Coverage Report

Created: 2025-11-16 06:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl32/ssl/t1_lib.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <openssl/objects.h>
13
#include <openssl/evp.h>
14
#include <openssl/hmac.h>
15
#include <openssl/core_names.h>
16
#include <openssl/ocsp.h>
17
#include <openssl/conf.h>
18
#include <openssl/x509v3.h>
19
#include <openssl/dh.h>
20
#include <openssl/bn.h>
21
#include <openssl/provider.h>
22
#include <openssl/param_build.h>
23
#include "internal/nelem.h"
24
#include "internal/sizes.h"
25
#include "internal/tlsgroups.h"
26
#include "ssl_local.h"
27
#include "quic/quic_local.h"
28
#include <openssl/ct.h>
29
30
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
31
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
32
33
SSL3_ENC_METHOD const TLSv1_enc_data = {
34
    tls1_setup_key_block,
35
    tls1_generate_master_secret,
36
    tls1_change_cipher_state,
37
    tls1_final_finish_mac,
38
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40
    tls1_alert_code,
41
    tls1_export_keying_material,
42
    0,
43
    ssl3_set_handshake_header,
44
    tls_close_construct_packet,
45
    ssl3_handshake_write
46
};
47
48
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49
    tls1_setup_key_block,
50
    tls1_generate_master_secret,
51
    tls1_change_cipher_state,
52
    tls1_final_finish_mac,
53
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
54
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
55
    tls1_alert_code,
56
    tls1_export_keying_material,
57
    SSL_ENC_FLAG_EXPLICIT_IV,
58
    ssl3_set_handshake_header,
59
    tls_close_construct_packet,
60
    ssl3_handshake_write
61
};
62
63
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
64
    tls1_setup_key_block,
65
    tls1_generate_master_secret,
66
    tls1_change_cipher_state,
67
    tls1_final_finish_mac,
68
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
69
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
70
    tls1_alert_code,
71
    tls1_export_keying_material,
72
    SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
73
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
74
    ssl3_set_handshake_header,
75
    tls_close_construct_packet,
76
    ssl3_handshake_write
77
};
78
79
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
80
    tls13_setup_key_block,
81
    tls13_generate_master_secret,
82
    tls13_change_cipher_state,
83
    tls13_final_finish_mac,
84
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
85
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
86
    tls13_alert_code,
87
    tls13_export_keying_material,
88
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
89
    ssl3_set_handshake_header,
90
    tls_close_construct_packet,
91
    ssl3_handshake_write
92
};
93
94
OSSL_TIME tls1_default_timeout(void)
95
116k
{
96
    /*
97
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
98
     * http, the cache would over fill
99
     */
100
116k
    return ossl_seconds2time(60 * 60 * 2);
101
116k
}
102
103
int tls1_new(SSL *s)
104
116k
{
105
116k
    if (!ssl3_new(s))
106
0
        return 0;
107
116k
    if (!s->method->ssl_clear(s))
108
0
        return 0;
109
110
116k
    return 1;
111
116k
}
112
113
void tls1_free(SSL *s)
114
64.5k
{
115
64.5k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
116
117
64.5k
    if (sc == NULL)
118
0
        return;
119
120
64.5k
    OPENSSL_free(sc->ext.session_ticket);
121
64.5k
    ssl3_free(s);
122
64.5k
}
123
124
int tls1_clear(SSL *s)
125
258k
{
126
258k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
127
128
258k
    if (sc == NULL)
129
0
        return 0;
130
131
258k
    if (!ssl3_clear(s))
132
0
        return 0;
133
134
258k
    if (s->method->version == TLS_ANY_VERSION)
135
258k
        sc->version = TLS_MAX_VERSION_INTERNAL;
136
0
    else
137
0
        sc->version = s->method->version;
138
139
258k
    return 1;
140
258k
}
141
142
/* Legacy NID to group_id mapping. Only works for groups we know about */
143
static struct {
144
    int nid;
145
    uint16_t group_id;
146
} nid_to_group[] = {
147
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
148
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
149
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
150
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
151
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
152
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
153
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
154
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
155
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
156
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
157
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
158
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
159
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
160
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
161
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
162
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
163
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
164
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
165
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
166
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
167
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
168
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
169
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
170
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
171
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
172
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
173
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
174
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
175
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
176
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
177
    {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
178
    {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
179
    {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
180
    {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
181
    {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
182
    {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
183
    {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
184
    {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
185
    {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
186
    {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
187
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
188
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
189
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
190
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
191
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
192
};
193
194
static const unsigned char ecformats_default[] = {
195
    TLSEXT_ECPOINTFORMAT_uncompressed,
196
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
197
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
198
};
199
200
/* The default curves */
201
static const uint16_t supported_groups_default[] = {
202
    OSSL_TLS_GROUP_ID_x25519,        /* X25519 (29) */
203
    OSSL_TLS_GROUP_ID_secp256r1,     /* secp256r1 (23) */
204
    OSSL_TLS_GROUP_ID_x448,          /* X448 (30) */
205
    OSSL_TLS_GROUP_ID_secp521r1,     /* secp521r1 (25) */
206
    OSSL_TLS_GROUP_ID_secp384r1,     /* secp384r1 (24) */
207
    OSSL_TLS_GROUP_ID_gc256A,        /* GC256A (34) */
208
    OSSL_TLS_GROUP_ID_gc256B,        /* GC256B (35) */
209
    OSSL_TLS_GROUP_ID_gc256C,        /* GC256C (36) */
210
    OSSL_TLS_GROUP_ID_gc256D,        /* GC256D (37) */
211
    OSSL_TLS_GROUP_ID_gc512A,        /* GC512A (38) */
212
    OSSL_TLS_GROUP_ID_gc512B,        /* GC512B (39) */
213
    OSSL_TLS_GROUP_ID_gc512C,        /* GC512C (40) */
214
    OSSL_TLS_GROUP_ID_ffdhe2048,     /* ffdhe2048 (0x100) */
215
    OSSL_TLS_GROUP_ID_ffdhe3072,     /* ffdhe3072 (0x101) */
216
    OSSL_TLS_GROUP_ID_ffdhe4096,     /* ffdhe4096 (0x102) */
217
    OSSL_TLS_GROUP_ID_ffdhe6144,     /* ffdhe6144 (0x103) */
218
    OSSL_TLS_GROUP_ID_ffdhe8192,     /* ffdhe8192 (0x104) */
219
};
220
221
static const uint16_t suiteb_curves[] = {
222
    OSSL_TLS_GROUP_ID_secp256r1,
223
    OSSL_TLS_GROUP_ID_secp384r1,
224
};
225
226
struct provider_ctx_data_st {
227
    SSL_CTX *ctx;
228
    OSSL_PROVIDER *provider;
229
};
230
231
1.07M
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
232
static OSSL_CALLBACK add_provider_groups;
233
static int add_provider_groups(const OSSL_PARAM params[], void *data)
234
4.83M
{
235
4.83M
    struct provider_ctx_data_st *pgd = data;
236
4.83M
    SSL_CTX *ctx = pgd->ctx;
237
4.83M
    OSSL_PROVIDER *provider = pgd->provider;
238
4.83M
    const OSSL_PARAM *p;
239
4.83M
    TLS_GROUP_INFO *ginf = NULL;
240
4.83M
    EVP_KEYMGMT *keymgmt;
241
4.83M
    unsigned int gid;
242
4.83M
    unsigned int is_kem = 0;
243
4.83M
    int ret = 0;
244
245
4.83M
    if (ctx->group_list_max_len == ctx->group_list_len) {
246
539k
        TLS_GROUP_INFO *tmp = NULL;
247
248
539k
        if (ctx->group_list_max_len == 0)
249
91.7k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
250
539k
                                 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251
448k
        else
252
448k
            tmp = OPENSSL_realloc(ctx->group_list,
253
539k
                                  (ctx->group_list_max_len
254
539k
                                   + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
255
539k
                                  * sizeof(TLS_GROUP_INFO));
256
539k
        if (tmp == NULL)
257
0
            return 0;
258
539k
        ctx->group_list = tmp;
259
539k
        memset(tmp + ctx->group_list_max_len,
260
539k
               0,
261
539k
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
262
539k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
263
539k
    }
264
265
4.83M
    ginf = &ctx->group_list[ctx->group_list_len];
266
267
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
268
4.83M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
269
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
270
0
        goto err;
271
0
    }
272
4.83M
    ginf->tlsname = OPENSSL_strdup(p->data);
273
4.83M
    if (ginf->tlsname == NULL)
274
0
        goto err;
275
276
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
277
4.83M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
278
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
279
0
        goto err;
280
0
    }
281
4.83M
    ginf->realname = OPENSSL_strdup(p->data);
282
4.83M
    if (ginf->realname == NULL)
283
0
        goto err;
284
285
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286
4.83M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288
0
        goto err;
289
0
    }
290
4.83M
    ginf->group_id = (uint16_t)gid;
291
292
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293
4.83M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295
0
        goto err;
296
0
    }
297
4.83M
    ginf->algorithm = OPENSSL_strdup(p->data);
298
4.83M
    if (ginf->algorithm == NULL)
299
0
        goto err;
300
301
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
302
4.83M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
303
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
304
0
        goto err;
305
0
    }
306
307
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
308
4.83M
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
309
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310
0
        goto err;
311
0
    }
312
4.83M
    ginf->is_kem = 1 & is_kem;
313
314
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
315
4.83M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
316
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
317
0
        goto err;
318
0
    }
319
320
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
321
4.83M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
322
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
323
0
        goto err;
324
0
    }
325
326
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
327
4.83M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
328
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
329
0
        goto err;
330
0
    }
331
332
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
333
4.83M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
334
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
335
0
        goto err;
336
0
    }
337
    /*
338
     * Now check that the algorithm is actually usable for our property query
339
     * string. Regardless of the result we still return success because we have
340
     * successfully processed this group, even though we may decide not to use
341
     * it.
342
     */
343
4.83M
    ret = 1;
344
4.83M
    ERR_set_mark();
345
4.83M
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
346
4.83M
    if (keymgmt != NULL) {
347
        /*
348
         * We have successfully fetched the algorithm - however if the provider
349
         * doesn't match this one then we ignore it.
350
         *
351
         * Note: We're cheating a little here. Technically if the same algorithm
352
         * is available from more than one provider then it is undefined which
353
         * implementation you will get back. Theoretically this could be
354
         * different every time...we assume here that you'll always get the
355
         * same one back if you repeat the exact same fetch. Is this a reasonable
356
         * assumption to make (in which case perhaps we should document this
357
         * behaviour)?
