Coverage Report

Created: 2025-11-16 06:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl30/crypto/ec/ecp_nistp224.c
Line
Count
Source
1
/*
2
 * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
34
 *
35
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
36
 * and Adam Langley's public domain 64-bit C implementation of curve25519
37
 */
38
39
#include <openssl/opensslconf.h>
40
41
#include <stdint.h>
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/******************************************************************************/
56
/*-
57
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
58
 *
59
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
60
 * using 64-bit coefficients called 'limbs',
61
 * and sometimes (for multiplication results) as
62
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
63
 * using 128-bit coefficients called 'widelimbs'.
64
 * A 4-limb representation is an 'felem';
65
 * a 7-widelimb representation is a 'widefelem'.
66
 * Even within felems, bits of adjacent limbs overlap, and we don't always
67
 * reduce the representations: we ensure that inputs to each felem
68
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
69
 * and fit into a 128-bit word without overflow. The coefficients are then
70
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
71
 * We only reduce to the unique minimal representation at the end of the
72
 * computation.
73
 */
74
75
typedef uint64_t limb;
76
typedef uint64_t limb_aX __attribute((__aligned__(1)));
77
typedef uint128_t widelimb;
78
79
typedef limb felem[4];
80
typedef widelimb widefelem[7];
81
82
/*
83
 * Field element represented as a byte array. 28*8 = 224 bits is also the
84
 * group order size for the elliptic curve, and we also use this type for
85
 * scalars for point multiplication.
86
 */
87
typedef u8 felem_bytearray[28];
88
89
static const felem_bytearray nistp224_curve_params[5] = {
90
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
91
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
92
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
93
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
94
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
95
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
96
    {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
97
     0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
98
     0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
99
    {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
100
     0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
101
     0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
102
    {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
103
     0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
104
     0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
105
};
106
107
/*-
108
 * Precomputed multiples of the standard generator
109
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
110
 * (0 for the point at infinity).
111
 * For each field element, slice a_0 is word 0, etc.
112
 *
113
 * The table has 2 * 16 elements, starting with the following:
114
 * index | bits    | point
115
 * ------+---------+------------------------------
116
 *     0 | 0 0 0 0 | 0G
117
 *     1 | 0 0 0 1 | 1G
118
 *     2 | 0 0 1 0 | 2^56G
119
 *     3 | 0 0 1 1 | (2^56 + 1)G
120
 *     4 | 0 1 0 0 | 2^112G
121
 *     5 | 0 1 0 1 | (2^112 + 1)G
122
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
123
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
124
 *     8 | 1 0 0 0 | 2^168G
125
 *     9 | 1 0 0 1 | (2^168 + 1)G
126
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
127
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
128
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
129
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
130
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
131
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
132
 * followed by a copy of this with each element multiplied by 2^28.
133
 *
134
 * The reason for this is so that we can clock bits into four different
135
 * locations when doing simple scalar multiplies against the base point,
136
 * and then another four locations using the second 16 elements.
137
 */
138
static const felem gmul[2][16][3] = {
139
{{{0, 0, 0, 0},
140
  {0, 0, 0, 0},
141
  {0, 0, 0, 0}},
142
 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
143
  {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
144
  {1, 0, 0, 0}},
145
 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
146
  {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
147
  {1, 0, 0, 0}},
148
 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
149
  {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
150
  {1, 0, 0, 0}},
151
 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
152
  {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
153
  {1, 0, 0, 0}},
154
 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
155
  {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
156
  {1, 0, 0, 0}},
157
 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
158
  {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
159
  {1, 0, 0, 0}},
160
 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
161
  {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
162
  {1, 0, 0, 0}},
163
 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
164
  {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
165
  {1, 0, 0, 0}},
166
 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
167
  {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
168
  {1, 0, 0, 0}},
169
 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
170
  {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
171
  {1, 0, 0, 0}},
172
 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
173
  {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
174
  {1, 0, 0, 0}},
175
 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
176
  {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
177
  {1, 0, 0, 0}},
178
 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
179
  {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
180
  {1, 0, 0, 0}},
181
 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
182
  {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
183
  {1, 0, 0, 0}},
184
 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
185
  {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
186
  {1, 0, 0, 0}}},
187
{{{0, 0, 0, 0},
188
  {0, 0, 0, 0},
189
  {0, 0, 0, 0}},
190
 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
191
  {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
192
  {1, 0, 0, 0}},
193
 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
194
  {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
195
  {1, 0, 0, 0}},
196
 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
197
  {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
198
  {1, 0, 0, 0}},
199
 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
200
  {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
201
  {1, 0, 0, 0}},
202
 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
203
  {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
204
  {1, 0, 0, 0}},
205
 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
206
  {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
207
  {1, 0, 0, 0}},
208
 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
209
  {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
210
  {1, 0, 0, 0}},
211
 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
212
  {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
213
  {1, 0, 0, 0}},
214
 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
215
  {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
216
  {1, 0, 0, 0}},
217
 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
218
  {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
219
  {1, 0, 0, 0}},
220
 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
221
  {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
222
  {1, 0, 0, 0}},
223
 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
224
  {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
225
  {1, 0, 0, 0}},
226
 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
