/src/openssl30/crypto/x509/x_pubkey.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * DSA low level APIs are deprecated for public use, but still ok for |
12 | | * internal use. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | |
16 | | #include <stdio.h> |
17 | | #include "internal/cryptlib.h" |
18 | | #include <openssl/asn1t.h> |
19 | | #include <openssl/x509.h> |
20 | | #include <openssl/engine.h> |
21 | | #include "crypto/asn1.h" |
22 | | #include "crypto/evp.h" |
23 | | #include "crypto/x509.h" |
24 | | #include <openssl/rsa.h> |
25 | | #include <openssl/dsa.h> |
26 | | #include <openssl/decoder.h> |
27 | | #include <openssl/encoder.h> |
28 | | #include "internal/provider.h" |
29 | | #include "internal/sizes.h" |
30 | | |
31 | | struct X509_pubkey_st { |
32 | | X509_ALGOR *algor; |
33 | | ASN1_BIT_STRING *public_key; |
34 | | |
35 | | EVP_PKEY *pkey; |
36 | | |
37 | | /* extra data for the callback, used by d2i_PUBKEY_ex */ |
38 | | OSSL_LIB_CTX *libctx; |
39 | | char *propq; |
40 | | |
41 | | /* Flag to force legacy keys */ |
42 | | unsigned int flag_force_legacy : 1; |
43 | | }; |
44 | | |
45 | | static int x509_pubkey_decode(EVP_PKEY **pk, const X509_PUBKEY *key); |
46 | | |
47 | | static int x509_pubkey_set0_libctx(X509_PUBKEY *x, OSSL_LIB_CTX *libctx, |
48 | | const char *propq) |
49 | 2.75M | { |
50 | 2.75M | if (x != NULL) { |
51 | 2.75M | x->libctx = libctx; |
52 | 2.75M | OPENSSL_free(x->propq); |
53 | 2.75M | x->propq = NULL; |
54 | 2.75M | if (propq != NULL) { |
55 | 0 | x->propq = OPENSSL_strdup(propq); |
56 | 0 | if (x->propq == NULL) |
57 | 0 | return 0; |
58 | 0 | } |
59 | 2.75M | } |
60 | 2.75M | return 1; |
61 | 2.75M | } |
62 | | |
63 | | ASN1_SEQUENCE(X509_PUBKEY_INTERNAL) = { |
64 | | ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR), |
65 | | ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING) |
66 | 6.33M | } static_ASN1_SEQUENCE_END_name(X509_PUBKEY, X509_PUBKEY_INTERNAL) |
67 | | |
68 | | X509_PUBKEY *ossl_d2i_X509_PUBKEY_INTERNAL(const unsigned char **pp, |
69 | | long len, OSSL_LIB_CTX *libctx) |
70 | 1.07M | { |
71 | 1.07M | X509_PUBKEY *xpub = OPENSSL_zalloc(sizeof(*xpub)); |
72 | | |
73 | 1.07M | if (xpub == NULL) |
74 | 0 | return NULL; |
75 | 1.07M | return (X509_PUBKEY *)ASN1_item_d2i_ex((ASN1_VALUE **)&xpub, pp, len, |
76 | 1.07M | ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL), |
77 | 1.07M | libctx, NULL); |
78 | 1.07M | } |
79 | | |
80 | | void ossl_X509_PUBKEY_INTERNAL_free(X509_PUBKEY *xpub) |
81 | 2.05M | { |
82 | 2.05M | ASN1_item_free((ASN1_VALUE *)xpub, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL)); |
83 | 2.05M | } |
84 | | |
85 | | static void x509_pubkey_ex_free(ASN1_VALUE **pval, const ASN1_ITEM *it) |
86 | 2.75M | { |
87 | 2.75M | X509_PUBKEY *pubkey; |
88 | | |
89 | 2.75M | if (pval != NULL && (pubkey = (X509_PUBKEY *)*pval) != NULL) { |
90 | 2.75M | X509_ALGOR_free(pubkey->algor); |
91 | 2.75M | ASN1_BIT_STRING_free(pubkey->public_key); |
92 | 2.75M | EVP_PKEY_free(pubkey->pkey); |
93 | 2.75M | OPENSSL_free(pubkey->propq); |
94 | 2.75M | OPENSSL_free(pubkey); |
95 | 2.75M | *pval = NULL; |
96 | 2.75M | } |
97 | 2.75M | } |
98 | | |
99 | | static int x509_pubkey_ex_populate(ASN1_VALUE **pval, const ASN1_ITEM *it) |
100 | 3.96M | { |
101 | 3.96M | X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval; |
102 | | |
103 | 3.96M | return (pubkey->algor != NULL |
104 | 2.75M | || (pubkey->algor = X509_ALGOR_new()) != NULL) |
105 | 3.96M | && (pubkey->public_key != NULL |
106 | 2.75M | || (pubkey->public_key = ASN1_BIT_STRING_new()) != NULL); |
107 | 3.96M | } |
108 | | |
109 | | |
110 | | static int x509_pubkey_ex_new_ex(ASN1_VALUE **pval, const ASN1_ITEM *it, |
111 | | OSSL_LIB_CTX *libctx, const char *propq) |
112 | 292k | { |
113 | 292k | X509_PUBKEY *ret; |
114 | | |
115 | 292k | if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL |
116 | 292k | || !x509_pubkey_ex_populate((ASN1_VALUE **)&ret, NULL) |
117 | 292k | || !x509_pubkey_set0_libctx(ret, libctx, propq)) { |
118 | 0 | x509_pubkey_ex_free((ASN1_VALUE **)&ret, NULL); |
119 | 0 | ret = NULL; |
120 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
121 | 292k | } else { |
122 | 292k | *pval = (ASN1_VALUE *)ret; |
123 | 292k | } |
124 | | |
125 | 292k | return ret != NULL; |
126 | 292k | } |
127 | | |
128 | | static int x509_pubkey_ex_d2i_ex(ASN1_VALUE **pval, |
129 | | const unsigned char **in, long len, |
130 | | const ASN1_ITEM *it, int tag, int aclass, |
131 | | char opt, ASN1_TLC *ctx, OSSL_LIB_CTX *libctx, |
132 | | const char *propq) |
