs;
3852
0
        c->conf_sigalgslen = salglen;
3853
0
    }
3854
3855
0
    return 1;
3856
0
}
3857
3858
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3859
0
{
3860
0
    uint16_t *sigalgs, *sptr;
3861
0
    size_t i;
3862
3863
0
    if (salglen & 1)
3864
0
        return 0;
3865
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3866
0
        return 0;
3867
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3868
0
        size_t j;
3869
0
        const SIGALG_LOOKUP *curr;
3870
0
        int md_id = *psig_nids++;
3871
0
        int sig_id = *psig_nids++;
3872
3873
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3874
0
             j++, curr++) {
3875
0
            if (curr->hash == md_id && curr->sig == sig_id) {
3876
0
                *sptr++ = curr->sigalg;
3877
0
                break;
3878
0
            }
3879
0
        }
3880
3881
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3882
0
            goto err;
3883
0
    }
3884
3885
0
    if (client) {
3886
0
        OPENSSL_free(c->client_sigalgs);
3887
0
        c->client_sigalgs = sigalgs;
3888
0
        c->client_sigalgslen = salglen / 2;
3889
0
    } else {
3890
0
        OPENSSL_free(c->conf_sigalgs);
3891
0
        c->conf_sigalgs = sigalgs;
3892
0
        c->conf_sigalgslen = salglen / 2;
3893
0
    }
3894
3895
0
    return 1;
3896
3897
0
 err:
3898
0
    OPENSSL_free(sigalgs);
3899
0
    return 0;
3900
0
}
3901
3902
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3903
0
{
3904
0
    int sig_nid, use_pc_sigalgs = 0;
3905
0
    size_t i;
3906
0
    const SIGALG_LOOKUP *sigalg;
3907
0
    size_t sigalgslen;
3908
3909
    /*-
3910
     * RFC 8446, section 4.2.3:
3911
     *
3912
     * The signatures on certificates that are self-signed or certificates
3913
     * that are trust anchors are not validated, since they begin a
3914
     * certification path (see [RFC5280], Section 3.2).  A certificate that
3915
     * begins a certification path MAY use a signature algorithm that is not
3916
     * advertised as being supported in the "signature_algorithms"
3917
     * extension.
3918
     */
3919
0
    if (default_nid == -1 || X509_self_signed(x, 0))
3920
0
        return 1;
3921
0
    sig_nid = X509_get_signature_nid(x);
3922
0
    if (default_nid)
3923
0
        return sig_nid == default_nid ? 1 : 0;
3924
3925
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3926
        /*
3927
         * If we're in TLSv1.3 then we only get here if we're checking the
3928
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3929
         * otherwise we default to normal sigalgs.
3930
         */
3931
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3932
0
        use_pc_sigalgs = 1;
3933
0
    } else {
3934
0
        sigalgslen = s->shared_sigalgslen;
3935
0
    }
3936
0
    for (i = 0; i < sigalgslen; i++) {
3937
0
        int mdnid, pknid;
3938
3939
0
        sigalg = use_pc_sigalgs
3940
0
                 ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
3941
0
                                      s->s3.tmp.peer_cert_sigalgs[i])
3942
0
                 : s->shared_sigalgs[i];
3943
0
        if (sigalg == NULL)
3944
0
            continue;
3945
0
        if (sig_nid == sigalg->sigandhash)
3946
0
            return 1;
3947
0
        if (sigalg->sig != EVP_PKEY_RSA_PSS)
3948
0
            continue;
3949
        /*
3950
         * Accept RSA PKCS#1 signatures in certificates when the signature
3951
         * algorithms include RSA-PSS with a matching digest algorithm.
3952
         *
3953
         * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
3954
         * points, and we're doing strict checking of the certificate chain (in
3955
         * a cert_cb via SSL_check_chain()) we may then reject RSA signed
3956
         * certificates in the chain, but the TLS requirement on PSS should not
3957
         * extend to certificates.  Though the peer can in fact list the legacy
3958
         * sigalgs for just this purpose, it is not likely that a better chain
3959
         * signed with RSA-PSS is available.
3960
         */
3961
0
        if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
3962
0
            continue;
3963
0
        if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
3964
0
            return 1;
3965
0
    }
3966
0
    return 0;
3967
0
}
3968
3969
/* Check to see if a certificate issuer name matches list of CA names */
3970
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3971
0
{
3972
0
    const X509_NAME *nm;
3973
0
    int i;
3974
0
    nm = X509_get_issuer_name(x);
3975
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
3976
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3977
0
            return 1;
3978
0
    }
3979
0
    return 0;
3980
0
}
3981
3982
/*
3983
 * Check certificate chain is consistent with TLS extensions and is usable by
3984
 * server. This servers two purposes: it allows users to check chains before
3985
 * passing them to the server and it allows the server to check chains before
3986
 * attempting to use them.
