Coverage Report

Created: 2025-11-16 06:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl30/crypto/ec/ecp_nistp521.c
Line
Count
Source
1
/*
2
 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
91.2M
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
4.93k
{
145
4.93k
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
4.93k
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
4.93k
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
4.93k
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
4.93k
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
4.93k
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
4.93k
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
4.93k
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
4.93k
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
4.93k
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
10.5k
{
162
10.5k
    memset(out, 0, 66);
163
10.5k
    (*((limb *) & out[0])) = in[0];
164
10.5k
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
10.5k
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
10.5k
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
10.5k
    (*((limb_aX *) & out[29])) = in[4];
168
10.5k
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
10.5k
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
10.5k
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
10.5k
    (*((limb_aX *) & out[58])) = in[8];
172
10.5k
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
4.93k
{
177
4.93k
    felem_bytearray b_out;
178
4.93k
    int num_bytes;
179
180
4.93k
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
4.93k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
4.93k
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
4.93k
    bin66_to_felem(out, b_out);
190
4.93k
    return 1;
191
4.93k
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
10.5k
{
196
10.5k
    felem_bytearray b_out;
197
10.5k
    felem_to_bin66(b_out, in);
198
10.5k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
10.5k
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
2.99M
{
221
2.99M
    out[0] = in[0];
222
2.99M
    out[1] = in[1];
223
2.99M
    out[2] = in[2];
224
2.99M
    out[3] = in[3];
225
2.99M
    out[4] = in[4];
226
2.99M
    out[5] = in[5];
227
2.99M
    out[6] = in[6];
228
2.99M
    out[7] = in[7];
229
2.99M
    out[8] = in[8];
230
2.99M
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
798k
{
235
798k
    out[0] += in[0];
236
798k
    out[1] += in[1];
237
798k
    out[2] += in[2];
238
798k
    out[3] += in[3];
239
798k
    out[4] += in[4];
240
798k
    out[5] += in[5];
241
798k
    out[6] += in[6];
242
798k
    out[7] += in[7];
243
798k
    out[8] += in[8];
244
798k
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
7.70M
{
249
7.70M
    out[0] = in[0] * scalar;
250
7.70M
    out[1] = in[1] * scalar;
251
7.70M
    out[2] = in[2] * scalar;
252
7.70M
    out[3] = in[3] * scalar;
253
7.70M
    out[4] = in[4] * scalar;
254
7.70M
    out[5] = in[5] * scalar;
255
7.70M
    out[6] = in[6] * scalar;
256
7.70M
    out[7] = in[7] * scalar;
257
7.70M
    out[8] = in[8] * scalar;
258
7.70M
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
1.31M
{
263
1.31M
    out[0] *= scalar;
264
1.31M
    out[1] *= scalar;
265
1.31M
    out[2] *= scalar;
266
1.31M
    out[3] *= scalar;
267
1.31M
    out[4] *= scalar;
268
1.31M
    out[5] *= scalar;
269
1.31M
    out[6] *= scalar;
270
1.31M
    out[7] *= scalar;
271
1.31M
    out[8] *= scalar;
272
1.31M
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
436k
{
277
436k
    out[0] *= scalar;
278
436k
    out[1] *= scalar;
279
436k
    out[2] *= scalar;
280
436k
    out[3] *= scalar;
281
436k
    out[4] *= scalar;
282
436k
    out[5] *= scalar;
283
436k
    out[6] *= scalar;
284
436k
    out[7] *= scalar;
285
436k
    out[8] *= scalar;
286
436k
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
21.0k
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
21.0k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
21.0k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
21.0k
    out[0] = two62m3 - in[0];
302
21.0k
    out[1] = two62m2 - in[1];
303
21.0k
    out[2] = two62m2 - in[2];
304
21.0k
    out[3] = two62m2 - in[3];
305
21.0k
    out[4] = two62m2 - in[4];
306
21.0k
    out[5] = two62m2 - in[5];
307
21.0k
    out[6] = two62m2 - in[6];
308
21.0k
    out[7] = two62m2 - in[7];
309
21.0k
    out[8] = two62m2 - in[8];
310
21.0k
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
695k
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
695k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
695k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
695k
    out[0] += two62m3 - in[0];
328
695k
    out[1] += two62m2 - in[1];
329
695k
    out[2] += two62m2 - in[2];
330
695k
    out[3] += two62m2 - in[3];
331
695k
    out[4] += two62m2 - in[4];
332
695k
    out[5] += two62m2 - in[5];
333
695k
    out[6] += two62m2 - in[6];
334
695k
    out[7] += two62m2 - in[7];
335
695k
    out[8] += two62m2 - in[8];
336
695k
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
1.27M
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
1.27M
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
1.27M
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
1.27M
    out[0] += two63m6 - in[0];
359
1.27M
    out[1] += two63m5 - in[1];
360
1.27M
    out[2] += two63m5 - in[2];
361
1.27M
    out[3] += two63m5 - in[3];
362
1.27M
    out[4] += two63m5 - in[4];
363
1.27M
    out[5] += two63m5 - in[5];
364
1.27M
    out[6] += two63m5 - in[6];
365
1.27M
    out[7] += two63m5 - in[7];
366
1.27M
    out[8] += two63m5 - in[8];
367
1.27M
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
436k
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
436k
    static const uint128_t two127m70 =
382
436k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
436k
    static const uint128_t two127m69 =
384
436k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
436k
    out[0] += (two127m70 - in[0]);
387
436k
    out[1] += (two127m69 - in[1]);
388
436k
    out[2] += (two127m69 - in[2]);
389
436k
    out[3] += (two127m69 - in[3]);
390
436k
    out[4] += (two127m69 - in[4]);
391
436k
    out[5] += (two127m69 - in[5]);
392
436k
    out[6] += (two127m69 - in[6]);
393
436k
    out[7] += (two127m69 - in[7]);
394
436k
    out[8] += (two127m69 - in[8]);
395
436k
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
2.62M
{
406
2.62M
    felem inx2, inx4;
407
2.62M
    felem_scalar(inx2, in, 2);
408
2.62M
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
2.62M
    out[0] = ((uint128_t) in[0]) * in[0];
422
2.62M
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
2.62M
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
2.62M
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
2.62M
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
2.62M
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
2.62M
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
2.62M
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
2.62M
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
2.62M
             ((uint128_t) in[1]) * inx2[5] +
431
2.62M
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
2.62M
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
2.62M
             ((uint128_t) in[1]) * inx2[6] +
434
2.62M
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
2.62M
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
2.62M
             ((uint128_t) in[1]) * inx2[7] +
437
2.62M
             ((uint128_t) in[2]) * inx2[6] +
438
2.62M
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
2.62M
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
2.62M
              ((uint128_t) in[2]) * inx4[7] +
452
2.62M
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
2.62M
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
2.62M
              ((uint128_t) in[3]) * inx4[7] +
457
2.62M
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
2.62M
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
2.62M
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
2.62M
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
2.62M
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
2.62M
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
2.62M
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
2.62M
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
2.62M
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
2.62M
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
2.29M
{
490
2.29M
    felem in2x2;
491
2.29M
    felem_scalar(in2x2, in2, 2);
492
493
2.29M
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
2.29M
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
2.29M
             ((uint128_t) in1[1]) * in2[0];
497
498
2.29M
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
2.29M
             ((uint128_t) in1[1]) * in2[1] +
500
2.29M
             ((uint128_t) in1[2]) * in2[0];
501
502
2.29M
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
2.29M
             ((uint128_t) in1[1]) * in2[2] +
504
2.29M
             ((uint128_t) in1[2]) * in2[1] +
505
2.29M
             ((uint128_t) in1[3]) * in2[0];
506
507
2.29M
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
2.29M
             ((uint128_t) in1[1]) * in2[3] +
509
2.29M
             ((uint128_t) in1[2]) * in2[2] +
510
2.29M
             ((uint128_t) in1[3]) * in2[1] +
511
2.29M
             ((uint128_t) in1[4]) * in2[0];
512
513
2.29M
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
2.29M
             ((uint128_t) in1[1]) * in2[4] +
515
2.29M
             ((uint128_t) in1[2]) * in2[3] +
516
2.29M
             ((uint128_t) in1[3]) * in2[2] +
517
2.29M
             ((uint128_t) in1[4]) * in2[1] +
518
2.29M
             ((uint128_t) in1[5]) * in2[0];
519
520
2.29M
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
2.29M
             ((uint128_t) in1[1]) * in2[5] +
522
2.29M
             ((uint128_t) in1[2]) * in2[4] +
523
2.29M
             ((uint128_t) in1[3]) * in2[3] +
524
2.29M
             ((uint128_t) in1[4]) * in2[2] +
525
2.29M
             ((uint128_t) in1[5]) * in2[1] +