358
         */
359
4.83M
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
360
            /* We have a match - so we will use this group */
361
4.83M
            ctx->group_list_len++;
362
4.83M
            ginf = NULL;
363
4.83M
        }
364
4.83M
        EVP_KEYMGMT_free(keymgmt);
365
4.83M
    }
366
4.83M
    ERR_pop_to_mark();
367
4.83M
 err:
368
4.83M
    if (ginf != NULL) {
369
0
        OPENSSL_free(ginf->tlsname);
370
0
        OPENSSL_free(ginf->realname);
371
0
        OPENSSL_free(ginf->algorithm);
372
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
373
0
    }
374
4.83M
    return ret;
375
4.83M
}
376
377
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
378
302k
{
379
302k
    struct provider_ctx_data_st pgd;
380
381
302k
    pgd.ctx = vctx;
382
302k
    pgd.provider = provider;
383
302k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
384
302k
                                          add_provider_groups, &pgd);
385
302k
}
386
387
int ssl_load_groups(SSL_CTX *ctx)
388
91.7k
{
389
91.7k
    size_t i, j, num_deflt_grps = 0;
390
91.7k
    uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
391
392
91.7k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
393
0
        return 0;
394
395
1.65M
    for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
396
76.0M
        for (j = 0; j < ctx->group_list_len; j++) {
397
75.4M
            if (ctx->group_list[j].group_id == supported_groups_default[i]) {
398
917k
                tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
399
917k
                break;
400
917k
            }
401
75.4M
        }
402
1.56M
    }
403
404
91.7k
    if (num_deflt_grps == 0)
405
0
        return 1;
406
407
91.7k
    ctx->ext.supported_groups_default
408
91.7k
        = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
409
410
91.7k
    if (ctx->ext.supported_groups_default == NULL)
411
0
        return 0;
412
413
91.7k
    memcpy(ctx->ext.supported_groups_default,
414
91.7k
           tmp_supp_groups,
415
91.7k
           num_deflt_grps * sizeof(tmp_supp_groups[0]));
416
91.7k
    ctx->ext.supported_groups_default_len = num_deflt_grps;
417
418
91.7k
    return 1;
419
91.7k
}
420
421
static const char *inferred_keytype(const TLS_SIGALG_INFO *sinf)
422
358k
{
423
358k
    return (sinf->keytype != NULL
424
358k
            ? sinf->keytype
425
358k
            : (sinf->sig_name != NULL
426
358k
               ? sinf->sig_name
427
358k
               : sinf->sigalg_name));
428
358k
}
429
430
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10
431
static OSSL_CALLBACK add_provider_sigalgs;
432
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
433
{
434
    struct provider_ctx_data_st *pgd = data;
435
    SSL_CTX *ctx = pgd->ctx;
436
    OSSL_PROVIDER *provider = pgd->provider;
437
    const OSSL_PARAM *p;
438
    TLS_SIGALG_INFO *sinf = NULL;
439
    EVP_KEYMGMT *keymgmt;
440
    const char *keytype;
441
    unsigned int code_point = 0;
442
    int ret = 0;
443
444
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
445
        TLS_SIGALG_INFO *tmp = NULL;
446
447
        if (ctx->sigalg_list_max_len == 0)
448
            tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
449
                                 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
450
        else
451
            tmp = OPENSSL_realloc(ctx->sigalg_list,
452
                                  (ctx->sigalg_list_max_len
453
                                   + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
454
                                  * sizeof(TLS_SIGALG_INFO));
455
        if (tmp == NULL)
456
            return 0;
457
        ctx->sigalg_list = tmp;
458
        memset(tmp + ctx->sigalg_list_max_len, 0,
459
               sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
460
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
461
    }
462
463
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
464
465
    /* First, mandatory parameters */
466
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
467
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
468
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
469
        goto err;
470
    }
471
    OPENSSL_free(sinf->sigalg_name);
472
    sinf->sigalg_name = OPENSSL_strdup(p->data);
473
    if (sinf->sigalg_name == NULL)
474
        goto err;
475
476
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
477
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
478
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
479
        goto err;
480
    }
481
    OPENSSL_free(sinf->name);
482
    sinf->name = OPENSSL_strdup(p->data);
483
    if (sinf->name == NULL)
484
        goto err;
485
486
    p = OSSL_PARAM_locate_const(params,
487
                                OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
488
    if (p == NULL
489
        || !OSSL_PARAM_get_uint(p, &code_point)
490
        || code_point > UINT16_MAX) {
491
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
492
        goto err;
493
    }
494
    sinf->code_point = (uint16_t)code_point;
495
496
    p = OSSL_PARAM_locate_const(params,
497
                                OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
498
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
499
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
500
        goto err;
501
    }
502
503
    /* Now, optional parameters */
504
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
505
    if (p == NULL) {
506
        sinf->sigalg_oid = NULL;
507
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
508
        goto err;
509
    } else {
510
        OPENSSL_free(sinf->sigalg_oid);
511
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
512
        if (sinf->sigalg_oid == NULL)
513
            goto err;
514
    }
515
516
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
517
    if (p == NULL) {
518
        sinf->sig_name = NULL;
519
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
520
        goto err;
521
    } else {
522
        OPENSSL_free(sinf->sig_name);
523
        sinf->sig_name = OPENSSL_strdup(p->data);
524
        if (sinf->sig_name == NULL)
525
            goto err;
526
    }
527
528
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
529
    if (p == NULL) {
530
        sinf->sig_oid = NULL;
531
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
532
        goto err;
533
    } else {
534
        OPENSSL_free(sinf->sig_oid);
535
        sinf->sig_oid = OPENSSL_strdup(p->data);
536
        if (sinf->sig_oid == NULL)
537
            goto err;
538
    }
539
540
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
541
    if (p == NULL) {
542
        sinf->hash_name = NULL;
543
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
544
        goto err;
545
    } else {
546
        OPENSSL_free(sinf->hash_name);
547
        sinf->hash_name = OPENSSL_strdup(p->data);
548
        if (sinf->hash_name == NULL)
549
            goto err;
550
    }
551
552
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
553
    if (p == NULL) {
554
        sinf->hash_oid = NULL;
555
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
556
        goto err;
557
    } else {
558
        OPENSSL_free(sinf->hash_oid);
559
        sinf->hash_oid = OPENSSL_strdup(p->data);
560
        if (sinf->hash_oid == NULL)
561
            goto err;
562
    }
563
564
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
565
    if (p == NULL) {
566
        sinf->keytype = NULL;
567
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
568
        goto err;
569
    } else {
570
        OPENSSL_free(sinf->keytype);
571
        sinf->keytype = OPENSSL_strdup(p->data);
572
        if (sinf->keytype == NULL)
573
            goto err;
574
    }
575
576
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
577
    if (p == NULL) {
578
        sinf->keytype_oid = NULL;
579
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
580
        goto err;
581
    } else {
582
        OPENSSL_free(sinf->keytype_oid);
583
        sinf->keytype_oid = OPENSSL_strdup(p->data);
584
        if (sinf->keytype_oid == NULL)
585
            goto err;
586
    }
587
588
    /* The remaining parameters below are mandatory again */
589
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
590
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
591
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
592
        goto err;
593
    }
594
    if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
595
        ((sinf->mintls < TLS1_3_VERSION))) {
596
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
597
        ret = 1;
598
        goto err;
599
    }
600
601
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
602
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
603
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
604
        goto err;
605
    }
606
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
607
        ((sinf->maxtls < sinf->mintls))) {
608
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
609
        goto err;
610
    }
611
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
612
        ((sinf->maxtls < TLS1_3_VERSION))) {
613
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
614
        ret = 1;
615
        goto err;
616
    }
617
618
    /*
619
     * Now check that the algorithm is actually usable for our property query
620
     * string. Regardless of the result we still return success because we have
621
     * successfully processed this signature, even though we may decide not to
622
     * use it.
623
     */
624
    ret = 1;
625
    ERR_set_mark();
626
    keytype = inferred_keytype(sinf);
627
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
628
    if (keymgmt != NULL) {
629
        /*
630
         * We have successfully fetched the algorithm - however if the provider
631
         * doesn't match this one then we ignore it.
632
         *
633
         * Note: We're cheating a little here. Technically if the same algorithm
634
         * is available from more than one provider then it is undefined which
635
         * implementation you will get back. Theoretically this could be
636
         * different every time...we assume here that you'll always get the
637
         * same one back if you repeat the exact same fetch. Is this a reasonable
638
         * assumption to make (in which case perhaps we should document this
639
         * behaviour)?
640
         */
641
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
642
            /*
643
             * We have a match - so we could use this signature;
644
             * Check proper object registration first, though. 
645
             * Don't care about return value as this may have been
646
             * done within providers or previous calls to
647
             * add_provider_sigalgs.
648
             */
649
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
650
            /* sanity check: Without successful registration don't use alg */
651
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
652
                (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
653
                    ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
654
                    goto err;
655
            }
656
            if (sinf->sig_name != NULL)
657
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
658
            if (sinf->keytype != NULL)
659
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
660
            if (sinf->hash_name != NULL)
661
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
662
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
663
                          (sinf->hash_name != NULL
664
                           ? OBJ_txt2nid(sinf->hash_name)
665
                           : NID_undef),
666
                          OBJ_txt2nid(keytype));
667
            ctx->sigalg_list_len++;
668
            sinf = NULL;
669
        }
670
        EVP_KEYMGMT_free(keymgmt);
671
    }
672
    ERR_pop_to_mark();
673
 err:
674
    if (sinf != NULL) {
675
        OPENSSL_free(sinf->name);
676
        sinf->name = NULL;
677
        OPENSSL_free(sinf->sigalg_name);
678
        sinf->sigalg_name = NULL;
679
        OPENSSL_free(sinf->sigalg_oid);
680
        sinf->sigalg_oid = NULL;
681
        OPENSSL_free(sinf->sig_name);
682
        sinf->sig_name = NULL;
683
        OPENSSL_free(sinf->sig_oid);
684
        sinf->sig_oid = NULL;
685
        OPENSSL_free(sinf->hash_name);
686
        sinf->hash_name = NULL;
687
        OPENSSL_free(sinf->hash_oid);
688
        sinf->hash_oid = NULL;
689
        OPENSSL_free(sinf->keytype);
690
        sinf->keytype = NULL;
691
        OPENSSL_free(sinf->keytype_oid);
692
        sinf->keytype_oid = NULL;
693
    }
694
    return ret;
695
}
696
697
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
698
281k
{
699
281k
    struct provider_ctx_data_st pgd;
700
701
281k
    pgd.ctx = vctx;
702
281k
    pgd.provider = provider;
703
281k
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
704
281k
                                   add_provider_sigalgs, &pgd);
705
    /*
706
     * Always OK, even if provider doesn't support the capability:
707
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
708
     */
709
281k
    return 1;
710
281k
}
711
712
int ssl_load_sigalgs(SSL_CTX *ctx)
713
140k
{
714
140k
    size_t i;
715
140k
    SSL_CERT_LOOKUP lu;
716
717
140k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
718
0
        return 0;
719
720
    /* now populate ctx->ssl_cert_info */
721
140k
    if (ctx->sigalg_list_len > 0) {
722
59.6k
        OPENSSL_free(ctx->ssl_cert_info);
723
59.6k
        ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
724
59.6k
        if (ctx->ssl_cert_info == NULL)
725
0
            return 0;
726
238k
        for(i = 0; i < ctx->sigalg_list_len; i++) {
727
179k
            const char *keytype = inferred_keytype(&ctx->sigalg_list[i]);
728
179k
            ctx->ssl_cert_info[i].pkey_nid = OBJ_txt2nid(keytype);
729
179k
            ctx->ssl_cert_info[i].amask = SSL_aANY;
730
179k
        }
731
59.6k
    }
732
733
    /* 
734
     * For now, leave it at this: legacy sigalgs stay in their own
735
     * data structures until "legacy cleanup" occurs.
736
     */
737
738
140k
    return 1;
739
140k
}
740
741
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
742
477k
{
743
477k
    size_t i;
744
745
2.68M
    for (i = 0; i < ctx->group_list_len; i++) {
746
2.68M
        if (strcmp(ctx->group_list[i].tlsname, name) == 0
747
2.20M
                || strcmp(ctx->group_list[i].realname, name) == 0)
748
477k
            return ctx->group_list[i].group_id;
749
2.68M
    }
750
751
0
    return 0;
752
477k
}
753
754
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
755
3.02M
{
756
3.02M
    size_t i;
757
758
86.9M
    for (i = 0; i < ctx->group_list_len; i++) {
759
86.9M
        if (ctx->group_list[i].group_id == group_id)
760
3.02M
            return &ctx->group_list[i];
761
86.9M
    }
762
763
0
    return NULL;
764
3.02M
}
765
766
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
767
0
{
768
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
769
770
0
    if (tls_group_info == NULL)
771
0
        return NULL;
772
773
0
    return tls_group_info->tlsname;
774
0
}
775
776
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
777
1.35M
{
778
1.35M
    size_t i;
779
780
1.35M
    if (group_id == 0)
781
0
        return NID_undef;
782
783
    /*
784
     * Return well known Group NIDs - for backwards compatibility. This won't
785
     * work for groups we don't know about.
786
     */
787
43.3M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
788
43.3M
    {
789
43.3M
        if (nid_to_group[i].group_id == group_id)
790
1.29M
            return nid_to_group[i].nid;
791
43.3M
    }
792
64.5k
    if (!include_unknown)
793
64.5k
        return NID_undef;
794
0
    return TLSEXT_nid_unknown | (int)group_id;
795
64.5k
}
796
797
uint16_t tls1_nid2group_id(int nid)
798
24.8k
{
799
24.8k
    size_t i;
800
801
    /*
802
     * Return well known Group ids - for backwards compatibility. This won't
803
     * work for groups we don't know about.
804
     */
805
572k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
806
571k
    {
807
571k
        if (nid_to_group[i].nid == nid)
808
24.8k
            return nid_to_group[i].group_id;
809
571k
    }
810
811
6
    return 0;
812
24.8k
}
813
814
/*
815
 * Set *pgroups to the supported groups list and *pgroupslen to
816
 * the number of groups supported.
817
 */
818
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
819
                               size_t *pgroupslen)
820
449k
{
821
449k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
822
823
    /* For Suite B mode only include P-256, P-384 */
824
449k
    switch (tls1_suiteb(s)) {
825
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
826
0
        *pgroups = suiteb_curves;
827
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
828
0
        break;
829
830
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
831
0
        *pgroups = suiteb_curves;
832
0
        *pgroupslen = 1;
833
0
        break;
834
835
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
836
0
        *pgroups = suiteb_curves + 1;
837
0
        *pgroupslen = 1;
838
0
        break;
839
840
449k
    default:
841
449k
        if (s->ext.supportedgroups == NULL) {
842
299k
            *pgroups = sctx->ext.supported_groups_default;
843
299k
            *pgroupslen = sctx->ext.supported_groups_default_len;
844
299k
        } else {
845
150k
            *pgroups = s->ext.supportedgroups;
846
150k
            *pgroupslen = s->ext.supportedgroups_len;
847
150k
        }
848
449k
        break;
849
449k
    }
850
449k
}
851
852
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
853
                    int minversion, int maxversion,
854
                    int isec, int *okfortls13)
855
313k
{
856
313k
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
857
313k
                                                       group_id);
858
313k
    int ret;
859
860
313k
    if (okfortls13 != NULL)
861
239k
        *okfortls13 = 0;
862
863
313k
    if (ginfo == NULL)
864
0
        return 0;
865
866
313k
    if (SSL_CONNECTION_IS_DTLS(s)) {
867
0
        if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
868
0
            return 0;
869
0
        if (ginfo->maxdtls == 0)
870
0
            ret = 1;
871
0
        else
872
0
            ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
873
0
        if (ginfo->mindtls > 0)
874
0
            ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
875
313k
    } else {
876
313k
        if (ginfo->mintls < 0 || ginfo->maxtls < 0)
877
0
            return 0;
878
313k
        if (ginfo->maxtls == 0)
879
313k
            ret = 1;
880
0
        else
881
0
            ret = (minversion <= ginfo->maxtls);
882
313k
        if (ginfo->mintls > 0)
883
313k
            ret &= (maxversion >= ginfo->mintls);
884
313k
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
885
237k
            *okfortls13 = (ginfo->maxtls == 0)
886
0
                          || (ginfo->maxtls >= TLS1_3_VERSION);
887
313k
    }
888
313k
    ret &= !isec
889
47.8k
           || strcmp(ginfo->algorithm, "EC") == 0
890
47.8k
           || strcmp(ginfo->algorithm, "X25519") == 0
891
0
           || strcmp(ginfo->algorithm, "X448") == 0;
892
893
313k
    return ret;
894
313k
}
895
896
/* See if group is allowed by security callback */
897
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
898
1.35M
{
899
1.35M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
900
1.35M
                                                       group);
901
1.35M
    unsigned char gtmp[2];
902
903
1.35M
    if (ginfo == NULL)
904
0
        return 0;
905
906
1.35M
    gtmp[0] = group >> 8;
907
1.35M
    gtmp[1] = group & 0xff;
908
1.35M
    return ssl_security(s, op, ginfo->secbits,
909
1.35M
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
910
1.35M
}
911
912
/* Return 1 if "id" is in "list" */
913
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
914
90.7k
{
915
90.7k
    size_t i;
916
618k
    for (i = 0; i < listlen; i++)
917
568k
        if (list[i] == id)
918
41.0k
            return 1;
919
49.7k
    return 0;
920
90.7k
}
921
922
/*-
923
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
924
 * if there is no match.