227
  {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
228
  {1, 0, 0, 0}},
229
 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
230
  {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
231
  {1, 0, 0, 0}},
232
 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
233
  {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
234
  {1, 0, 0, 0}}}
235
};
236
237
/* Precomputation for the group generator. */
238
struct nistp224_pre_comp_st {
239
    felem g_pre_comp[2][16][3];
240
    CRYPTO_REF_COUNT references;
241
    CRYPTO_RWLOCK *lock;
242
};
243
244
const EC_METHOD *EC_GFp_nistp224_method(void)
245
46.5k
{
246
46.5k
    static const EC_METHOD ret = {
247
46.5k
        EC_FLAGS_DEFAULT_OCT,
248
46.5k
        NID_X9_62_prime_field,
249
46.5k
        ossl_ec_GFp_nistp224_group_init,
250
46.5k
        ossl_ec_GFp_simple_group_finish,
251
46.5k
        ossl_ec_GFp_simple_group_clear_finish,
252
46.5k
        ossl_ec_GFp_nist_group_copy,
253
46.5k
        ossl_ec_GFp_nistp224_group_set_curve,
254
46.5k
        ossl_ec_GFp_simple_group_get_curve,
255
46.5k
        ossl_ec_GFp_simple_group_get_degree,
256
46.5k
        ossl_ec_group_simple_order_bits,
257
46.5k
        ossl_ec_GFp_simple_group_check_discriminant,
258
46.5k
        ossl_ec_GFp_simple_point_init,
259
46.5k
        ossl_ec_GFp_simple_point_finish,
260
46.5k
        ossl_ec_GFp_simple_point_clear_finish,
261
46.5k
        ossl_ec_GFp_simple_point_copy,
262
46.5k
        ossl_ec_GFp_simple_point_set_to_infinity,
263
46.5k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
264
46.5k
        ossl_ec_GFp_nistp224_point_get_affine_coordinates,
265
46.5k
        0 /* point_set_compressed_coordinates */ ,
266
46.5k
        0 /* point2oct */ ,
267
46.5k
        0 /* oct2point */ ,
268
46.5k
        ossl_ec_GFp_simple_add,
269
46.5k
        ossl_ec_GFp_simple_dbl,
270
46.5k
        ossl_ec_GFp_simple_invert,
271
46.5k
        ossl_ec_GFp_simple_is_at_infinity,
272
46.5k
        ossl_ec_GFp_simple_is_on_curve,
273
46.5k
        ossl_ec_GFp_simple_cmp,
274
46.5k
        ossl_ec_GFp_simple_make_affine,
275
46.5k
        ossl_ec_GFp_simple_points_make_affine,
276
46.5k
        ossl_ec_GFp_nistp224_points_mul,
277
46.5k
        ossl_ec_GFp_nistp224_precompute_mult,
278
46.5k
        ossl_ec_GFp_nistp224_have_precompute_mult,
279
46.5k
        ossl_ec_GFp_nist_field_mul,
280
46.5k
        ossl_ec_GFp_nist_field_sqr,
281
46.5k
        0 /* field_div */ ,
282
46.5k
        ossl_ec_GFp_simple_field_inv,
283
46.5k
        0 /* field_encode */ ,
284
46.5k
        0 /* field_decode */ ,
285
46.5k
        0,                      /* field_set_to_one */
286
46.5k
        ossl_ec_key_simple_priv2oct,
287
46.5k
        ossl_ec_key_simple_oct2priv,
288
46.5k
        0, /* set private */
289
46.5k
        ossl_ec_key_simple_generate_key,
290
46.5k
        ossl_ec_key_simple_check_key,
291
46.5k
        ossl_ec_key_simple_generate_public_key,
292
46.5k
        0, /* keycopy */
293
46.5k
        0, /* keyfinish */
294
46.5k
        ossl_ecdh_simple_compute_key,
295
46.5k
        ossl_ecdsa_simple_sign_setup,
296
46.5k
        ossl_ecdsa_simple_sign_sig,
297
46.5k
        ossl_ecdsa_simple_verify_sig,
298
46.5k
        0, /* field_inverse_mod_ord */
299
46.5k
        0, /* blind_coordinates */
300
46.5k
        0, /* ladder_pre */
301
46.5k
        0, /* ladder_step */
302
46.5k
        0  /* ladder_post */
303
46.5k
    };
304
305
46.5k
    return &ret;
306
46.5k
}
307
308
/*
309
 * Helper functions to convert field elements to/from internal representation
310
 */
311
static void bin28_to_felem(felem out, const u8 in[28])
312
16.8k
{
313
16.8k
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
314
16.8k
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
315
16.8k
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
316
16.8k
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
317
16.8k
}
318
319
static void felem_to_bin28(u8 out[28], const felem in)
320
25.7k
{
321
25.7k
    unsigned i;
322
205k
    for (i = 0; i < 7; ++i) {
323
180k
        out[i] = in[0] >> (8 * i);
324
180k
        out[i + 7] = in[1] >> (8 * i);
325
180k
        out[i + 14] = in[2] >> (8 * i);
326
180k
        out[i + 21] = in[3] >> (8 * i);
327
180k
    }
328
25.7k
}
329
330
/* From OpenSSL BIGNUM to internal representation */
331
static int BN_to_felem(felem out, const BIGNUM *bn)
332
16.8k
{
333
16.8k
    felem_bytearray b_out;
334
16.8k
    int num_bytes;
335
336
16.8k
    if (BN_is_negative(bn)) {
337
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
338
0
        return 0;
339
0
    }
340
16.8k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
341
16.8k
    if (num_bytes < 0) {
342
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
343
0
        return 0;
344
0
    }
345
16.8k
    bin28_to_felem(out, b_out);
346
16.8k
    return 1;
347
16.8k
}
348
349
/* From internal representation to OpenSSL BIGNUM */
350
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
351
25.7k
{
352
25.7k
    felem_bytearray b_out;
353
25.7k
    felem_to_bin28(b_out, in);
354
25.7k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
355
25.7k
}
356
357
/******************************************************************************/
358
/*-
359
 *                              FIELD OPERATIONS
360
 *
361
 * Field operations, using the internal representation of field elements.
362
 * NB! These operations are specific to our point multiplication and cannot be
363
 * expected to be correct in general - e.g., multiplication with a large scalar
364
 * will cause an overflow.
365
 *
366
 */
367
368
static void felem_one(felem out)
369
0
{
370
0
    out[0] = 1;
371
0
    out[1] = 0;
372
0
    out[2] = 0;
373
0
    out[3] = 0;
374
0
}
375
376
static void felem_assign(felem out, const felem in)
377
1.80M
{
378
1.80M
    out[0] = in[0];
379
1.80M
    out[1] = in[1];
380
1.80M
    out[2] = in[2];
381
1.80M
    out[3] = in[3];
382
1.80M
}
383
384
/* Sum two field elements: out += in */
385
static void felem_sum(felem out, const felem in)
386
492k
{
387
492k
    out[0] += in[0];
388
492k
    out[1] += in[1];
389
492k
    out[2] += in[2];
390
492k
    out[3] += in[3];
391
492k
}
392
393
/* Subtract field elements: out -= in */
394
/* Assumes in[i] < 2^57 */
395
static void felem_diff(felem out, const felem in)
396
479k
{
397
479k
    static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
398
479k
    static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
399
479k
    static const limb two58m42m2 = (((limb) 1) << 58) -
400
479k
        (((limb) 1) << 42) - (((limb) 1) << 2);
401
402
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
403
479k
    out[0] += two58p2;
404
479k
    out[1] += two58m42m2;
405
479k
    out[2] += two58m2;
406
479k
    out[3] += two58m2;
407
408
479k
    out[0] -= in[0];
409
479k
    out[1] -= in[1];
410
479k
    out[2] -= in[2];
411
479k
    out[3] -= in[3];
412
479k
}
413
414
/* Subtract in unreduced 128-bit mode: out -= in */
415
/* Assumes in[i] < 2^119 */
416
static void widefelem_diff(widefelem out, const widefelem in)
417
315k
{
418
315k
    static const widelimb two120 = ((widelimb) 1) << 120;
419
315k
    static const widelimb two120m64 = (((widelimb) 1) << 120) -
420
315k
        (((widelimb) 1) << 64);
421
315k
    static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
422
315k
        (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
423
424
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
425
315k
    out[0] += two120;
426
315k
    out[1] += two120m64;
427
315k
    out[2] += two120m64;
428
315k
    out[3] += two120;
429
315k
    out[4] += two120m104m64;
430
315k
    out[5] += two120m64;
431
315k
    out[6] += two120m64;
432
433
315k
    out[0] -= in[0];
434
315k
    out[1] -= in[1];
435
315k
    out[2] -= in[2];
436
315k
    out[3] -= in[3];
437
315k
    out[4] -= in[4];
438
315k
    out[5] -= in[5];
439
315k
    out[6] -= in[6];
440
315k
}
441
442
/* Subtract in mixed mode: out128 -= in64 */
443
/* in[i] < 2^63 */
444
static void felem_diff_128_64(widefelem out, const felem in)
445
953k
{
446
953k
    static const widelimb two64p8 = (((widelimb) 1) << 64) +
447
953k
        (((widelimb) 1) << 8);
448
953k