526
2.29M
             ((uint128_t) in1[6]) * in2[0];
527
528
2.29M
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
2.29M
             ((uint128_t) in1[1]) * in2[6] +
530
2.29M
             ((uint128_t) in1[2]) * in2[5] +
531
2.29M
             ((uint128_t) in1[3]) * in2[4] +
532
2.29M
             ((uint128_t) in1[4]) * in2[3] +
533
2.29M
             ((uint128_t) in1[5]) * in2[2] +
534
2.29M
             ((uint128_t) in1[6]) * in2[1] +
535
2.29M
             ((uint128_t) in1[7]) * in2[0];
536
537
2.29M
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
2.29M
             ((uint128_t) in1[1]) * in2[7] +
539
2.29M
             ((uint128_t) in1[2]) * in2[6] +
540
2.29M
             ((uint128_t) in1[3]) * in2[5] +
541
2.29M
             ((uint128_t) in1[4]) * in2[4] +
542
2.29M
             ((uint128_t) in1[5]) * in2[3] +
543
2.29M
             ((uint128_t) in1[6]) * in2[2] +
544
2.29M
             ((uint128_t) in1[7]) * in2[1] +
545
2.29M
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
2.29M
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
2.29M
              ((uint128_t) in1[2]) * in2x2[7] +
551
2.29M
              ((uint128_t) in1[3]) * in2x2[6] +
552
2.29M
              ((uint128_t) in1[4]) * in2x2[5] +
553
2.29M
              ((uint128_t) in1[5]) * in2x2[4] +
554
2.29M
              ((uint128_t) in1[6]) * in2x2[3] +
555
2.29M
              ((uint128_t) in1[7]) * in2x2[2] +
556
2.29M
              ((uint128_t) in1[8]) * in2x2[1];
557
558
2.29M
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
2.29M
              ((uint128_t) in1[3]) * in2x2[7] +
560
2.29M
              ((uint128_t) in1[4]) * in2x2[6] +
561
2.29M
              ((uint128_t) in1[5]) * in2x2[5] +
562
2.29M
              ((uint128_t) in1[6]) * in2x2[4] +
563
2.29M
              ((uint128_t) in1[7]) * in2x2[3] +
564
2.29M
              ((uint128_t) in1[8]) * in2x2[2];
565
566
2.29M
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
2.29M
              ((uint128_t) in1[4]) * in2x2[7] +
568
2.29M
              ((uint128_t) in1[5]) * in2x2[6] +
569
2.29M
              ((uint128_t) in1[6]) * in2x2[5] +
570
2.29M
              ((uint128_t) in1[7]) * in2x2[4] +
571
2.29M
              ((uint128_t) in1[8]) * in2x2[3];
572
573
2.29M
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
2.29M
              ((uint128_t) in1[5]) * in2x2[7] +
575
2.29M
              ((uint128_t) in1[6]) * in2x2[6] +
576
2.29M
              ((uint128_t) in1[7]) * in2x2[5] +
577
2.29M
              ((uint128_t) in1[8]) * in2x2[4];
578
579
2.29M
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
2.29M
              ((uint128_t) in1[6]) * in2x2[7] +
581
2.29M
              ((uint128_t) in1[7]) * in2x2[6] +
582
2.29M
              ((uint128_t) in1[8]) * in2x2[5];
583
584
2.29M
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
2.29M
              ((uint128_t) in1[7]) * in2x2[7] +
586
2.29M
              ((uint128_t) in1[8]) * in2x2[6];
587
588
2.29M
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
2.29M
              ((uint128_t) in1[8]) * in2x2[7];
590
591
2.29M
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
2.29M
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
4.48M
{
605
4.48M
    u64 overflow1, overflow2;
606
607
4.48M
    out[0] = ((limb) in[0]) & bottom58bits;
608
4.48M
    out[1] = ((limb) in[1]) & bottom58bits;
609
4.48M
    out[2] = ((limb) in[2]) & bottom58bits;
610
4.48M
    out[3] = ((limb) in[3]) & bottom58bits;
611
4.48M
    out[4] = ((limb) in[4]) & bottom58bits;
612
4.48M
    out[5] = ((limb) in[5]) & bottom58bits;
613
4.48M
    out[6] = ((limb) in[6]) & bottom58bits;
614
4.48M
    out[7] = ((limb) in[7]) & bottom58bits;
615
4.48M
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
4.48M
    out[1] += ((limb) in[0]) >> 58;
620
4.48M
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
4.48M
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
4.48M
    out[2] += ((limb) in[1]) >> 58;
628
4.48M
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
4.48M
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
4.48M
    out[3] += ((limb) in[2]) >> 58;
632
4.48M
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
4.48M
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
4.48M
    out[4] += ((limb) in[3]) >> 58;
636
4.48M
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
4.48M
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
4.48M
    out[5] += ((limb) in[4]) >> 58;
640
4.48M
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
4.48M
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
4.48M
    out[6] += ((limb) in[5]) >> 58;
644
4.48M
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
4.48M
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
4.48M
    out[7] += ((limb) in[6]) >> 58;
648
4.48M
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
4.48M
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
4.48M
    out[8] += ((limb) in[7]) >> 58;
652
4.48M
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
4.48M
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
4.48M
    overflow1 += ((limb) in[8]) >> 58;
660
4.48M
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
4.48M
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
4.48M
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
4.48M
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
4.48M
    out[0] += overflow1;        /* out[0] < 2^60 */
667
4.48M
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
4.48M
    out[1] += out[0] >> 58;
670
4.48M
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
4.48M
}
677
678
#if defined(ECP_NISTP521_ASM)
679
void felem_square_wrapper(largefelem out, const felem in);
680
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
2.62M
# define felem_square felem_square_ref
726
2.29M
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
1.44k
{
753
1.44k
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
1.44k
    largefelem tmp;
755
1.44k
    unsigned i;
756
757
1.44k
    felem_square(tmp, in);
758
1.44k
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
1.44k
    felem_mul(tmp, in, ftmp);
760
1.44k
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
1.44k
    felem_assign(ftmp2, ftmp);
762
1.44k
    felem_square(tmp, ftmp);
763
1.44k
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
1.44k
    felem_mul(tmp, in, ftmp);
765
1.44k
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
1.44k
    felem_square(tmp, ftmp);
767
1.44k
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
1.44k
    felem_square(tmp, ftmp2);
770
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
1.44k
    felem_square(tmp, ftmp3);
772
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
1.44k
    felem_mul(tmp, ftmp3, ftmp2);
774
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
1.44k
    felem_assign(ftmp2, ftmp3);
777
1.44k
    felem_square(tmp, ftmp3);
778
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
1.44k
    felem_square(tmp, ftmp3);
780
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
1.44k
    felem_square(tmp, ftmp3);
782
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
1.44k
    felem_square(tmp, ftmp3);
784
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
1.44k
    felem_assign(ftmp4, ftmp3);
786
1.44k
    felem_mul(tmp, ftmp3, ftmp);
787
1.44k
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
788
1.44k
    felem_square(tmp, ftmp4);
789
1.44k
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
790
1.44k
    felem_mul(tmp, ftmp3, ftmp2);
791
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
792
1.44k
    felem_assign(ftmp2, ftmp3);
793
794
13.0k
    for (i = 0; i < 8; i++) {
795
11.5k
        felem_square(tmp, ftmp3);
796
11.5k
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
797
11.5k
    }
798
1.44k
    felem_mul(tmp, ftmp3, ftmp2);
799
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
800
1.44k
    felem_assign(ftmp2, ftmp3);
801
802
24.5k
    for (i = 0; i < 16; i++) {
803
23.1k
        felem_square(tmp, ftmp3);
804
23.1k
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
805
23.1k
    }
806
1.44k
    felem_mul(tmp, ftmp3, ftmp2);
807
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
808
1.44k
    felem_assign(ftmp2, ftmp3);
809
810
47.6k
    for (i = 0; i < 32; i++) {
811
46.2k
        felem_square(tmp, ftmp3);
812
46.2k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
813
46.2k
    }
814
1.44k
    felem_mul(tmp, ftmp3, ftmp2);
815
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
816
1.44k
    felem_assign(ftmp2, ftmp3);
817
818
93.9k
    for (i = 0; i < 64; i++) {
819
92.4k
        felem_square(tmp, ftmp3);
820
92.4k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
821
92.4k
    }
822
1.44k
    felem_mul(tmp, ftmp3, ftmp2);
823
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
824
1.44k
    felem_assign(ftmp2, ftmp3);
825
826
186k
    for (i = 0; i < 128; i++) {
827
184k
        felem_square(tmp, ftmp3);
828
184k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
829
184k
    }
830
1.44k
    felem_mul(tmp, ftmp3, ftmp2);
831
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
832
1.44k
    felem_assign(ftmp2, ftmp3);
833
834
371k
    for (i = 0; i < 256; i++) {
835
369k
        felem_square(tmp, ftmp3);
836
369k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
837
369k
    }
838
1.44k
    felem_mul(tmp, ftmp3, ftmp2);
839
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
840
841
14.4k
    for (i = 0; i < 9; i++) {
842
13.0k
        felem_square(tmp, ftmp3);
843
13.0k
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
844
13.0k
    }
845
1.44k
    felem_mul(tmp, ftmp3, ftmp4);
846
1.44k
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
847
1.44k
    felem_mul(tmp, ftmp3, in);
848
1.44k
    felem_reduce(out, tmp);     /* 2^512 - 3 */
849
1.44k
}
850
851
/* This is 2^521-1, expressed as an felem */
852
static const felem kPrime = {
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
855
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
856
};
857
858
/*-
859
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
860
 * otherwise.