3987
 */
3988
3989
/* Flags which need to be set for a certificate when strict mode not set */
3990
3991
#define CERT_PKEY_VALID_FLAGS \
3992
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3993
/* Strict mode flags */
3994
#define CERT_PKEY_STRICT_FLAGS \
3995
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3996
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3997
3998
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3999
                     STACK_OF(X509) *chain, int idx)
4000
192k
{
4001
192k
    int i;
4002
192k
    int rv = 0;
4003
192k
    int check_flags = 0, strict_mode;
4004
192k
    CERT_PKEY *cpk = NULL;
4005
192k
    CERT *c = s->cert;
4006
192k
    uint32_t *pvalid;
4007
192k
    unsigned int suiteb_flags = tls1_suiteb(s);
4008
4009
    /*
4010
     * Meaning of idx:
4011
     * idx == -1 means SSL_check_chain() invocation
4012
     * idx == -2 means checking client certificate chains
4013
     * idx >= 0 means checking SSL_PKEY index
4014
     *
4015
     * For RPK, where there may be no cert, we ignore -1
4016
     */
4017
192k
    if (idx != -1) {
4018
192k
        if (idx == -2) {
4019
0
            cpk = c->key;
4020
0
            idx = (int)(cpk - c->pkeys);
4021
0
        } else
4022
192k
            cpk = c->pkeys + idx;
4023
192k
        pvalid = s->s3.tmp.valid_flags + idx;
4024
192k
        x = cpk->x509;
4025
192k
        pk = cpk->privatekey;
4026
192k
        chain = cpk->chain;
4027
192k
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4028
192k
        if (tls12_rpk_and_privkey(s, idx)) {
4029
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
4030
0
                return 0;
4031
0
            *pvalid = rv = CERT_PKEY_RPK;
4032
0
            return rv;
4033
0
        }
4034
        /* If no cert or key, forget it */
4035
192k
        if (x == NULL || pk == NULL)
4036
128k
            goto end;
4037
192k
    } else {
4038
0
        size_t certidx;
4039
4040
0
        if (x == NULL || pk == NULL)
4041
0
            return 0;
4042
4043
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
4044
0
                                    SSL_CONNECTION_GET_CTX(s)) == NULL)
4045
0
            return 0;
4046
0
        idx = certidx;
4047
0
        pvalid = s->s3.tmp.valid_flags + idx;
4048
4049
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4050
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
4051
0
        else
4052
0
            check_flags = CERT_PKEY_VALID_FLAGS;
4053
0
        strict_mode = 1;
4054
0
    }
4055
4056
64.1k
    if (suiteb_flags) {
4057
0
        int ok;
4058
0
        if (check_flags)
4059
0
            check_flags |= CERT_PKEY_SUITEB;
4060
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4061
0
        if (ok == X509_V_OK)
4062
0
            rv |= CERT_PKEY_SUITEB;
4063
0
        else if (!check_flags)
4064
0
            goto end;
4065
0
    }
4066
4067
    /*
4068
     * Check all signature algorithms are consistent with signature
4069
     * algorithms extension if TLS 1.2 or later and strict mode.
4070
     */
4071
64.1k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
4072
64.1k
        && strict_mode) {
4073
0
        int default_nid;
4074
0
        int rsign = 0;
4075
4076
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
4077
0
                || s->s3.tmp.peer_sigalgs != NULL) {
4078
0
            default_nid = 0;
4079
        /* If no sigalgs extension use defaults from RFC5246 */
4080
0
        } else {
4081
0
            switch (idx) {
4082
0
            case SSL_PKEY_RSA:
4083
0
                rsign = EVP_PKEY_RSA;
4084
0
                default_nid = NID_sha1WithRSAEncryption;
4085
0
                break;
4086
4087
0
            case SSL_PKEY_DSA_SIGN:
4088
0
                rsign = EVP_PKEY_DSA;
4089
0
                default_nid = NID_dsaWithSHA1;
4090
0
                break;
4091
4092
0
            case SSL_PKEY_ECC:
4093
0
                rsign = EVP_PKEY_EC;
4094
0
                default_nid = NID_ecdsa_with_SHA1;
4095
0
                break;
4096
4097
0
            case SSL_PKEY_GOST01:
4098
0
                rsign = NID_id_GostR3410_2001;
4099
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
4100
0
                break;
4101
4102
0
            case SSL_PKEY_GOST12_256:
4103
0
                rsign = NID_id_GostR3410_2012_256;
4104
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
4105
0
                break;
4106
4107
0
            case SSL_PKEY_GOST12_512:
4108
0
                rsign = NID_id_GostR3410_2012_512;
4109
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
4110
0
                break;
4111
4112
0
            default:
4113
0
                default_nid = -1;
4114
0
                break;
4115
0
            }
4116
0
        }
4117
        /*
4118
         * If peer sent no signature algorithms extension and we have set
4119
         * preferred signature algorithms check we support sha1.