925
 * For nmatch == -1, return number of matches
926
 * For nmatch == -2, return the id of the group to use for
927
 * a tmp key, or 0 if there is no match.
928
 */
929
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
930
8.04k
{
931
8.04k
    const uint16_t *pref, *supp;
932
8.04k
    size_t num_pref, num_supp, i;
933
8.04k
    int k;
934
8.04k
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
935
936
    /* Can't do anything on client side */
937
8.04k
    if (s->server == 0)
938
0
        return 0;
939
8.04k
    if (nmatch == -2) {
940
2.11k
        if (tls1_suiteb(s)) {
941
            /*
942
             * For Suite B ciphersuite determines curve: we already know
943
             * these are acceptable due to previous checks.
944
             */
945
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
946
947
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
948
0
                return OSSL_TLS_GROUP_ID_secp256r1;
949
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
950
0
                return OSSL_TLS_GROUP_ID_secp384r1;
951
            /* Should never happen */
952
0
            return 0;
953
0
        }
954
        /* If not Suite B just return first preference shared curve */
955
2.11k
        nmatch = 0;
956
2.11k
    }
957
    /*
958
     * If server preference set, our groups are the preference order
959
     * otherwise peer decides.
960
     */
961
8.04k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
962
0
        tls1_get_supported_groups(s, &pref, &num_pref);
963
0
        tls1_get_peer_groups(s, &supp, &num_supp);
964
8.04k
    } else {
965
8.04k
        tls1_get_peer_groups(s, &pref, &num_pref);
966
8.04k
        tls1_get_supported_groups(s, &supp, &num_supp);
967
8.04k
    }
968
969
18.8k
    for (k = 0, i = 0; i < num_pref; i++) {
970
15.2k
        uint16_t id = pref[i];
971
15.2k
        const TLS_GROUP_INFO *inf;
972
973
15.2k
        if (!tls1_in_list(id, supp, num_supp)
974
5.64k
                || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
975
9.58k
            continue;
976
5.64k
        inf = tls1_group_id_lookup(ctx, id);
977
5.64k
        if (!ossl_assert(inf != NULL))
978
0
            return 0;
979
5.64k
        if (SSL_CONNECTION_IS_DTLS(s)) {
980
0
            if (inf->maxdtls == -1)
981
0
                continue;
982
0
            if ((inf->mindtls != 0 && DTLS_VERSION_LT(s->version, inf->mindtls))
983
0
                    || (inf->maxdtls != 0
984
0
                        && DTLS_VERSION_GT(s->version, inf->maxdtls)))
985
0
                continue;
986
5.64k
        } else {
987
5.64k
            if (inf->maxtls == -1)
988
0
                continue;
989
5.64k
            if ((inf->mintls != 0 && s->version < inf->mintls)
990
4.39k
                    || (inf->maxtls != 0 && s->version > inf->maxtls))
991
1.25k
                continue;
992
5.64k
        }
993
994
4.39k
        if (nmatch == k)
995
4.39k
            return id;
996
0
         k++;
997
0
    }
998
3.65k
    if (nmatch == -1)
999
0
        return k;
1000
    /* Out of range (nmatch > k). */
1001
3.65k
    return 0;
1002
3.65k
}
1003
1004
int tls1_set_groups(uint16_t **pext, size_t *pextlen,
1005
                    int *groups, size_t ngroups)
1006
0
{
1007
0
    uint16_t *glist;
1008
0
    size_t i;
1009
    /*
1010
     * Bitmap of groups included to detect duplicates: two variables are added
1011
     * to detect duplicates as some values are more than 32.
1012
     */
1013
0
    unsigned long *dup_list = NULL;
1014
0
    unsigned long dup_list_egrp = 0;
1015
0
    unsigned long dup_list_dhgrp = 0;
1016
1017
0
    if (ngroups == 0) {
1018
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1019
0
        return 0;
1020
0
    }
1021
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1022
0
        return 0;
1023
0
    for (i = 0; i < ngroups; i++) {
1024
0
        unsigned long idmask;
1025
0
        uint16_t id;
1026
0
        id = tls1_nid2group_id(groups[i]);
1027
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1028
0
            goto err;
1029
0
        idmask = 1L << (id & 0x00FF);
1030
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1031
0
        if (!id || ((*dup_list) & idmask))
1032
0
            goto err;
1033
0
        *dup_list |= idmask;
1034
0
        glist[i] = id;
1035
0
    }
1036
0
    OPENSSL_free(*pext);
1037
0
    *pext = glist;
1038
0
    *pextlen = ngroups;
1039
0
    return 1;
1040
0
err:
1041
0
    OPENSSL_free(glist);
1042
0
    return 0;
1043
0
}
1044
1045
# define GROUPLIST_INCREMENT   40
1046
# define GROUP_NAME_BUFFER_LENGTH 64
1047
typedef struct {
1048
    SSL_CTX *ctx;
1049
    size_t gidcnt;
1050
    size_t gidmax;
1051
    uint16_t *gid_arr;
1052
} gid_cb_st;
1053
1054
static int gid_cb(const char *elem, int len, void *arg)
1055
{
1056
    gid_cb_st *garg = arg;
1057
    size_t i;
1058
    uint16_t gid = 0;
1059
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1060
1061
    if (elem == NULL)
1062
        return 0;
1063
    if (garg->gidcnt == garg->gidmax) {
1064
        uint16_t *tmp =
1065
            OPENSSL_realloc(garg->gid_arr,
1066
                            (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1067
        if (tmp == NULL)
1068
            return 0;
1069
        garg->gidmax += GROUPLIST_INCREMENT;
1070
        garg->gid_arr = tmp;
1071
    }
1072
    if (len > (int)(sizeof(etmp) - 1))
1073
        return 0;
1074
    memcpy(etmp, elem, len);
1075
    etmp[len] = 0;
1076
1077
    gid = tls1_group_name2id(garg->ctx, etmp);
1078
    if (gid == 0) {
1079
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1080
                       "group '%s' cannot be set", etmp);
1081
        return 0;
1082
    }
1083
    for (i = 0; i < garg->gidcnt; i++)
1084
        if (garg->gid_arr[i] == gid)
1085
            return 0;
1086
    garg->gid_arr[garg->gidcnt++] = gid;
1087
    return 1;
1088
}
1089
1090
/* Set groups based on a colon separated list */
1091
int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
1092
                         const char *str)
1093
{
1094
    gid_cb_st gcb;
1095
    uint16_t *tmparr;
1096
    int ret = 0;
1097
1098
    gcb.gidcnt = 0;
1099
    gcb.gidmax = GROUPLIST_INCREMENT;
1100
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1101
    if (gcb.gid_arr == NULL)
1102
        return 0;
1103
    gcb.ctx = ctx;
1104
    if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
1105
        goto end;
1106
    if (pext == NULL) {
1107
        ret = 1;
1108
        goto end;
1109
    }
1110
1111
    /*
1112
     * gid_cb ensurse there are no duplicates so we can just go ahead and set
1113
     * the result
1114
     */
1115
    tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
1116
    if (tmparr == NULL)
1117
        goto end;
1118
    OPENSSL_free(*pext);
1119
    *pext = tmparr;
1120
    *pextlen = gcb.gidcnt;
1121
    ret = 1;
1122
 end:
1123
    OPENSSL_free(gcb.gid_arr);
1124
    return ret;
1125
}
1126
1127
/* Check a group id matches preferences */
1128
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1129
                        int check_own_groups)
1130
33.0k
    {
1131
33.0k
    const uint16_t *groups;
1132
33.0k
    size_t groups_len;
1133
1134
33.0k
    if (group_id == 0)
1135
16
        return 0;
1136
1137
    /* Check for Suite B compliance */
1138
33.0k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1139
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1140
1141
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1142
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1143
0
                return 0;
1144
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1145
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1146
0
                return 0;
1147
0
        } else {
1148
            /* Should never happen */
1149
0
            return 0;
1150
0
        }
1151
0
    }
1152
1153
33.0k
    if (check_own_groups) {
1154
        /* Check group is one of our preferences */
1155
8.61k
        tls1_get_supported_groups(s, &groups, &groups_len);
1156
8.61k
        if (!tls1_in_list(group_id, groups, groups_len))
1157
143
            return 0;
1158
8.61k
    }
1159
1160
32.8k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1161
0
        return 0;
1162
1163
    /* For clients, nothing more to check */
1164
32.8k
    if (!s->server)
1165
8.47k
        return 1;
1166
1167
    /* Check group is one of peers preferences */
1168
24.4k
    tls1_get_peer_groups(s, &groups, &groups_len);
1169
1170
    /*
1171
     * RFC 4492 does not require the supported elliptic curves extension
1172
     * so if it is not sent we can just choose any curve.
1173
     * It is invalid to send an empty list in the supported groups
1174
     * extension, so groups_len == 0 always means no extension.
1175
     */
1176
24.4k
    if (groups_len == 0)
1177
12.1k
            return 1;
1178
12.2k
    return tls1_in_list(group_id, groups, groups_len);
1179
24.4k
}
1180
1181
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1182
                         size_t *num_formats)
1183
93.0k
{
1184
    /*
1185
     * If we have a custom point format list use it otherwise use default
1186
     */
1187
93.0k
    if (s->ext.ecpointformats) {
1188
0
        *pformats = s->ext.ecpointformats;
1189
0
        *num_formats = s->ext.ecpointformats_len;
1190
93.0k
    } else {
1191
93.0k
        *pformats = ecformats_default;
1192
        /* For Suite B we don't support char2 fields */
1193
93.0k
        if (tls1_suiteb(s))
1194
0
            *num_formats = sizeof(ecformats_default) - 1;
1195
93.0k
        else
1196
93.0k
            *num_formats = sizeof(ecformats_default);
1197
93.0k
    }
1198
93.0k
}
1199
1200
/* Check a key is compatible with compression extension */
1201
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1202
25.7k
{
1203
25.7k
    unsigned char comp_id;
1204
25.7k
    size_t i;
1205
25.7k
    int point_conv;
1206
1207
    /* If not an EC key nothing to check */
1208
25.7k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1209
0
        return 1;
1210
1211
1212
    /* Get required compression id */
1213
25.7k
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1214
25.7k
    if (point_conv == 0)
1215
0
        return 0;
1216
25.7k
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1217
25.6k
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1218
25.6k
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1219
        /*
1220
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1221
         * this check.
1222
         */
1223
0
        return 1;
1224
96
    } else {
1225
96
        int field_type = EVP_PKEY_get_field_type(pkey);
1226
1227
96
        if (field_type == NID_X9_62_prime_field)
1228
90
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1229
6
        else if (field_type == NID_X9_62_characteristic_two_field)
1230
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1231
6
        else
1232
6
            return 0;
1233
96
    }
1234
    /*
1235
     * If point formats extension present check it, otherwise everything is
1236
     * supported (see RFC4492).
1237
     */
1238
25.7k
    if (s->ext.peer_ecpointformats == NULL)
1239
20.2k
        return 1;
1240
1241
9.53k
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1242
8.61k
        if (s->ext.peer_ecpointformats[i] == comp_id)
1243
4.62k
            return 1;
1244
8.61k
    }
1245
915
    return 0;
1246
5.53k
}
1247
1248
/* Return group id of a key */
1249
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1250
24.8k
{
1251
24.8k
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1252
1253
24.8k
    if (curve_nid == NID_undef)
1254
0
        return 0;
1255
24.8k
    return tls1_nid2group_id(curve_nid);
1256
24.8k
}
1257
1258
/*
1259
 * Check cert parameters compatible with extensions: currently just checks EC
1260
 * certificates have compatible curves and compression.
1261
 */
1262
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1263
75.9k
{
1264
75.9k
    uint16_t group_id;
1265
75.9k
    EVP_PKEY *pkey;
1266
75.9k
    pkey = X509_get0_pubkey(x);
1267
75.9k
    if (pkey == NULL)
1268
0
        return 0;
1269
    /* If not EC nothing to do */
1270
75.9k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1271
50.6k
        return 1;
1272
    /* Check compression */
1273
25.3k
    if (!tls1_check_pkey_comp(s, pkey))
1274
888
        return 0;
1275
24.4k
    group_id = tls1_get_group_id(pkey);
1276
    /*
1277
     * For a server we allow the certificate to not be in our list of supported
1278
     * groups.
1279
     */
1280
24.4k
    if (!tls1_check_group_id(s, group_id, !s->server))
1281
6.49k
        return 0;
1282
    /*
1283
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1284
     * SHA384+P-384.