861
 * On entry:
862
 *   in[i] < 2^59 + 2^14
863
 */
864
static limb felem_is_zero(const felem in)
865
712k
{
866
712k
    felem ftmp;
867
712k
    limb is_zero, is_p;
868
712k
    felem_assign(ftmp, in);
869
870
712k
    ftmp[0] += ftmp[8] >> 57;
871
712k
    ftmp[8] &= bottom57bits;
872
    /* ftmp[8] < 2^57 */
873
712k
    ftmp[1] += ftmp[0] >> 58;
874
712k
    ftmp[0] &= bottom58bits;
875
712k
    ftmp[2] += ftmp[1] >> 58;
876
712k
    ftmp[1] &= bottom58bits;
877
712k
    ftmp[3] += ftmp[2] >> 58;
878
712k
    ftmp[2] &= bottom58bits;
879
712k
    ftmp[4] += ftmp[3] >> 58;
880
712k
    ftmp[3] &= bottom58bits;
881
712k
    ftmp[5] += ftmp[4] >> 58;
882
712k
    ftmp[4] &= bottom58bits;
883
712k
    ftmp[6] += ftmp[5] >> 58;
884
712k
    ftmp[5] &= bottom58bits;
885
712k
    ftmp[7] += ftmp[6] >> 58;
886
712k
    ftmp[6] &= bottom58bits;
887
712k
    ftmp[8] += ftmp[7] >> 58;
888
712k
    ftmp[7] &= bottom58bits;
889
    /* ftmp[8] < 2^57 + 4 */
890
891
    /*
892
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
893
     * than our bound for ftmp[8]. Therefore we only have to check if the
894
     * zero is zero or 2^521-1.
895
     */
896
897
712k
    is_zero = 0;
898
712k
    is_zero |= ftmp[0];
899
712k
    is_zero |= ftmp[1];
900
712k
    is_zero |= ftmp[2];
901
712k
    is_zero |= ftmp[3];
902
712k
    is_zero |= ftmp[4];
903
712k
    is_zero |= ftmp[5];
904
712k
    is_zero |= ftmp[6];
905
712k
    is_zero |= ftmp[7];
906
712k
    is_zero |= ftmp[8];
907
908
712k
    is_zero--;
909
    /*
910
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
911
     * can be set is if is_zero was 0 before the decrement.
912
     */
913
712k
    is_zero = 0 - (is_zero >> 63);
914
915
712k
    is_p = ftmp[0] ^ kPrime[0];
916
712k
    is_p |= ftmp[1] ^ kPrime[1];
917
712k
    is_p |= ftmp[2] ^ kPrime[2];
918
712k
    is_p |= ftmp[3] ^ kPrime[3];
919
712k
    is_p |= ftmp[4] ^ kPrime[4];
920
712k
    is_p |= ftmp[5] ^ kPrime[5];
921
712k
    is_p |= ftmp[6] ^ kPrime[6];
922
712k
    is_p |= ftmp[7] ^ kPrime[7];
923
712k
    is_p |= ftmp[8] ^ kPrime[8];
924
925
712k
    is_p--;
926
712k
    is_p = 0 - (is_p >> 63);
927
928
712k
    is_zero |= is_p;
929
712k
    return is_zero;
930
712k
}
931
932
static int felem_is_zero_int(const void *in)
933
0
{
934
0
    return (int)(felem_is_zero(in) & ((limb) 1));
935
0
}
936
937
/*-
938
 * felem_contract converts |in| to its unique, minimal representation.
939
 * On entry:
940
 *   in[i] < 2^59 + 2^14
941
 */
942
static void felem_contract(felem out, const felem in)
943
7.02k
{
944
7.02k
    limb is_p, is_greater, sign;
945
7.02k
    static const limb two58 = ((limb) 1) << 58;
946
947
7.02k
    felem_assign(out, in);
948
949
7.02k
    out[0] += out[8] >> 57;
950
7.02k
    out[8] &= bottom57bits;
951
    /* out[8] < 2^57 */
952
7.02k
    out[1] += out[0] >> 58;
953
7.02k
    out[0] &= bottom58bits;
954
7.02k
    out[2] += out[1] >> 58;
955
7.02k
    out[1] &= bottom58bits;
956
7.02k
    out[3] += out[2] >> 58;
957
7.02k
    out[2] &= bottom58bits;
958
7.02k
    out[4] += out[3] >> 58;
959
7.02k
    out[3] &= bottom58bits;
960
7.02k
    out[5] += out[4] >> 58;
961
7.02k
    out[4] &= bottom58bits;
962
7.02k
    out[6] += out[5] >> 58;
963
7.02k
    out[5] &= bottom58bits;
964
7.02k
    out[7] += out[6] >> 58;
965
7.02k
    out[6] &= bottom58bits;
966
7.02k
    out[8] += out[7] >> 58;
967
7.02k
    out[7] &= bottom58bits;
968
    /* out[8] < 2^57 + 4 */
969
970
    /*
971
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
972
     * out. See the comments in felem_is_zero regarding why we don't test for
973
     * other multiples of the prime.
974
     */
975
976
    /*
977
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
978
     */
979
980
7.02k
    is_p = out[0] ^ kPrime[0];
981
7.02k
    is_p |= out[1] ^ kPrime[1];
982
7.02k
    is_p |= out[2] ^ kPrime[2];
983
7.02k
    is_p |= out[3] ^ kPrime[3];
984
7.02k
    is_p |= out[4] ^ kPrime[4];
985
7.02k
    is_p |= out[5] ^ kPrime[5];
986
7.02k
    is_p |= out[6] ^ kPrime[6];
987
7.02k
    is_p |= out[7] ^ kPrime[7];
988
7.02k
    is_p |= out[8] ^ kPrime[8];
989
990
7.02k
    is_p--;
991
7.02k
    is_p &= is_p << 32;
992
7.02k
    is_p &= is_p << 16;
993
7.02k
    is_p &= is_p << 8;
994
7.02k
    is_p &= is_p << 4;
995
7.02k
    is_p &= is_p << 2;
996
7.02k
    is_p &= is_p << 1;
997
7.02k
    is_p = 0 - (is_p >> 63);
998
7.02k
    is_p = ~is_p;
999
1000
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1001
1002
7.02k
    out[0] &= is_p;
1003
7.02k
    out[1] &= is_p;
1004
7.02k
    out[2] &= is_p;
1005
7.02k
    out[3] &= is_p;
1006
7.02k
    out[4] &= is_p;
1007
7.02k
    out[5] &= is_p;
1008
7.02k
    out[6] &= is_p;
1009
7.02k
    out[7] &= is_p;
1010
7.02k
    out[8] &= is_p;
1011
1012
    /*
1013
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1014
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1015
     */
1016
7.02k
    is_greater = out[8] >> 57;
1017
7.02k
    is_greater |= is_greater << 32;
1018
7.02k
    is_greater |= is_greater << 16;
1019
7.02k
    is_greater |= is_greater << 8;
1020
7.02k
    is_greater |= is_greater << 4;
1021
7.02k
    is_greater |= is_greater << 2;
1022
7.02k
    is_greater |= is_greater << 1;
1023
7.02k
    is_greater = 0 - (is_greater >> 63);
1024
1025
7.02k
    out[0] -= kPrime[0] & is_greater;
1026
7.02k
    out[1] -= kPrime[1] & is_greater;
1027
7.02k
    out[2] -= kPrime[2] & is_greater;
1028
7.02k
    out[3] -= kPrime[3] & is_greater;
1029
7.02k
    out[4] -= kPrime[4] & is_greater;
1030
7.02k
    out[5] -= kPrime[5] & is_greater;
1031
7.02k
    out[6] -= kPrime[6] & is_greater;
1032
7.02k
    out[7] -= kPrime[7] & is_greater;
1033
7.02k
    out[8] -= kPrime[8] & is_greater;
1034
1035
    /* Eliminate negative coefficients */
1036
7.02k
    sign = -(out[0] >> 63);
1037
7.02k
    out[0] += (two58 & sign);
1038
7.02k
    out[1] -= (1 & sign);
1039
7.02k
    sign = -(out[1] >> 63);
1040
7.02k
    out[1] += (two58 & sign);
1041
7.02k
    out[2] -= (1 & sign);
1042
7.02k
    sign = -(out[2] >> 63);
1043
7.02k
    out[2] += (two58 & sign);
1044
7.02k
    out[3] -= (1 & sign);
1045
7.02k
    sign = -(out[3] >> 63);
1046
7.02k
    out[3] += (two58 & sign);
1047
7.02k
    out[4] -= (1 & sign);
1048
7.02k
    sign = -(out[4] >> 63);
1049
7.02k
    out[4] += (two58 & sign);
1050
7.02k
    out[5] -= (1 & sign);
1051
7.02k
    sign = -(out[0] >> 63);
1052
7.02k
    out[5] += (two58 & sign);
1053
7.02k
    out[6] -= (1 & sign);
1054
7.02k
    sign = -(out[6] >> 63);
1055
7.02k
    out[6] += (two58 & sign);
1056
7.02k
    out[7] -= (1 & sign);
1057
7.02k
    sign = -(out[7] >> 63);
1058
7.02k
    out[7] += (two58 & sign);
1059
7.02k
    out[8] -= (1 & sign);
1060
7.02k
    sign = -(out[5] >> 63);
1061
7.02k
    out[5] += (two58 & sign);
1062
7.02k
    out[6] -= (1 & sign);
1063
7.02k
    sign = -(out[6] >> 63);
1064
7.02k
    out[6] += (two58 & sign);
1065
7.02k
    out[7] -= (1 & sign);
1066
7.02k
    sign = -(out[7] >> 63);
1067
7.02k
    out[7] += (two58 & sign);
1068
7.02k
    out[8] -= (1 & sign);
1069
7.02k
}
1070
1071
/*-
1072
 * Group operations
1073
 * ----------------
1074
 *
1075
 * Building on top of the field operations we have the operations on the
1076
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1077
 * coordinates */
1078
1079
/*-
1080
 * point_double calculates 2*(x_in, y_in, z_in)
1081
 *
1082
 * The method is taken from:
1083
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1084
 *
1085
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1086