4120
         */
4121
0
        if (default_nid > 0 && c->conf_sigalgs) {
4122
0
            size_t j;
4123
0
            const uint16_t *p = c->conf_sigalgs;
4124
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
4125
0
                const SIGALG_LOOKUP *lu =
4126
0
                    tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
4127
4128
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
4129
0
                    break;
4130
0
            }
4131
0
            if (j == c->conf_sigalgslen) {
4132
0
                if (check_flags)
4133
0
                    goto skip_sigs;
4134
0
                else
4135
0
                    goto end;
4136
0
            }
4137
0
        }
4138
        /* Check signature algorithm of each cert in chain */
4139
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
4140
            /*
4141
             * We only get here if the application has called SSL_check_chain(),
4142
             * so check_flags is always set.
4143
             */
4144
0
            if (find_sig_alg(s, x, pk) != NULL)
4145
0
                rv |= CERT_PKEY_EE_SIGNATURE;
4146
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
4147
0
            if (!check_flags)
4148
0
                goto end;
4149
0
        } else
4150
0
            rv |= CERT_PKEY_EE_SIGNATURE;
4151
0
        rv |= CERT_PKEY_CA_SIGNATURE;
4152
0
        for (i = 0; i < sk_X509_num(chain); i++) {
4153
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
4154
0
                if (check_flags) {
4155
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
4156
0
                    break;
4157
0
                } else
4158
0
                    goto end;
4159
0
            }
4160
0
        }
4161
0
    }
4162
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4163
64.1k
    else if (check_flags)
4164
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4165
64.1k
 skip_sigs:
4166
    /* Check cert parameters are consistent */
4167
64.1k
    if (tls1_check_cert_param(s, x, 1))
4168
58.3k
        rv |= CERT_PKEY_EE_PARAM;
4169
5.82k
    else if (!check_flags)
4170
5.82k
        goto end;
4171
58.3k
    if (!s->server)
4172
0
        rv |= CERT_PKEY_CA_PARAM;
4173
    /* In strict mode check rest of chain too */
4174
58.3k
    else if (strict_mode) {
4175
0
        rv |= CERT_PKEY_CA_PARAM;
4176
0
        for (i = 0; i < sk_X509_num(chain); i++) {
4177
0
            X509 *ca = sk_X509_value(chain, i);
4178
0
            if (!tls1_check_cert_param(s, ca, 0)) {
4179
0
                if (check_flags) {
4180
0
                    rv &= ~CERT_PKEY_CA_PARAM;
4181
0
                    break;
4182
0
                } else
4183
0
                    goto end;
4184
0
            }
4185
0
        }
4186
0
    }
4187
58.3k
    if (!s->server && strict_mode) {
4188
0
        STACK_OF(X509_NAME) *ca_dn;
4189
0
        int check_type = 0;
4190
4191
0
        if (EVP_PKEY_is_a(pk, "RSA"))
4192
0
            check_type = TLS_CT_RSA_SIGN;
4193
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
4194
0
            check_type = TLS_CT_DSS_SIGN;
4195
0
        else if (EVP_PKEY_is_a(pk, "EC"))
4196
0
            check_type = TLS_CT_ECDSA_SIGN;
4197
4198
0
        if (check_type) {
4199
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
4200
0
            size_t j;
4201
4202
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
4203
0
                if (*ctypes == check_type) {
4204
0
                    rv |= CERT_PKEY_CERT_TYPE;
4205
0
                    break;
4206
0
                }
4207
0
            }
4208
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4209
0
                goto end;
4210
0
        } else {
4211
0
            rv |= CERT_PKEY_CERT_TYPE;
4212
0
        }
4213
4214
0
        ca_dn = s->s3.tmp.peer_ca_names;
4215
4216
0
        if (ca_dn == NULL
4217
0
            || sk_X509_NAME_num(ca_dn) == 0
4218
0
            || ssl_check_ca_name(ca_dn, x))
4219
0
            rv |= CERT_PKEY_ISSUER_NAME;
4220
0
        else
4221
0
            for (i = 0; i < sk_X509_num(chain); i++) {
4222
0
                X509 *xtmp = sk_X509_value(chain, i);
4223
4224
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
4225
0
                    rv |= CERT_PKEY_ISSUER_NAME;
4226
0
                    break;
4227
0
                }
4228
0
            }
4229
4230
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4231
0
            goto end;
4232
0
    } else
4233
58.3k
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4234
4235
58.3k
    if (!check_flags || (rv & check_flags) == check_flags)
4236
58.3k
        rv |= CERT_PKEY_VALID;
4237
4238
192k
 end:
4239
4240
192k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
4241
76.0k
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
4242
116k
    else
4243
116k
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4244
4245
    /*
4246
     * When checking a CERT_PKEY structure all flags are irrelevant if the
4247
     * chain is invalid.
