Coverage Report

Created: 2025-11-16 06:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl30/crypto/evp/encode.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <limits.h>
12
#include "internal/cryptlib.h"
13
#include <openssl/evp.h>
14
#include "crypto/evp.h"
15
#include "evp_local.h"
16
17
static unsigned char conv_ascii2bin(unsigned char a,
18
                                    const unsigned char *table);
19
static int evp_encodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
20
                               const unsigned char *f, int dlen);
21
static int evp_decodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
22
                               const unsigned char *f, int n);
23
24
#ifndef CHARSET_EBCDIC
25
13.7k
# define conv_bin2ascii(a, table)       ((table)[(a)&0x3f])
26
#else
27
/*
28
 * We assume that PEM encoded files are EBCDIC files (i.e., printable text
29
 * files). Convert them here while decoding. When encoding, output is EBCDIC
30
 * (text) format again. (No need for conversion in the conv_bin2ascii macro,
31
 * as the underlying textstring data_bin2ascii[] is already EBCDIC)
32
 */
33
# define conv_bin2ascii(a, table)       ((table)[(a)&0x3f])
34
#endif
35
36
/*-
37
 * 64 char lines
38
 * pad input with 0
39
 * left over chars are set to =
40
 * 1 byte  => xx==
41
 * 2 bytes => xxx=
42
 * 3 bytes => xxxx
43
 */
44
#define BIN_PER_LINE    (64/4*3)
45
#define CHUNKS_PER_LINE (64/4)
46
#define CHAR_PER_LINE   (64+1)
47
48
static const unsigned char data_bin2ascii[65] =
49
    "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
50
51
/* SRP uses a different base64 alphabet */
52
static const unsigned char srpdata_bin2ascii[65] =
53
    "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz./";
54
55
56
/*-
57
 * 0xF0 is a EOLN
58
 * 0xF1 is ignore but next needs to be 0xF0 (for \r\n processing).
59
 * 0xF2 is EOF
60
 * 0xE0 is ignore at start of line.
61
 * 0xFF is error
62
 */
63
64
#define B64_EOLN                0xF0
65
#define B64_CR                  0xF1
66
197M
#define B64_EOF                 0xF2
67
2.07M
#define B64_WS                  0xE0
68
197M
#define B64_ERROR               0xFF
69
203M
#define B64_NOT_BASE64(a)       (((a)|0x13) == 0xF3)
70
201M
#define B64_BASE64(a)           (!B64_NOT_BASE64(a))
71
72
static const unsigned char data_ascii2bin[128] = {
73
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
74
    0xFF, 0xE0, 0xF0, 0xFF, 0xFF, 0xF1, 0xFF, 0xFF,
75
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
76
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
77
    0xE0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
78
    0xFF, 0xFF, 0xFF, 0x3E, 0xFF, 0xF2, 0xFF, 0x3F,
79
    0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B,
80
    0x3C, 0x3D, 0xFF, 0xFF, 0xFF, 0x00, 0xFF, 0xFF,
81
    0xFF, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
82
    0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E,
83
    0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16,
84
    0x17, 0x18, 0x19, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
85
    0xFF, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20,
86
    0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28,
87
    0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30,
88
    0x31, 0x32, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
89
};
90
91
static const unsigned char srpdata_ascii2bin[128] = {
92
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
93
    0xFF, 0xE0, 0xF0, 0xFF, 0xFF, 0xF1, 0xFF, 0xFF,
94
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
95
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
96
    0xE0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
97
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF2, 0x3E, 0x3F,
98
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
99
    0x08, 0x09, 0xFF, 0xFF, 0xFF, 0x00, 0xFF, 0xFF,
100
    0xFF, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
101
    0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
102
    0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20,
103
    0x21, 0x22, 0x23, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
104
    0xFF, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A,
105