133 | 2.42M | { |
134 | 2.42M | const unsigned char *in_saved = *in; |
135 | 2.42M | size_t publen; |
136 | 2.42M | X509_PUBKEY *pubkey; |
137 | 2.42M | int ret; |
138 | 2.42M | OSSL_DECODER_CTX *dctx = NULL; |
139 | 2.42M | unsigned char *tmpbuf = NULL; |
140 | | |
141 | 2.42M | if (*pval == NULL && !x509_pubkey_ex_new_ex(pval, it, libctx, propq)) |
142 | 0 | return 0; |
143 | 2.42M | if (!x509_pubkey_ex_populate(pval, NULL)) { |
144 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
145 | 0 | return 0; |
146 | 0 | } |
147 | | |
148 | | /* This ensures that |*in| advances properly no matter what */ |
149 | 2.42M | if ((ret = asn1_item_embed_d2i(pval, in, len, |
150 | 2.42M | ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL), |
151 | 2.42M | tag, aclass, opt, ctx, 0, |
152 | 2.42M | NULL, NULL)) <= 0) { |
153 | 391k | x509_pubkey_ex_free(pval, it); |
154 | 391k | return ret; |
155 | 391k | } |
156 | | |
157 | 2.02M | publen = *in - in_saved; |
158 | 2.02M | if (!ossl_assert(publen > 0)) { |
159 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_INTERNAL_ERROR); |
160 | 0 | return 0; |
161 | 0 | } |
162 | | |
163 | 2.02M | pubkey = (X509_PUBKEY *)*pval; |
164 | 2.02M | EVP_PKEY_free(pubkey->pkey); |
165 | 2.02M | pubkey->pkey = NULL; |
166 | | |
167 | | /* |
168 | | * Opportunistically decode the key but remove any non fatal errors |
169 | | * from the queue. Subsequent explicit attempts to decode/use the key |
170 | | * will return an appropriate error. |
171 | | */ |
172 | 2.02M | ERR_set_mark(); |
173 | | |
174 | | /* |
175 | | * Try to decode with legacy method first. This ensures that engines |
176 | | * aren't overriden by providers. |
177 | | */ |
178 | 2.02M | if ((ret = x509_pubkey_decode(&pubkey->pkey, pubkey)) == -1) { |
179 | | /* -1 indicates a fatal error, like malloc failure */ |
180 | 0 | ERR_clear_last_mark(); |
181 | 0 | goto end; |
182 | 0 | } |
183 | | |
184 | | /* Try to decode it into an EVP_PKEY with OSSL_DECODER */ |
185 | 2.02M | if (ret <= 0 && !pubkey->flag_force_legacy) { |
186 | 1.06M | const unsigned char *p; |
187 | 1.06M | char txtoidname[OSSL_MAX_NAME_SIZE]; |
188 | 1.06M | size_t slen = publen; |
189 | | |
190 | | /* |
191 | | * The decoders don't know how to handle anything other than Universal |
192 | | * class so we modify the data accordingly. |
193 | | */ |
194 | 1.06M | if (aclass != V_ASN1_UNIVERSAL) { |
195 | 310k | tmpbuf = OPENSSL_memdup(in_saved, publen); |
196 | 310k | if (tmpbuf == NULL) { |
197 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
198 | 0 | return 0; |
199 | 0 | } |
200 | 310k | in_saved = tmpbuf; |
201 | 310k | *tmpbuf = V_ASN1_CONSTRUCTED | V_ASN1_SEQUENCE; |
202 | 310k | } |
203 | 1.06M | p = in_saved; |
204 | | |
205 | 1.06M | if (OBJ_obj2txt(txtoidname, sizeof(txtoidname), |
206 | 1.06M | pubkey->algor->algorithm, 0) <= 0) { |
207 | 13 | ERR_clear_last_mark(); |
208 | 13 | goto end; |
209 | 13 | } |
210 | 1.06M | if ((dctx = |
211 | 1.06M | OSSL_DECODER_CTX_new_for_pkey(&pubkey->pkey, |
212 | 1.06M | "DER", "SubjectPublicKeyInfo", |
213 | 1.06M | txtoidname, EVP_PKEY_PUBLIC_KEY, |
214 | 1.06M | pubkey->libctx, |
215 | 1.06M | pubkey->propq)) != NULL) |
216 | | /* |
217 | | * As said higher up, we're being opportunistic. In other words, |
218 | | * we don't care if we fail. |
219 | | */ |
220 | 1.06M | if (OSSL_DECODER_from_data(dctx, &p, &slen)) { |
221 | 533k | if (slen != 0) { |
222 | | /* |
223 | | * If we successfully decoded then we *must* consume all the |
224 | | * bytes. |
225 | | */ |
226 | 0 | ERR_clear_last_mark(); |
227 | 0 | ERR_raise(ERR_LIB_ASN1, EVP_R_DECODE_ERROR); |
228 | 0 | goto end; |
229 | 0 | } |
230 | 533k | } |
231 | 1.06M | } |
232 | | |
233 | 2.02M | ERR_pop_to_mark(); |
234 | 2.02M | ret = 1; |
235 | 2.02M | end: |
236 | 2.02M | OSSL_DECODER_CTX_free(dctx); |
237 | 2.02M | OPENSSL_free(tmpbuf); |
238 | 2.02M | return ret; |
239 | 2.02M | } |
240 | | |
241 | | static int x509_pubkey_ex_i2d(const ASN1_VALUE **pval, unsigned char **out, |
242 | | const ASN1_ITEM *it, int tag, int aclass) |
243 | 708k | { |
244 | 708k | return ASN1_item_ex_i2d(pval, out, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL), |
245 | 708k | tag, aclass); |
246 | 708k | } |
247 | | |
248 | | static int x509_pubkey_ex_print(BIO *out, const ASN1_VALUE **pval, int indent, |
249 | | const char *fname, const ASN1_PCTX *pctx) |
250 | 77.6k | { |
251 | 77.6k | return ASN1_item_print(out, *pval, indent, |
252 | 77.6k | ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL), pctx); |
253 | 77.6k | } |
254 | | |