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1087
static void
1088
point_double(felem x_out, felem y_out, felem z_out,
1089
             const felem x_in, const felem y_in, const felem z_in)
1090
258k
{
1091
258k
    largefelem tmp, tmp2;
1092
258k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1093
1094
258k
    felem_assign(ftmp, x_in);
1095
258k
    felem_assign(ftmp2, x_in);
1096
1097
    /* delta = z^2 */
1098
258k
    felem_square(tmp, z_in);
1099
258k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1100
1101
    /* gamma = y^2 */
1102
258k
    felem_square(tmp, y_in);
1103
258k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1104
1105
    /* beta = x*gamma */
1106
258k
    felem_mul(tmp, x_in, gamma);
1107
258k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1108
1109
    /* alpha = 3*(x-delta)*(x+delta) */
1110
258k
    felem_diff64(ftmp, delta);
1111
    /* ftmp[i] < 2^61 */
1112
258k
    felem_sum64(ftmp2, delta);
1113
    /* ftmp2[i] < 2^60 + 2^15 */
1114
258k
    felem_scalar64(ftmp2, 3);
1115
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1116
258k
    felem_mul(tmp, ftmp, ftmp2);
1117
    /*-
1118
     * tmp[i] < 17(3*2^121 + 3*2^76)
1119
     *        = 61*2^121 + 61*2^76
1120
     *        < 64*2^121 + 64*2^76
1121
     *        = 2^127 + 2^82
1122
     *        < 2^128
1123
     */
1124
258k
    felem_reduce(alpha, tmp);
1125
1126
    /* x' = alpha^2 - 8*beta */
1127
258k
    felem_square(tmp, alpha);
1128
    /*
1129
     * tmp[i] < 17*2^120 < 2^125
1130
     */
1131
258k
    felem_assign(ftmp, beta);
1132
258k
    felem_scalar64(ftmp, 8);
1133
    /* ftmp[i] < 2^62 + 2^17 */
1134
258k
    felem_diff_128_64(tmp, ftmp);
1135
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1136
258k
    felem_reduce(x_out, tmp);
1137
1138
    /* z' = (y + z)^2 - gamma - delta */
1139
258k
    felem_sum64(delta, gamma);
1140
    /* delta[i] < 2^60 + 2^15 */
1141
258k
    felem_assign(ftmp, y_in);
1142
258k
    felem_sum64(ftmp, z_in);
1143
    /* ftmp[i] < 2^60 + 2^15 */
1144
258k
    felem_square(tmp, ftmp);
1145
    /*
1146
     * tmp[i] < 17(2^122) < 2^127
1147
     */
1148
258k
    felem_diff_128_64(tmp, delta);
1149
    /* tmp[i] < 2^127 + 2^63 */
1150
258k
    felem_reduce(z_out, tmp);
1151
1152
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1153
258k
    felem_scalar64(beta, 4);
1154
    /* beta[i] < 2^61 + 2^16 */
1155
258k
    felem_diff64(beta, x_out);
1156
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1157
258k
    felem_mul(tmp, alpha, beta);
1158
    /*-
1159
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1160
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1161
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1162
     *        < 2^128
1163
     */
1164
258k
    felem_square(tmp2, gamma);
1165
    /*-
1166
     * tmp2[i] < 17*(2^59 + 2^14)^2
1167
     *         = 17*(2^118 + 2^74 + 2^28)
1168
     */
1169
258k
    felem_scalar128(tmp2, 8);
1170
    /*-
1171
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1172
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1173
     *         < 2^126
1174
     */
1175
258k
    felem_diff128(tmp, tmp2);
1176
    /*-
1177
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1178
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1179
     *          2^74 + 2^69 + 2^34 + 2^30
1180
     *        < 2^128
1181
     */
1182
258k
    felem_reduce(y_out, tmp);
1183
258k
}
1184
1185
/* copy_conditional copies in to out iff mask is all ones. */
1186
static void copy_conditional(felem out, const felem in, limb mask)
1187
1.08M
{
1188
1.08M
    unsigned i;
1189
10.8M
    for (i = 0; i < NLIMBS; ++i) {
1190
9.80M
        const limb tmp = mask & (in[i] ^ out[i]);
1191
9.80M
        out[i] ^= tmp;
1192
9.80M
    }
1193
1.08M
}
1194
1195
/*-
1196
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1197
 *
1198
 * The method is taken from
1199
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1200
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1201
 *
1202
 * This function includes a branch for checking whether the two input points
1203
 * are equal (while not equal to the point at infinity). See comment below
1204
 * on constant-time.
1205
 */
1206
static void point_add(felem x3, felem y3, felem z3,
1207
                      const felem x1, const felem y1, const felem z1,
1208
                      const int mixed, const felem x2, const felem y2,
1209
                      const felem z2)
1210
178k
{
1211
178k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1212
178k
    largefelem tmp, tmp2;
1213
178k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1214
178k
    limb points_equal;
1215
1216
178k
    z1_is_zero = felem_is_zero(z1);
1217
178k
    z2_is_zero = felem_is_zero(z2);
1218
1219
    /* ftmp = z1z1 = z1**2 */
1220
178k
    felem_square(tmp, z1);
1221
178k
    felem_reduce(ftmp, tmp);
1222
1223
178k
    if (!mixed) {
1224
        /* ftmp2 = z2z2 = z2**2 */
1225
22.2k
        felem_square(tmp, z2);
1226
22.2k
        felem_reduce(ftmp2, tmp);
1227
1228
        /* u1 = ftmp3 = x1*z2z2 */
1229
22.2k
        felem_mul(tmp, x1, ftmp2);
1230
22.2k
        felem_reduce(ftmp3, tmp);
1231
1232
        /* ftmp5 = z1 + z2 */
1233
22.2k
        felem_assign(ftmp5, z1);
1234
22.2k
        felem_sum64(ftmp5, z2);
1235
        /* ftmp5[i] < 2^61 */
1236
1237
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1238
22.2k
        felem_square(tmp, ftmp5);
1239
        /* tmp[i] < 17*2^122 */
1240
22.2k
        felem_diff_128_64(tmp, ftmp);
1241
        /* tmp[i] < 17*2^122 + 2^63 */
1242
22.2k
        felem_diff_128_64(tmp, ftmp2);
1243
        /* tmp[i] < 17*2^122 + 2^64 */
1244
22.2k
        felem_reduce(ftmp5, tmp);
1245
1246
        /* ftmp2 = z2 * z2z2 */
1247
22.2k
        felem_mul(tmp, ftmp2, z2);
1248
22.2k
        felem_reduce(ftmp2, tmp);
1249
1250
        /* s1 = ftmp6 = y1 * z2**3 */
1251
22.2k
        felem_mul(tmp, y1, ftmp2);
1252
22.2k
        felem_reduce(ftmp6, tmp);
1253
155k
    } else {
1254
        /*
1255
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1256
         */
1257
1258
        /* u1 = ftmp3 = x1*z2z2 */
1259
155k
        felem_assign(ftmp3, x1);
1260
1261
        /* ftmp5 = 2*z1z2 */
1262
155k
        felem_scalar(ftmp5, z1, 2);
1263
1264
        /* s1 = ftmp6 = y1 * z2**3 */
1265
155k
        felem_assign(ftmp6, y1);
1266
155k
    }
1267
1268
    /* u2 = x2*z1z1 */
1269
178k
    felem_mul(tmp, x2, ftmp);
1270
    /* tmp[i] < 17*2^120 */
1271
1272
    /* h = ftmp4 = u2 - u1 */
1273
178k
    felem_diff_128_64(tmp, ftmp3);
1274
    /* tmp[i] < 17*2^120 + 2^63 */
1275
178k
    felem_reduce(ftmp4, tmp);
1276
1277
178k
    x_equal = felem_is_zero(ftmp4);
1278
1279
    /* z_out = ftmp5 * h */
1280
178k
    felem_mul(tmp, ftmp5, ftmp4);
1281
178k
    felem_reduce(z_out, tmp);
1282
1283
    /* ftmp = z1 * z1z1 */
1284
178k
    felem_mul(tmp, ftmp, z1);
1285
178k
    felem_reduce(ftmp, tmp);
1286
1287
    /* s2 = tmp = y2 * z1**3 */
1288
178k
    felem_mul(tmp, y2, ftmp);
1289
    /* tmp[i] < 17*2^120 */
1290
1291
    /* r = ftmp5 = (s2 - s1)*2 */
1292
178k
    felem_diff_128_64(tmp, ftmp6);
1293
    /* tmp[i] < 17*2^120 + 2^63 */
1294
178k
    felem_reduce(ftmp5, tmp);
1295
178k
    y_equal = felem_is_zero(ftmp5);
1296
178k
    felem_scalar64(ftmp5, 2);
1297
    /* ftmp5[i] < 2^61 */
1298
1299
    /*
1300
     * The formulae are incorrect if the points are equal, in affine coordinates
1301
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1302
     * happens.