1285
     */
1286
17.9k
    if (check_ee_md && tls1_suiteb(s)) {
1287
0
        int check_md;
1288
0
        size_t i;
1289
1290
        /* Check to see we have necessary signing algorithm */
1291
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1292
0
            check_md = NID_ecdsa_with_SHA256;
1293
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1294
0
            check_md = NID_ecdsa_with_SHA384;
1295
0
        else
1296
0
            return 0;           /* Should never happen */
1297
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1298
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1299
0
                return 1;
1300
0
        }
1301
0
        return 0;
1302
0
    }
1303
17.9k
    return 1;
1304
17.9k
}
1305
1306
/*
1307
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1308
 * @s: SSL connection
1309
 * @cid: Cipher ID we're considering using
1310
 *
1311
 * Checks that the kECDHE cipher suite we're considering using
1312
 * is compatible with the client extensions.
1313
 *
1314
 * Returns 0 when the cipher can't be used or 1 when it can.
1315
 */
1316
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1317
32.0k
{
1318
    /* If not Suite B just need a shared group */
1319
32.0k
    if (!tls1_suiteb(s))
1320
32.0k
        return tls1_shared_group(s, 0) != 0;
1321
    /*
1322
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1323
     * curves permitted.
1324
     */
1325
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1326
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1327
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1328
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1329
1330
0
    return 0;
1331
0
}
1332
1333
/* Default sigalg schemes */
1334
static const uint16_t tls12_sigalgs[] = {
1335
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1336
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1337
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1338
    TLSEXT_SIGALG_ed25519,
1339
    TLSEXT_SIGALG_ed448,
1340
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1341
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1342
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1343
1344
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1345
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1346
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1347
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1348
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1349
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1350
1351
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1352
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1353
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1354
1355
    TLSEXT_SIGALG_ecdsa_sha224,
1356
    TLSEXT_SIGALG_ecdsa_sha1,
1357
1358
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1359
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1360
1361
    TLSEXT_SIGALG_dsa_sha224,
1362
    TLSEXT_SIGALG_dsa_sha1,
1363
1364
    TLSEXT_SIGALG_dsa_sha256,
1365
    TLSEXT_SIGALG_dsa_sha384,
1366
    TLSEXT_SIGALG_dsa_sha512,
1367
1368
#ifndef OPENSSL_NO_GOST
1369
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1370
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1371
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1372
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1373
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1374
#endif
1375
};
1376
1377
1378
static const uint16_t suiteb_sigalgs[] = {
1379
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1380
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1381
};
1382
1383
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1384
    {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1385
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1386
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1387
    {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1388
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1389
     NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1390
    {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1391
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1392
     NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1393
    {"ed25519", TLSEXT_SIGALG_ed25519,
1394
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1395
     NID_undef, NID_undef, 1},
1396
    {"ed448", TLSEXT_SIGALG_ed448,
1397
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1398
     NID_undef, NID_undef, 1},
1399
    {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1400
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1401
     NID_ecdsa_with_SHA224, NID_undef, 1},
1402
    {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1403
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1404
     NID_ecdsa_with_SHA1, NID_undef, 1},
1405
    {"ecdsa_brainpoolP256r1_sha256", TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1406
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1407
     NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
1408
    {"ecdsa_brainpoolP384r1_sha384", TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1409
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1410
     NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
1411
    {"ecdsa_brainpoolP512r1_sha512", TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1412
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1413
     NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
1414
    {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1415
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1416
     NID_undef, NID_undef, 1},
1417
    {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1418
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1419
     NID_undef, NID_undef, 1},
1420
    {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1421
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1422
     NID_undef, NID_undef, 1},
1423
    {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1424
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1425
     NID_undef, NID_undef, 1},
1426
    {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1427
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1428
     NID_undef, NID_undef, 1},
1429
    {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1430
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1431
     NID_undef, NID_undef, 1},
1432
    {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1433
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1434
     NID_sha256WithRSAEncryption, NID_undef, 1},
1435
    {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1436
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1437
     NID_sha384WithRSAEncryption, NID_undef, 1},
1438
    {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1439
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1440
     NID_sha512WithRSAEncryption, NID_undef, 1},
1441
    {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1442
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1443
     NID_sha224WithRSAEncryption, NID_undef, 1},
1444
    {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1445
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1446
     NID_sha1WithRSAEncryption, NID_undef, 1},
1447
    {NULL, TLSEXT_SIGALG_dsa_sha256,
1448
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1449
     NID_dsa_with_SHA256, NID_undef, 1},
1450
    {NULL, TLSEXT_SIGALG_dsa_sha384,
1451
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1452
     NID_undef, NID_undef, 1},
1453
    {NULL, TLSEXT_SIGALG_dsa_sha512,
1454
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1455
     NID_undef, NID_undef, 1},
1456
    {NULL, TLSEXT_SIGALG_dsa_sha224,
1457
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1458
     NID_undef, NID_undef, 1},
1459
    {NULL, TLSEXT_SIGALG_dsa_sha1,
1460
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1461
     NID_dsaWithSHA1, NID_undef, 1},
1462
#ifndef OPENSSL_NO_GOST
1463
    {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1464
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1465
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1466
     NID_undef, NID_undef, 1},
1467
    {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1468
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1469
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1470
     NID_undef, NID_undef, 1},
1471
    {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1472
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1473
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1474
     NID_undef, NID_undef, 1},
1475
    {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1476
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1477
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1478
     NID_undef, NID_undef, 1},
1479
    {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1480
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1481
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1482
     NID_undef, NID_undef, 1}
1483
#endif
1484
};
1485
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1486
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1487
    "rsa_pkcs1_md5_sha1", 0,
1488
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1489
     EVP_PKEY_RSA, SSL_PKEY_RSA,
1490
     NID_undef, NID_undef, 1
1491
};
1492
1493
/*
1494
 * Default signature algorithm values used if signature algorithms not present.
1495
 * From RFC5246. Note: order must match certificate index order.
1496
 */
1497
static const uint16_t tls_default_sigalg[] = {
1498
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1499
    0, /* SSL_PKEY_RSA_PSS_SIGN */
1500
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1501
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1502
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1503
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1504
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1505
    0, /* SSL_PKEY_ED25519 */
1506
    0, /* SSL_PKEY_ED448 */
1507
};
1508
1509
int ssl_setup_sigalgs(SSL_CTX *ctx)
1510
80.9k
{
1511
80.9k
    size_t i, cache_idx, sigalgs_len;
1512
80.9k
    const SIGALG_LOOKUP *lu;
1513
80.9k
    SIGALG_LOOKUP *cache = NULL;
1514
80.9k
    uint16_t *tls12_sigalgs_list = NULL;
1515
80.9k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1516
80.9k
    int ret = 0;
1517
1518
80.9k
    if (ctx == NULL)
1519
0
        goto err;
1520
1521
80.9k
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
1522
1523
80.9k
    cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
1524
80.9k
    if (cache == NULL || tmpkey == NULL)
1525
0
        goto err;
1526
1527
80.9k
    tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
1528
80.9k
    if (tls12_sigalgs_list == NULL)
1529
0
        goto err;
1530
1531
80.9k
    ERR_set_mark();
1532
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
1533
80.9k
    for (i = 0, lu = sigalg_lookup_tbl;
1534
2.59M
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1535
2.50M
        EVP_PKEY_CTX *pctx;
1536
1537
2.50M
        cache[i] = *lu;
1538
2.50M
        tls12_sigalgs_list[i] = tls12_sigalgs[i];
1539
1540
        /*
1541
         * Check hash is available.
1542
         * This test is not perfect. A provider could have support
1543
         * for a signature scheme, but not a particular hash. However the hash
1544
         * could be available from some other loaded provider. In that case it
1545
         * could be that the signature is available, and the hash is available
1546
         * independently - but not as a combination. We ignore this for now.
1547
         */
1548
2.50M
        if (lu->hash != NID_undef
1549
2.34M
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1550
404k
            cache[i].enabled = 0;
1551
404k
            continue;
1552
404k
        }
1553
1554
2.10M
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1555
0
            cache[i].enabled = 0;
1556
0
            continue;
1557
0
        }
1558
2.10M
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1559
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1560
2.10M
        if (pctx == NULL)
1561
0
            cache[i].enabled = 0;
1562
2.10M
        EVP_PKEY_CTX_free(pctx);
1563
2.10M
    }
1564
1565
    /* Now complete cache and tls12_sigalgs list with provider sig information */
1566
80.9k
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
1567
80.9k
    for (i = 0; i < ctx->sigalg_list_len; i++) {
1568
0
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
1569
0
        cache[cache_idx].name = si.name;
1570
0
        cache[cache_idx].sigalg = si.code_point;
1571
0
        tls12_sigalgs_list[cache_idx] = si.code_point;
1572
0
        cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
1573
0
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
1574
0
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
1575
0
        cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
1576
0
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
1577
0
        cache[cache_idx].curve = NID_undef;
1578
        /* all provided sigalgs are enabled by load */
1579
0
        cache[cache_idx].enabled = 1;
1580
0
        cache_idx++;
1581
0
    }
1582
80.9k
    ERR_pop_to_mark();
1583
80.9k
    ctx->sigalg_lookup_cache = cache;
1584
80.9k
    ctx->tls12_sigalgs = tls12_sigalgs_list;
1585
80.9k
    ctx->tls12_sigalgs_len = sigalgs_len;
1586
80.9k
    cache = NULL;
1587
80.9k
    tls12_sigalgs_list = NULL;
1588
1589
80.9k
    ret = 1;
1590
80.9k
 err:
1591
80.9k
    OPENSSL_free(cache);
1592
80.9k
    OPENSSL_free(tls12_sigalgs_list);
1593
80.9k
    EVP_PKEY_free(tmpkey);
1594
80.9k
    return ret;
1595
80.9k
}
1596
1597
/* Lookup TLS signature algorithm */
1598
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
1599
                                               uint16_t sigalg)
1600
14.0M
{
1601
14.0M
    size_t i;
1602
14.0M
    const SIGALG_LOOKUP *lu;
1603
1604
14.0M
    for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
1605
225M
         i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1606
225M
         lu++, i++) {
1607
225M
        if (lu->sigalg == sigalg) {
1608
13.6M
            if (!lu->enabled)
1609
1.43M
                return NULL;
1610
12.1M
            return lu;
1611
13.6M
        }
1612
225M
    }
1613
379k
    return NULL;
1614
14.0M
}
1615
/* Lookup hash: return 0 if invalid or not enabled */
1616
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1617
3.82M
{
1618
3.82M
    const EVP_MD *md;
1619
1620
3.82M
    if (lu == NULL)
1621
0
        return 0;
1622
    /* lu->hash == NID_undef means no associated digest */
1623
3.82M
    if (lu->hash == NID_undef) {
1624
334k
        md = NULL;
1625
3.48M
    } else {
1626
3.48M
        md = ssl_md(ctx, lu->hash_idx);
1627
3.48M
        if (md == NULL)
1628
0
            return 0;
1629
3.48M
    }
1630
3.82M
    if (pmd)
1631
3.73M
        *pmd = md;
1632
3.82M
    return 1;
1633
3.82M
}
1634
1635
/*
1636
 * Check if key is large enough to generate RSA-PSS signature.
1637
 *
1638
 * The key must greater than or equal to 2 * hash length + 2.
1639
 * SHA512 has a hash length of 64 bytes, which is incompatible
1640
 * with a 128 byte (1024 bit) key.
1641
 */
1642
462
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1643
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1644
                                      const SIGALG_LOOKUP *lu)
1645
462
{
1646
462
    const EVP_MD *md;
1647
1648
462
    if (pkey == NULL)
1649
0
        return 0;
1650
462
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1651
0
        return 0;
1652
462
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1653
0
        return 0;
1654
462
    return 1;
1655
462
}
1656
1657
/*
1658
 * Returns a signature algorithm when the peer did not send a list of supported
1659
 * signature algorithms. The signature algorithm is fixed for the certificate
1660
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1661
 * certificate type from |s| will be used.
1662
 * Returns the signature algorithm to use, or NULL on error.
1663
 */
1664
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
1665
                                                   int idx)
1666
234k
{
1667
234k
    if (idx == -1) {
1668
18.1k
        if (s->server) {
1669
18.1k
            size_t i;
1670
1671
            /* Work out index corresponding to ciphersuite */
1672
25.5k
            for (i = 0; i < s->ssl_pkey_num; i++) {
1673
25.5k
                const SSL_CERT_LOOKUP *clu
1674
25.5k
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
1675
1676
25.5k
                if (clu == NULL)
1677
0
                    continue;
1678
25.5k
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1679
18.1k
                    idx = i;
1680
18.1k
                    break;
1681
18.1k
                }
1682
25.5k
            }
1683
1684
            /*
1685
             * Some GOST ciphersuites allow more than one signature algorithms
1686
             * */
1687
18.1k
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1688
0
                int real_idx;
1689
1690
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1691
0
                     real_idx--) {
1692
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1693
0
                        idx = real_idx;
1694
0
                        break;
1695
0
                    }
1696
0
                }
1697
0
            }
1698
            /*
1699
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1700
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1701
             */
1702
18.1k
            else if (idx == SSL_PKEY_GOST12_256) {
1703
0
                int real_idx;
1704
1705
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1706
0
                     real_idx--) {
1707
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
1708
0
                         idx = real_idx;
1709
0
                         break;
1710
0
                     }
1711
0
                }
1712
0
            }
1713
18.1k
        } else {
1714
0
            idx = s->cert->key - s->cert->pkeys;
1715
0
        }
1716
18.1k
    }
1717
234k
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1718
24.8k
        return NULL;
1719
1720
210k
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1721
201k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1722
1723
201k
        if (lu == NULL)
1724
126k
            return NULL;
1725
75.0k
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
1726
0
            return NULL;
1727
75.0k
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1728
0
            return NULL;
1729
75.0k
        return lu;
1730
75.0k
    }
1731
8.14k
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1732
0
        return NULL;
1733
8.14k
    return &legacy_rsa_sigalg;
1734
8.14k
}
1735
/* Set peer sigalg based key type */
1736
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
1737
1.60k
{
1738
1.60k
    size_t idx;
1739
1.60k
    const SIGALG_LOOKUP *lu;
1740
1741
1.60k
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
1742
0
        return 0;
1743
1.60k
    lu = tls1_get_legacy_sigalg(s, idx);
1744
1.60k
    if (lu == NULL)
1745
7
        return 0;
1746
1.59k
    s->s3.tmp.peer_sigalg = lu;
1747
1.59k
    return 1;
1748
1.60k
}
1749
1750
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
1751
507k
{
1752
    /*
1753
     * If Suite B mode use Suite B sigalgs only, ignore any other
1754
     * preferences.