255 | | static const ASN1_EXTERN_FUNCS x509_pubkey_ff = { |
256 | | NULL, |
257 | | NULL, |
258 | | x509_pubkey_ex_free, |
259 | | 0, /* Default clear behaviour is OK */ |
260 | | NULL, |
261 | | x509_pubkey_ex_i2d, |
262 | | x509_pubkey_ex_print, |
263 | | x509_pubkey_ex_new_ex, |
264 | | x509_pubkey_ex_d2i_ex, |
265 | | }; |
266 | | |
267 | 9.84M | IMPLEMENT_EXTERN_ASN1(X509_PUBKEY, V_ASN1_SEQUENCE, x509_pubkey_ff) |
268 | | IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY) |
269 | | |
270 | | X509_PUBKEY *X509_PUBKEY_new_ex(OSSL_LIB_CTX *libctx, const char *propq) |
271 | 0 | { |
272 | 0 | X509_PUBKEY *pubkey = NULL; |
273 | |
|
274 | 0 | pubkey = (X509_PUBKEY *)ASN1_item_new_ex(X509_PUBKEY_it(), libctx, propq); |
275 | 0 | if (!x509_pubkey_set0_libctx(pubkey, libctx, propq)) { |
276 | 0 | X509_PUBKEY_free(pubkey); |
277 | 0 | pubkey = NULL; |
278 | 0 | } |
279 | 0 | return pubkey; |
280 | 0 | } |
281 | | |
282 | | /* |
283 | | * X509_PUBKEY_dup() must be implemented manually, because there is no |
284 | | * support for it in ASN1_EXTERN_FUNCS. |
285 | | */ |
286 | | X509_PUBKEY *X509_PUBKEY_dup(const X509_PUBKEY *a) |
287 | 0 | { |
288 | 0 | X509_PUBKEY *pubkey = OPENSSL_zalloc(sizeof(*pubkey)); |
289 | |
|
290 | 0 | if (pubkey == NULL |
291 | 0 | || !x509_pubkey_set0_libctx(pubkey, a->libctx, a->propq) |
292 | 0 | || (pubkey->algor = X509_ALGOR_dup(a->algor)) == NULL |
293 | 0 | || (pubkey->public_key = ASN1_BIT_STRING_new()) == NULL |
294 | 0 | || !ASN1_BIT_STRING_set(pubkey->public_key, |
295 | 0 | a->public_key->data, |
296 | 0 | a->public_key->length)) { |
297 | 0 | x509_pubkey_ex_free((ASN1_VALUE **)&pubkey, |
298 | 0 | ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL)); |
299 | 0 | ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE); |
300 | 0 | return NULL; |
301 | 0 | } |
302 | | |
303 | 0 | if (a->pkey != NULL) { |
304 | 0 | ERR_set_mark(); |
305 | 0 | pubkey->pkey = EVP_PKEY_dup(a->pkey); |
306 | 0 | if (pubkey->pkey == NULL) { |
307 | 0 | pubkey->flag_force_legacy = 1; |
308 | 0 | if (x509_pubkey_decode(&pubkey->pkey, pubkey) <= 0) { |
309 | 0 | x509_pubkey_ex_free((ASN1_VALUE **)&pubkey, |
310 | 0 | ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL)); |
311 | 0 | ERR_clear_last_mark(); |
312 | 0 | return NULL; |
313 | 0 | } |
314 | 0 | } |
315 | 0 | ERR_pop_to_mark(); |
316 | 0 | } |
317 | 0 | return pubkey; |
318 | 0 | } |
319 | | |
320 | | int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey) |
321 | 0 | { |
322 | 0 | X509_PUBKEY *pk = NULL; |
323 | |
|
324 | 0 | if (x == NULL || pkey == NULL) { |
325 | 0 | ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); |
326 | 0 | return 0; |
327 | 0 | } |
328 | | |
329 | 0 | if (pkey->ameth != NULL) { |
330 | 0 | if ((pk = X509_PUBKEY_new()) == NULL) { |
331 | 0 | ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE); |
332 | 0 | goto error; |
333 | 0 | } |
334 | 0 | if (pkey->ameth->pub_encode != NULL) { |
335 | 0 | if (!pkey->ameth->pub_encode(pk, pkey)) { |
336 | 0 | ERR_raise(ERR_LIB_X509, X509_R_PUBLIC_KEY_ENCODE_ERROR); |
337 | 0 | goto error; |
338 | 0 | } |
339 | 0 | } else { |
340 | 0 | ERR_raise(ERR_LIB_X509, X509_R_METHOD_NOT_SUPPORTED); |
341 | 0 | goto error; |
342 | 0 | } |
343 | 0 | } else if (evp_pkey_is_provided(pkey)) { |
344 | 0 | unsigned char *der = NULL; |
345 | 0 | size_t derlen = 0; |
346 | 0 | OSSL_ENCODER_CTX *ectx = |
347 | 0 | OSSL_ENCODER_CTX_new_for_pkey(pkey, EVP_PKEY_PUBLIC_KEY, |
348 | 0 | "DER", "SubjectPublicKeyInfo", |
349 | 0 | NULL); |
350 | |
|
351 | 0 | if (OSSL_ENCODER_to_data(ectx, &der, &derlen)) { |
352 | 0 | const unsigned char *pder = der; |
353 | |
|
354 | 0 | pk = d2i_X509_PUBKEY(NULL, &pder, (long)derlen); |
355 | 0 | } |
356 | |
|
357 | 0 | OSSL_ENCODER_CTX_free(ectx); |
358 | 0 | OPENSSL_free(der); |
359 | 0 | } |
360 | | |
361 | 0 | if (pk == NULL) { |
362 | 0 | ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM); |
363 | 0 | goto error; |
364 | 0 | } |
365 | | |
366 | 0 | X509_PUBKEY_free(*x); |
367 | 0 | if (!EVP_PKEY_up_ref(pkey)) { |
368 | 0 | ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR); |
369 | 0 | goto error; |
370 | 0 | } |
371 | 0 | *x = pk; |
372 | | |
373 | | /* |
374 | | * pk->pkey is NULL when using the legacy routine, but is non-NULL when |
375 | | * going through the encoder, and for all intents and purposes, it's |
376 | | * a perfect copy of the public key portions of |pkey|, just not the same |
377 | | * instance. If that's all there was to pkey then we could simply return |
378 | | * early, right here. However, some application might very well depend on |