    0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32,
106
    0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A,
107
    0x3B, 0x3C, 0x3D, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
108
};
109
110
#ifndef CHARSET_EBCDIC
111
static unsigned char conv_ascii2bin(unsigned char a, const unsigned char *table)
112
650M
{
113
650M
    if (a & 0x80)
114
3.64k
        return B64_ERROR;
115
650M
    return table[a];
116
650M
}
117
#else
118
static unsigned char conv_ascii2bin(unsigned char a, const unsigned char *table)
119
{
120
    a = os_toascii[a];
121
    if (a & 0x80)
122
        return B64_ERROR;
123
    return table[a];
124
}
125
#endif
126
127
EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void)
128
230k
{
129
230k
    return OPENSSL_zalloc(sizeof(EVP_ENCODE_CTX));
130
230k
}
131
132
void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx)
133
271k
{
134
271k
    OPENSSL_free(ctx);
135
271k
}
136
137
int EVP_ENCODE_CTX_copy(EVP_ENCODE_CTX *dctx, const EVP_ENCODE_CTX *sctx)
138
0
{
139
0
    memcpy(dctx, sctx, sizeof(EVP_ENCODE_CTX));
140
141
0
    return 1;
142
0
}
143
144
int EVP_ENCODE_CTX_num(EVP_ENCODE_CTX *ctx)
145
13.4k
{
146
13.4k
    return ctx->num;
147
13.4k
}
148
149
void evp_encode_ctx_set_flags(EVP_ENCODE_CTX *ctx, unsigned int flags)
150
0
{
151
0
    ctx->flags = flags;
152
0
}
153
154
void EVP_EncodeInit(EVP_ENCODE_CTX *ctx)
155
6.44k
{
156
6.44k
    ctx->length = 48;
157
6.44k
    ctx->num = 0;
158
6.44k
    ctx->line_num = 0;
159
6.44k
    ctx->flags = 0;
160
6.44k
}
161
162
int EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,
163
                      const unsigned char *in, int inl)
164
0
{
165
0
    int i, j;
166
0
    size_t total = 0;
167
168
0
    *outl = 0;
169
0
    if (inl <= 0)
170
0
        return 0;
171
0
    OPENSSL_assert(ctx->length <= (int)sizeof(ctx->enc_data));
172
0
    if (ctx->length - ctx->num > inl) {
173
0
        memcpy(&(ctx->enc_data[ctx->num]), in, inl);
174
0
        ctx->num += inl;
175
0
        return 1;
176
0
    }
177
0
    if (ctx->num != 0) {
178
0
        i = ctx->length - ctx->num;
179
0
        memcpy(&(ctx->enc_data[ctx->num]), in, i);
180
0
        in += i;
181
0
        inl -= i;
182
0
        j = evp_encodeblock_int(ctx, out, ctx->enc_data, ctx->length);
183
0
        ctx->num = 0;
184
0
        out += j;
185
0
        total = j;
186
0
        if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0) {
187
0
            *(out++) = '\n';
188
0
            total++;
189
0
        }
190
0
        *out = '\0';
191
0
    }
192
0
    while (inl >= ctx->length && total <= INT_MAX) {
193
0
        j = evp_encodeblock_int(ctx, out, in, ctx->length);
194
0
        in += ctx->length;
195
0
        inl -= ctx->length;
196
0
        out += j;
197
0
        total += j;
198
0
        if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0) {
199
0
            *(out++) = '\n';
200
0
            total++;
201
0
        }
202
0
        *out = '\0';
203
0
    }
204
0
    if (total > INT_MAX) {
205
        /* Too much output data! */
206
0
        *outl = 0;
207
0
        return 0;
208
0
    }
209
0
    if (inl != 0)
210
0
        memcpy(&(ctx->enc_data[0]), in, inl);
211
0
    ctx->num = inl;
212
0
    *outl = total;
213
214
0
    return 1;
215
0
}
216
217
void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl)
218
674
{
219
674
    unsigned int ret = 0;
220
221
674
    if (ctx->num != 0) {
222
674
        ret = evp_encodeblock_int(ctx, out, ctx->enc_data, ctx->num);
223
674
        if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0)
224
674
            out[ret++] = '\n';
225
674
        out[ret] = '\0';
226
674
        ctx->num = 0;
227
674
    }
228
674
    *outl = ret;
229
674
}
230
231
static int evp_encodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
232
                               const unsigned char *f, int dlen)
233
674
{
234
674
    int i, ret = 0;
235
674
    unsigned long l;
236
674
    const unsigned char *table;
237
238
674
    if (ctx != NULL && (ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0)
239
0
        table = srpdata_bin2ascii;
240
674
    else
241
674
        table = data_bin2ascii;
242
243
4.19k
    for (i = dlen; i > 0; i -= 3) {
244
3.52k
        if (i >= 3) {
245
2.99k