1755
     */
1756
507k
    switch (tls1_suiteb(s)) {
1757
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
1758
0
        *psigs = suiteb_sigalgs;
1759
0
        return OSSL_NELEM(suiteb_sigalgs);
1760
1761
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1762
0
        *psigs = suiteb_sigalgs;
1763
0
        return 1;
1764
1765
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
1766
0
        *psigs = suiteb_sigalgs + 1;
1767
0
        return 1;
1768
507k
    }
1769
    /*
1770
     *  We use client_sigalgs (if not NULL) if we're a server
1771
     *  and sending a certificate request or if we're a client and
1772
     *  determining which shared algorithm to use.
1773
     */
1774
507k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1775
0
        *psigs = s->cert->client_sigalgs;
1776
0
        return s->cert->client_sigalgslen;
1777
507k
    } else if (s->cert->conf_sigalgs) {
1778
0
        *psigs = s->cert->conf_sigalgs;
1779
0
        return s->cert->conf_sigalgslen;
1780
507k
    } else {
1781
507k
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1782
507k
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1783
507k
    }
1784
507k
}
1785
1786
/*
1787
 * Called by servers only. Checks that we have a sig alg that supports the
1788
 * specified EC curve.
1789
 */
1790
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
1791
0
{
1792
0
   const uint16_t *sigs;
1793
0
   size_t siglen, i;
1794
1795
0
    if (s->cert->conf_sigalgs) {
1796
0
        sigs = s->cert->conf_sigalgs;
1797
0
        siglen = s->cert->conf_sigalgslen;
1798
0
    } else {
1799
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1800
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1801
0
    }
1802
1803
0
    for (i = 0; i < siglen; i++) {
1804
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1805
1806
0
        if (lu == NULL)
1807
0
            continue;
1808
0
        if (lu->sig == EVP_PKEY_EC
1809
0
                && lu->curve != NID_undef
1810
0
                && curve == lu->curve)
1811
0
            return 1;
1812
0
    }
1813
1814
0
    return 0;
1815
0
}
1816
1817
/*
1818
 * Return the number of security bits for the signature algorithm, or 0 on
1819
 * error.
1820
 */
1821
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1822
1.24M
{
1823
1.24M
    const EVP_MD *md = NULL;
1824
1.24M
    int secbits = 0;
1825
1826
1.24M
    if (!tls1_lookup_md(ctx, lu, &md))
1827
0
        return 0;
1828
1.24M
    if (md != NULL)
1829
1.16M
    {
1830
1.16M
        int md_type = EVP_MD_get_type(md);
1831
1832
        /* Security bits: half digest bits */
1833
1.16M
        secbits = EVP_MD_get_size(md) * 4;
1834
        /*
1835
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
1836
         * they're no longer accepted at security level 1. The real values don't
1837
         * really matter as long as they're lower than 80, which is our
1838
         * security level 1.
1839
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1840
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1841
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1842
         * puts a chosen-prefix attack for MD5 at 2^39.
1843
         */
1844
1.16M
        if (md_type == NID_sha1)
1845
90.2k
            secbits = 64;
1846
1.07M
        else if (md_type == NID_md5_sha1)
1847
2.53k
            secbits = 67;
1848
1.07M
        else if (md_type == NID_md5)
1849
0
            secbits = 39;
1850
1.16M
    } else {
1851
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1852
84.0k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1853
40.5k
            secbits = 128;
1854
43.5k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1855
43.5k
            secbits = 224;
1856
84.0k
    }
1857
    /*
1858
     * For provider-based sigalgs we have secbits information available
1859
     * in the (provider-loaded) sigalg_list structure
1860
     */
1861
1.24M
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
1862
0
               && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
1863
0
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
1864
0
    }
1865
1.24M
    return secbits;
1866
1.24M
}
1867
1868
/*
1869
 * Check signature algorithm is consistent with sent supported signature
1870
 * algorithms and if so set relevant digest and signature scheme in
1871
 * s.
1872
 */
1873
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
1874
11.4k
{
1875
11.4k
    const uint16_t *sent_sigs;
1876
11.4k
    const EVP_MD *md = NULL;
1877
11.4k
    char sigalgstr[2];
1878
11.4k
    size_t sent_sigslen, i, cidx;
1879
11.4k
    int pkeyid = -1;
1880
11.4k
    const SIGALG_LOOKUP *lu;
1881
11.4k
    int secbits = 0;
1882
1883
11.4k
    pkeyid = EVP_PKEY_get_id(pkey);
1884
1885
11.4k
    if (SSL_CONNECTION_IS_TLS13(s)) {
1886
        /* Disallow DSA for TLS 1.3 */
1887
10.0k
        if (pkeyid == EVP_PKEY_DSA) {
1888
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1889
0
            return 0;
1890
0
        }
1891
        /* Only allow PSS for TLS 1.3 */
1892
10.0k
        if (pkeyid == EVP_PKEY_RSA)
1893
10.0k
            pkeyid = EVP_PKEY_RSA_PSS;
1894
10.0k
    }
1895
11.4k
    lu = tls1_lookup_sigalg(s, sig);
1896
    /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
1897
11.4k
    if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
1898
0
        pkeyid = lu->sig;
1899
1900
    /* Should never happen */
1901
11.4k
    if (pkeyid == -1)
1902
0
        return -1;
1903
1904
    /*
1905
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1906
     * is consistent with signature: RSA keys can be used for RSA-PSS
1907
     */
1908
11.4k
    if (lu == NULL
1909
11.3k
        || (SSL_CONNECTION_IS_TLS13(s)
1910
10.0k
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1911
11.3k
        || (pkeyid != lu->sig
1912
196
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1913
106
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1914
106
        return 0;
1915
106
    }
1916
    /* Check the sigalg is consistent with the key OID */
1917
11.3k
    if (!ssl_cert_lookup_by_nid(
1918
11.3k
                 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
1919
11.3k
                 &cidx, SSL_CONNECTION_GET_CTX(s))
1920
11.3k
            || lu->sig_idx != (int)cidx) {
1921
6
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1922
6
        return 0;
1923
6
    }
1924
1925
11.3k
    if (pkeyid == EVP_PKEY_EC) {
1926
1927
        /* Check point compression is permitted */
1928
205
        if (!tls1_check_pkey_comp(s, pkey)) {
1929
16
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1930
16
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
1931
16
            return 0;
1932
16
        }
1933
1934
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1935
189
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
1936
0
            int curve = ssl_get_EC_curve_nid(pkey);
1937
1938
0
            if (lu->curve != NID_undef && curve != lu->curve) {
1939
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1940
0
                return 0;
1941
0
            }
1942
0
        }
1943
189
        if (!SSL_CONNECTION_IS_TLS13(s)) {
1944
            /* Check curve matches extensions */
1945
189
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1946
7
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1947
7
                return 0;
1948
7
            }
1949
182
            if (tls1_suiteb(s)) {
1950
                /* Check sigalg matches a permissible Suite B value */
1951
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1952
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1953
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1954
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
1955
0
                    return 0;
1956
0
                }
1957
0
            }
1958
182
        }
1959
11.1k
    } else if (tls1_suiteb(s)) {
1960
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1961
0
        return 0;
1962
0
    }
1963
1964
    /* Check signature matches a type we sent */
1965
11.2k
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1966
145k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1967
145k
        if (sig == *sent_sigs)
1968
11.2k
            break;
1969
145k
    }
1970
    /* Allow fallback to SHA1 if not strict mode */
1971
11.2k
    if (i == sent_sigslen && (lu->hash != NID_sha1
1972
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1973
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1974
0
        return 0;
1975
0
    }
1976
11.2k
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
1977
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1978
0
        return 0;
1979
0
    }
1980
    /*
1981
     * Make sure security callback allows algorithm. For historical
1982
     * reasons we have to pass the sigalg as a two byte char array.
1983
     */
1984
11.2k
    sigalgstr[0] = (sig >> 8) & 0xff;
1985
11.2k
    sigalgstr[1] = sig & 0xff;
1986
11.2k
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
1987
11.2k
    if (secbits == 0 ||
1988
11.2k
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1989
11.2k
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
1990
11.2k
                      (void *)sigalgstr)) {
1991
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1992
0
        return 0;
1993
0
    }
1994
    /* Store the sigalg the peer uses */
1995
11.2k
    s->s3.tmp.peer_sigalg = lu;
1996
11.2k
    return 1;
1997
11.2k
}
1998
1999
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2000
0
{
2001
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2002
2003
0
    if (sc == NULL)
2004
0
        return 0;
2005
2006
0
    if (sc->s3.tmp.peer_sigalg == NULL)
2007
0
        return 0;
2008
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2009
0
    return 1;
2010
0
}
2011
2012
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2013
0
{
2014
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2015
2016
0
    if (sc == NULL)
2017
0
        return 0;
2018
2019
0
    if (sc->s3.tmp.sigalg == NULL)
2020
0
        return 0;
2021
0
    *pnid = sc->s3.tmp.sigalg->sig;
2022
0
    return 1;
2023
0
}
2024
2025
/*
2026
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2027
 * supported, doesn't appear in supported signature algorithms, isn't supported
2028
 * by the enabled protocol versions or by the security level.
2029
 *
2030
 * This function should only be used for checking which ciphers are supported
2031
 * by the client.
2032
 *
2033
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2034
 */
2035
int ssl_set_client_disabled(SSL_CONNECTION *s)
2036
334k
{
2037
334k
    s->s3.tmp.mask_a = 0;
2038
334k
    s->s3.tmp.mask_k = 0;
2039
334k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2040
334k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2041
334k
                                &s->s3.tmp.max_ver, NULL) != 0)
2042
0
        return 0;
2043
334k
#ifndef OPENSSL_NO_PSK
2044
    /* with PSK there must be client callback set */
2045
334k
    if (!s->psk_client_callback) {
2046
334k
        s->s3.tmp.mask_a |= SSL_aPSK;
2047
334k
        s->s3.tmp.mask_k |= SSL_PSK;
2048
334k
    }
2049
334k
#endif                          /* OPENSSL_NO_PSK */
2050
334k
#ifndef OPENSSL_NO_SRP
2051
334k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2052
334k
        s->s3.tmp.mask_a |= SSL_aSRP;
2053
334k
        s->s3.tmp.mask_k |= SSL_kSRP;
2054
334k
    }
2055
334k
#endif
2056
334k
    return 1;
2057
334k
}
2058
2059
/*
2060
 * ssl_cipher_disabled - check that a cipher is disabled or not
2061
 * @s: SSL connection that you want to use the cipher on
2062
 * @c: cipher to check
2063
 * @op: Security check that you want to do
2064
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2065
 *
2066
 * Returns 1 when it's disabled, 0 when enabled.
2067
 */
2068
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2069
                        int op, int ecdhe)
2070
3.67M
{
2071
3.67M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2072
2.15M
        || c->algorithm_auth & s->s3.tmp.mask_a)
2073
1.51M
        return 1;
2074
2.15M
    if (s->s3.tmp.max_ver == 0)
2075
0
        return 1;
2076
2077
2.15M
    if (SSL_IS_QUIC_HANDSHAKE(s))
2078
        /* For QUIC, only allow these ciphersuites. */
2079
102k
        switch (SSL_CIPHER_get_id(c)) {
2080
32.7k
        case TLS1_3_CK_AES_128_GCM_SHA256:
2081
69.4k
        case TLS1_3_CK_AES_256_GCM_SHA384:
2082
102k
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2083
102k
            break;
2084
9
        default:
2085
9
            return 1;
2086
102k
        }
2087
2088
2.15M
    if (!SSL_CONNECTION_IS_DTLS(s)) {
2089
2.15M
        int min_tls = c->min_tls;
2090
2091
        /*
2092
         * For historical reasons we will allow ECHDE to be selected by a server
2093
         * in SSLv3 if we are a client
2094
         */
2095
2.15M
        if (min_tls == TLS1_VERSION && ecdhe
2096
1.30k
                && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2097
1.30k
            min_tls = SSL3_VERSION;
2098
2099
2.15M
        if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
2100
24.2k
            return 1;
2101
2.15M
    }
2102
2.13M
    if (SSL_CONNECTION_IS_DTLS(s)
2103
0
            && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
2104
0
                || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
2105
0
        return 1;
2106
2107
2.13M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2108
2.13M
}
2109
2110
int tls_use_ticket(SSL_CONNECTION *s)
2111
152k
{
2112
152k
    if ((s->options & SSL_OP_NO_TICKET))
2113
0
        return 0;
2114
152k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2115
152k
}
2116
2117
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2118
26.1k
{
2119
26.1k
    size_t i;
2120
2121
    /* Clear any shared signature algorithms */
2122
26.1k
    OPENSSL_free(s->shared_sigalgs);
2123
26.1k
    s->shared_sigalgs = NULL;
2124
26.1k
    s->shared_sigalgslen = 0;
2125
2126
    /* Clear certificate validity flags */
2127
26.1k
    if (s->s3.tmp.valid_flags)
2128
110
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2129
26.0k
    else
2130
26.0k
        s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2131
26.1k
    if (s->s3.tmp.valid_flags == NULL)
2132
0
        return 0;
2133
    /*
2134
     * If peer sent no signature algorithms check to see if we support
2135
     * the default algorithm for each certificate type
2136
     */
2137
26.1k
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2138
25.4k
            && s->s3.tmp.peer_sigalgs == NULL) {
2139
19.2k
        const uint16_t *sent_sigs;
2140
19.2k
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2141
2142
217k
        for (i = 0; i < s->ssl_pkey_num; i++) {
2143
198k
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2144
198k
            size_t j;
2145
2146
198k
            if (lu == NULL)
2147
140k
                continue;
2148
            /* Check default matches a type we sent */
2149
1.29M
            for (j = 0; j < sent_sigslen; j++) {
2150
1.28M
                if (lu->sigalg == sent_sigs[j]) {
2151
53.3k
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2152
53.3k
                        break;
2153
53.3k
                }
2154
1.28M
            }
2155
57.7k
        }
2156
19.2k
        return 1;
2157
19.2k
    }
2158
2159
6.93k
    if (!tls1_process_sigalgs(s)) {
2160
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2161
0
        return 0;
2162
0
    }
2163
6.93k
    if (s->shared_sigalgs != NULL)
2164
6.83k
        return 1;
2165
2166
    /* Fatal error if no shared signature algorithms */
2167
6.93k
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2168
103
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2169
103
    return 0;
2170
6.93k
}
2171
2172
/*-
2173
 * Gets the ticket information supplied by the client if any.