4248
     */
4249
192k
    if (!check_flags) {
4250
192k
        if (rv & CERT_PKEY_VALID) {
4251
58.3k
            *pvalid = rv;
4252
134k
        } else {
4253
            /* Preserve sign and explicit sign flag, clear rest */
4254
134k
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4255
134k
            return 0;
4256
134k
        }
4257
192k
    }
4258
58.3k
    return rv;
4259
192k
}
4260
4261
/* Set validity of certificates in an SSL structure */
4262
void tls1_set_cert_validity(SSL_CONNECTION *s)
4263
23.8k
{
4264
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
4265
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
4266
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4267
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4268
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
4269
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
4270
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
4271
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
4272
23.8k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
4273
23.8k
}
4274
4275
/* User level utility function to check a chain is suitable */
4276
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4277
0
{
4278
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
4279
4280
0
    if (sc == NULL)
4281
0
        return 0;
4282
4283
0
    return tls1_check_chain(sc, x, pk, chain, -1);
4284
0
}
4285
4286
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
4287
0
{
4288
0
    EVP_PKEY *dhp = NULL;
4289
0
    BIGNUM *p;
4290
0
    int dh_secbits = 80, sec_level_bits;
4291
0
    EVP_PKEY_CTX *pctx = NULL;
4292
0
    OSSL_PARAM_BLD *tmpl = NULL;
4293
0
    OSSL_PARAM *params = NULL;
4294
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4295
4296
0
    if (s->cert->dh_tmp_auto != 2) {
4297
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
4298
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
4299
0
                dh_secbits = 128;
4300
0
            else
4301
0
                dh_secbits = 80;
4302
0
        } else {
4303
0
            if (s->s3.tmp.cert == NULL)
4304
0
                return NULL;
4305
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
4306
0
        }
4307
0
    }
4308
4309
    /* Do not pick a prime that is too weak for the current security level */
4310
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
4311
0
                                                 NULL, NULL);
4312
0
    if (dh_secbits < sec_level_bits)
4313
0
        dh_secbits = sec_level_bits;
4314
4315
0
    if (dh_secbits >= 192)
4316
0
        p = BN_get_rfc3526_prime_8192(NULL);
4317
0
    else if (dh_secbits >= 152)
4318
0
        p = BN_get_rfc3526_prime_4096(NULL);
4319
0
    else if (dh_secbits >= 128)
4320
0
        p = BN_get_rfc3526_prime_3072(NULL);
4321
0
    else if (dh_secbits >= 112)
4322
0
        p = BN_get_rfc3526_prime_2048(NULL);
4323
0
    else
4324
0
        p = BN_get_rfc2409_prime_1024(NULL);
4325
0
    if (p == NULL)
4326
0
        goto err;
4327
4328
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
4329
0
    if (pctx == NULL
4330
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
4331
0
        goto err;
4332
4333
0
    tmpl = OSSL_PARAM_BLD_new();
4334
0
    if (tmpl == NULL
4335
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
4336
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
4337
0
        goto err;
4338
4339
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
4340
0
    if (params == NULL
4341
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
4342
0
        goto err;
4343
4344
0
err:
4345
0
    OSSL_PARAM_free(params);
4346
0
    OSSL_PARAM_BLD_free(tmpl);
4347
0
    EVP_PKEY_CTX_free(pctx);
4348
0
    BN_free(p);
4349
0
    return dhp;
4350
0
}
4351
4352
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4353
                                 int op)
4354
136k
{
4355
136k
    int secbits = -1;
4356
136k
    EVP_PKEY *pkey = X509_get0_pubkey(x);
4357
4358
136k
    if (pkey) {
4359
        /*
4360
         * If no parameters this will return -1 and fail using the default
4361
         * security callback for any non-zero security level. This will
4362
         * reject keys which omit parameters but this only affects DSA and
4363
         * omission of parameters is never (?) done in practice.