1303
     *
1304
     * We use bitwise operations to avoid potential side-channels introduced by
1305
     * the short-circuiting behaviour of boolean operators.
1306
     *
1307
     * The special case of either point being the point at infinity (z1 and/or
1308
     * z2 are zero), is handled separately later on in this function, so we
1309
     * avoid jumping to point_double here in those special cases.
1310
     *
1311
     * Notice the comment below on the implications of this branching for timing
1312
     * leaks and why it is considered practically irrelevant.
1313
     */
1314
178k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1315
1316
178k
    if (points_equal) {
1317
        /*
1318
         * This is obviously not constant-time but it will almost-never happen
1319
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1320
         * where the intermediate value gets very close to the group order.
1321
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1322
         * for the scalar, it's possible for the intermediate value to be a small
1323
         * negative multiple of the base point, and for the final signed digit
1324
         * to be the same value. We believe that this only occurs for the scalar
1325
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1326
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1327
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1328
         * the final digit is also -9G. Since this only happens for a single
1329
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1330
         * check whether a secret scalar was that exact value, can already do
1331
         * so.)
1332
         */
1333
0
        point_double(x3, y3, z3, x1, y1, z1);
1334
0
        return;
1335
0
    }
1336
1337
    /* I = ftmp = (2h)**2 */
1338
178k
    felem_assign(ftmp, ftmp4);
1339
178k
    felem_scalar64(ftmp, 2);
1340
    /* ftmp[i] < 2^61 */
1341
178k
    felem_square(tmp, ftmp);
1342
    /* tmp[i] < 17*2^122 */
1343
178k
    felem_reduce(ftmp, tmp);
1344
1345
    /* J = ftmp2 = h * I */
1346
178k
    felem_mul(tmp, ftmp4, ftmp);
1347
178k
    felem_reduce(ftmp2, tmp);
1348
1349
    /* V = ftmp4 = U1 * I */
1350
178k
    felem_mul(tmp, ftmp3, ftmp);
1351
178k
    felem_reduce(ftmp4, tmp);
1352
1353
    /* x_out = r**2 - J - 2V */
1354
178k
    felem_square(tmp, ftmp5);
1355
    /* tmp[i] < 17*2^122 */
1356
178k
    felem_diff_128_64(tmp, ftmp2);
1357
    /* tmp[i] < 17*2^122 + 2^63 */
1358
178k
    felem_assign(ftmp3, ftmp4);
1359
178k
    felem_scalar64(ftmp4, 2);
1360
    /* ftmp4[i] < 2^61 */
1361
178k
    felem_diff_128_64(tmp, ftmp4);
1362
    /* tmp[i] < 17*2^122 + 2^64 */
1363
178k
    felem_reduce(x_out, tmp);
1364
1365
    /* y_out = r(V-x_out) - 2 * s1 * J */
1366
178k
    felem_diff64(ftmp3, x_out);
1367
    /*
1368
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1369
     */
1370
178k
    felem_mul(tmp, ftmp5, ftmp3);
1371
    /* tmp[i] < 17*2^122 */
1372
178k
    felem_mul(tmp2, ftmp6, ftmp2);
1373
    /* tmp2[i] < 17*2^120 */
1374
178k
    felem_scalar128(tmp2, 2);
1375
    /* tmp2[i] < 17*2^121 */
1376
178k
    felem_diff128(tmp, tmp2);
1377
        /*-
1378
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1379
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1380
         *        < 2^127
1381
         */
1382
178k
    felem_reduce(y_out, tmp);
1383
1384
178k
    copy_conditional(x_out, x2, z1_is_zero);
1385
178k
    copy_conditional(x_out, x1, z2_is_zero);
1386
178k
    copy_conditional(y_out, y2, z1_is_zero);
1387
178k
    copy_conditional(y_out, y1, z2_is_zero);
1388
178k
    copy_conditional(z_out, z2, z1_is_zero);
1389
178k
    copy_conditional(z_out, z1, z2_is_zero);
1390
178k
    felem_assign(x3, x_out);
1391
178k
    felem_assign(y3, y_out);
1392
178k
    felem_assign(z3, z_out);
1393
178k
}
1394
1395
/*-
1396
 * Base point pre computation
1397
 * --------------------------
1398
 *
1399
 * Two different sorts of precomputed tables are used in the following code.
1400
 * Each contain various points on the curve, where each point is three field
1401
 * elements (x, y, z).
1402
 *
1403
 * For the base point table, z is usually 1 (0 for the point at infinity).
1404
 * This table has 16 elements:
1405
 * index | bits    | point
1406
 * ------+---------+------------------------------
1407
 *     0 | 0 0 0 0 | 0G
1408
 *     1 | 0 0 0 1 | 1G
1409
 *     2 | 0 0 1 0 | 2^130G
1410
 *     3 | 0 0 1 1 | (2^130 + 1)G
1411
 *     4 | 0 1 0 0 | 2^260G
1412
 *     5 | 0 1 0 1 | (2^260 + 1)G
1413
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1414
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1415
 *     8 | 1 0 0 0 | 2^390G
1416
 *     9 | 1 0 0 1 | (2^390 + 1)G
1417
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1418
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1419
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1420
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1421
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1422
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1423
 *
1424
 * The reason for this is so that we can clock bits into four different
1425
 * locations when doing simple scalar multiplies against the base point.
1426
 *
1427
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1428
1429
/* gmul is the table of precomputed base points */
1430
static const felem gmul[16][3] = {
1431
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1433
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1434
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1435
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1436
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1437
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1438
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1439
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1440
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1441
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1442
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1443
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1444
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1445
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1446
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1447
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1448
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1449
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1450
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1451
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1452
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1453
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1454
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1455
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1456
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1457
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1458
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1459
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1460
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1461
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1462
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1463
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1464
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1465
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1466
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1467
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1468
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1469
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1470
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1471
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1472
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1473
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1474
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1475
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1476
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1477
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1478
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1479
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1480
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1481
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1482
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1483
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1484
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1485
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1486
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1487
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1488
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1489
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1490
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1491
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1492
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1493
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1494
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1495
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1496
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1497
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1498
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1499
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1500
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1501
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1502
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1503
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1504
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1505
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1506
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1507
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1508
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1509
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1510
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1511
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1512
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1513
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1514
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1515
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1516
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1517
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1518
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1519
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1520
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1521
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1522
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1523
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1524
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1525
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1526
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1527
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1528
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1529
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1530
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1531
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1532
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1533
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1534
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1535
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1536
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1537
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1538
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1539
};
1540
1541
/*
1542
 * select_point selects the |idx|th point from a precomputation table and
1543
 * copies it to out.