    static const widelimb two64m8 = (((widelimb) 1) << 64) -
449
953k
        (((widelimb) 1) << 8);
450
953k
    static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
451
953k
        (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
452
453
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
454
953k
    out[0] += two64p8;
455
953k
    out[1] += two64m48m8;
456
953k
    out[2] += two64m8;
457
953k
    out[3] += two64m8;
458
459
953k
    out[0] -= in[0];
460
953k
    out[1] -= in[1];
461
953k
    out[2] -= in[2];
462
953k
    out[3] -= in[3];
463
953k
}
464
465
/*
466
 * Multiply a field element by a scalar: out = out * scalar The scalars we
467
 * actually use are small, so results fit without overflow
468
 */
469
static void felem_scalar(felem out, const limb scalar)
470
644k
{
471
644k
    out[0] *= scalar;
472
644k
    out[1] *= scalar;
473
644k
    out[2] *= scalar;
474
644k
    out[3] *= scalar;
475
644k
}
476
477
/*
478
 * Multiply an unreduced field element by a scalar: out = out * scalar The
479
 * scalars we actually use are small, so results fit without overflow
480
 */
481
static void widefelem_scalar(widefelem out, const widelimb scalar)
482
164k
{
483
164k
    out[0] *= scalar;
484
164k
    out[1] *= scalar;
485
164k
    out[2] *= scalar;
486
164k
    out[3] *= scalar;
487
164k
    out[4] *= scalar;
488
164k
    out[5] *= scalar;
489
164k
    out[6] *= scalar;
490
164k
}
491
492
/* Square a field element: out = in^2 */
493
static void felem_square(widefelem out, const felem in)
494
2.45M
{
495
2.45M
    limb tmp0, tmp1, tmp2;
496
2.45M
    tmp0 = 2 * in[0];
497
2.45M
    tmp1 = 2 * in[1];
498
2.45M
    tmp2 = 2 * in[2];
499
2.45M
    out[0] = ((widelimb) in[0]) * in[0];
500
2.45M
    out[1] = ((widelimb) in[0]) * tmp1;
501
2.45M
    out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
502
2.45M
    out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
503
2.45M
    out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
504
2.45M
    out[5] = ((widelimb) in[3]) * tmp2;
505
2.45M
    out[6] = ((widelimb) in[3]) * in[3];
506
2.45M
}
507
508
/* Multiply two field elements: out = in1 * in2 */
509
static void felem_mul(widefelem out, const felem in1, const felem in2)
510
1.86M
{
511
1.86M
    out[0] = ((widelimb) in1[0]) * in2[0];
512
1.86M
    out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
513
1.86M
    out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
514
1.86M
             ((widelimb) in1[2]) * in2[0];
515
1.86M
    out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
516
1.86M
             ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
517
1.86M
    out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
518
1.86M
             ((widelimb) in1[3]) * in2[1];
519
1.86M
    out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
520
1.86M
    out[6] = ((widelimb) in1[3]) * in2[3];
521
1.86M
}
522
523
/*-
524
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
525
 * Requires in[i] < 2^126,
526
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
527
static void felem_reduce(felem out, const widefelem in)
528
4.02M
{
529
4.02M
    static const widelimb two127p15 = (((widelimb) 1) << 127) +
530
4.02M
        (((widelimb) 1) << 15);
531
4.02M
    static const widelimb two127m71 = (((widelimb) 1) << 127) -
532
4.02M
        (((widelimb) 1) << 71);
533
4.02M
    static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
534
4.02M
        (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
535
4.02M
    widelimb output[5];
536
537
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
538
4.02M
    output[0] = in[0] + two127p15;
539
4.02M
    output[1] = in[1] + two127m71m55;
540
4.02M
    output[2] = in[2] + two127m71;
541
4.02M
    output[3] = in[3];
542
4.02M
    output[4] = in[4];
543
544
    /* Eliminate in[4], in[5], in[6] */
545
4.02M
    output[4] += in[6] >> 16;
546
4.02M
    output[3] += (in[6] & 0xffff) << 40;
547
4.02M
    output[2] -= in[6];
548
549
4.02M
    output[3] += in[5] >> 16;
550
4.02M
    output[2] += (in[5] & 0xffff) << 40;
551
4.02M
    output[1] -= in[5];
552
553
4.02M
    output[2] += output[4] >> 16;
554
4.02M
    output[1] += (output[4] & 0xffff) << 40;
555
4.02M
    output[0] -= output[4];
556
557
    /* Carry 2 -> 3 -> 4 */
558
4.02M
    output[3] += output[2] >> 56;
559
4.02M
    output[2] &= 0x00ffffffffffffff;
560
561
4.02M
    output[4] = output[3] >> 56;
562
4.02M
    output[3] &= 0x00ffffffffffffff;
563
564
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
565
566
    /* Eliminate output[4] */
567
4.02M
    output[2] += output[4] >> 16;
568
    /* output[2] < 2^56 + 2^56 = 2^57 */
569
4.02M
    output[1] += (output[4] & 0xffff) << 40;
570
4.02M
    output[0] -= output[4];
571
572
    /* Carry 0 -> 1 -> 2 -> 3 */
573
4.02M
    output[1] += output[0] >> 56;
574
4.02M
    out[0] = output[0] & 0x00ffffffffffffff;
575
576
4.02M
    output[2] += output[1] >> 56;
577
    /* output[2] < 2^57 + 2^72 */
578
4.02M
    out[1] = output[1] & 0x00ffffffffffffff;
579
4.02M
    output[3] += output[2] >> 56;
580
    /* output[3] <= 2^56 + 2^16 */
581
4.02M
    out[2] = output[2] & 0x00ffffffffffffff;
582
583
    /*-
584
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
585
     * out[3] <= 2^56 + 2^16 (due to final carry),
586
     * so out < 2*p
587
     */
588
4.02M
    out[3] = output[3];
589
4.02M
}
590
591
static void felem_square_reduce(felem out, const felem in)
592
0
{
593
0
    widefelem tmp;
594
0
    felem_square(tmp, in);
595
0
    felem_reduce(out, tmp);
596
0
}
597
598
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
599
0
{
600
0
    widefelem tmp;
601
0
    felem_mul(tmp, in1, in2);
602
0
    felem_reduce(out, tmp);
603
0
}
604
605
/*
606
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
607
 * call felem_reduce first)
608
 */
609
static void felem_contract(felem out, const felem in)
610
18.7k
{
611
18.7k
    static const int64_t two56 = ((limb) 1) << 56;
612
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
613
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
614
18.7k
    int64_t tmp[4], a;
615
18.7k
    tmp[0] = in[0];
616
18.7k
    tmp[1] = in[1];
617
18.7k
    tmp[2] = in[2];
618
18.7k
    tmp[3] = in[3];
619
    /* Case 1: a = 1 iff in >= 2^224 */
620
18.7k
    a = (in[3] >> 56);
621
18.7k
    tmp[0] -= a;
622
18.7k
    tmp[1] += a << 40;
623
18.7k
    tmp[3] &= 0x00ffffffffffffff;
624
    /*
625
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
626
     * and the lower part is non-zero
627
     */
628
18.7k
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
629
18.7k
        (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
630
18.7k
    a &= 0x00ffffffffffffff;
631
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
632
18.7k
    a = (a - 1) >> 63;
633
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
634
18.7k
    tmp[3] &= a ^ 0xffffffffffffffff;
635
18.7k
    tmp[2] &= a ^ 0xffffffffffffffff;
636
18.7k
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
637
18.7k
    tmp[0] -= 1 & a;
638
639
    /*
640
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
641
     * non-zero, so we only need one step
642
     */
643
18.7k
    a = tmp[0] >> 63;
644
18.7k
    tmp[0] += two56 & a;
645
18.7k
    tmp[1] -= 1 & a;
646
647
    /* carry 1 -> 2 -> 3 */
648
18.7k
    tmp[2] += tmp[1] >> 56;
649
18.7k
    tmp[1] &= 0x00ffffffffffffff;
650
651
18.7k
    tmp[3] += tmp[2] >> 56;
652
18.7k
    tmp[2] &= 0x00ffffffffffffff;
653
654
    /* Now 0 <= out < p */
655
18.7k
    out[0] = tmp[0];
656
18.7k
    out[1] = tmp[1];
657
18.7k
    out[2] = tmp[2];
658
18.7k
    out[3] = tmp[3];
659
18.7k
}
660
661
/*
662
 * Get negative value: out = -in
663
 * Requires in[i] < 2^63,
664
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
665
 */
666
static void felem_neg(felem out, const felem in)
667
19.9k
{
668
19.9k
    widefelem tmp;
669
670
19.9k
    memset(tmp, 0, sizeof(tmp));
671
19.9k
    felem_diff_128_64(tmp, in);
672
19.9k
    felem_reduce(out, tmp);
673
19.9k
}
674
675
/*
676
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
677
 * elements are reduced to in < 2^225, so we only need to check three cases:
678
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
679