379 | | * the passed |pkey| being used and none other, so we spend a few more |
380 | | * cycles throwing away the newly created |pk->pkey| and replace it with |
381 | | * |pkey|. |
382 | | */ |
383 | 0 | if (pk->pkey != NULL) |
384 | 0 | EVP_PKEY_free(pk->pkey); |
385 | |
|
386 | 0 | pk->pkey = pkey; |
387 | 0 | return 1; |
388 | | |
389 | 0 | error: |
390 | 0 | X509_PUBKEY_free(pk); |
391 | 0 | return 0; |
392 | 0 | } |
393 | | |
394 | | /* |
395 | | * Attempt to decode a public key. |
396 | | * Returns 1 on success, 0 for a decode failure and -1 for a fatal |
397 | | * error e.g. malloc failure. |
398 | | * |
399 | | * This function is #legacy. |
400 | | */ |
401 | | static int x509_pubkey_decode(EVP_PKEY **ppkey, const X509_PUBKEY *key) |
402 | 2.02M | { |
403 | 2.02M | EVP_PKEY *pkey; |
404 | 2.02M | int nid; |
405 | | |
406 | 2.02M | nid = OBJ_obj2nid(key->algor->algorithm); |
407 | 2.02M | if (!key->flag_force_legacy) { |
408 | 1.06M | #ifndef OPENSSL_NO_ENGINE |
409 | 1.06M | ENGINE *e = NULL; |
410 | | |
411 | 1.06M | e = ENGINE_get_pkey_meth_engine(nid); |
412 | 1.06M | if (e == NULL) |
413 | 1.06M | return 0; |
414 | 0 | ENGINE_finish(e); |
415 | | #else |
416 | | return 0; |
417 | | #endif |
418 | 0 | } |
419 | | |
420 | 960k | pkey = EVP_PKEY_new(); |
421 | 960k | if (pkey == NULL) { |
422 | 0 | ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE); |
423 | 0 | return -1; |
424 | 0 | } |
425 | | |
426 | 960k | if (!EVP_PKEY_set_type(pkey, nid)) { |
427 | 0 | ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM); |
428 | 0 | goto error; |
429 | 0 | } |
430 | | |
431 | 960k | if (pkey->ameth->pub_decode) { |
432 | | /* |
433 | | * Treat any failure of pub_decode as a decode error. In |
434 | | * future we could have different return codes for decode |
435 | | * errors and fatal errors such as malloc failure. |
436 | | */ |
437 | 960k | if (!pkey->ameth->pub_decode(pkey, key)) |
438 | 424k | goto error; |
439 | 960k | } else { |
440 | 0 | ERR_raise(ERR_LIB_X509, X509_R_METHOD_NOT_SUPPORTED); |
441 | 0 | goto error; |
442 | 0 | } |
443 | | |
444 | 536k | *ppkey = pkey; |
445 | 536k | return 1; |
446 | | |
447 | 424k | error: |
448 | 424k | EVP_PKEY_free(pkey); |
449 | 424k | return 0; |
450 | 960k | } |
451 | | |
452 | | EVP_PKEY *X509_PUBKEY_get0(const X509_PUBKEY *key) |
453 | 2.10M | { |
454 | 2.10M | if (key == NULL) { |
455 | 0 | ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); |
456 | 0 | return NULL; |
457 | 0 | } |
458 | | |
459 | 2.10M | if (key->pkey == NULL) { |
460 | | /* We failed to decode the key when we loaded it, or it was never set */ |
461 | 489k | ERR_raise(ERR_LIB_EVP, EVP_R_DECODE_ERROR); |
462 | 489k | return NULL; |
463 | 489k | } |
464 | | |
465 | 1.61M | return key->pkey; |
466 | 2.10M | } |
467 | | |
468 | | EVP_PKEY *X509_PUBKEY_get(const X509_PUBKEY *key) |
469 | 964k | { |
470 | 964k | EVP_PKEY *ret = X509_PUBKEY_get0(key); |
471 | | |
472 | 964k | if (ret != NULL && !EVP_PKEY_up_ref(ret)) { |
473 | 0 | ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR); |
474 | 0 | ret = NULL; |
475 | 0 | } |
476 | 964k | return ret; |
477 | 964k | } |
478 | | |
479 | | /* |
480 | | * Now three pseudo ASN1 routines that take an EVP_PKEY structure and encode |
481 | | * or decode as X509_PUBKEY |
482 | | */ |
483 | | static EVP_PKEY *d2i_PUBKEY_int(EVP_PKEY **a, |
484 | | const unsigned char **pp, long length, |
485 | | OSSL_LIB_CTX *libctx, const char *propq, |
486 | | unsigned int force_legacy, |
487 | | X509_PUBKEY * |
488 | | (*d2i_x509_pubkey)(X509_PUBKEY **a, |
489 | | const unsigned char **in, |
490 | | long len)) |
491 | 1.20M | { |
492 | 1.20M | X509_PUBKEY *xpk, *xpk2 = NULL, **pxpk = NULL; |
493 | 1.20M | EVP_PKEY *pktmp = NULL; |
494 | 1.20M | const unsigned char *q; |
495 | | |
496 | 1.20M | q = *pp; |
497 | | |
498 | | /* |
499 | | * If libctx or propq are non-NULL, we take advantage of the reuse |
500 | | * feature. It's not generally recommended, but is safe enough for |
501 | | * newly created structures. |
502 | | */ |
503 | 1.20M | if (libctx != NULL || propq != NULL || force_legacy) { |
504 | 1.20M | xpk2 = OPENSSL_zalloc(sizeof(*xpk2)); |
505 | 1.20M | if (xpk2 == NULL) { |
506 | 0 | ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE); |
507 | 0 | return NULL; |
508 | 0 | } |
509 | 1.20M | if (!x509_pubkey_set0_libctx(xpk2, libctx, propq)) |
510 | 0 | goto end; |
511 | 1.20M | xpk2->flag_force_legacy = !!force_legacy; |
512 | 1.20M | pxpk = &xpk2; |
513 | 1.20M | } |
514 | 1.20M | xpk = d2i_x509_pubkey(pxpk, &q, length); |