1544
 */
1545
 /* pre_comp below is of the size provided in |size| */
1546
static void select_point(const limb idx, unsigned int size,
1547
                         const felem pre_comp[][3], felem out[3])
1548
178k
{
1549
178k
    unsigned i, j;
1550
178k
    limb *outlimbs = &out[0][0];
1551
1552
178k
    memset(out, 0, sizeof(*out) * 3);
1553
1554
3.04M
    for (i = 0; i < size; i++) {
1555
2.87M
        const limb *inlimbs = &pre_comp[i][0][0];
1556
2.87M
        limb mask = i ^ idx;
1557
2.87M
        mask |= mask >> 4;
1558
2.87M
        mask |= mask >> 2;
1559
2.87M
        mask |= mask >> 1;
1560
2.87M
        mask &= 1;
1561
2.87M
        mask--;
1562
80.3M
        for (j = 0; j < NLIMBS * 3; j++)
1563
77.4M
            outlimbs[j] |= inlimbs[j] & mask;
1564
2.87M
    }
1565
178k
}
1566
1567
/* get_bit returns the |i|th bit in |in| */
1568
static char get_bit(const felem_bytearray in, int i)
1569
750k
{
1570
750k
    if (i < 0)
1571
200
        return 0;
1572
750k
    return (in[i >> 3] >> (i & 7)) & 1;
1573
750k
}
1574
1575
/*
1576
 * Interleaved point multiplication using precomputed point multiples: The
1577
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1578
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1579
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1580
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1581
 */
1582
static void batch_mul(felem x_out, felem y_out, felem z_out,
1583
                      const felem_bytearray scalars[],
1584
                      const unsigned num_points, const u8 *g_scalar,
1585
                      const int mixed, const felem pre_comp[][17][3],
1586
                      const felem g_pre_comp[16][3])
1587
1.37k
{
1588
1.37k
    int i, skip;
1589
1.37k
    unsigned num, gen_mul = (g_scalar != NULL);
1590
1.37k
    felem nq[3], tmp[4];
1591
1.37k
    limb bits;
1592
1.37k
    u8 sign, digit;
1593
1594
    /* set nq to the point at infinity */
1595
1.37k
    memset(nq, 0, sizeof(nq));
1596
1597
    /*
1598
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1599
     * of the generator (last quarter of rounds) and additions of other
1600
     * points multiples (every 5th round).
1601
     */
1602
1.37k
    skip = 1;                   /* save two point operations in the first
1603
                                 * round */
1604
259k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1605
        /* double */
1606
258k
        if (!skip)
1607
257k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1608
1609
        /* add multiples of the generator */
1610
258k
        if (gen_mul && (i <= 130)) {
1611
157k
            bits = get_bit(g_scalar, i + 390) << 3;
1612
157k
            if (i < 130) {
1613
155k
                bits |= get_bit(g_scalar, i + 260) << 2;
1614
155k
                bits |= get_bit(g_scalar, i + 130) << 1;
1615
155k
                bits |= get_bit(g_scalar, i);
1616
155k
            }
1617
            /* select the point to add, in constant time */
1618
157k
            select_point(bits, 16, g_pre_comp, tmp);
1619
157k
            if (!skip) {
1620
                /* The 1 argument below is for "mixed" */
1621
155k
                point_add(nq[0], nq[1], nq[2],
1622
155k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1623
155k
            } else {
1624
1.17k
                memcpy(nq, tmp, 3 * sizeof(felem));
1625
1.17k
                skip = 0;
1626
1.17k
            }
1627
157k
        }
1628
1629
        /* do other additions every 5 doublings */
1630
258k
        if (num_points && (i % 5 == 0)) {
1631
            /* loop over all scalars */
1632
42.0k
            for (num = 0; num < num_points; ++num) {
1633
21.0k
                bits = get_bit(scalars[num], i + 4) << 5;
1634
21.0k
                bits |= get_bit(scalars[num], i + 3) << 4;
1635
21.0k
                bits |= get_bit(scalars[num], i + 2) << 3;
1636
21.0k
                bits |= get_bit(scalars[num], i + 1) << 2;
1637
21.0k
                bits |= get_bit(scalars[num], i) << 1;
1638
21.0k
                bits |= get_bit(scalars[num], i - 1);
1639
21.0k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1640
1641
                /*
1642
                 * select the point to add or subtract, in constant time
1643
                 */
1644
21.0k
                select_point(digit, 17, pre_comp[num], tmp);
1645
21.0k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1646
                                            * point */
1647
21.0k
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1648
1649
21.0k
                if (!skip) {
1650
20.8k
                    point_add(nq[0], nq[1], nq[2],
1651
20.8k
                              nq[0], nq[1], nq[2],
1652
20.8k
                              mixed, tmp[0], tmp[1], tmp[2]);
1653
20.8k
                } else {
1654
200
                    memcpy(nq, tmp, 3 * sizeof(felem));
1655
200
                    skip = 0;
1656
200
                }
1657
21.0k
            }
1658
21.0k
        }
1659
258k
    }
1660
1.37k
    felem_assign(x_out, nq[0]);
1661
1.37k
    felem_assign(y_out, nq[1]);
1662
1.37k
    felem_assign(z_out, nq[2]);
1663
1.37k
}
1664
1665
/* Precomputation for the group generator. */
1666
struct nistp521_pre_comp_st {
1667
    felem g_pre_comp[16][3];
1668
    CRYPTO_REF_COUNT references;
1669
    CRYPTO_RWLOCK *lock;
1670
};
1671
1672
const EC_METHOD *EC_GFp_nistp521_method(void)
1673
20.4k
{
1674
20.4k
    static const EC_METHOD ret = {
1675
20.4k
        EC_FLAGS_DEFAULT_OCT,
1676
20.4k
        NID_X9_62_prime_field,
1677
20.4k
        ossl_ec_GFp_nistp521_group_init,
1678
20.4k
        ossl_ec_GFp_simple_group_finish,
1679
20.4k
        ossl_ec_GFp_simple_group_clear_finish,
1680
20.4k
        ossl_ec_GFp_nist_group_copy,
1681
20.4k
        ossl_ec_GFp_nistp521_group_set_curve,
1682
20.4k
        ossl_ec_GFp_simple_group_get_curve,
1683
20.4k
        ossl_ec_GFp_simple_group_get_degree,
1684
20.4k
        ossl_ec_group_simple_order_bits,
1685
20.4k
        ossl_ec_GFp_simple_group_check_discriminant,
1686
20.4k
        ossl_ec_GFp_simple_point_init,
1687
20.4k
        ossl_ec_GFp_simple_point_finish,
1688
20.4k
        ossl_ec_GFp_simple_point_clear_finish,
1689
20.4k
        ossl_ec_GFp_simple_point_copy,
1690
20.4k
        ossl_ec_GFp_simple_point_set_to_infinity,
1691
20.4k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1692
20.4k
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1693
20.4k
        0 /* point_set_compressed_coordinates */ ,
1694
20.4k
        0 /* point2oct */ ,
1695
20.4k
        0 /* oct2point */ ,
1696
20.4k
        ossl_ec_GFp_simple_add,
1697
20.4k
        ossl_ec_GFp_simple_dbl,
1698
20.4k
        ossl_ec_GFp_simple_invert,
1699
20.4k
        ossl_ec_GFp_simple_is_at_infinity,
1700
20.4k
        ossl_ec_GFp_simple_is_on_curve,
1701
20.4k
        ossl_ec_GFp_simple_cmp,
1702
20.4k
        ossl_ec_GFp_simple_make_affine,
1703
20.4k
        ossl_ec_GFp_simple_points_make_affine,
1704
20.4k
        ossl_ec_GFp_nistp521_points_mul,
1705
20.4k
        ossl_ec_GFp_nistp521_precompute_mult,
1706
20.4k
        ossl_ec_GFp_nistp521_have_precompute_mult,
1707
20.4k
        ossl_ec_GFp_nist_field_mul,
1708
20.4k
        ossl_ec_GFp_nist_field_sqr,
1709
20.4k
        0 /* field_div */ ,
1710
20.4k
        ossl_ec_GFp_simple_field_inv,
1711
20.4k
        0 /* field_encode */ ,
1712
20.4k
        0 /* field_decode */ ,
1713
20.4k
        0,                      /* field_set_to_one */
1714
20.4k
        ossl_ec_key_simple_priv2oct,
1715
20.4k
        ossl_ec_key_simple_oct2priv,
1716
20.4k
        0, /* set private */
1717
20.4k
        ossl_ec_key_simple_generate_key,
1718
20.4k
        ossl_ec_key_simple_check_key,
1719
20.4k
        ossl_ec_key_simple_generate_public_key,
1720
20.4k
        0, /* keycopy */
1721
20.4k
        0, /* keyfinish */
1722
20.4k
        ossl_ecdh_simple_compute_key,
1723
20.4k
        ossl_ecdsa_simple_sign_setup,
1724
20.4k
        ossl_ecdsa_simple_sign_sig,
1725
20.4k
        ossl_ecdsa_simple_verify_sig,
1726
20.4k
        0, /* field_inverse_mod_ord */
1727
20.4k
        0, /* blind_coordinates */
1728
20.4k
        0, /* ladder_pre */
1729
20.4k
        0, /* ladder_step */
1730
20.4k
        0  /* ladder_post */
1731
20.4k
    };
1732
1733
20.4k
    return &ret;
1734
20.4k
}
1735
1736
/******************************************************************************/
1737
/*
1738
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1739
 */
1740
1741
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1742
0
{
1743
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1744
1745
0
    if (ret == NULL) {
1746
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1747
0
        return ret;
1748
0
    }
1749
1750
0
    ret->references = 1;
1751
1752
0
    ret->lock = CRYPTO_THREAD_lock_new();
1753
0
    if (ret->lock == NULL) {
1754
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1755
0
        OPENSSL_free(ret);
1756
0
        return NULL;
1757
0
    }
1758
0
    return ret;
1759
0
}
1760
1761
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1762
0
{
1763
0
    int i;
1764
0
    if (p != NULL)
1765
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1766
0
    return p;
1767
0
}
1768
1769
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1770
0
{
1771
0
    int i;
1772
1773
0
    if (p == NULL)
1774
0
        return;
1775
1776
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1777
0
    REF_PRINT_COUNT("EC_nistp521", p);
1778
0
    if (i > 0)
1779
0
        return;
1780
0
    REF_ASSERT_ISNT(i < 0);
1781
1782
0
    CRYPTO_THREAD_lock_free(p->lock);
1783
0
    OPENSSL_free(p);
1784
0
}
1785