 */
680
static limb felem_is_zero(const felem in)
681
604k
{
682
604k
    limb zero, two224m96p1, two225m97p2;
683
684
604k
    zero = in[0] | in[1] | in[2] | in[3];
685
604k
    zero = (((int64_t) (zero) - 1) >> 63) & 1;
686
604k
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
687
604k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
688
604k
    two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
689
604k
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
690
604k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
691
604k
    two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
692
604k
    return (zero | two224m96p1 | two225m97p2);
693
604k
}
694
695
static int felem_is_zero_int(const void *in)
696
0
{
697
0
    return (int)(felem_is_zero(in) & ((limb) 1));
698
0
}
699
700
/* Invert a field element */
701
/* Computation chain copied from djb's code */
702
static void felem_inv(felem out, const felem in)
703
5.18k
{
704
5.18k
    felem ftmp, ftmp2, ftmp3, ftmp4;
705
5.18k
    widefelem tmp;
706
5.18k
    unsigned i;
707
708
5.18k
    felem_square(tmp, in);
709
5.18k
    felem_reduce(ftmp, tmp);    /* 2 */
710
5.18k
    felem_mul(tmp, in, ftmp);
711
5.18k
    felem_reduce(ftmp, tmp);    /* 2^2 - 1 */
712
5.18k
    felem_square(tmp, ftmp);
713
5.18k
    felem_reduce(ftmp, tmp);    /* 2^3 - 2 */
714
5.18k
    felem_mul(tmp, in, ftmp);
715
5.18k
    felem_reduce(ftmp, tmp);    /* 2^3 - 1 */
716
5.18k
    felem_square(tmp, ftmp);
717
5.18k
    felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */
718
5.18k
    felem_square(tmp, ftmp2);
719
5.18k
    felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */
720
5.18k
    felem_square(tmp, ftmp2);
721
5.18k
    felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */
722
5.18k
    felem_mul(tmp, ftmp2, ftmp);
723
5.18k
    felem_reduce(ftmp, tmp);    /* 2^6 - 1 */
724
5.18k
    felem_square(tmp, ftmp);
725
5.18k
    felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */
726
31.1k
    for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */
727
25.9k
        felem_square(tmp, ftmp2);
728
25.9k
        felem_reduce(ftmp2, tmp);
729
25.9k
    }
730
5.18k
    felem_mul(tmp, ftmp2, ftmp);
731
5.18k
    felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */
732
5.18k
    felem_square(tmp, ftmp2);
733
5.18k
    felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */
734
62.2k
    for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */
735
57.0k
        felem_square(tmp, ftmp3);
736
57.0k
        felem_reduce(ftmp3, tmp);
737
57.0k
    }
738
5.18k
    felem_mul(tmp, ftmp3, ftmp2);
739
5.18k
    felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */
740
5.18k
    felem_square(tmp, ftmp2);
741
5.18k
    felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */
742
124k
    for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */
743
119k
        felem_square(tmp, ftmp3);
744
119k
        felem_reduce(ftmp3, tmp);
745
119k
    }
746
5.18k
    felem_mul(tmp, ftmp3, ftmp2);
747
5.18k
    felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */
748
5.18k
    felem_square(tmp, ftmp3);
749
5.18k
    felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */
750
248k
    for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */
751
243k
        felem_square(tmp, ftmp4);
752
243k
        felem_reduce(ftmp4, tmp);
753
243k
    }
754
5.18k
    felem_mul(tmp, ftmp3, ftmp4);
755
5.18k
    felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */
756
5.18k
    felem_square(tmp, ftmp3);
757
5.18k
    felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */
758
124k
    for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */
759
119k
        felem_square(tmp, ftmp4);
760
119k
        felem_reduce(ftmp4, tmp);
761
119k
    }
762
5.18k
    felem_mul(tmp, ftmp2, ftmp4);
763
5.18k
    felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */
764
36.3k
    for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */
765
31.1k
        felem_square(tmp, ftmp2);
766
31.1k
        felem_reduce(ftmp2, tmp);
767
31.1k
    }
768
5.18k
    felem_mul(tmp, ftmp2, ftmp);
769
5.18k
    felem_reduce(ftmp, tmp);    /* 2^126 - 1 */
770
5.18k
    felem_square(tmp, ftmp);
771
5.18k
    felem_reduce(ftmp, tmp);    /* 2^127 - 2 */
772
5.18k
    felem_mul(tmp, ftmp, in);
773
5.18k
    felem_reduce(ftmp, tmp);    /* 2^127 - 1 */
774
508k
    for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */
775
503k
        felem_square(tmp, ftmp);
776
503k
        felem_reduce(ftmp, tmp);
777
503k
    }
778
5.18k
    felem_mul(tmp, ftmp, ftmp3);
779
5.18k
    felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */
780
5.18k
}
781
782
/*
783
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
784
 * out to itself.
785
 */
786
static void copy_conditional(felem out, const felem in, limb icopy)
787
927k
{
788
927k
    unsigned i;
789
    /*
790
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
791
     */
792
927k
    const limb copy = -icopy;
793
4.63M
    for (i = 0; i < 4; ++i) {
794
3.70M
        const limb tmp = copy & (in[i] ^ out[i]);
795
3.70M
        out[i] ^= tmp;
796
3.70M
    }
797
927k
}
798
799
/******************************************************************************/
800
/*-
801
 *                       ELLIPTIC CURVE POINT OPERATIONS
802
 *
803
 * Points are represented in Jacobian projective coordinates:
804
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
805
 * or to the point at infinity if Z == 0.
806
 *
807
 */
808
809
/*-
810
 * Double an elliptic curve point:
811
 * (X', Y', Z') = 2 * (X, Y, Z), where
812
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
813
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
814
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
815
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
816
 * while x_out == y_in is not (maybe this works, but it's not tested).
817
 */
818
static void
819
point_double(felem x_out, felem y_out, felem z_out,
820
             const felem x_in, const felem y_in, const felem z_in)
821
164k
{
822
164k
    widefelem tmp, tmp2;
823
164k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
824
825
164k
    felem_assign(ftmp, x_in);
826
164k
    felem_assign(ftmp2, x_in);
827
828
    /* delta = z^2 */
829
164k
    felem_square(tmp, z_in);
830
164k
    felem_reduce(delta, tmp);
831
832
    /* gamma = y^2 */
833
164k
    felem_square(tmp, y_in);
834
164k
    felem_reduce(gamma, tmp);
835
836
    /* beta = x*gamma */
837
164k
    felem_mul(tmp, x_in, gamma);
838
164k
    felem_reduce(beta, tmp);
839
840
    /* alpha = 3*(x-delta)*(x+delta) */
841
164k
    felem_diff(ftmp, delta);
842
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
843
164k
    felem_sum(ftmp2, delta);
844
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
845
164k
    felem_scalar(ftmp2, 3);
846
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
847
164k
    felem_mul(tmp, ftmp, ftmp2);
848
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
849
164k
    felem_reduce(alpha, tmp);
850
851
    /* x' = alpha^2 - 8*beta */
852
164k
    felem_square(tmp, alpha);
853
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
854
164k
    felem_assign(ftmp, beta);
855
164k
    felem_scalar(ftmp, 8);
856
    /* ftmp[i] < 8 * 2^57 = 2^60 */
857
164k
    felem_diff_128_64(tmp, ftmp);
858
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
859
164k
    felem_reduce(x_out, tmp);
860
861
    /* z' = (y + z)^2 - gamma - delta */
862
164k
    felem_sum(delta, gamma);
863
    /* delta[i] < 2^57 + 2^57 = 2^58 */
864
164k
    felem_assign(ftmp, y_in);
865
164k
    felem_sum(ftmp, z_in);
866
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
867
164k
    felem_square(tmp, ftmp);
868
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
869
164k
    felem_diff_128_64(tmp, delta);
870
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
871
164k
    felem_reduce(z_out, tmp);
872
873
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
874
164k
    felem_scalar(beta, 4);
875
    /* beta[i] < 4 * 2^57 = 2^59 */
876
164k
    felem_diff(beta, x_out);
877
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
878
164k
    felem_mul(tmp, alpha, beta);
879
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