515 | 1.20M | if (xpk == NULL) |
516 | 248k | goto end; |
517 | 960k | pktmp = X509_PUBKEY_get(xpk); |
518 | 960k | X509_PUBKEY_free(xpk); |
519 | 960k | xpk2 = NULL; /* We know that xpk == xpk2 */ |
520 | 960k | if (pktmp == NULL) |
521 | 424k | goto end; |
522 | 536k | *pp = q; |
523 | 536k | if (a != NULL) { |
524 | 0 | EVP_PKEY_free(*a); |
525 | 0 | *a = pktmp; |
526 | 0 | } |
527 | 1.20M | end: |
528 | 1.20M | X509_PUBKEY_free(xpk2); |
529 | 1.20M | return pktmp; |
530 | 536k | } |
531 | | |
532 | | /* For the algorithm specific d2i functions further down */ |
533 | | EVP_PKEY *ossl_d2i_PUBKEY_legacy(EVP_PKEY **a, const unsigned char **pp, |
534 | | long length) |
535 | 1.20M | { |
536 | 1.20M | return d2i_PUBKEY_int(a, pp, length, NULL, NULL, 1, d2i_X509_PUBKEY); |
537 | 1.20M | } |
538 | | |
539 | | EVP_PKEY *d2i_PUBKEY_ex(EVP_PKEY **a, const unsigned char **pp, long length, |
540 | | OSSL_LIB_CTX *libctx, const char *propq) |
541 | 8 | { |
542 | 8 | return d2i_PUBKEY_int(a, pp, length, libctx, propq, 0, d2i_X509_PUBKEY); |
543 | 8 | } |
544 | | |
545 | | EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length) |
546 | 0 | { |
547 | 0 | return d2i_PUBKEY_ex(a, pp, length, NULL, NULL); |
548 | 0 | } |
549 | | |
550 | | int i2d_PUBKEY(const EVP_PKEY *a, unsigned char **pp) |
551 | 0 | { |
552 | 0 | int ret = -1; |
553 | |
|
554 | 0 | if (a == NULL) |
555 | 0 | return 0; |
556 | 0 | if (a->ameth != NULL) { |
557 | 0 | X509_PUBKEY *xpk = NULL; |
558 | |
|
559 | 0 | if ((xpk = X509_PUBKEY_new()) == NULL) |
560 | 0 | return -1; |
561 | | |
562 | | /* pub_encode() only encode parameters, not the key itself */ |
563 | 0 | if (a->ameth->pub_encode != NULL && a->ameth->pub_encode(xpk, a)) { |
564 | 0 | xpk->pkey = (EVP_PKEY *)a; |
565 | 0 | ret = i2d_X509_PUBKEY(xpk, pp); |
566 | 0 | xpk->pkey = NULL; |
567 | 0 | } |
568 | 0 | X509_PUBKEY_free(xpk); |
569 | 0 | } else if (a->keymgmt != NULL) { |
570 | 0 | OSSL_ENCODER_CTX *ctx = |
571 | 0 | OSSL_ENCODER_CTX_new_for_pkey(a, EVP_PKEY_PUBLIC_KEY, |
572 | 0 | "DER", "SubjectPublicKeyInfo", |
573 | 0 | NULL); |
574 | 0 | BIO *out = BIO_new(BIO_s_mem()); |
575 | 0 | BUF_MEM *buf = NULL; |
576 | |
|
577 | 0 | if (OSSL_ENCODER_CTX_get_num_encoders(ctx) != 0 |
578 | 0 | && out != NULL |
579 | 0 | && OSSL_ENCODER_to_bio(ctx, out) |
580 | 0 | && BIO_get_mem_ptr(out, &buf) > 0) { |
581 | 0 | ret = buf->length; |
582 | |
|
583 | 0 | if (pp != NULL) { |
584 | 0 | if (*pp == NULL) { |
585 | 0 | *pp = (unsigned char *)buf->data; |
586 | 0 | buf->length = 0; |
587 | 0 | buf->data = NULL; |
588 | 0 | } else { |
589 | 0 | memcpy(*pp, buf->data, ret); |
590 | 0 | *pp += ret; |
591 | 0 | } |
592 | 0 | } |
593 | 0 | } |
594 | 0 | BIO_free(out); |
595 | 0 | OSSL_ENCODER_CTX_free(ctx); |
596 | 0 | } |
597 | | |
598 | 0 | return ret; |
599 | 0 | } |
600 | | |
601 | | /* |
602 | | * The following are equivalents but which return RSA and DSA keys |
603 | | */ |
604 | | RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length) |
605 | 177k | { |
606 | 177k | EVP_PKEY *pkey; |
607 | 177k | RSA *key = NULL; |
608 | 177k | const unsigned char *q; |
609 | | |
610 | 177k | q = *pp; |
611 | 177k | pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); |
612 | 177k | if (pkey == NULL) |
613 | 48.3k | return NULL; |
614 | 129k | key = EVP_PKEY_get1_RSA(pkey); |
615 | 129k | EVP_PKEY_free(pkey); |
616 | 129k | if (key == NULL) |
617 | 0 | return NULL; |
618 | 129k | *pp = q; |
619 | 129k | if (a != NULL) { |
620 | 0 | RSA_free(*a); |
621 | 0 | *a = key; |
622 | 0 | } |
623 | 129k | return key; |
624 | 129k | } |
625 | | |
626 | | int i2d_RSA_PUBKEY(const RSA *a, unsigned char **pp) |
627 | 0 | { |
628 | 0 | EVP_PKEY *pktmp; |
629 | 0 | int ret; |
630 | 0 | if (!a) |
631 | 0 | return 0; |
632 | 0 | pktmp = EVP_PKEY_new(); |
633 | 0 | if (pktmp == NULL) { |
634 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
635 | 0 | return -1; |
636 | 0 | } |
637 | 0 | (void)EVP_PKEY_assign_RSA(pktmp, (RSA *)a); |
638 | 0 | ret = i2d_PUBKEY(pktmp, pp); |
639 | 0 | pktmp->pkey.ptr = NULL; |
640 | 0 | EVP_PKEY_free(pktmp); |
641 | 0 | return ret; |
642 | 0 | } |
643 | | |
644 | | #ifndef OPENSSL_NO_DH |
645 | | DH *ossl_d2i_DH_PUBKEY(DH **a, const unsigned char **pp, long length) |
646 | 29.5k | { |
647 | 29.5k | EVP_PKEY *pkey; |
648 | 29.5k | DH *key = NULL; |
649 | 29.5k | const unsigned char *q; |
650 | | |
651 | 29.5k | q = *pp; |
652 | 29.5k | pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); |
653 | 29.5k | if (pkey == NULL) |
654 | 20.5k | return NULL; |