4364
         */
4365
136k
        secbits = EVP_PKEY_get_security_bits(pkey);
4366
136k
    }
4367
136k
    if (s != NULL)
4368
20.2k
        return ssl_security(s, op, secbits, 0, x);
4369
116k
    else
4370
116k
        return ssl_ctx_security(ctx, op, secbits, 0, x);
4371
136k
}
4372
4373
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4374
                                 int op)
4375
136k
{
4376
    /* Lookup signature algorithm digest */
4377
136k
    int secbits, nid, pknid;
4378
4379
    /* Don't check signature if self signed */
4380
136k
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
4381
136k
        return 1;
4382
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
4383
0
        secbits = -1;
4384
    /* If digest NID not defined use signature NID */
4385
0
    if (nid == NID_undef)
4386
0
        nid = pknid;
4387
0
    if (s != NULL)
4388
0
        return ssl_security(s, op, secbits, nid, x);
4389
0
    else
4390
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
4391
0
}
4392
4393
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
4394
                      int is_ee)
4395
153k
{
4396
153k
    if (vfy)
4397
0
        vfy = SSL_SECOP_PEER;
4398
153k
    if (is_ee) {
4399
153k
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4400
0
            return SSL_R_EE_KEY_TOO_SMALL;
4401
153k
    } else {
4402
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4403
0
            return SSL_R_CA_KEY_TOO_SMALL;
4404
0
    }
4405
153k
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4406
0
        return SSL_R_CA_MD_TOO_WEAK;
4407
153k
    return 1;
4408
153k
}
4409
4410
/*
4411
 * Check security of a chain, if |sk| includes the end entity certificate then
4412
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
4413
 * one to the peer. Return values: 1 if ok otherwise error code to use
4414
 */
4415
4416
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
4417
                            X509 *x, int vfy)
4418
22.5k
{
4419
22.5k
    int rv, start_idx, i;
4420
4421
22.5k
    if (x == NULL) {
4422
22.5k
        x = sk_X509_value(sk, 0);
4423
22.5k
        if (x == NULL)
4424
0
            return ERR_R_INTERNAL_ERROR;
4425
22.5k
        start_idx = 1;
4426
22.5k
    } else
4427
0
        start_idx = 0;
4428
4429
22.5k
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
4430
22.5k
    if (rv != 1)
4431
0
        return rv;
4432
4433
22.5k
    for (i = start_idx; i < sk_X509_num(sk); i++) {
4434
0
        x = sk_X509_value(sk, i);
4435
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
4436
0
        if (rv != 1)
4437
0
            return rv;
4438
0
    }
4439
22.5k
    return 1;
4440
22.5k
}
4441
4442
/*
4443
 * For TLS 1.2 servers check if we have a certificate which can be used
4444
 * with the signature algorithm "lu" and return index of certificate.
4445
 */
4446
4447
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
4448
                                     const SIGALG_LOOKUP *lu)
4449
24.7k
{
4450
24.7k
    int sig_idx = lu->sig_idx;
4451
24.7k
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
4452
24.7k
                                                        SSL_CONNECTION_GET_CTX(s));
4453
4454
    /* If not recognised or not supported by cipher mask it is not suitable */
4455
24.7k
    if (clu == NULL
4456
24.7k
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
4457
24.7k
            || (clu->nid == EVP_PKEY_RSA_PSS
4458
16.0k
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
4459
9.53k
        return -1;
4460
4461
    /* If doing RPK, the CERT_PKEY won't be "valid" */
4462
15.2k
    if (tls12_rpk_and_privkey(s, sig_idx))
4463
0
        return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
4464
4465
15.2k
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
4466
15.2k
}
4467
4468
/*
4469
 * Checks the given cert against signature_algorithm_cert restrictions sent by
4470
 * the peer (if any) as well as whether the hash from the sigalg is usable with
4471
 * the key.
4472
 * Returns true if the cert is usable and false otherwise.
4473
 */
4474
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
4475
                             X509 *x, EVP_PKEY *pkey)
4476
40.2k
{
4477
40.2k
    const SIGALG_LOOKUP *lu;
4478
40.2k
    int mdnid, pknid, supported;
4479
40.2k
    size_t i;
4480
40.2k
    const char *mdname = NULL;
4481
40.2k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4482
4483
    /*
4484
     * If the given EVP_PKEY cannot support signing with this digest,
4485
     * the answer is simply 'no'.
4486
     */
4487
40.2k
    if (sig->hash != NID_undef)
4488
40.2k
        mdname = OBJ_nid2sn(sig->hash);
4489
40.2k
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
4490
40.2k
                                                    mdname,
4491
40.2k
                                                    sctx->propq);
4492
40.2k
    if (supported <= 0)
4493
0
        return 0;
4494
4495
    /*
4496
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
4497
     * on the sigalg with which the certificate was signed (by its issuer).
4498
     */
4499
40.2k
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
4500
20.4k
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
4501
0
            return 0;
4502
107k
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
4503
87.5k
            lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
4504
87.5k
                                    s->s3.tmp.peer_cert_sigalgs[i]);
4505
87.5k
            if (lu == NULL)
4506
60.4k
                continue;
4507
4508
            /*
4509
             * This does not differentiate between the
4510
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
4511
             * have a chain here that lets us look at the key OID in the
4512
             * signing certificate.