880
164k
    felem_square(tmp2, gamma);
881
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
882
164k
    widefelem_scalar(tmp2, 8);
883
    /* tmp2[i] < 8 * 2^116 = 2^119 */
884
164k
    widefelem_diff(tmp, tmp2);
885
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
886
164k
    felem_reduce(y_out, tmp);
887
164k
}
888
889
/*-
890
 * Add two elliptic curve points:
891
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
892
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
893
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
894
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
895
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
896
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
897
 *
898
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
899
 */
900
901
/*
902
 * This function is not entirely constant-time: it includes a branch for
903
 * checking whether the two input points are equal, (while not equal to the
904
 * point at infinity). This case never happens during single point
905
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
906
 */
907
static void point_add(felem x3, felem y3, felem z3,
908
                      const felem x1, const felem y1, const felem z1,
909
                      const int mixed, const felem x2, const felem y2,
910
                      const felem z2)
911
151k
{
912
151k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
913
151k
    widefelem tmp, tmp2;
914
151k
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
915
151k
    limb points_equal;
916
917
151k
    if (!mixed) {
918
        /* ftmp2 = z2^2 */
919
22.6k
        felem_square(tmp, z2);
920
22.6k
        felem_reduce(ftmp2, tmp);
921
922
        /* ftmp4 = z2^3 */
923
22.6k
        felem_mul(tmp, ftmp2, z2);
924
22.6k
        felem_reduce(ftmp4, tmp);
925
926
        /* ftmp4 = z2^3*y1 */
927
22.6k
        felem_mul(tmp2, ftmp4, y1);
928
22.6k
        felem_reduce(ftmp4, tmp2);
929
930
        /* ftmp2 = z2^2*x1 */
931
22.6k
        felem_mul(tmp2, ftmp2, x1);
932
22.6k
        felem_reduce(ftmp2, tmp2);
933
128k
    } else {
934
        /*
935
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
936
         */
937
938
        /* ftmp4 = z2^3*y1 */
939
128k
        felem_assign(ftmp4, y1);
940
941
        /* ftmp2 = z2^2*x1 */
942
128k
        felem_assign(ftmp2, x1);
943
128k
    }
944
945
    /* ftmp = z1^2 */
946
151k
    felem_square(tmp, z1);
947
151k
    felem_reduce(ftmp, tmp);
948
949
    /* ftmp3 = z1^3 */
950
151k
    felem_mul(tmp, ftmp, z1);
951
151k
    felem_reduce(ftmp3, tmp);
952
953
    /* tmp = z1^3*y2 */
954
151k
    felem_mul(tmp, ftmp3, y2);
955
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
956
957
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
958
151k
    felem_diff_128_64(tmp, ftmp4);
959
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
960
151k
    felem_reduce(ftmp3, tmp);
961
962
    /* tmp = z1^2*x2 */
963
151k
    felem_mul(tmp, ftmp, x2);
964
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
965
966
    /* ftmp = z1^2*x2 - z2^2*x1 */
967
151k
    felem_diff_128_64(tmp, ftmp2);
968
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
969
151k
    felem_reduce(ftmp, tmp);
970
971
    /*
972
     * The formulae are incorrect if the points are equal, in affine coordinates
973
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
974
     * happens.
975
     *
976
     * We use bitwise operations to avoid potential side-channels introduced by
977
     * the short-circuiting behaviour of boolean operators.
978
     */
979
151k
    x_equal = felem_is_zero(ftmp);
980
151k
    y_equal = felem_is_zero(ftmp3);
981
    /*
982
     * The special case of either point being the point at infinity (z1 and/or
983
     * z2 are zero), is handled separately later on in this function, so we
984
     * avoid jumping to point_double here in those special cases.
985
     */
986
151k
    z1_is_zero = felem_is_zero(z1);
987
151k
    z2_is_zero = felem_is_zero(z2);
988
989
    /*
990
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
991
     * specific implementation `felem_is_zero()` returns truth as `0x1`
992
     * (rather than `0xff..ff`).
993
     *
994
     * This implies that `~true` in this implementation becomes
995
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
996
     * the if expression, we mask out only the last bit in the next
997
     * line.
998
     */
999
151k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
1000
1001
151k
    if (points_equal) {
1002
        /*
1003
         * This is obviously not constant-time but, as mentioned before, this
1004
         * case never happens during single point multiplication, so there is no
1005
         * timing leak for ECDH or ECDSA signing.
1006
         */
1007
0
        point_double(x3, y3, z3, x1, y1, z1);
1008
0
        return;
1009
0
    }
1010
1011
    /* ftmp5 = z1*z2 */
1012
151k
    if (!mixed) {
1013
22.6k
        felem_mul(tmp, z1, z2);
1014
22.6k
        felem_reduce(ftmp5, tmp);
1015
128k
    } else {
1016
        /* special case z2 = 0 is handled later */
1017
128k
        felem_assign(ftmp5, z1);
1018
128k
    }
1019
1020
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1021
151k
    felem_mul(tmp, ftmp, ftmp5);
1022
151k
    felem_reduce(z_out, tmp);
1023
1024
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1025
151k
    felem_assign(ftmp5, ftmp);
1026
151k
    felem_square(tmp, ftmp);
1027
151k
    felem_reduce(ftmp, tmp);
1028
1029
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1030
151k
    felem_mul(tmp, ftmp, ftmp5);
1031
151k
    felem_reduce(ftmp5, tmp);
1032
1033
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1034
151k
    felem_mul(tmp, ftmp2, ftmp);
1035
151k
    felem_reduce(ftmp2, tmp);
1036
1037
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1038
151k
    felem_mul(tmp, ftmp4, ftmp5);
1039
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1040
1041
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1042
151k
    felem_square(tmp2, ftmp3);
1043
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1044
1045
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1046
151k
    felem_diff_128_64(tmp2, ftmp5);
1047
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1048
1049
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1050
151k
    felem_assign(ftmp5, ftmp2);
1051
151k
    felem_scalar(ftmp5, 2);
1052
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1053
1054
    /*-
1055
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1056
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1057
     */
1058
151k
    felem_diff_128_64(tmp2, ftmp5);
1059
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1060
151k
    felem_reduce(x_out, tmp2);
1061
1062
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1063
151k
    felem_diff(ftmp2, x_out);
1064
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1065
1066
    /*
1067
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1068
     */
1069
151k
    felem_mul(tmp2, ftmp3, ftmp2);
1070
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1071
1072
    /*-
1073
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1074
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1075
     */
1076
151k
    widefelem_diff(tmp2, tmp);
1077
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1078
151k
    felem_reduce(y_out, tmp2);
1079
1080
    /*
1081
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1082
     * the point at infinity, so we need to check for this separately
1083
     */
1084
1085
    /*
1086
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1087
     */
1088
151k
    copy_conditional(x_out, x2, z1_is_zero);
1089
151k
    copy_conditional(x_out, x1, z2_is_zero);
1090
151k
    copy_conditional(y_out, y2, z1_is_zero);
1091
151k
    copy_conditional(y_out, y1, z2_is_zero);
1092
151k
    copy_conditional(z_out, z2, z1_is_zero);
1093
151k
    copy_conditional(z_out, z1, z2_is_zero);
1094
151k
    felem_assign(x3, x_out);
1095
151k
    felem_assign(y3, y_out);
1096
151k
    felem_assign(z3, z_out);
1097
151k
}
1098
1099
/*
1100
 * select_point selects the |idx|th point from a precomputation table and
1101
 * copies it to out.