655 | 9.05k | if (EVP_PKEY_get_id(pkey) == EVP_PKEY_DH) |
656 | 9.05k | key = EVP_PKEY_get1_DH(pkey); |
657 | 9.05k | EVP_PKEY_free(pkey); |
658 | 9.05k | if (key == NULL) |
659 | 0 | return NULL; |
660 | 9.05k | *pp = q; |
661 | 9.05k | if (a != NULL) { |
662 | 0 | DH_free(*a); |
663 | 0 | *a = key; |
664 | 0 | } |
665 | 9.05k | return key; |
666 | 9.05k | } |
667 | | |
668 | | int ossl_i2d_DH_PUBKEY(const DH *a, unsigned char **pp) |
669 | 0 | { |
670 | 0 | EVP_PKEY *pktmp; |
671 | 0 | int ret; |
672 | 0 | if (!a) |
673 | 0 | return 0; |
674 | 0 | pktmp = EVP_PKEY_new(); |
675 | 0 | if (pktmp == NULL) { |
676 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
677 | 0 | return -1; |
678 | 0 | } |
679 | 0 | (void)EVP_PKEY_assign_DH(pktmp, (DH *)a); |
680 | 0 | ret = i2d_PUBKEY(pktmp, pp); |
681 | 0 | pktmp->pkey.ptr = NULL; |
682 | 0 | EVP_PKEY_free(pktmp); |
683 | 0 | return ret; |
684 | 0 | } |
685 | | |
686 | | DH *ossl_d2i_DHx_PUBKEY(DH **a, const unsigned char **pp, long length) |
687 | 75.6k | { |
688 | 75.6k | EVP_PKEY *pkey; |
689 | 75.6k | DH *key = NULL; |
690 | 75.6k | const unsigned char *q; |
691 | | |
692 | 75.6k | q = *pp; |
693 | 75.6k | pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); |
694 | 75.6k | if (pkey == NULL) |
695 | 49.7k | return NULL; |
696 | 25.8k | if (EVP_PKEY_get_id(pkey) == EVP_PKEY_DHX) |
697 | 25.8k | key = EVP_PKEY_get1_DH(pkey); |
698 | 25.8k | EVP_PKEY_free(pkey); |
699 | 25.8k | if (key == NULL) |
700 | 0 | return NULL; |
701 | 25.8k | *pp = q; |
702 | 25.8k | if (a != NULL) { |
703 | 0 | DH_free(*a); |
704 | 0 | *a = key; |
705 | 0 | } |
706 | 25.8k | return key; |
707 | 25.8k | } |
708 | | |
709 | | int ossl_i2d_DHx_PUBKEY(const DH *a, unsigned char **pp) |
710 | 0 | { |
711 | 0 | EVP_PKEY *pktmp; |
712 | 0 | int ret; |
713 | 0 | if (!a) |
714 | 0 | return 0; |
715 | 0 | pktmp = EVP_PKEY_new(); |
716 | 0 | if (pktmp == NULL) { |
717 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
718 | 0 | return -1; |
719 | 0 | } |
720 | 0 | (void)EVP_PKEY_assign(pktmp, EVP_PKEY_DHX, (DH *)a); |
721 | 0 | ret = i2d_PUBKEY(pktmp, pp); |
722 | 0 | pktmp->pkey.ptr = NULL; |
723 | 0 | EVP_PKEY_free(pktmp); |
724 | 0 | return ret; |
725 | 0 | } |
726 | | #endif |
727 | | |
728 | | #ifndef OPENSSL_NO_DSA |
729 | | DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length) |
730 | 144k | { |
731 | 144k | EVP_PKEY *pkey; |
732 | 144k | DSA *key = NULL; |
733 | 144k | const unsigned char *q; |
734 | | |
735 | 144k | q = *pp; |
736 | 144k | pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); |
737 | 144k | if (pkey == NULL) |
738 | 77.9k | return NULL; |
739 | 66.3k | key = EVP_PKEY_get1_DSA(pkey); |
740 | 66.3k | EVP_PKEY_free(pkey); |
741 | 66.3k | if (key == NULL) |
742 | 0 | return NULL; |
743 | 66.3k | *pp = q; |
744 | 66.3k | if (a != NULL) { |
745 | 0 | DSA_free(*a); |
746 | 0 | *a = key; |
747 | 0 | } |
748 | 66.3k | return key; |
749 | 66.3k | } |
750 | | |
751 | | /* Called from decoders; disallows provided DSA keys without parameters. */ |
752 | | DSA *ossl_d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length) |
753 | 144k | { |
754 | 144k | DSA *key = NULL; |
755 | 144k | const unsigned char *data; |
756 | 144k | const BIGNUM *p, *q, *g; |
757 | | |
758 | 144k | data = *pp; |
759 | 144k | key = d2i_DSA_PUBKEY(NULL, &data, length); |
760 | 144k | if (key == NULL) |
761 | 77.9k | return NULL; |
762 | 66.3k | DSA_get0_pqg(key, &p, &q, &g); |
763 | 66.3k | if (p == NULL || q == NULL || g == NULL) { |
764 | 1.71k | DSA_free(key); |
765 | 1.71k | return NULL; |
766 | 1.71k | } |
767 | 64.6k | *pp = data; |
768 | 64.6k | if (a != NULL) { |
769 | 0 | DSA_free(*a); |
770 | 0 | *a = key; |
771 | 0 | } |
772 | 64.6k | return key; |
773 | 66.3k | } |
774 | | |
775 | | int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp) |
776 | 0 | { |
777 | 0 | EVP_PKEY *pktmp; |
778 | 0 | int ret; |
779 | 0 | if (!a) |
780 | 0 | return 0; |
781 | 0 | pktmp = EVP_PKEY_new(); |
782 | 0 | if (pktmp == NULL) { |
783 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
784 | 0 | return -1; |
785 | 0 | } |
786 | 0 | (void)EVP_PKEY_assign_DSA(pktmp, (DSA *)a); |
787 | 0 | ret = i2d_PUBKEY(pktmp, pp); |
788 | 0 | pktmp->pkey.ptr = NULL; |
789 | 0 | EVP_PKEY_free(pktmp); |
790 | 0 | return ret; |
791 | 0 | } |
792 | | #endif |
793 | | |
794 | | #ifndef OPENSSL_NO_EC |
795 | | EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length) |
796 | 647k | { |
797 | 647k | EVP_PKEY *pkey; |
798 | 647k | EC_KEY *key = NULL; |
799 | 647k | const unsigned char *q; |