            l = (((unsigned long)f[0]) << 16L) |
246
2.99k
                (((unsigned long)f[1]) << 8L) | f[2];
247
2.99k
            *(t++) = conv_bin2ascii(l >> 18L, table);
248
2.99k
            *(t++) = conv_bin2ascii(l >> 12L, table);
249
2.99k
            *(t++) = conv_bin2ascii(l >> 6L, table);
250
2.99k
            *(t++) = conv_bin2ascii(l, table);
251
2.99k
        } else {
252
522
            l = ((unsigned long)f[0]) << 16L;
253
522
            if (i == 2)
254
213
                l |= ((unsigned long)f[1] << 8L);
255
256
522
            *(t++) = conv_bin2ascii(l >> 18L, table);
257
522
            *(t++) = conv_bin2ascii(l >> 12L, table);
258
522
            *(t++) = (i == 1) ? '=' : conv_bin2ascii(l >> 6L, table);
259
522
            *(t++) = '=';
260
522
        }
261
3.52k
        ret += 4;
262
3.52k
        f += 3;
263
3.52k
    }
264
265
674
    *t = '\0';
266
674
    return ret;
267
674
}
268
269
int EVP_EncodeBlock(unsigned char *t, const unsigned char *f, int dlen)
270
0
{
271
0
    return evp_encodeblock_int(NULL, t, f, dlen);
272
0
}
273
274
void EVP_DecodeInit(EVP_ENCODE_CTX *ctx)
275
510k
{
276
    /* Only ctx->num and ctx->flags are used during decoding. */
277
510k
    ctx->num = 0;
278
510k
    ctx->length = 0;
279
510k
    ctx->line_num = 0;
280
510k
    ctx->flags = 0;
281
510k
}
282
283
/*-
284
 * -1 for error
285
 *  0 for last line
286
 *  1 for full line
287
 *
288
 * Note: even though EVP_DecodeUpdate attempts to detect and report end of
289
 * content, the context doesn't currently remember it and will accept more data
290
 * in the next call. Therefore, the caller is responsible for checking and
291
 * rejecting a 0 return value in the middle of content.
292
 *
293
 * Note: even though EVP_DecodeUpdate has historically tried to detect end of
294
 * content based on line length, this has never worked properly. Therefore,
295
 * we now return 0 when one of the following is true:
296
 *   - Padding or B64_EOF was detected and the last block is complete.
297
 *   - Input has zero-length.
298
 * -1 is returned if:
299
 *   - Invalid characters are detected.
300
 *   - There is extra trailing padding, or data after padding.
301
 *   - B64_EOF is detected after an incomplete base64 block.
302
 */
303
int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,
304
                     const unsigned char *in, int inl)
305
405k
{
306
405k
    int seof = 0, eof = 0, rv = -1, ret = 0, i, v, tmp, n, decoded_len;
307
405k
    unsigned char *d;
308
405k
    const unsigned char *table;
309
310
405k
    n = ctx->num;
311
405k
    d = ctx->enc_data;
312
313
405k
    if (n > 0 && d[n - 1] == '=') {
314
4.38k
        eof++;
315
4.38k
        if (n > 1 && d[n - 2] == '=')
316
1.23k
            eof++;
317
4.38k
    }
318
319
     /* Legacy behaviour: an empty input chunk signals end of input. */
320
405k
    if (inl == 0) {
321
0
        rv = 0;
322
0
        goto end;
323
0
    }
324
325
405k
    if ((ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0)
326
0
        table = srpdata_ascii2bin;
327
405k
    else
328
405k
        table = data_ascii2bin;
329
330
197M
    for (i = 0; i < inl; i++) {
331
197M
        tmp = *(in++);
332
197M
        v = conv_ascii2bin(tmp, table);
333
197M
        if (v == B64_ERROR) {
334
155k
            rv = -1;
335
155k
            goto end;
336
155k
        }
337
338
197M
        if (tmp == '=') {
339
177k
            eof++;
340
197M
        } else if (eof > 0 && B64_BASE64(v)) {
341
            /* More data after padding. */
342
825
            rv = -1;
343
825
            goto end;
344
825
        }
345
346
197M
        if (eof > 2) {
347
794
            rv = -1;
348
794
            goto end;
349
794
        }
350
351
197M
        if (v == B64_EOF) {
352
2.14k
            seof = 1;
353
2.14k
            goto tail;
354
2.14k
        }
355
356
        /* Only save valid base64 characters. */
357
197M
        if (B64_BASE64(v)) {
358
187M
            if (n >= 64) {
359
                /*
360
                 * We increment n once per loop, and empty the buffer as soon as
361
                 * we reach 64 characters, so this can only happen if someone's
362
                 * manually messed with the ctx. Refuse to write any more data.