1102
 * The pre_comp array argument should be size of |size| argument
1103
 */
1104
static void select_point(const u64 idx, unsigned int size,
1105
                         const felem pre_comp[][3], felem out[3])
1106
150k
{
1107
150k
    unsigned i, j;
1108
150k
    limb *outlimbs = &out[0][0];
1109
1110
150k
    memset(out, 0, sizeof(*out) * 3);
1111
2.58M
    for (i = 0; i < size; i++) {
1112
2.43M
        const limb *inlimbs = &pre_comp[i][0][0];
1113
2.43M
        u64 mask = i ^ idx;
1114
2.43M
        mask |= mask >> 4;
1115
2.43M
        mask |= mask >> 2;
1116
2.43M
        mask |= mask >> 1;
1117
2.43M
        mask &= 1;
1118
2.43M
        mask--;
1119
31.6M
        for (j = 0; j < 4 * 3; j++)
1120
29.2M
            outlimbs[j] |= inlimbs[j] & mask;
1121
2.43M
    }
1122
150k
}
1123
1124
/* get_bit returns the |i|th bit in |in| */
1125
static char get_bit(const felem_bytearray in, unsigned i)
1126
643k
{
1127
643k
    if (i >= 224)
1128
888
        return 0;
1129
642k
    return (in[i >> 3] >> (i & 7)) & 1;
1130
643k
}
1131
1132
/*
1133
 * Interleaved point multiplication using precomputed point multiples: The
1134
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1135
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1136
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1137
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1138
 */
1139
static void batch_mul(felem x_out, felem y_out, felem z_out,
1140
                      const felem_bytearray scalars[],
1141
                      const unsigned num_points, const u8 *g_scalar,
1142
                      const int mixed, const felem pre_comp[][17][3],
1143
                      const felem g_pre_comp[2][16][3])
1144
2.78k
{
1145
2.78k
    int i, skip;
1146
2.78k
    unsigned num;
1147
2.78k
    unsigned gen_mul = (g_scalar != NULL);
1148
2.78k
    felem nq[3], tmp[4];
1149
2.78k
    u64 bits;
1150
2.78k
    u8 sign, digit;
1151
1152
    /* set nq to the point at infinity */
1153
2.78k
    memset(nq, 0, sizeof(nq));
1154
1155
    /*
1156
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1157
     * of the generator (two in each of the last 28 rounds) and additions of
1158
     * other points multiples (every 5th round).
1159
     */
1160
2.78k
    skip = 1;                   /* save two point operations in the first
1161
                                 * round */
1162
166k
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1163
        /* double */
1164
163k
        if (!skip)
1165
160k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1166
1167
        /* add multiples of the generator */
1168
163k
        if (gen_mul && (i <= 27)) {
1169
            /* first, look 28 bits upwards */
1170
65.4k
            bits = get_bit(g_scalar, i + 196) << 3;
1171
65.4k
            bits |= get_bit(g_scalar, i + 140) << 2;
1172
65.4k
            bits |= get_bit(g_scalar, i + 84) << 1;
1173
65.4k
            bits |= get_bit(g_scalar, i + 28);
1174
            /* select the point to add, in constant time */
1175
65.4k
            select_point(bits, 16, g_pre_comp[1], tmp);
1176
1177
65.4k
            if (!skip) {
1178
                /* value 1 below is argument for "mixed" */
1179
63.0k
                point_add(nq[0], nq[1], nq[2],
1180
63.0k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1181
63.0k
            } else {
1182
2.33k
                memcpy(nq, tmp, 3 * sizeof(felem));
1183
2.33k
                skip = 0;
1184
2.33k
            }
1185
1186
            /* second, look at the current position */
1187
65.4k
            bits = get_bit(g_scalar, i + 168) << 3;
1188
65.4k
            bits |= get_bit(g_scalar, i + 112) << 2;
1189
65.4k
            bits |= get_bit(g_scalar, i + 56) << 1;
1190
65.4k
            bits |= get_bit(g_scalar, i);
1191
            /* select the point to add, in constant time */
1192
65.4k
            select_point(bits, 16, g_pre_comp[0], tmp);
1193
65.4k
            point_add(nq[0], nq[1], nq[2],
1194
65.4k
                      nq[0], nq[1], nq[2],
1195
65.4k
                      1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1196
65.4k
        }
1197
1198
        /* do other additions every 5 doublings */
1199
163k
        if (num_points && (i % 5 == 0)) {
1200
            /* loop over all scalars */
1201
39.9k
            for (num = 0; num < num_points; ++num) {
1202
19.9k
                bits = get_bit(scalars[num], i + 4) << 5;
1203
19.9k
                bits |= get_bit(scalars[num], i + 3) << 4;
1204
19.9k
                bits |= get_bit(scalars[num], i + 2) << 3;
1205
19.9k
                bits |= get_bit(scalars[num], i + 1) << 2;
1206
19.9k
                bits |= get_bit(scalars[num], i) << 1;
1207
19.9k
                bits |= get_bit(scalars[num], i - 1);
1208
19.9k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1209
1210
                /* select the point to add or subtract */
1211
19.9k
                select_point(digit, 17, pre_comp[num], tmp);
1212
19.9k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1213
                                            * point */
1214
19.9k
                copy_conditional(tmp[1], tmp[3], sign);
1215
1216
19.9k
                if (!skip) {
1217
19.5k
                    point_add(nq[0], nq[1], nq[2],
1218
19.5k
                              nq[0], nq[1], nq[2],
1219
19.5k
                              mixed, tmp[0], tmp[1], tmp[2]);
1220
19.5k
                } else {
1221
444
                    memcpy(nq, tmp, 3 * sizeof(felem));
1222
444
                    skip = 0;
1223
444
                }
1224
19.9k
            }
1225
19.9k
        }
1226
163k
    }
1227
2.78k
    felem_assign(x_out, nq[0]);
1228
2.78k
    felem_assign(y_out, nq[1]);
1229
2.78k
    felem_assign(z_out, nq[2]);
1230
2.78k
}
1231
1232
/******************************************************************************/
1233
/*
1234
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1235
 */
1236
1237
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1238
0
{
1239
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1240
1241
0
    if (!ret) {
1242
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1243
0
        return ret;
1244
0
    }
1245
1246
0
    ret->references = 1;
1247
1248
0
    ret->lock = CRYPTO_THREAD_lock_new();
1249
0
    if (ret->lock == NULL) {
1250
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1251
0
        OPENSSL_free(ret);
1252
0
        return NULL;
1253
0
    }
1254
0
    return ret;
1255
0
}
1256
1257
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1258
0
{
1259
0
    int i;
1260
0
    if (p != NULL)
1261
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1262
0
    return p;
1263
0
}
1264
1265
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1266
0
{
1267
0
    int i;
1268
1269
0
    if (p == NULL)
1270
0
        return;
1271
1272
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1273
0
    REF_PRINT_COUNT("EC_nistp224", p);
1274
0
    if (i > 0)
1275
0
        return;
1276
0
    REF_ASSERT_ISNT(i < 0);
1277
1278
0
    CRYPTO_THREAD_lock_free(p->lock);
1279
0
    OPENSSL_free(p);
1280
0
}
1281
1282
/******************************************************************************/
1283
/*
1284
 * OPENSSL EC_METHOD FUNCTIONS
1285
 */
1286
1287
int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)
1288
89.5k
{
1289
89.5k
    int ret;
1290
89.5k
    ret = ossl_ec_GFp_simple_group_init(group);
1291
89.5k
    group->a_is_minus3 = 1;
1292
89.5k
    return ret;
1293
89.5k
}
1294
1295
int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1296
                                         const BIGNUM *a, const BIGNUM *b,
1297
                                         BN_CTX *ctx)
1298
46.5k
{
1299
46.5k
    int ret = 0;
1300
46.5k
    BIGNUM *curve_p, *curve_a, *curve_b;
1301
46.5k
#ifndef FIPS_MODULE
1302
46.5k
    BN_CTX *new_ctx = NULL;
1303
1304
46.5k
    if (ctx == NULL)
1305
0
        ctx = new_ctx = BN_CTX_new();
1306
46.5k
#endif
1307
46.5k
    if (ctx == NULL)
1308
0
        return 0;
1309
1310
46.5k
    BN_CTX_start(ctx);
1311
46.5k
    curve_p = BN_CTX_get(ctx);
1312
46.5k
    curve_a = BN_CTX_get(ctx);
1313
46.5k
    curve_b = BN_CTX_get(ctx);
1314
46.5k
    if (curve_b == NULL)
1315
0
        goto err;
1316
46.5k
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1317
46.5k
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1318
46.5k
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1319
46.5k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1320
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1321
0
        goto err;
1322
0
    }
1323
46.5k
    group->field_mod_func = BN_nist_mod_224;
1324
46.5k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1325
46.5k
 err:
1326
46.5k
    BN_CTX_end(ctx);
1327
46.5k
#ifndef FIPS_MODULE
1328
46.5k
    BN_CTX_free(new_ctx);
1329
46.5k
#endif
1330
46.5k
    return ret;
1331
46.5k
}
1332
1333
/*
1334
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1335
 * (X/Z^2, Y/Z^3)
1336
 */
1337
int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1338
                                                      const EC_POINT *point,
1339
                                                      BIGNUM *x, BIGNUM *y,
1340