800 | 647k | int type; |
801 | | |
802 | 647k | q = *pp; |
803 | 647k | pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); |
804 | 647k | if (pkey == NULL) |
805 | 345k | return NULL; |
806 | 301k | type = EVP_PKEY_get_id(pkey); |
807 | 301k | if (type == EVP_PKEY_EC || type == EVP_PKEY_SM2) |
808 | 301k | key = EVP_PKEY_get1_EC_KEY(pkey); |
809 | 301k | EVP_PKEY_free(pkey); |
810 | 301k | if (key == NULL) |
811 | 0 | return NULL; |
812 | 301k | *pp = q; |
813 | 301k | if (a != NULL) { |
814 | 0 | EC_KEY_free(*a); |
815 | 0 | *a = key; |
816 | 0 | } |
817 | 301k | return key; |
818 | 301k | } |
819 | | |
820 | | int i2d_EC_PUBKEY(const EC_KEY *a, unsigned char **pp) |
821 | 0 | { |
822 | 0 | EVP_PKEY *pktmp; |
823 | 0 | int ret; |
824 | |
|
825 | 0 | if (a == NULL) |
826 | 0 | return 0; |
827 | 0 | if ((pktmp = EVP_PKEY_new()) == NULL) { |
828 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
829 | 0 | return -1; |
830 | 0 | } |
831 | 0 | (void)EVP_PKEY_assign_EC_KEY(pktmp, (EC_KEY *)a); |
832 | 0 | ret = i2d_PUBKEY(pktmp, pp); |
833 | 0 | pktmp->pkey.ptr = NULL; |
834 | 0 | EVP_PKEY_free(pktmp); |
835 | 0 | return ret; |
836 | 0 | } |
837 | | |
838 | | ECX_KEY *ossl_d2i_ED25519_PUBKEY(ECX_KEY **a, |
839 | | const unsigned char **pp, long length) |
840 | 39.5k | { |
841 | 39.5k | EVP_PKEY *pkey; |
842 | 39.5k | ECX_KEY *key = NULL; |
843 | 39.5k | const unsigned char *q; |
844 | | |
845 | 39.5k | q = *pp; |
846 | 39.5k | pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); |
847 | 39.5k | if (pkey == NULL) |
848 | 39.3k | return NULL; |
849 | 236 | key = ossl_evp_pkey_get1_ED25519(pkey); |
850 | 236 | EVP_PKEY_free(pkey); |
851 | 236 | if (key == NULL) |
852 | 0 | return NULL; |
853 | 236 | *pp = q; |
854 | 236 | if (a != NULL) { |
855 | 0 | ossl_ecx_key_free(*a); |
856 | 0 | *a = key; |
857 | 0 | } |
858 | 236 | return key; |
859 | 236 | } |
860 | | |
861 | | int ossl_i2d_ED25519_PUBKEY(const ECX_KEY *a, unsigned char **pp) |
862 | 0 | { |
863 | 0 | EVP_PKEY *pktmp; |
864 | 0 | int ret; |
865 | |
|
866 | 0 | if (a == NULL) |
867 | 0 | return 0; |
868 | 0 | if ((pktmp = EVP_PKEY_new()) == NULL) { |
869 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
870 | 0 | return -1; |
871 | 0 | } |
872 | 0 | (void)EVP_PKEY_assign(pktmp, EVP_PKEY_ED25519, (ECX_KEY *)a); |
873 | 0 | ret = i2d_PUBKEY(pktmp, pp); |
874 | 0 | pktmp->pkey.ptr = NULL; |
875 | 0 | EVP_PKEY_free(pktmp); |
876 | 0 | return ret; |
877 | 0 | } |
878 | | |
879 | | ECX_KEY *ossl_d2i_ED448_PUBKEY(ECX_KEY **a, |
880 | | const unsigned char **pp, long length) |
881 | 29.8k | { |
882 | 29.8k | EVP_PKEY *pkey; |
883 | 29.8k | ECX_KEY *key = NULL; |
884 | 29.8k | const unsigned char *q; |
885 | | |
886 | 29.8k | q = *pp; |
887 | 29.8k | pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); |
888 | 29.8k | if (pkey == NULL) |
889 | 29.3k | return NULL; |
890 | 514 | if (EVP_PKEY_get_id(pkey) == EVP_PKEY_ED448) |
891 | 514 | key = ossl_evp_pkey_get1_ED448(pkey); |
892 | 514 | EVP_PKEY_free(pkey); |
893 | 514 | if (key == NULL) |
894 | 0 | return NULL; |
895 | 514 | *pp = q; |
896 | 514 | if (a != NULL) { |
897 | 0 | ossl_ecx_key_free(*a); |
898 | 0 | *a = key; |
899 | 0 | } |
900 | 514 | return key; |
901 | 514 | } |
902 | | |
903 | | int ossl_i2d_ED448_PUBKEY(const ECX_KEY *a, unsigned char **pp) |
904 | 0 | { |
905 | 0 | EVP_PKEY *pktmp; |
906 | 0 | int ret; |
907 | |
|
908 | 0 | if (a == NULL) |
909 | 0 | return 0; |
910 | 0 | if ((pktmp = EVP_PKEY_new()) == NULL) { |
911 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
912 | 0 | return -1; |
913 | 0 | } |
914 | 0 | (void)EVP_PKEY_assign(pktmp, EVP_PKEY_ED448, (ECX_KEY *)a); |
915 | 0 | ret = i2d_PUBKEY(pktmp, pp); |
916 | 0 | pktmp->pkey.ptr = NULL; |
917 | 0 | EVP_PKEY_free(pktmp); |
918 | 0 | return ret; |
919 | 0 | } |
920 | | |
921 | | ECX_KEY *ossl_d2i_X25519_PUBKEY(ECX_KEY **a, |
922 | | const unsigned char **pp, long length) |
923 | 30.6k | { |
924 | 30.6k | EVP_PKEY *pkey; |
925 | 30.6k | ECX_KEY *key = NULL; |
926 | 30.6k | const unsigned char *q; |
927 | | |
928 | 30.6k | q = *pp; |
929 | 30.6k | pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); |
930 | 30.6k | if (pkey == NULL) |
931 | 29.8k | return NULL; |
932 | 829 | if (EVP_PKEY_get_id(pkey) == EVP_PKEY_X25519) |
933 | 829 | key = ossl_evp_pkey_get1_X25519(pkey); |
934 | 829 | EVP_PKEY_free(pkey); |
935 | 829 | if (key == NULL) |
936 | 0 | return NULL; |
937 | 829 | *pp = q; |
938 | 829 | if (a != NULL) { |
939 | 0 | ossl_ecx_key_free(*a); |
940 | 0 | *a = key; |
941 | 0 | } |
942 | 829 | return key; |