1786
/******************************************************************************/
1787
/*
1788
 * OPENSSL EC_METHOD FUNCTIONS
1789
 */
1790
1791
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1792
40.7k
{
1793
40.7k
    int ret;
1794
40.7k
    ret = ossl_ec_GFp_simple_group_init(group);
1795
40.7k
    group->a_is_minus3 = 1;
1796
40.7k
    return ret;
1797
40.7k
}
1798
1799
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1800
                                         const BIGNUM *a, const BIGNUM *b,
1801
                                         BN_CTX *ctx)
1802
20.4k
{
1803
20.4k
    int ret = 0;
1804
20.4k
    BIGNUM *curve_p, *curve_a, *curve_b;
1805
20.4k
#ifndef FIPS_MODULE
1806
20.4k
    BN_CTX *new_ctx = NULL;
1807
1808
20.4k
    if (ctx == NULL)
1809
0
        ctx = new_ctx = BN_CTX_new();
1810
20.4k
#endif
1811
20.4k
    if (ctx == NULL)
1812
0
        return 0;
1813
1814
20.4k
    BN_CTX_start(ctx);
1815
20.4k
    curve_p = BN_CTX_get(ctx);
1816
20.4k
    curve_a = BN_CTX_get(ctx);
1817
20.4k
    curve_b = BN_CTX_get(ctx);
1818
20.4k
    if (curve_b == NULL)
1819
0
        goto err;
1820
20.4k
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1821
20.4k
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1822
20.4k
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1823
20.4k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1824
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1825
0
        goto err;
1826
0
    }
1827
20.4k
    group->field_mod_func = BN_nist_mod_521;
1828
20.4k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1829
20.4k
 err:
1830
20.4k
    BN_CTX_end(ctx);
1831
20.4k
#ifndef FIPS_MODULE
1832
20.4k
    BN_CTX_free(new_ctx);
1833
20.4k
#endif
1834
20.4k
    return ret;
1835
20.4k
}
1836
1837
/*
1838
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1839
 * (X/Z^2, Y/Z^3)
1840
 */
1841
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1842
                                                      const EC_POINT *point,
1843
                                                      BIGNUM *x, BIGNUM *y,
1844
                                                      BN_CTX *ctx)
1845
1.44k
{
1846
1.44k
    felem z1, z2, x_in, y_in, x_out, y_out;
1847
1.44k
    largefelem tmp;
1848
1849
1.44k
    if (EC_POINT_is_at_infinity(group, point)) {
1850
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1851
0
        return 0;
1852
0
    }
1853
1.44k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1854
1.44k
        (!BN_to_felem(z1, point->Z)))
1855
0
        return 0;
1856
1.44k
    felem_inv(z2, z1);
1857
1.44k
    felem_square(tmp, z2);
1858
1.44k
    felem_reduce(z1, tmp);
1859
1.44k
    felem_mul(tmp, x_in, z1);
1860
1.44k
    felem_reduce(x_in, tmp);
1861
1.44k
    felem_contract(x_out, x_in);
1862
1.44k
    if (x != NULL) {
1863
1.44k
        if (!felem_to_BN(x, x_out)) {
1864
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1865
0
            return 0;
1866
0
        }
1867
1.44k
    }
1868
1.44k
    felem_mul(tmp, z1, z2);
1869
1.44k
    felem_reduce(z1, tmp);
1870
1.44k
    felem_mul(tmp, y_in, z1);
1871
1.44k
    felem_reduce(y_in, tmp);
1872
1.44k
    felem_contract(y_out, y_in);
1873
1.44k
    if (y != NULL) {
1874
1.37k
        if (!felem_to_BN(y, y_out)) {
1875
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1876
0
            return 0;
1877
0
        }
1878
1.37k
    }
1879
1.44k
    return 1;
1880
1.44k
}
1881
1882
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1883
static void make_points_affine(size_t num, felem points[][3],
1884
                               felem tmp_felems[])
1885
0
{
1886
    /*
1887
     * Runs in constant time, unless an input is the point at infinity (which
1888
     * normally shouldn't happen).
1889
     */
1890
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1891
0
                                                  points,
1892
0
                                                  sizeof(felem),
1893
0
                                                  tmp_felems,
1894
0
                                                  (void (*)(void *))felem_one,
1895
0
                                                  felem_is_zero_int,
1896
0
                                                  (void (*)(void *, const void *))
1897
0
                                                  felem_assign,
1898
0
                                                  (void (*)(void *, const void *))
1899
0
                                                  felem_square_reduce, (void (*)
1900
0
                                                                        (void *,
1901
0
                                                                         const void
1902
0
                                                                         *,
1903
0
                                                                         const void
1904
0
                                                                         *))
1905
0
                                                  felem_mul_reduce,
1906
0
                                                  (void (*)(void *, const void *))
1907
0
                                                  felem_inv,
1908
0
                                                  (void (*)(void *, const void *))
1909
0
                                                  felem_contract);
1910
0
}
1911
1912
/*
1913
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1914
 * values Result is stored in r (r can equal one of the inputs).
1915
 */
1916
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1917
                                    const BIGNUM *scalar, size_t num,
1918
                                    const EC_POINT *points[],
1919
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1920
1.37k
{
1921
1.37k
    int ret = 0;
1922
1.37k
    int j;
1923
1.37k
    int mixed = 0;
1924
1.37k
    BIGNUM *x, *y, *z, *tmp_scalar;
1925
1.37k
    felem_bytearray g_secret;
1926
1.37k
    felem_bytearray *secrets = NULL;
1927
1.37k
    felem (*pre_comp)[17][3] = NULL;
1928
1.37k
    felem *tmp_felems = NULL;
1929
1.37k
    unsigned i;
1930
1.37k
    int num_bytes;
1931
1.37k
    int have_pre_comp = 0;
1932
1.37k
    size_t num_points = num;
1933
1.37k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1934
1.37k
    NISTP521_PRE_COMP *pre = NULL;
1935
1.37k
    felem(*g_pre_comp)[3] = NULL;
1936
1.37k
    EC_POINT *generator = NULL;
1937
1.37k
    const EC_POINT *p = NULL;
1938
1.37k
    const BIGNUM *p_scalar = NULL;
1939
1940
1.37k
    BN_CTX_start(ctx);
1941
1.37k
    x = BN_CTX_get(ctx);
1942
1.37k
    y = BN_CTX_get(ctx);
1943
1.37k
    z = BN_CTX_get(ctx);
1944
1.37k
    tmp_scalar = BN_CTX_get(ctx);
1945
1.37k
    if (tmp_scalar == NULL)
1946
0
        goto err;
1947
1948
1.37k
    if (scalar != NULL) {
1949
1.19k
        pre = group->pre_comp.nistp521;
1950
1.19k
        if (pre)
1951
            /* we have precomputation, try to use it */
1952
0
            g_pre_comp = &pre->g_pre_comp[0];
1953
1.19k
        else
1954
            /* try to use the standard precomputation */
1955
1.19k
            g_pre_comp = (felem(*)[3]) gmul;
1956
1.19k
        generator = EC_POINT_new(group);
1957
1.19k
        if (generator == NULL)
1958
0
            goto err;
1959
        /* get the generator from precomputation */
1960
1.19k
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1961
1.19k
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1962
1.19k
            !felem_to_BN(z, g_pre_comp[1][2])) {
1963
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1964
0
            goto err;
1965
0
        }
1966
1.19k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1967
1.19k
                                                                generator,
1968
1.19k
                                                                x, y, z, ctx))
1969
0
            goto err;
1970
1.19k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1971
            /* precomputation matches generator */
1972
1.19k
            have_pre_comp = 1;
1973
0
        else
1974
            /*
1975
             * we don't have valid precomputation: treat the generator as a
1976
             * random point
1977
             */
1978
0
            num_points++;
1979
1.19k
    }
1980
1981
1.37k
    if (num_points > 0) {
1982
200
        if (num_points >= 2) {
1983
            /*
1984
             * unless we precompute multiples for just one point, converting
1985
             * those into affine form is time well spent
1986
             */
1987
0
            mixed = 1;
1988
0
        }
1989
200
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1990
200
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1991
200
        if (mixed)
1992
0
            tmp_felems =
1993
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1994
200
        if ((secrets == NULL) || (pre_comp == NULL)
1995
200
            || (mixed && (tmp_felems == NULL))) {
1996
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1997
0
            goto err;
1998
0
        }
1999
2000
        /*
2001
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2002
         * i.e., they contribute nothing to the linear combination
2003
         */
2004
400
        for (i = 0; i < num_points; ++i) {
2005
200
            if (i == num) {
2006
                /*
2007
                 * we didn't have a valid precomputation, so we pick the
2008
                 * generator
2009
                 */
2010
0
                p = EC_GROUP_get0_generator(group);
2011
0
                p_scalar = scalar;
2012
200
            } else {
2013
                /* the i^th point */