                                                      BN_CTX *ctx)
1341
5.18k
{
1342
5.18k
    felem z1, z2, x_in, y_in, x_out, y_out;
1343
5.18k
    widefelem tmp;
1344
1345
5.18k
    if (EC_POINT_is_at_infinity(group, point)) {
1346
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1347
0
        return 0;
1348
0
    }
1349
5.18k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1350
5.18k
        (!BN_to_felem(z1, point->Z)))
1351
0
        return 0;
1352
5.18k
    felem_inv(z2, z1);
1353
5.18k
    felem_square(tmp, z2);
1354
5.18k
    felem_reduce(z1, tmp);
1355
5.18k
    felem_mul(tmp, x_in, z1);
1356
5.18k
    felem_reduce(x_in, tmp);
1357
5.18k
    felem_contract(x_out, x_in);
1358
5.18k
    if (x != NULL) {
1359
5.18k
        if (!felem_to_BN(x, x_out)) {
1360
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1361
0
            return 0;
1362
0
        }
1363
5.18k
    }
1364
5.18k
    felem_mul(tmp, z1, z2);
1365
5.18k
    felem_reduce(z1, tmp);
1366
5.18k
    felem_mul(tmp, y_in, z1);
1367
5.18k
    felem_reduce(y_in, tmp);
1368
5.18k
    felem_contract(y_out, y_in);
1369
5.18k
    if (y != NULL) {
1370
5.18k
        if (!felem_to_BN(y, y_out)) {
1371
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1372
0
            return 0;
1373
0
        }
1374
5.18k
    }
1375
5.18k
    return 1;
1376
5.18k
}
1377
1378
static void make_points_affine(size_t num, felem points[ /* num */ ][3],
1379
                               felem tmp_felems[ /* num+1 */ ])
1380
0
{
1381
    /*
1382
     * Runs in constant time, unless an input is the point at infinity (which
1383
     * normally shouldn't happen).
1384
     */
1385
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1386
0
                                                  points,
1387
0
                                                  sizeof(felem),
1388
0
                                                  tmp_felems,
1389
0
                                                  (void (*)(void *))felem_one,
1390
0
                                                  felem_is_zero_int,
1391
0
                                                  (void (*)(void *, const void *))
1392
0
                                                  felem_assign,
1393
0
                                                  (void (*)(void *, const void *))
1394
0
                                                  felem_square_reduce, (void (*)
1395
0
                                                                        (void *,
1396
0
                                                                         const void
1397
0
                                                                         *,
1398
0
                                                                         const void
1399
0
                                                                         *))
1400
0
                                                  felem_mul_reduce,
1401
0
                                                  (void (*)(void *, const void *))
1402
0
                                                  felem_inv,
1403
0
                                                  (void (*)(void *, const void *))
1404
0
                                                  felem_contract);
1405
0
}
1406
1407
/*
1408
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1409
 * values Result is stored in r (r can equal one of the inputs).
1410
 */
1411
int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1412
                                    const BIGNUM *scalar, size_t num,
1413
                                    const EC_POINT *points[],
1414
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1415
2.78k
{
1416
2.78k
    int ret = 0;
1417
2.78k
    int j;
1418
2.78k
    unsigned i;
1419
2.78k
    int mixed = 0;
1420
2.78k
    BIGNUM *x, *y, *z, *tmp_scalar;
1421
2.78k
    felem_bytearray g_secret;
1422
2.78k
    felem_bytearray *secrets = NULL;
1423
2.78k
    felem (*pre_comp)[17][3] = NULL;
1424
2.78k
    felem *tmp_felems = NULL;
1425
2.78k
    int num_bytes;
1426
2.78k
    int have_pre_comp = 0;
1427
2.78k
    size_t num_points = num;
1428
2.78k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1429
2.78k
    NISTP224_PRE_COMP *pre = NULL;
1430
2.78k
    const felem(*g_pre_comp)[16][3] = NULL;
1431
2.78k
    EC_POINT *generator = NULL;
1432
2.78k
    const EC_POINT *p = NULL;
1433
2.78k
    const BIGNUM *p_scalar = NULL;
1434
1435
2.78k
    BN_CTX_start(ctx);
1436
2.78k
    x = BN_CTX_get(ctx);
1437
2.78k
    y = BN_CTX_get(ctx);
1438
2.78k
    z = BN_CTX_get(ctx);
1439
2.78k
    tmp_scalar = BN_CTX_get(ctx);
1440
2.78k
    if (tmp_scalar == NULL)
1441
0
        goto err;
1442
1443
2.78k
    if (scalar != NULL) {
1444
2.33k
        pre = group->pre_comp.nistp224;
1445
2.33k
        if (pre)
1446
            /* we have precomputation, try to use it */
1447
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1448
2.33k
        else
1449
            /* try to use the standard precomputation */
1450
2.33k
            g_pre_comp = &gmul[0];
1451
2.33k
        generator = EC_POINT_new(group);
1452
2.33k
        if (generator == NULL)
1453
0
            goto err;
1454
        /* get the generator from precomputation */
1455
2.33k
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1456
2.33k
            !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1457
2.33k
            !felem_to_BN(z, g_pre_comp[0][1][2])) {
1458
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1459
0
            goto err;
1460
0
        }
1461
2.33k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1462
2.33k
                                                                generator,
1463
2.33k
                                                                x, y, z, ctx))
1464
0
            goto err;
1465
2.33k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1466
            /* precomputation matches generator */
1467
2.33k
            have_pre_comp = 1;
1468
0
        else
1469
            /*
1470
             * we don't have valid precomputation: treat the generator as a
1471
             * random point
1472
             */
1473
0
            num_points = num_points + 1;
1474
2.33k
    }
1475
1476
2.78k
    if (num_points > 0) {
1477
444
        if (num_points >= 3) {
1478
            /*
1479
             * unless we precompute multiples for just one or two points,
1480
             * converting those into affine form is time well spent
1481
             */
1482
0
            mixed = 1;
1483
0
        }
1484
444
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1485
444
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1486
444
        if (mixed)
1487
0
            tmp_felems =
1488
0
                OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1489
444
        if ((secrets == NULL) || (pre_comp == NULL)
1490
444
            || (mixed && (tmp_felems == NULL))) {
1491
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1492
0
            goto err;
1493
0
        }
1494
1495
        /*
1496
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1497
         * i.e., they contribute nothing to the linear combination
1498
         */
1499
888
        for (i = 0; i < num_points; ++i) {
1500
444
            if (i == num) {
1501
                /* the generator */
1502
0
                p = EC_GROUP_get0_generator(group);
1503
0
                p_scalar = scalar;
1504
444
            } else {
1505
                /* the i^th point */
1506
444
                p = points[i];
1507
444
                p_scalar = scalars[i];
1508
444
            }
1509
444
            if ((p_scalar != NULL) && (p != NULL)) {
1510
                /* reduce scalar to 0 <= scalar < 2^224 */
1511
444
                if ((BN_num_bits(p_scalar) > 224)
1512
444
                    || (BN_is_negative(p_scalar))) {
1513
                    /*
1514
                     * this is an unusual input, and we don't guarantee
1515
                     * constant-timeness
1516
                     */
1517
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1518
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1519
0
                        goto err;
1520
0
                    }
1521
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1522
0
                                               secrets[i], sizeof(secrets[i]));
1523
444
                } else {
1524
444
                    num_bytes = BN_bn2lebinpad(p_scalar,
1525
444
                                               secrets[i], sizeof(secrets[i]));
1526
444
                }
1527
444
                if (num_bytes < 0) {
1528
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1529
0
                    goto err;
1530
0
                }
1531
                /* precompute multiples */
1532
444
                if ((!BN_to_felem(x_out, p->X)) ||
1533
444
                    (!BN_to_felem(y_out, p->Y)) ||
1534
444
                    (!BN_to_felem(z_out, p->Z)))
1535
0
                    goto err;
1536
444
                felem_assign(pre_comp[i][1][0], x_out);
1537
444
                felem_assign(pre_comp[i][1][1], y_out);
1538
444
                felem_assign(pre_comp[i][1][2], z_out);
1539
7.10k
                for (j = 2; j <= 16; ++j) {