4513
             */
4514
27.1k
            if (mdnid == lu->hash && pknid == lu->sig)
4515
41
                return 1;
4516
27.1k
        }
4517
20.4k
        return 0;
4518
20.4k
    }
4519
4520
    /*
4521
     * Without signat_algorithms_cert, any certificate for which we have
4522
     * a viable public key is permitted.
4523
     */
4524
19.7k
    return 1;
4525
40.2k
}
4526
4527
/*
4528
 * Returns true if |s| has a usable certificate configured for use
4529
 * with signature scheme |sig|.
4530
 * "Usable" includes a check for presence as well as applying
4531
 * the signature_algorithm_cert restrictions sent by the peer (if any).
4532
 * Returns false if no usable certificate is found.
4533
 */
4534
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
4535
40.5k
{
4536
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
4537
40.5k
    if (idx == -1)
4538
6.72k
        idx = sig->sig_idx;
4539
40.5k
    if (!ssl_has_cert(s, idx))
4540
315
        return 0;
4541
4542
40.2k
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
4543
40.2k
                             s->cert->pkeys[idx].privatekey);
4544
40.5k
}
4545
4546
/*
4547
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
4548
 * specified signature scheme |sig|, or false otherwise.
4549
 */
4550
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
4551
                          EVP_PKEY *pkey)
4552
0
{
4553
0
    size_t idx;
4554
4555
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
4556
0
        return 0;
4557
4558
    /* Check the key is consistent with the sig alg */
4559
0
    if ((int)idx != sig->sig_idx)
4560
0
        return 0;
4561
4562
0
    return check_cert_usable(s, sig, x, pkey);
4563
0
}
4564
4565
/*
4566
 * Find a signature scheme that works with the supplied certificate |x| and key
4567
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
4568
 * available certs/keys to find one that works.
4569
 */
4570
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
4571
                                         EVP_PKEY *pkey)
4572
1.24k
{
4573
1.24k
    const SIGALG_LOOKUP *lu = NULL;
4574
1.24k
    size_t i;
4575
1.24k
    int curve = -1;
4576
1.24k
    EVP_PKEY *tmppkey;
4577
1.24k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4578
4579
    /* Look for a shared sigalgs matching possible certificates */
4580
3.48k
    for (i = 0; i < s->shared_sigalgslen; i++) {
4581
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
4582
3.42k
        lu = s->shared_sigalgs[i];
4583
3.42k
        if (lu->hash == NID_sha1
4584
3.42k
            || lu->hash == NID_sha224
4585
3.42k
            || lu->sig == EVP_PKEY_DSA
4586
3.42k
            || lu->sig == EVP_PKEY_RSA
4587
3.42k
            || !tls_sigalg_compat(s, lu))
4588
1.11k
            continue;
4589
4590
        /* Check that we have a cert, and signature_algorithms_cert */
4591
2.30k
        if (!tls1_lookup_md(sctx, lu, NULL))
4592
0
            continue;
4593
2.30k
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
4594
2.30k
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
4595
97
            continue;
4596
4597
2.20k
        tmppkey = (pkey != NULL) ? pkey
4598
2.20k
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
4599
4600
2.20k
        if (lu->sig == EVP_PKEY_EC) {
4601
1.84k
            if (curve == -1)
4602
915
                curve = ssl_get_EC_curve_nid(tmppkey);
4603
1.84k
            if (lu->curve != NID_undef && curve != lu->curve)
4604
1.02k
                continue;
4605
1.84k
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
4606
            /* validate that key is large enough for the signature algorithm */
4607
363
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
4608
0
                continue;
4609
363
        }
4610
1.18k
        break;
4611
2.20k
    }
4612
4613
1.24k
    if (i == s->shared_sigalgslen)
4614
64
        return NULL;
4615
4616
1.18k
    return lu;
4617
1.24k
}
4618
4619
/*
4620
 * Choose an appropriate signature algorithm based on available certificates
4621
 * Sets chosen certificate and signature algorithm.
4622
 *
4623
 * For servers if we fail to find a required certificate it is a fatal error,
4624
 * an appropriate error code is set and a TLS alert is sent.
4625
 *
4626
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
4627
 * a fatal error: we will either try another certificate or not present one
4628
 * to the server. In this case no error is set.