2174
 *
2175
 *   hello: The parsed ClientHello data
2176
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
2177
 *       point to the resulting session.
2178
 */
2179
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2180
                                             CLIENTHELLO_MSG *hello,
2181
                                             SSL_SESSION **ret)
2182
25.9k
{
2183
25.9k
    size_t size;
2184
25.9k
    RAW_EXTENSION *ticketext;
2185
2186
25.9k
    *ret = NULL;
2187
25.9k
    s->ext.ticket_expected = 0;
2188
2189
    /*
2190
     * If tickets disabled or not supported by the protocol version
2191
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
2192
     * resumption.
2193
     */
2194
25.9k
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
2195
0
        return SSL_TICKET_NONE;
2196
2197
25.9k
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
2198
25.9k
    if (!ticketext->present)
2199
20.0k
        return SSL_TICKET_NONE;
2200
2201
5.91k
    size = PACKET_remaining(&ticketext->data);
2202
2203
5.91k
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
2204
5.91k
                              hello->session_id, hello->session_id_len, ret);
2205
25.9k
}
2206
2207
/*-
2208
 * tls_decrypt_ticket attempts to decrypt a session ticket.
2209
 *
2210
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
2211
 * expecting a pre-shared key ciphersuite, in which case we have no use for
2212
 * session tickets and one will never be decrypted, nor will
2213
 * s->ext.ticket_expected be set to 1.
2214
 *
2215
 * Side effects:
2216
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
2217
 *   a new session ticket to the client because the client indicated support
2218
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2219
 *   a session ticket or we couldn't use the one it gave us, or if
2220
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
2221
 *   Otherwise, s->ext.ticket_expected is set to 0.
2222
 *
2223
 *   etick: points to the body of the session ticket extension.
2224
 *   eticklen: the length of the session tickets extension.
2225
 *   sess_id: points at the session ID.
2226
 *   sesslen: the length of the session ID.
2227
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
2228
 *       point to the resulting session.
2229
 */
2230
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
2231
                                     const unsigned char *etick,
2232
                                     size_t eticklen,
2233
                                     const unsigned char *sess_id,
2234
                                     size_t sesslen, SSL_SESSION **psess)
2235
6.81k
{
2236
6.81k
    SSL_SESSION *sess = NULL;
2237
6.81k
    unsigned char *sdec;
2238
6.81k
    const unsigned char *p;
2239
6.81k
    int slen, ivlen, renew_ticket = 0, declen;
2240
6.81k
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
2241
6.81k
    size_t mlen;
2242
6.81k
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
2243
6.81k
    SSL_HMAC *hctx = NULL;
2244
6.81k
    EVP_CIPHER_CTX *ctx = NULL;
2245
6.81k
    SSL_CTX *tctx = s->session_ctx;
2246
6.81k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
2247
2248
6.81k
    if (eticklen == 0) {
2249
        /*
2250
         * The client will accept a ticket but doesn't currently have
2251
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
2252
         */
2253
3.82k
        ret = SSL_TICKET_EMPTY;
2254
3.82k
        goto end;
2255
3.82k
    }
2256
2.98k
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
2257
        /*
2258
         * Indicate that the ticket couldn't be decrypted rather than
2259
         * generating the session from ticket now, trigger
2260
         * abbreviated handshake based on external mechanism to
2261
         * calculate the master secret later.
2262
         */
2263
0
        ret = SSL_TICKET_NO_DECRYPT;
2264
0
        goto end;
2265
0
    }
2266
2267
    /* Need at least keyname + iv */
2268
2.98k
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
2269
1.09k
        ret = SSL_TICKET_NO_DECRYPT;
2270
1.09k
        goto end;
2271
1.09k
    }
2272
2273
    /* Initialize session ticket encryption and HMAC contexts */
2274
1.89k
    hctx = ssl_hmac_new(tctx);
2275
1.89k
    if (hctx == NULL) {
2276
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2277
0
        goto end;
2278
0
    }
2279
1.89k
    ctx = EVP_CIPHER_CTX_new();
2280
1.89k
    if (ctx == NULL) {
2281
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2282
0
        goto end;
2283
0
    }
2284
1.89k
#ifndef OPENSSL_NO_DEPRECATED_3_0
2285
1.89k
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
2286
#else
2287
    if (tctx->ext.ticket_key_evp_cb != NULL)
2288
#endif
2289
0
    {
2290
0
        unsigned char *nctick = (unsigned char *)etick;
2291
0
        int rv = 0;
2292
2293
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
2294
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
2295
0
                                             nctick,
2296
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
2297
0
                                             ctx,
2298
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
2299
0
                                             0);
2300
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
2301
0
        else if (tctx->ext.ticket_key_cb != NULL)
2302
            /* if 0 is returned, write an empty ticket */
2303
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
2304
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
2305
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
2306
0
#endif
2307
0
        if (rv < 0) {
2308
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2309
0
            goto end;
2310
0
        }
2311
0
        if (rv == 0) {
2312
0
            ret = SSL_TICKET_NO_DECRYPT;
2313
0
            goto end;
2314
0
        }
2315
0
        if (rv == 2)
2316
0
            renew_ticket = 1;
2317
1.89k
    } else {
2318
1.89k
        EVP_CIPHER *aes256cbc = NULL;
2319
2320
        /* Check key name matches */
2321
1.89k
        if (memcmp(etick, tctx->ext.tick_key_name,
2322
1.89k
                   TLSEXT_KEYNAME_LENGTH) != 0) {
2323
569
            ret = SSL_TICKET_NO_DECRYPT;
2324
569
            goto end;
2325
569
        }
2326
2327
1.32k
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
2328
1.32k
                                     sctx->propq);
2329
1.32k
        if (aes256cbc == NULL
2330
1.32k
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
2331
1.32k
                             sizeof(tctx->ext.secure->tick_hmac_key),
2332
1.32k
                             "SHA256") <= 0
2333
1.32k
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
2334
1.32k
                                  tctx->ext.secure->tick_aes_key,
2335
1.32k
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
2336
0
            EVP_CIPHER_free(aes256cbc);
2337
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2338
0
            goto end;
2339
0
        }
2340
1.32k
        EVP_CIPHER_free(aes256cbc);
2341
1.32k
        if (SSL_CONNECTION_IS_TLS13(s))
2342
573
            renew_ticket = 1;
2343
1.32k
    }
2344
    /*
2345
     * Attempt to process session ticket, first conduct sanity and integrity
2346
     * checks on ticket.
2347
     */
2348
1.32k
    mlen = ssl_hmac_size(hctx);
2349
1.32k
    if (mlen == 0) {
2350
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2351
0
        goto end;
2352
0
    }
2353
2354
1.32k
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
2355
1.32k
    if (ivlen < 0) {
2356
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2357
0
        goto end;
2358
0
    }
2359
2360
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
2361
1.32k
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
2362
155
        ret = SSL_TICKET_NO_DECRYPT;
2363
155
        goto end;
2364
155
    }
2365
1.17k
    eticklen -= mlen;
2366
    /* Check HMAC of encrypted ticket */
2367
1.17k
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
2368
1.17k
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
2369
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2370
0
        goto end;
2371
0
    }
2372
2373
1.17k
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2374
200
        ret = SSL_TICKET_NO_DECRYPT;
2375
200
        goto end;
2376
200
    }
2377
    /* Attempt to decrypt session data */
2378
    /* Move p after IV to start of encrypted ticket, update length */
2379
972
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
2380
972
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
2381
972
    sdec = OPENSSL_malloc(eticklen);
2382
972
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
2383
972
                                          (int)eticklen) <= 0) {
2384
0
        OPENSSL_free(sdec);
2385
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2386
0
        goto end;
2387
0
    }
2388
972
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
2389
76
        OPENSSL_free(sdec);
2390
76
        ret = SSL_TICKET_NO_DECRYPT;
2391
76
        goto end;
2392
76
    }
2393
896
    slen += declen;
2394
896
    p = sdec;
2395
2396
896
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
2397
896
    slen -= p - sdec;
2398
896
    OPENSSL_free(sdec);
2399
896
    if (sess) {
2400
        /* Some additional consistency checks */
2401
728
        if (slen != 0) {
2402
12
            SSL_SESSION_free(sess);
2403
12
            sess = NULL;
2404
12
            ret = SSL_TICKET_NO_DECRYPT;
2405
12
            goto end;
2406
12
        }
2407
        /*
2408
         * The session ID, if non-empty, is used by some clients to detect
2409
         * that the ticket has been accepted. So we copy it to the session
2410
         * structure. If it is empty set length to zero as required by
2411
         * standard.
2412
         */
2413
716
        if (sesslen) {
2414
274
            memcpy(sess->session_id, sess_id, sesslen);
2415
274
            sess->session_id_length = sesslen;
2416
274
        }
2417
716
        if (renew_ticket)
2418
422
            ret = SSL_TICKET_SUCCESS_RENEW;
2419
294
        else
2420
294
            ret = SSL_TICKET_SUCCESS;
2421
716
        goto end;
2422
728
    }
2423
168
    ERR_clear_error();
2424
    /*
2425
     * For session parse failure, indicate that we need to send a new ticket.
2426
     */
2427
168
    ret = SSL_TICKET_NO_DECRYPT;
2428
2429
6.81k
 end:
2430
6.81k
    EVP_CIPHER_CTX_free(ctx);
2431
6.81k
    ssl_hmac_free(hctx);
2432
2433
    /*
2434
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
2435
     * detected above. The callback is responsible for checking |ret| before it
2436
     * performs any action
2437
     */
2438
6.81k
    if (s->session_ctx->decrypt_ticket_cb != NULL
2439
0
            && (ret == SSL_TICKET_EMPTY
2440
0
                || ret == SSL_TICKET_NO_DECRYPT
2441
0
                || ret == SSL_TICKET_SUCCESS
2442
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
2443
0
        size_t keyname_len = eticklen;
2444
0
        int retcb;
2445
2446
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2447
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
2448
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
2449
0
                                                  sess, etick, keyname_len,
2450
0
                                                  ret,
2451
0
                                                  s->session_ctx->ticket_cb_data);
2452
0
        switch (retcb) {
2453
0
        case SSL_TICKET_RETURN_ABORT:
2454
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2455
0
            break;
2456
2457
0
        case SSL_TICKET_RETURN_IGNORE:
2458
0
            ret = SSL_TICKET_NONE;
2459
0
            SSL_SESSION_free(sess);
2460
0
            sess = NULL;
2461
0
            break;
2462
2463
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
2464
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2465
0
                ret = SSL_TICKET_NO_DECRYPT;
2466
            /* else the value of |ret| will already do the right thing */
2467
0
            SSL_SESSION_free(sess);
2468
0
            sess = NULL;
2469
0
            break;
2470
2471
0
        case SSL_TICKET_RETURN_USE:
2472
0
        case SSL_TICKET_RETURN_USE_RENEW:
2473
0
            if (ret != SSL_TICKET_SUCCESS
2474
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
2475
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
2476
0
            else if (retcb == SSL_TICKET_RETURN_USE)
2477
0
                ret = SSL_TICKET_SUCCESS;
2478
0
            else
2479
0
                ret = SSL_TICKET_SUCCESS_RENEW;
2480
0
            break;
2481
2482
0
        default:
2483
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2484
0
        }
2485
0
    }
2486
2487
6.81k
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
2488
6.81k
        switch (ret) {
2489
2.27k
        case SSL_TICKET_NO_DECRYPT:
2490
2.69k
        case SSL_TICKET_SUCCESS_RENEW:
2491
6.51k
        case SSL_TICKET_EMPTY:
2492
6.51k
            s->ext.ticket_expected = 1;
2493
6.81k
        }
2494
6.81k
    }
2495
2496
6.81k
    *psess = sess;
2497
2498
6.81k
    return ret;
2499
6.81k
}
2500
2501
/* Check to see if a signature algorithm is allowed */
2502
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
2503
                                const SIGALG_LOOKUP *lu)
2504
4.45M
{
2505
4.45M
    unsigned char sigalgstr[2];
2506
4.45M
    int secbits;
2507
2508
4.45M
    if (lu == NULL || !lu->enabled)
2509
0
        return 0;
2510
    /* DSA is not allowed in TLS 1.3 */
2511
4.45M
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2512
8.28k
        return 0;
2513
    /*
2514
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2515
     * spec
2516
     */
2517
4.44M
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
2518
3.47M
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
2519
1.89M
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2520
1.17M
            || lu->hash_idx == SSL_MD_MD5_IDX
2521
1.17M
            || lu->hash_idx == SSL_MD_SHA224_IDX))
2522
781k
        return 0;
2523
2524
    /* See if public key algorithm allowed */
2525
3.66M
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
2526
0
        return 0;
2527
2528
3.66M
    if (lu->sig == NID_id_GostR3410_2012_256
2529
3.66M
            || lu->sig == NID_id_GostR3410_2012_512
2530
3.66M
            || lu->sig == NID_id_GostR3410_2001) {
2531
        /* We never allow GOST sig algs on the server with TLSv1.3 */
2532
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
2533
0
            return 0;
2534
0
        if (!s->server
2535
0
                && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
2536
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2537
0
            int i, num;
2538
0
            STACK_OF(SSL_CIPHER) *sk;
2539
2540
            /*
2541
             * We're a client that could negotiate TLSv1.3. We only allow GOST
2542
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2543
             * ciphersuites enabled.