1540
6.66k
                    if (j & 1) {
1541
3.10k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1542
3.10k
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1543
3.10k
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1544
3.10k
                                  pre_comp[i][j - 1][0],
1545
3.10k
                                  pre_comp[i][j - 1][1],
1546
3.10k
                                  pre_comp[i][j - 1][2]);
1547
3.55k
                    } else {
1548
3.55k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1549
3.55k
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1550
3.55k
                                     pre_comp[i][j / 2][1],
1551
3.55k
                                     pre_comp[i][j / 2][2]);
1552
3.55k
                    }
1553
6.66k
                }
1554
444
            }
1555
444
        }
1556
444
        if (mixed)
1557
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1558
444
    }
1559
1560
    /* the scalar for the generator */
1561
2.78k
    if ((scalar != NULL) && (have_pre_comp)) {
1562
2.33k
        memset(g_secret, 0, sizeof(g_secret));
1563
        /* reduce scalar to 0 <= scalar < 2^224 */
1564
2.33k
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1565
            /*
1566
             * this is an unusual input, and we don't guarantee
1567
             * constant-timeness
1568
             */
1569
481
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1570
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1571
0
                goto err;
1572
0
            }
1573
481
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1574
1.85k
        } else {
1575
1.85k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1576
1.85k
        }
1577
        /* do the multiplication with generator precomputation */
1578
2.33k
        batch_mul(x_out, y_out, z_out,
1579
2.33k
                  (const felem_bytearray(*))secrets, num_points,
1580
2.33k
                  g_secret,
1581
2.33k
                  mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1582
2.33k
    } else {
1583
        /* do the multiplication without generator precomputation */
1584
444
        batch_mul(x_out, y_out, z_out,
1585
444
                  (const felem_bytearray(*))secrets, num_points,
1586
444
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1587
444
    }
1588
    /* reduce the output to its unique minimal representation */
1589
2.78k
    felem_contract(x_in, x_out);
1590
2.78k
    felem_contract(y_in, y_out);
1591
2.78k
    felem_contract(z_in, z_out);
1592
2.78k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1593
2.78k
        (!felem_to_BN(z, z_in))) {
1594
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1595
0
        goto err;
1596
0
    }
1597
2.78k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1598
2.78k
                                                             ctx);
1599
1600
2.78k
 err:
1601
2.78k
    BN_CTX_end(ctx);
1602
2.78k
    EC_POINT_free(generator);
1603
2.78k
    OPENSSL_free(secrets);
1604
2.78k
    OPENSSL_free(pre_comp);
1605
2.78k
    OPENSSL_free(tmp_felems);
1606
2.78k
    return ret;
1607
2.78k
}
1608
1609
int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1610
0
{
1611
0
    int ret = 0;
1612
0
    NISTP224_PRE_COMP *pre = NULL;
1613
0
    int i, j;
1614
0
    BIGNUM *x, *y;
1615
0
    EC_POINT *generator = NULL;
1616
0
    felem tmp_felems[32];
1617
0
#ifndef FIPS_MODULE
1618
0
    BN_CTX *new_ctx = NULL;
1619
0
#endif
1620
1621
    /* throw away old precomputation */
1622
0
    EC_pre_comp_free(group);
1623
1624
0
#ifndef FIPS_MODULE
1625
0
    if (ctx == NULL)
1626
0
        ctx = new_ctx = BN_CTX_new();
1627
0
#endif
1628
0
    if (ctx == NULL)
1629
0
        return 0;
1630
1631
0
    BN_CTX_start(ctx);
1632
0
    x = BN_CTX_get(ctx);
1633
0
    y = BN_CTX_get(ctx);
1634
0
    if (y == NULL)
1635
0
        goto err;
1636
    /* get the generator */
1637
0
    if (group->generator == NULL)
1638
0
        goto err;
1639
0
    generator = EC_POINT_new(group);
1640
0
    if (generator == NULL)
1641
0
        goto err;
1642
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1643
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1644
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1645
0
        goto err;
1646
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1647
0
        goto err;
1648
    /*
1649
     * if the generator is the standard one, use built-in precomputation
1650
     */
1651
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1652
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1653
0
        goto done;
1654
0
    }
1655
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1656
0
        (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1657
0
        (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1658
0
        goto err;
1659
    /*
1660
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1661
     * 2^140*G, 2^196*G for the second one
1662
     */
1663
0
    for (i = 1; i <= 8; i <<= 1) {
1664
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1665
0
                     pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1666
0
                     pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1667
0
        for (j = 0; j < 27; ++j) {
1668
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1669
0
                         pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1670
0
                         pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1671
0
        }
1672
0
        if (i == 8)
1673
0
            break;
1674
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1675
0
                     pre->g_pre_comp[0][2 * i][1],
1676
0
                     pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1677
0
                     pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1678
0
        for (j = 0; j < 27; ++j) {
1679
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1680
0
                         pre->g_pre_comp[0][2 * i][1],
1681
0
                         pre->g_pre_comp[0][2 * i][2],
1682
0
                         pre->g_pre_comp[0][2 * i][0],
1683
0
                         pre->g_pre_comp[0][2 * i][1],
1684
0
                         pre->g_pre_comp[0][2 * i][2]);
1685
0
        }
1686
0
    }
1687
0
    for (i = 0; i < 2; i++) {
1688
        /* g_pre_comp[i][0] is the point at infinity */
1689
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1690
        /* the remaining multiples */
1691
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1692
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1693
0
                  pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1694
0
                  pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1695
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1696
0
                  pre->g_pre_comp[i][2][2]);
1697
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1698
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1699
0
                  pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1700
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1701
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1702
0
                  pre->g_pre_comp[i][2][2]);
1703
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1704
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1705
0
                  pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1706
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1707
0
                  0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1708
0
                  pre->g_pre_comp[i][4][2]);
1709
        /*
1710
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1711
         */
1712
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1713
0
                  pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1714
0
                  pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1715
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1716
0
                  pre->g_pre_comp[i][2][2]);
1717
0
        for (j = 1; j < 8; ++j) {
1718
            /* odd multiples: add G resp. 2^28*G */
1719
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1720
0
                      pre->g_pre_comp[i][2 * j + 1][1],
1721
0
                      pre->g_pre_comp[i][2 * j + 1][2],
1722
0
                      pre->g_pre_comp[i][2 * j][0],
1723
0
                      pre->g_pre_comp[i][2 * j][1],
1724
0
                      pre->g_pre_comp[i][2 * j][2], 0,
1725
0
                      pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1726
0
                      pre->g_pre_comp[i][1][2]);
1727
0
        }
1728
0
    }
1729
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1730
1731
0
 done:
1732
0
    SETPRECOMP(group, nistp224, pre);
1733
0
    pre = NULL;
1734
0
    ret = 1;
1735
0
 err:
1736
0
    BN_CTX_end(ctx);
1737
0
    EC_POINT_free(generator);
1738
0
#ifndef FIPS_MODULE
1739
0
    BN_CTX_free(new_ctx);
1740
0
#endif
1741
0
    EC_nistp224_pre_comp_free(pre);
1742
0
    return ret;
1743
0
}
1744
1745
int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1746
0
{
1747
    return HAVEPRECOMP(group, nistp224);
1748
0
}