363
                 */
364
0
                rv = -1;
365
0
                goto end;
366
0
            }
367
187M
            OPENSSL_assert(n < (int)sizeof(ctx->enc_data));
368
187M
            d[n++] = tmp;
369
187M
        }
370
371
197M
        if (n == 64) {
372
2.86M
            decoded_len = evp_decodeblock_int(ctx, out, d, n);
373
2.86M
            n = 0;
374
2.86M
            if (decoded_len < 0 || eof > decoded_len) {
375
0
                rv = -1;
376
0
                goto end;
377
0
            }
378
2.86M
            ret += decoded_len - eof;
379
2.86M
            out += decoded_len - eof;
380
2.86M
        }
381
197M
    }
382
383
    /*
384
     * Legacy behaviour: if the current line is a full base64-block (i.e., has
385
     * 0 mod 4 base64 characters), it is processed immediately. We keep this
386
     * behaviour as applications may not be calling EVP_DecodeFinal properly.
387
     */
388
248k
tail:
389
248k
    if (n > 0) {
390
223k
        if ((n & 3) == 0) {
391
140k
            decoded_len = evp_decodeblock_int(ctx, out, d, n);
392
140k
            n = 0;
393
140k
            if (decoded_len < 0 || eof > decoded_len) {
394
0
                rv = -1;
395
0
                goto end;
396
0
            }
397
140k
            ret += (decoded_len - eof);
398
140k
        } else if (seof) {
399
            /* EOF in the middle of a base64 block. */
400
950
            rv = -1;
401
950
            goto end;
402
950
        }
403
223k
    }
404
405
247k
    rv = seof || (n == 0 && eof) ? 0 : 1;
406
405k
end:
407
    /* Legacy behaviour. This should probably rather be zeroed on error. */
408
405k
    *outl = ret;
409
405k
    ctx->num = n;
410
405k
    return rv;
411
247k
}
412
413
static int evp_decodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
414
                               const unsigned char *f, int n)
415
2.07M
{
416
2.07M
    int i, ret = 0, a, b, c, d;
417
2.07M
    unsigned long l;
418
2.07M
    const unsigned char *table;
419
420
2.07M
    if (ctx != NULL && (ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0)
421
0
        table = srpdata_ascii2bin;
422
2.07M
    else
423
2.07M
        table = data_ascii2bin;
424
425
    /* trim whitespace from the start of the line. */
426
2.07M
    while ((n > 0) && (conv_ascii2bin(*f, table) == B64_WS)) {
427
0
        f++;
428
0
        n--;
429
0
    }
430
431
    /*
432
     * strip off stuff at the end of the line ascii2bin values B64_WS,
433
     * B64_EOLN, B64_EOLN and B64_EOF
434
     */
435
2.07M
    while ((n > 3) && (B64_NOT_BASE64(conv_ascii2bin(f[n - 1], table))))
436
0
        n--;
437
438
2.07M
    if (n % 4 != 0)
439
121
        return -1;
440
441
34.3M
    for (i = 0; i < n; i += 4) {
442
32.2M
        a = conv_ascii2bin(*(f++), table);
443
32.2M
        b = conv_ascii2bin(*(f++), table);
444
32.2M
        c = conv_ascii2bin(*(f++), table);
445
32.2M
        d = conv_ascii2bin(*(f++), table);
446
32.2M
        if ((a & 0x80) || (b & 0x80) || (c & 0x80) || (d & 0x80))
447
0
            return -1;
448
32.2M
        l = ((((unsigned long)a) << 18L) |
449
32.2M
             (((unsigned long)b) << 12L) |
450
32.2M
             (((unsigned long)c) << 6L) | (((unsigned long)d)));
451
32.2M
        *(t++) = (unsigned char)(l >> 16L) & 0xff;
452
32.2M
        *(t++) = (unsigned char)(l >> 8L) & 0xff;
453
32.2M
        *(t++) = (unsigned char)(l) & 0xff;
454
32.2M
        ret += 3;
455
32.2M
    }
456
2.07M
    return ret;
457
2.07M
}
458
459
int EVP_DecodeBlock(unsigned char *t, const unsigned char *f, int n)
460
0
{
461
0
    return evp_decodeblock_int(NULL, t, f, n);
462
0
}
463
464
int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl)
465
219k
{
466
219k
    int i;
467
468
219k
    *outl = 0;
469
219k
    if (ctx->num != 0) {
470
716
        i = evp_decodeblock_int(ctx, out, ctx->enc_data, ctx->num);
471
716
        if (i < 0)
472
716
            return -1;
473
0
        ctx->num = 0;
474
0
        *outl = i;
475
0
        return 1;
476
716
    } else
477
218k
        return 1;
478
219k
}