2014
200
                p = points[i];
2015
200
                p_scalar = scalars[i];
2016
200
            }
2017
200
            if ((p_scalar != NULL) && (p != NULL)) {
2018
                /* reduce scalar to 0 <= scalar < 2^521 */
2019
200
                if ((BN_num_bits(p_scalar) > 521)
2020
200
                    || (BN_is_negative(p_scalar))) {
2021
                    /*
2022
                     * this is an unusual input, and we don't guarantee
2023
                     * constant-timeness
2024
                     */
2025
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2026
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027
0
                        goto err;
2028
0
                    }
2029
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2030
0
                                               secrets[i], sizeof(secrets[i]));
2031
200
                } else {
2032
200
                    num_bytes = BN_bn2lebinpad(p_scalar,
2033
200
                                               secrets[i], sizeof(secrets[i]));
2034
200
                }
2035
200
                if (num_bytes < 0) {
2036
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2037
0
                    goto err;
2038
0
                }
2039
                /* precompute multiples */
2040
200
                if ((!BN_to_felem(x_out, p->X)) ||
2041
200
                    (!BN_to_felem(y_out, p->Y)) ||
2042
200
                    (!BN_to_felem(z_out, p->Z)))
2043
0
                    goto err;
2044
200
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2045
200
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2046
200
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2047
3.20k
                for (j = 2; j <= 16; ++j) {
2048
3.00k
                    if (j & 1) {
2049
1.40k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2050
1.40k
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2051
1.40k
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2052
1.40k
                                  pre_comp[i][j - 1][0],
2053
1.40k
                                  pre_comp[i][j - 1][1],
2054
1.40k
                                  pre_comp[i][j - 1][2]);
2055
1.60k
                    } else {
2056
1.60k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2057
1.60k
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2058
1.60k
                                     pre_comp[i][j / 2][1],
2059
1.60k
                                     pre_comp[i][j / 2][2]);
2060
1.60k
                    }
2061
3.00k
                }
2062
200
            }
2063
200
        }
2064
200
        if (mixed)
2065
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2066
200
    }
2067
2068
    /* the scalar for the generator */
2069
1.37k
    if ((scalar != NULL) && (have_pre_comp)) {
2070
1.19k
        memset(g_secret, 0, sizeof(g_secret));
2071
        /* reduce scalar to 0 <= scalar < 2^521 */
2072
1.19k
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2073
            /*
2074
             * this is an unusual input, and we don't guarantee
2075
             * constant-timeness
2076
             */
2077
47
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2078
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2079
0
                goto err;
2080
0
            }
2081
47
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2082
1.15k
        } else {
2083
1.15k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2084
1.15k
        }
2085
        /* do the multiplication with generator precomputation */
2086
1.19k
        batch_mul(x_out, y_out, z_out,
2087
1.19k
                  (const felem_bytearray(*))secrets, num_points,
2088
1.19k
                  g_secret,
2089
1.19k
                  mixed, (const felem(*)[17][3])pre_comp,
2090
1.19k
                  (const felem(*)[3])g_pre_comp);
2091
1.19k
    } else {
2092
        /* do the multiplication without generator precomputation */
2093
179
        batch_mul(x_out, y_out, z_out,
2094
179
                  (const felem_bytearray(*))secrets, num_points,
2095
179
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2096
179
    }
2097
    /* reduce the output to its unique minimal representation */
2098
1.37k
    felem_contract(x_in, x_out);
2099
1.37k
    felem_contract(y_in, y_out);
2100
1.37k
    felem_contract(z_in, z_out);
2101
1.37k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2102
1.37k
        (!felem_to_BN(z, z_in))) {
2103
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2104
0
        goto err;
2105
0
    }
2106
1.37k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2107
1.37k
                                                             ctx);
2108
2109
1.37k
 err:
2110
1.37k
    BN_CTX_end(ctx);
2111
1.37k
    EC_POINT_free(generator);
2112
1.37k
    OPENSSL_free(secrets);
2113
1.37k
    OPENSSL_free(pre_comp);
2114
1.37k
    OPENSSL_free(tmp_felems);
2115
1.37k
    return ret;
2116
1.37k
}
2117
2118
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2119
0
{
2120
0
    int ret = 0;
2121
0
    NISTP521_PRE_COMP *pre = NULL;
2122
0
    int i, j;
2123
0
    BIGNUM *x, *y;
2124
0
    EC_POINT *generator = NULL;
2125
0
    felem tmp_felems[16];
2126
0
#ifndef FIPS_MODULE
2127
0
    BN_CTX *new_ctx = NULL;
2128
0
#endif
2129
2130
    /* throw away old precomputation */
2131
0
    EC_pre_comp_free(group);
2132
2133
0
#ifndef FIPS_MODULE
2134
0
    if (ctx == NULL)
2135
0
        ctx = new_ctx = BN_CTX_new();
2136
0
#endif
2137
0
    if (ctx == NULL)
2138
0
        return 0;
2139
2140
0
    BN_CTX_start(ctx);
2141
0
    x = BN_CTX_get(ctx);
2142
0
    y = BN_CTX_get(ctx);
2143
0
    if (y == NULL)
2144
0
        goto err;
2145
    /* get the generator */
2146
0
    if (group->generator == NULL)
2147
0
        goto err;
2148
0
    generator = EC_POINT_new(group);
2149
0
    if (generator == NULL)
2150
0
        goto err;
2151
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2152
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2153
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2154
0
        goto err;
2155
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2156
0
        goto err;
2157
    /*
2158
     * if the generator is the standard one, use built-in precomputation
2159
     */
2160
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2161
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2162
0
        goto done;
2163
0
    }
2164
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2165
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2166
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2167
0
        goto err;
2168
    /* compute 2^130*G, 2^260*G, 2^390*G */
2169
0
    for (i = 1; i <= 4; i <<= 1) {
2170
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2171
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2172
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2173
0
        for (j = 0; j < 129; ++j) {
2174
0
            point_double(pre->g_pre_comp[2 * i][0],
2175
0
                         pre->g_pre_comp[2 * i][1],
2176
0
                         pre->g_pre_comp[2 * i][2],
2177
0
                         pre->g_pre_comp[2 * i][0],
2178
0
                         pre->g_pre_comp[2 * i][1],
2179
0
                         pre->g_pre_comp[2 * i][2]);
2180
0
        }
2181
0
    }
2182
    /* g_pre_comp[0] is the point at infinity */
2183
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2184
    /* the remaining multiples */
2185
    /* 2^130*G + 2^260*G */
2186
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2187
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2188
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2189
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2190
0
              pre->g_pre_comp[2][2]);
2191
    /* 2^130*G + 2^390*G */
2192
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2193
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2194
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2195
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2196
0
              pre->g_pre_comp[2][2]);
2197
    /* 2^260*G + 2^390*G */
2198
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2199
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2200
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2201
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2202
0
              pre->g_pre_comp[4][2]);
2203
    /* 2^130*G + 2^260*G + 2^390*G */
2204
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2205
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2206
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2207
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2208
0
              pre->g_pre_comp[2][2]);
2209
0
    for (i = 1; i < 8; ++i) {
2210
        /* odd multiples: add G */
2211
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2212
0
                  pre->g_pre_comp[2 * i + 1][1],
2213
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2214
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2215
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2216
0
                  pre->g_pre_comp[1][2]);
2217
0
    }
2218
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2219
2220
0
 done:
2221
0
    SETPRECOMP(group, nistp521, pre);
2222
0
    ret = 1;
2223
0
    pre = NULL;
2224
0
 err:
2225
0
    BN_CTX_end(ctx);
2226
0
    EC_POINT_free(generator);
2227
0
#ifndef FIPS_MODULE
2228
0
    BN_CTX_free(new_ctx);
2229
0
#endif
2230
0
    EC_nistp521_pre_comp_free(pre);
2231
0
    return ret;
2232
0
}
2233
2234
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2235
0
{
2236
    return HAVEPRECOMP(group, nistp521);
2237
0
}