4629
 */
4630
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
4631
10.6k
{
4632
10.6k
    const SIGALG_LOOKUP *lu = NULL;
4633
10.6k
    int sig_idx = -1;
4634
4635
10.6k
    s->s3.tmp.cert = NULL;
4636
10.6k
    s->s3.tmp.sigalg = NULL;
4637
4638
10.6k
    if (SSL_CONNECTION_IS_TLS13(s)) {
4639
1.24k
        lu = find_sig_alg(s, NULL, NULL);
4640
1.24k
        if (lu == NULL) {
4641
64
            if (!fatalerrs)
4642
0
                return 1;
4643
64
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4644
64
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4645
64
            return 0;
4646
64
        }
4647
9.44k
    } else {
4648
        /* If ciphersuite doesn't require a cert nothing to do */
4649
9.44k
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
4650
615
            return 1;
4651
8.82k
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
4652
15
                return 1;
4653
4654
8.81k
        if (SSL_USE_SIGALGS(s)) {
4655
6.47k
            size_t i;
4656
6.47k
            if (s->s3.tmp.peer_sigalgs != NULL) {
4657
1.41k
                int curve = -1;
4658
1.41k
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4659
4660
                /* For Suite B need to match signature algorithm to curve */
4661
1.41k
                if (tls1_suiteb(s))
4662
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
4663
0
                                                 .privatekey);
4664
4665
                /*
4666
                 * Find highest preference signature algorithm matching
4667
                 * cert type
4668
                 */
4669
13.3k
                for (i = 0; i < s->shared_sigalgslen; i++) {
4670
                    /* Check the sigalg version bounds */
4671
13.0k
                    lu = s->shared_sigalgs[i];
4672
13.0k
                    if (!tls_sigalg_compat(s, lu))
4673
71
                        continue;
4674
12.9k
                    if (s->server) {
4675
12.9k
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
4676
5.05k
                            continue;
4677
12.9k
                    } else {
4678
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
4679
4680
0
                        sig_idx = lu->sig_idx;
4681
0
                        if (cc_idx != sig_idx)
4682
0
                            continue;
4683
0
                    }
4684
                    /* Check that we have a cert, and sig_algs_cert */
4685
7.90k
                    if (!has_usable_cert(s, lu, sig_idx))
4686
6.84k
                        continue;
4687
1.05k
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
4688
                        /* validate that key is large enough for the signature algorithm */
4689
361
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
4690
4691
361
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
4692
0
                            continue;
4693
361
                    }
4694
1.05k
                    if (curve == -1 || lu->curve == curve)
4695
1.05k
                        break;
4696
1.05k
                }
4697
1.41k
#ifndef OPENSSL_NO_GOST
4698
                /*
4699
                 * Some Windows-based implementations do not send GOST algorithms indication
4700
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
4701
                 * we have to assume GOST support.
4702
                 */
4703
1.41k
                if (i == s->shared_sigalgslen
4704
1.41k
                    && (s->s3.tmp.new_cipher->algorithm_auth
4705
354
                        & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
4706
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4707
0
                    if (!fatalerrs)
4708
0
                      return 1;
4709
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4710
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4711
0
                    return 0;
4712
0
                  } else {
4713
0
                    i = 0;
4714
0
                    sig_idx = lu->sig_idx;
4715
0
                  }
4716
0
                }
4717
1.41k
#endif
4718
1.41k
                if (i == s->shared_sigalgslen) {
4719
354
                    if (!fatalerrs)
4720
0
                        return 1;
4721
354
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4722
354
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4723
354
                    return 0;
4724
354
                }
4725
5.05k
            } else {
4726
                /*
4727
                 * If we have no sigalg use defaults
4728
                 */
4729
5.05k
                const uint16_t *sent_sigs;
4730
5.05k
                size_t sent_sigslen;
4731
4732
5.05k
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4733
0
                    if (!fatalerrs)
4734
0
                        return 1;
4735
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4736
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4737
0
                    return 0;
4738
0
                }
4739
4740
                /* Check signature matches a type we sent */
4741
5.05k
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4742
112k
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4743
112k
                    if (lu->sigalg == *sent_sigs
4744
112k
                            && has_usable_cert(s, lu, lu->sig_idx))
4745
5.05k
                        break;
4746
112k
                }
4747
5.05k
                if (i == sent_sigslen) {
4748
0
                    if (!fatalerrs)
4749
0
                        return 1;
4750
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4751
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
4752
0
                    return 0;
4753
0
                }
4754
5.05k
            }
4755
6.47k
        } else {
4756
2.34k
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4757
0
                if (!fatalerrs)
4758
0
                    return 1;
4759
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4760
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4761
0
                return 0;
4762
0
            }
4763
2.34k
        }
4764
8.81k
    }
4765
9.64k
    if (sig_idx == -1)
4766
8.58k
        sig_idx = lu->sig_idx;
4767
9.64k
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4768
9.64k
    s->cert->key = s->s3.tmp.cert;
4769
9.64k
    s->s3.tmp.sigalg = lu;
4770
9.64k
    return 1;
4771
10.6k
}
4772
4773
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4774
0
{
4775
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4776
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4777
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4778
0
        return 0;
4779
0
    }
4780
4781
0
    ctx->ext.max_fragment_len_mode = mode;
4782
0
    return 1;
4783
0
}
4784
4785
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4786
0
{
4787
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4788
4789
0
    if (sc == NULL
4790
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4791
0
        return 0;
4792
4793
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4794
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4795
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4796
0
        return 0;
4797
0
    }
4798
4799
0
    sc->ext.max_fragment_len_mode = mode;
4800
0
    return 1;
4801
0
}
4802
4803
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4804
0
{
4805
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4806
0
        return TLSEXT_max_fragment_length_DISABLED;
4807
0
    return session->ext.max_fragment_len_mode;
4808
0
}
4809
4810
/*
4811
 * Helper functions for HMAC access with legacy support included.