2544
             */
2545
2546
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2547
0
                return 0;
2548
2549
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
2550
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2551
0
            for (i = 0; i < num; i++) {
2552
0
                const SSL_CIPHER *c;
2553
2554
0
                c = sk_SSL_CIPHER_value(sk, i);
2555
                /* Skip disabled ciphers */
2556
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2557
0
                    continue;
2558
2559
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2560
0
                    break;
2561
0
            }
2562
0
            if (i == num)
2563
0
                return 0;
2564
0
        }
2565
0
    }
2566
2567
    /* Finally see if security callback allows it */
2568
3.66M
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2569
3.66M
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2570
3.66M
    sigalgstr[1] = lu->sigalg & 0xff;
2571
3.66M
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2572
3.66M
}
2573
2574
/*
2575
 * Get a mask of disabled public key algorithms based on supported signature
2576
 * algorithms. For example if no signature algorithm supports RSA then RSA is
2577
 * disabled.
2578
 */
2579
2580
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
2581
334k
{
2582
334k
    const uint16_t *sigalgs;
2583
334k
    size_t i, sigalgslen;
2584
334k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2585
    /*
2586
     * Go through all signature algorithms seeing if we support any
2587
     * in disabled_mask.
2588
     */
2589
334k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2590
10.2M
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
2591
9.93M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2592
9.93M
        const SSL_CERT_LOOKUP *clu;
2593
2594
9.93M
        if (lu == NULL)
2595
1.02M
            continue;
2596
2597
8.91M
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
2598
8.91M
                                     SSL_CONNECTION_GET_CTX(s));
2599
8.91M
        if (clu == NULL)
2600
0
                continue;
2601
2602
        /* If algorithm is disabled see if we can enable it */
2603
8.91M
        if ((clu->amask & disabled_mask) != 0
2604
1.40M
                && tls12_sigalg_allowed(s, op, lu))
2605
901k
            disabled_mask &= ~clu->amask;
2606
8.91M
    }
2607
334k
    *pmask_a |= disabled_mask;
2608
334k
}
2609
2610
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
2611
                       const uint16_t *psig, size_t psiglen)
2612
110k
{
2613
110k
    size_t i;
2614
110k
    int rv = 0;
2615
2616
3.40M
    for (i = 0; i < psiglen; i++, psig++) {
2617
3.29M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2618
2619
3.29M
        if (lu == NULL
2620
2.95M
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2621
823k
            continue;
2622
2.46M
        if (!WPACKET_put_bytes_u16(pkt, *psig))
2623
0
            return 0;
2624
        /*
2625
         * If TLS 1.3 must have at least one valid TLS 1.3 message
2626
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2627
         */
2628
2.46M
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
2629
0
            || (lu->sig != EVP_PKEY_RSA
2630
0
                && lu->hash != NID_sha1
2631
0
                && lu->hash != NID_sha224)))
2632
110k
            rv = 1;
2633
2.46M
    }
2634
110k
    if (rv == 0)
2635
110k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2636
110k
    return rv;
2637
110k
}
2638
2639
/* Given preference and allowed sigalgs set shared sigalgs */
2640
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
2641
                                   const SIGALG_LOOKUP **shsig,
2642
                                   const uint16_t *pref, size_t preflen,
2643
                                   const uint16_t *allow, size_t allowlen)
2644
17.0k
{
2645
17.0k
    const uint16_t *ptmp, *atmp;
2646
17.0k
    size_t i, j, nmatch = 0;
2647
458k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2648
441k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2649
2650
        /* Skip disabled hashes or signature algorithms */
2651
441k
        if (lu == NULL
2652
195k
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2653
254k
            continue;
2654
2.89M
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2655
2.89M
            if (*ptmp == *atmp) {
2656
187k
                nmatch++;
2657
187k
                if (shsig)
2658
93.7k
                    *shsig++ = lu;
2659
187k
                break;
2660
187k
            }
2661
2.89M
        }
2662
187k
    }
2663
17.0k
    return nmatch;
2664
17.0k
}
2665
2666
/* Set shared signature algorithms for SSL structures */
2667
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
2668
8.60k
{
2669
8.60k
    const uint16_t *pref, *allow, *conf;
2670
8.60k
    size_t preflen, allowlen, conflen;
2671
8.60k
    size_t nmatch;
2672
8.60k
    const SIGALG_LOOKUP **salgs = NULL;
2673
8.60k
    CERT *c = s->cert;
2674
8.60k
    unsigned int is_suiteb = tls1_suiteb(s);
2675
2676
8.60k
    OPENSSL_free(s->shared_sigalgs);
2677
8.60k
    s->shared_sigalgs = NULL;
2678
8.60k
    s->shared_sigalgslen = 0;
2679
    /* If client use client signature algorithms if not NULL */
2680
8.60k
    if (!s->server && c->client_sigalgs && !is_suiteb) {
2681
0
        conf = c->client_sigalgs;
2682
0
        conflen = c->client_sigalgslen;
2683
8.60k
    } else if (c->conf_sigalgs && !is_suiteb) {
2684
0
        conf = c->conf_sigalgs;
2685
0
        conflen = c->conf_sigalgslen;
2686
0
    } else
2687
8.60k
        conflen = tls12_get_psigalgs(s, 0, &conf);
2688
8.60k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2689
0
        pref = conf;
2690
0
        preflen = conflen;
2691
0
        allow = s->s3.tmp.peer_sigalgs;
2692
0
        allowlen = s->s3.tmp.peer_sigalgslen;
2693
8.60k
    } else {
2694
8.60k
        allow = conf;
2695
8.60k
        allowlen = conflen;
2696
8.60k
        pref = s->s3.tmp.peer_sigalgs;
2697
8.60k
        preflen = s->s3.tmp.peer_sigalgslen;
2698
8.60k
    }
2699
8.60k
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2700
8.60k
    if (nmatch) {
2701
8.40k
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
2702
0
            return 0;
2703
8.40k
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2704
8.40k
    } else {
2705
201
        salgs = NULL;
2706
201
    }
2707
8.60k
    s->shared_sigalgs = salgs;
2708
8.60k
    s->shared_sigalgslen = nmatch;
2709
8.60k
    return 1;
2710
8.60k
}
2711
2712
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2713
27.9k
{
2714
27.9k
    unsigned int stmp;
2715
27.9k
    size_t size, i;
2716
27.9k
    uint16_t *buf;
2717
2718
27.9k
    size = PACKET_remaining(pkt);
2719
2720
    /* Invalid data length */
2721
27.9k
    if (size == 0 || (size & 1) != 0)
2722
64
        return 0;
2723
2724
27.8k
    size >>= 1;
2725
2726
27.8k
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
2727
0
        return 0;
2728
318k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2729
290k
        buf[i] = stmp;
2730
2731
27.8k
    if (i != size) {
2732
0
        OPENSSL_free(buf);
2733
0
        return 0;
2734
0
    }
2735
2736
27.8k
    OPENSSL_free(*pdest);
2737
27.8k
    *pdest = buf;
2738
27.8k
    *pdestlen = size;
2739
2740
27.8k
    return 1;
2741
27.8k
}
2742
2743
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
2744
10.5k
{
2745
    /* Extension ignored for inappropriate versions */
2746
10.5k
    if (!SSL_USE_SIGALGS(s))
2747
287
        return 1;
2748
    /* Should never happen */
2749
10.3k
    if (s->cert == NULL)
2750
0
        return 0;
2751
2752
10.3k
    if (cert)
2753
1.01k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2754
1.01k
                             &s->s3.tmp.peer_cert_sigalgslen);
2755
9.28k
    else
2756
9.28k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2757
9.28k
                             &s->s3.tmp.peer_sigalgslen);
2758
2759
10.3k
}
2760
2761
/* Set preferred digest for each key type */
2762
2763
int tls1_process_sigalgs(SSL_CONNECTION *s)
2764
8.60k
{
2765
8.60k
    size_t i;
2766
8.60k
    uint32_t *pvalid = s->s3.tmp.valid_flags;
2767
2768
8.60k
    if (!tls1_set_shared_sigalgs(s))
2769
0
        return 0;
2770
2771
96.8k
    for (i = 0; i < s->ssl_pkey_num; i++)
2772
88.2k
        pvalid[i] = 0;
2773
2774
102k
    for (i = 0; i < s->shared_sigalgslen; i++) {
2775
93.7k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2776
93.7k
        int idx = sigptr->sig_idx;
2777
2778
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
2779
93.7k
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2780
2.44k
            continue;
2781
        /* If not disabled indicate we can explicitly sign */
2782
91.3k
        if (pvalid[idx] == 0
2783
15.8k
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
2784
15.8k
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2785
91.3k
    }
2786
8.60k
    return 1;
2787
8.60k
}
2788
2789
int SSL_get_sigalgs(SSL *s, int idx,
2790
                    int *psign, int *phash, int *psignhash,
2791
                    unsigned char *rsig, unsigned char *rhash)
2792
0
{
2793
0
    uint16_t *psig;
2794
0
    size_t numsigalgs;
2795
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2796
2797
0
    if (sc == NULL)
2798
0
        return 0;
2799
2800
0
    psig = sc->s3.tmp.peer_sigalgs;
2801
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
2802
2803
0
    if (psig == NULL || numsigalgs > INT_MAX)
2804
0
        return 0;
2805
0
    if (idx >= 0) {
2806
0
        const SIGALG_LOOKUP *lu;
2807
2808
0
        if (idx >= (int)numsigalgs)
2809
0
            return 0;
2810
0
        psig += idx;
2811
0
        if (rhash != NULL)
2812
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
2813
0
        if (rsig != NULL)
2814
0
            *rsig = (unsigned char)(*psig & 0xff);
2815
0
        lu = tls1_lookup_sigalg(sc, *psig);
2816
0
        if (psign != NULL)
2817
0
            *psign = lu != NULL ? lu->sig : NID_undef;
2818
0
        if (phash != NULL)
2819
0
            *phash = lu != NULL ? lu->hash : NID_undef;
2820
0
        if (psignhash != NULL)
2821
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2822
0
    }
2823
0
    return (int)numsigalgs;
2824
0
}
2825
2826
int SSL_get_shared_sigalgs(SSL *s, int idx,
2827
                           int *psign, int *phash, int *psignhash,
2828
                           unsigned char *rsig, unsigned char *rhash)
2829
0
{
2830
0
    const SIGALG_LOOKUP *shsigalgs;
2831
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2832
2833
0
    if (sc == NULL)
2834
0
        return 0;
2835
2836
0
    if (sc->shared_sigalgs == NULL
2837
0
        || idx < 0
2838
0
        || idx >= (int)sc->shared_sigalgslen
2839
0
        || sc->shared_sigalgslen > INT_MAX)
2840
0
        return 0;
2841
0
    shsigalgs = sc->shared_sigalgs[idx];
2842
0
    if (phash != NULL)
2843
0
        *phash = shsigalgs->hash;
2844
0
    if (psign != NULL)
2845
0
        *psign = shsigalgs->sig;
2846
0
    if (psignhash != NULL)
2847
0
        *psignhash = shsigalgs->sigandhash;
2848
0
    if (rsig != NULL)
2849
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2850
0
    if (rhash != NULL)
2851
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2852
0
    return (int)sc->shared_sigalgslen;
2853
0
}
2854
2855
/* Maximum possible number of unique entries in sigalgs array */
2856
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2857
2858
typedef struct {
2859
    size_t sigalgcnt;
2860
    /* TLSEXT_SIGALG_XXX values */
2861
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2862
    SSL_CTX *ctx;
2863
} sig_cb_st;
2864
2865
static void get_sigorhash(int *psig, int *phash, const char *str)
2866
0
{
2867
0
    if (strcmp(str, "RSA") == 0) {
2868
0
        *psig = EVP_PKEY_RSA;
2869
0
    } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2870
0
        *psig = EVP_PKEY_RSA_PSS;
2871
0
    } else if (strcmp(str, "DSA") == 0) {
2872
0
        *psig = EVP_PKEY_DSA;
2873
0
    } else if (strcmp(str, "ECDSA") == 0) {
2874
0
        *psig = EVP_PKEY_EC;
2875
0
    } else {
2876
0
        *phash = OBJ_sn2nid(str);
2877
0
        if (*phash == NID_undef)
2878
0
            *phash = OBJ_ln2nid(str);
2879
0
    }
2880
0
}
2881
/* Maximum length of a signature algorithm string component */
2882
#define TLS_MAX_SIGSTRING_LEN   40
2883
2884
static int sig_cb(const char *elem, int len, void *arg)
2885
0
{
2886
0
    sig_cb_st *sarg = arg;
2887
0
    size_t i = 0;
2888
0
    const SIGALG_LOOKUP *s;
2889
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2890
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
2891
0
    if (elem == NULL)
2892
0
        return 0;
2893
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2894
0
        return 0;
2895
0
    if (len > (int)(sizeof(etmp) - 1))
2896
0
        return 0;
2897
0
    memcpy(etmp, elem, len);
2898
0
    etmp[len] = 0;
2899
0
    p = strchr(etmp, '+');
2900
    /*
2901
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2902
     * if there's no '+' in the provided name, look for the new-style combined
2903
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2904
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2905
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
2906
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
2907
     * in the table.