943 | 829 | } |
944 | | |
945 | | int ossl_i2d_X25519_PUBKEY(const ECX_KEY *a, unsigned char **pp) |
946 | 0 | { |
947 | 0 | EVP_PKEY *pktmp; |
948 | 0 | int ret; |
949 | |
|
950 | 0 | if (a == NULL) |
951 | 0 | return 0; |
952 | 0 | if ((pktmp = EVP_PKEY_new()) == NULL) { |
953 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
954 | 0 | return -1; |
955 | 0 | } |
956 | 0 | (void)EVP_PKEY_assign(pktmp, EVP_PKEY_X25519, (ECX_KEY *)a); |
957 | 0 | ret = i2d_PUBKEY(pktmp, pp); |
958 | 0 | pktmp->pkey.ptr = NULL; |
959 | 0 | EVP_PKEY_free(pktmp); |
960 | 0 | return ret; |
961 | 0 | } |
962 | | |
963 | | ECX_KEY *ossl_d2i_X448_PUBKEY(ECX_KEY **a, |
964 | | const unsigned char **pp, long length) |
965 | 34.1k | { |
966 | 34.1k | EVP_PKEY *pkey; |
967 | 34.1k | ECX_KEY *key = NULL; |
968 | 34.1k | const unsigned char *q; |
969 | | |
970 | 34.1k | q = *pp; |
971 | 34.1k | pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); |
972 | 34.1k | if (pkey == NULL) |
973 | 31.6k | return NULL; |
974 | 2.46k | if (EVP_PKEY_get_id(pkey) == EVP_PKEY_X448) |
975 | 2.46k | key = ossl_evp_pkey_get1_X448(pkey); |
976 | 2.46k | EVP_PKEY_free(pkey); |
977 | 2.46k | if (key == NULL) |
978 | 0 | return NULL; |
979 | 2.46k | *pp = q; |
980 | 2.46k | if (a != NULL) { |
981 | 0 | ossl_ecx_key_free(*a); |
982 | 0 | *a = key; |
983 | 0 | } |
984 | 2.46k | return key; |
985 | 2.46k | } |
986 | | |
987 | | int ossl_i2d_X448_PUBKEY(const ECX_KEY *a, unsigned char **pp) |
988 | 0 | { |
989 | 0 | EVP_PKEY *pktmp; |
990 | 0 | int ret; |
991 | |
|
992 | 0 | if (a == NULL) |
993 | 0 | return 0; |
994 | 0 | if ((pktmp = EVP_PKEY_new()) == NULL) { |
995 | 0 | ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
996 | 0 | return -1; |
997 | 0 | } |
998 | 0 | (void)EVP_PKEY_assign(pktmp, EVP_PKEY_X448, (ECX_KEY *)a); |
999 | 0 | ret = i2d_PUBKEY(pktmp, pp); |
1000 | 0 | pktmp->pkey.ptr = NULL; |
1001 | 0 | EVP_PKEY_free(pktmp); |
1002 | 0 | return ret; |
1003 | 0 | } |
1004 | | |
1005 | | #endif |
1006 | | |
1007 | | int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj, |
1008 | | int ptype, void *pval, |
1009 | | unsigned char *penc, int penclen) |
1010 | 0 | { |
1011 | 0 | if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval)) |
1012 | 0 | return 0; |
1013 | 0 | if (penc) { |
1014 | 0 | OPENSSL_free(pub->public_key->data); |
1015 | 0 | pub->public_key->data = penc; |
1016 | 0 | pub->public_key->length = penclen; |
1017 | | /* Set number of unused bits to zero */ |
1018 | 0 | pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); |
1019 | 0 | pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT; |
1020 | 0 | } |
1021 | 0 | return 1; |
1022 | 0 | } |
1023 | | |
1024 | | int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg, |
1025 | | const unsigned char **pk, int *ppklen, |
1026 | | X509_ALGOR **pa, const X509_PUBKEY *pub) |
1027 | 1.97M | { |
1028 | 1.97M | if (ppkalg) |
1029 | 38.0k | *ppkalg = pub->algor->algorithm; |
1030 | 1.97M | if (pk) { |
1031 | 962k | *pk = pub->public_key->data; |
1032 | 962k | *ppklen = pub->public_key->length; |
1033 | 962k | } |
1034 | 1.97M | if (pa) |
1035 | 1.93M | *pa = pub->algor; |
1036 | 1.97M | return 1; |
1037 | 1.97M | } |
1038 | | |
1039 | | ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x) |
1040 | 569 | { |
1041 | 569 | if (x == NULL) |
1042 | 0 | return NULL; |
1043 | 569 | return x->cert_info.key->public_key; |
1044 | 569 | } |
1045 | | |
1046 | | /* Returns 1 for equal, 0, for non-equal, < 0 on error */ |
1047 | | int X509_PUBKEY_eq(const X509_PUBKEY *a, const X509_PUBKEY *b) |
1048 | 0 | { |
1049 | 0 | X509_ALGOR *algA, *algB; |
1050 | 0 | EVP_PKEY *pA, *pB; |
1051 | |
|
1052 | 0 | if (a == b) |
1053 | 0 | return 1; |
1054 | 0 | if (a == NULL || b == NULL) |
1055 | 0 | return 0; |
1056 | 0 | if (!X509_PUBKEY_get0_param(NULL, NULL, NULL, &algA, a) || algA == NULL |
1057 | 0 | || !X509_PUBKEY_get0_param(NULL, NULL, NULL, &algB, b) || algB == NULL) |
1058 | 0 | return -2; |
1059 | 0 | if (X509_ALGOR_cmp(algA, algB) != 0) |
1060 | 0 | return 0; |
1061 | 0 | if ((pA = X509_PUBKEY_get0(a)) == NULL |
1062 | 0 | || (pB = X509_PUBKEY_get0(b)) == NULL) |
1063 | 0 | return -2; |
1064 | 0 | return EVP_PKEY_eq(pA, pB); |
1065 | 0 | } |
1066 | | |
1067 | | int ossl_x509_PUBKEY_get0_libctx(OSSL_LIB_CTX **plibctx, const char **ppropq, |
1068 | | const X509_PUBKEY *key) |
1069 | 599k | { |
1070 | 599k | if (plibctx) |
1071 | 599k | *plibctx = key->libctx; |
1072 | 599k | if (ppropq) |
1073 | 599k | *ppropq = key->propq; |
1074 | 599k | return 1; |
1075 | 599k | } |