4812
 */
4813
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4814
2.05k
{
4815
2.05k
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4816
2.05k
    EVP_MAC *mac = NULL;
4817
4818
2.05k
    if (ret == NULL)
4819
0
        return NULL;
4820
2.05k
#ifndef OPENSSL_NO_DEPRECATED_3_0
4821
2.05k
    if (ctx->ext.ticket_key_evp_cb == NULL
4822
2.05k
            && ctx->ext.ticket_key_cb != NULL) {
4823
0
        if (!ssl_hmac_old_new(ret))
4824
0
            goto err;
4825
0
        return ret;
4826
0
    }
4827
2.05k
#endif
4828
2.05k
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4829
2.05k
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4830
0
        goto err;
4831
2.05k
    EVP_MAC_free(mac);
4832
2.05k
    return ret;
4833
0
 err:
4834
0
    EVP_MAC_CTX_free(ret->ctx);
4835
0
    EVP_MAC_free(mac);
4836
0
    OPENSSL_free(ret);
4837
0
    return NULL;
4838
2.05k
}
4839
4840
void ssl_hmac_free(SSL_HMAC *ctx)
4841
6.33k
{
4842
6.33k
    if (ctx != NULL) {
4843
2.05k
        EVP_MAC_CTX_free(ctx->ctx);
4844
2.05k
#ifndef OPENSSL_NO_DEPRECATED_3_0
4845
2.05k
        ssl_hmac_old_free(ctx);
4846
2.05k
#endif
4847
2.05k
        OPENSSL_free(ctx);
4848
2.05k
    }
4849
6.33k
}
4850
4851
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4852
0
{
4853
0
    return ctx->ctx;
4854
0
}
4855
4856
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4857
1.43k
{
4858
1.43k
    OSSL_PARAM params[2], *p = params;
4859
4860
1.43k
    if (ctx->ctx != NULL) {
4861
1.43k
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4862
1.43k
        *p = OSSL_PARAM_construct_end();
4863
1.43k
        if (EVP_MAC_init(ctx->ctx, key, len, params))
4864
1.43k
            return 1;
4865
1.43k
    }
4866
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4867
0
    if (ctx->old_ctx != NULL)
4868
0
        return ssl_hmac_old_init(ctx, key, len, md);
4869
0
#endif
4870
0
    return 0;
4871
0
}
4872
4873
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4874
1.33k
{
4875
1.33k
    if (ctx->ctx != NULL)
4876
1.33k
        return EVP_MAC_update(ctx->ctx, data, len);
4877
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4878
0
    if (ctx->old_ctx != NULL)
4879
0
        return ssl_hmac_old_update(ctx, data, len);
4880
0
#endif
4881
0
    return 0;
4882
0
}
4883
4884
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4885
                   size_t max_size)
4886
1.33k
{
4887
1.33k
    if (ctx->ctx != NULL)
4888
1.33k
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
4889
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4890
0
    if (ctx->old_ctx != NULL)
4891
0
        return ssl_hmac_old_final(ctx, md, len);
4892
0
#endif
4893
0
    return 0;
4894
0
}
4895
4896
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4897
1.33k
{
4898
1.33k
    if (ctx->ctx != NULL)
4899
1.33k
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4900
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4901
0
    if (ctx->old_ctx != NULL)
4902
0
        return ssl_hmac_old_size(ctx);
4903
0
#endif
4904
0
    return 0;
4905
0
}
4906
4907
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4908
26.4k
{
4909
26.4k
    char gname[OSSL_MAX_NAME_SIZE];
4910
4911
26.4k
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4912
26.4k
        return OBJ_txt2nid(gname);
4913
4914
0
    return NID_undef;
4915
26.4k
}
4916
4917
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4918
                                     const unsigned char *enckey,
4919
                                     size_t enckeylen)
4920
27.2k
{
4921
27.2k
    if (EVP_PKEY_is_a(pkey, "DH")) {
4922
149
        int bits = EVP_PKEY_get_bits(pkey);
4923
4924
149
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4925
            /* the encoded key must be padded to the length of the p */
4926
12
            return 0;
4927
27.0k
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4928
190
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4929
190
            || enckey[0] != 0x04)
4930
44
            return 0;
4931
190
    }
4932
4933
27.1k
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4934
27.2k
}