2908
     */
2909
0
    if (p == NULL) {
2910
        /* Load provider sigalgs */
2911
0
        if (sarg->ctx != NULL) {
2912
            /* Check if a provider supports the sigalg */
2913
0
            for (i = 0; i < sarg->ctx->sigalg_list_len; i++) {
2914
0
                if (sarg->ctx->sigalg_list[i].sigalg_name != NULL
2915
0
                    && strcmp(etmp,
2916
0
                              sarg->ctx->sigalg_list[i].sigalg_name) == 0) {
2917
0
                    sarg->sigalgs[sarg->sigalgcnt++] =
2918
0
                        sarg->ctx->sigalg_list[i].code_point;
2919
0
                    break;
2920
0
                }
2921
0
            }
2922
0
        }
2923
        /* Check the built-in sigalgs */
2924
0
        if (sarg->ctx == NULL || i == sarg->ctx->sigalg_list_len) {
2925
0
            for (i = 0, s = sigalg_lookup_tbl;
2926
0
                 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
2927
0
                if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2928
0
                    sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2929
0
                    break;
2930
0
                }
2931
0
            }
2932
0
            if (i == OSSL_NELEM(sigalg_lookup_tbl))
2933
0
                return 0;
2934
0
        }
2935
0
    } else {
2936
0
        *p = 0;
2937
0
        p++;
2938
0
        if (*p == 0)
2939
0
            return 0;
2940
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
2941
0
        get_sigorhash(&sig_alg, &hash_alg, p);
2942
0
        if (sig_alg == NID_undef || hash_alg == NID_undef)
2943
0
            return 0;
2944
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2945
0
             i++, s++) {
2946
0
            if (s->hash == hash_alg && s->sig == sig_alg) {
2947
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2948
0
                break;
2949
0
            }
2950
0
        }
2951
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl))
2952
0
            return 0;
2953
0
    }
2954
2955
    /* Reject duplicates */
2956
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2957
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2958
0
            sarg->sigalgcnt--;
2959
0
            return 0;
2960
0
        }
2961
0
    }
2962
0
    return 1;
2963
0
}
2964
2965
/*
2966
 * Set supported signature algorithms based on a colon separated list of the
2967
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2968
 */
2969
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
2970
0
{
2971
0
    sig_cb_st sig;
2972
0
    sig.sigalgcnt = 0;
2973
2974
0
    if (ctx != NULL)
2975
0
        sig.ctx = ctx;
2976
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2977
0
        return 0;
2978
0
    if (c == NULL)
2979
0
        return 1;
2980
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2981
0
}
2982
2983
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2984
                     int client)
2985
0
{
2986
0
    uint16_t *sigalgs;
2987
2988
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
2989
0
        return 0;
2990
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2991
2992
0
    if (client) {
2993
0
        OPENSSL_free(c->client_sigalgs);
2994
0
        c->client_sigalgs = sigalgs;
2995
0
        c->client_sigalgslen = salglen;
2996
0
    } else {
2997
0
        OPENSSL_free(c->conf_sigalgs);
2998
0
        c->conf_sigalgs = sigalgs;
2999
0
        c->conf_sigalgslen = salglen;
3000
0
    }
3001
3002
0
    return 1;
3003
0
}
3004
3005
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3006
0
{
3007
0
    uint16_t *sigalgs, *sptr;
3008
0
    size_t i;
3009
3010
0
    if (salglen & 1)
3011
0
        return 0;
3012
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3013
0
        return 0;
3014
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3015
0
        size_t j;
3016
0
        const SIGALG_LOOKUP *curr;
3017
0
        int md_id = *psig_nids++;
3018
0
        int sig_id = *psig_nids++;
3019
3020
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3021
0
             j++, curr++) {
3022
0
            if (curr->hash == md_id && curr->sig == sig_id) {
3023
0
                *sptr++ = curr->sigalg;
3024
0
                break;
3025
0
            }
3026
0
        }
3027
3028
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3029
0
            goto err;
3030
0
    }
3031
3032
0
    if (client) {
3033
0
        OPENSSL_free(c->client_sigalgs);
3034
0
        c->client_sigalgs = sigalgs;
3035
0
        c->client_sigalgslen = salglen / 2;
3036
0
    } else {
3037
0
        OPENSSL_free(c->conf_sigalgs);
3038
0
        c->conf_sigalgs = sigalgs;
3039
0
        c->conf_sigalgslen = salglen / 2;
3040
0
    }
3041
3042
0
    return 1;
3043
3044
0
 err:
3045
0
    OPENSSL_free(sigalgs);
3046
0
    return 0;
3047
0
}
3048
3049
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3050
0
{
3051
0
    int sig_nid, use_pc_sigalgs = 0;
3052
0
    size_t i;
3053
0
    const SIGALG_LOOKUP *sigalg;
3054
0
    size_t sigalgslen;
3055
3056
0
    if (default_nid == -1)
3057
0
        return 1;
3058
0
    sig_nid = X509_get_signature_nid(x);
3059
0
    if (default_nid)
3060
0
        return sig_nid == default_nid ? 1 : 0;
3061
3062
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3063
        /*
3064
         * If we're in TLSv1.3 then we only get here if we're checking the
3065
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3066
         * otherwise we default to normal sigalgs.
3067
         */
3068
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3069
0
        use_pc_sigalgs = 1;
3070
0
    } else {
3071
0
        sigalgslen = s->shared_sigalgslen;
3072
0
    }
3073
0
    for (i = 0; i < sigalgslen; i++) {
3074
0
        sigalg = use_pc_sigalgs
3075
0
                 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
3076
0
                 : s->shared_sigalgs[i];
3077
0
        if (sigalg != NULL && sig_nid == sigalg->sigandhash)
3078
0
            return 1;
3079
0
    }
3080
0
    return 0;
3081
0
}
3082
3083
/* Check to see if a certificate issuer name matches list of CA names */
3084
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3085
0
{
3086
0
    const X509_NAME *nm;
3087
0
    int i;
3088
0
    nm = X509_get_issuer_name(x);
3089
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
3090
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3091
0
            return 1;
3092
0
    }
3093
0
    return 0;
3094
0
}
3095
3096
/*
3097
 * Check certificate chain is consistent with TLS extensions and is usable by
3098
 * server. This servers two purposes: it allows users to check chains before
3099
 * passing them to the server and it allows the server to check chains before
3100
 * attempting to use them.
3101
 */
3102
3103
/* Flags which need to be set for a certificate when strict mode not set */
3104
3105
#define CERT_PKEY_VALID_FLAGS \
3106
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3107
/* Strict mode flags */
3108
#define CERT_PKEY_STRICT_FLAGS \
3109
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3110
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3111
3112
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3113
                     STACK_OF(X509) *chain, int idx)
3114
207k
{
3115
207k
    int i;
3116
207k
    int rv = 0;
3117
207k
    int check_flags = 0, strict_mode;
3118
207k
    CERT_PKEY *cpk = NULL;
3119
207k
    CERT *c = s->cert;
3120
207k
    uint32_t *pvalid;
3121
207k
    unsigned int suiteb_flags = tls1_suiteb(s);
3122
3123
    /*
3124
     * Meaning of idx:
3125
     * idx == -1 means SSL_check_chain() invocation
3126
     * idx == -2 means checking client certificate chains
3127
     * idx >= 0 means checking SSL_PKEY index
3128
     *
3129
     * For RPK, where there may be no cert, we ignore -1
3130
     */
3131
207k
    if (idx != -1) {
3132
207k
        if (idx == -2) {
3133
0
            cpk = c->key;
3134
0
            idx = (int)(cpk - c->pkeys);
3135
0
        } else
3136
207k
            cpk = c->pkeys + idx;
3137
207k
        pvalid = s->s3.tmp.valid_flags + idx;
3138
207k
        x = cpk->x509;
3139
207k
        pk = cpk->privatekey;
3140
207k
        chain = cpk->chain;
3141
207k
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3142
207k
        if (tls12_rpk_and_privkey(s, idx)) {
3143
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
3144
0
                return 0;
3145
0
            *pvalid = rv = CERT_PKEY_RPK;
3146
0
            return rv;
3147
0
        }
3148
        /* If no cert or key, forget it */
3149
207k
        if (x == NULL || pk == NULL)
3150
138k
            goto end;
3151
207k
    } else {
3152
0
        size_t certidx;
3153
3154
0
        if (x == NULL || pk == NULL)
3155
0
            return 0;
3156
3157
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
3158
0
                                    SSL_CONNECTION_GET_CTX(s)) == NULL)
3159
0
            return 0;
3160
0
        idx = certidx;
3161
0
        pvalid = s->s3.tmp.valid_flags + idx;
3162
3163
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3164
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
3165
0
        else
3166
0
            check_flags = CERT_PKEY_VALID_FLAGS;
3167
0
        strict_mode = 1;
3168
0
    }
3169
3170
69.0k
    if (suiteb_flags) {
3171
0
        int ok;
3172
0
        if (check_flags)
3173
0
            check_flags |= CERT_PKEY_SUITEB;
3174
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3175
0
        if (ok == X509_V_OK)
3176
0
            rv |= CERT_PKEY_SUITEB;
3177
0
        else if (!check_flags)
3178
0
            goto end;
3179
0
    }
3180
3181
    /*
3182
     * Check all signature algorithms are consistent with signature
3183
     * algorithms extension if TLS 1.2 or later and strict mode.
3184
     */
3185
69.0k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
3186
32.2k
        && strict_mode) {
3187
0
        int default_nid;
3188
0
        int rsign = 0;
3189
3190
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
3191
0
                || s->s3.tmp.peer_sigalgs != NULL) {
3192
0
            default_nid = 0;
3193
        /* If no sigalgs extension use defaults from RFC5246 */
3194
0
        } else {
3195
0
            switch (idx) {
3196
0
            case SSL_PKEY_RSA:
3197
0
                rsign = EVP_PKEY_RSA;
3198
0
                default_nid = NID_sha1WithRSAEncryption;
3199
0
                break;
3200
3201
0
            case SSL_PKEY_DSA_SIGN:
3202
0
                rsign = EVP_PKEY_DSA;
3203
0
                default_nid = NID_dsaWithSHA1;
3204
0
                break;
3205
3206
0
            case SSL_PKEY_ECC:
3207
0
                rsign = EVP_PKEY_EC;
3208
0
                default_nid = NID_ecdsa_with_SHA1;
3209
0
                break;
3210
3211
0
            case SSL_PKEY_GOST01:
3212
0
                rsign = NID_id_GostR3410_2001;
3213
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
3214
0
                break;
3215
3216
0
            case SSL_PKEY_GOST12_256:
3217
0
                rsign = NID_id_GostR3410_2012_256;
3218
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
3219
0
                break;
3220
3221
0
            case SSL_PKEY_GOST12_512:
3222
0
                rsign = NID_id_GostR3410_2012_512;
3223
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
3224
0
                break;
3225
3226
0
            default:
3227
0
                default_nid = -1;
3228
0
                break;
3229
0
            }
3230
0
        }
3231
        /*
3232
         * If peer sent no signature algorithms extension and we have set
3233
         * preferred signature algorithms check we support sha1.
3234
         */
3235
0
        if (default_nid > 0 && c->conf_sigalgs) {
3236
0
            size_t j;
3237
0
            const uint16_t *p = c->conf_sigalgs;
3238
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
3239
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
3240
3241
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
3242
0
                    break;
3243
0
            }
3244
0
            if (j == c->conf_sigalgslen) {
3245
0
                if (check_flags)
3246
0
                    goto skip_sigs;
3247
0
                else
3248
0
                    goto end;
3249
0
            }
3250
0
        }
3251
        /* Check signature algorithm of each cert in chain */
3252
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
3253
            /*
3254
             * We only get here if the application has called SSL_check_chain(),
3255
             * so check_flags is always set.
3256
             */
3257
0
            if (find_sig_alg(s, x, pk) != NULL)
3258
0
                rv |= CERT_PKEY_EE_SIGNATURE;
3259
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
3260
0
            if (!check_flags)
3261
0
                goto end;
3262
0
        } else
3263
0
            rv |= CERT_PKEY_EE_SIGNATURE;
3264
0
        rv |= CERT_PKEY_CA_SIGNATURE;
3265
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3266
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
3267
0
                if (check_flags) {
3268
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
3269
0
                    break;
3270
0
                } else
3271
0
                    goto end;
3272
0
            }
3273
0
        }
3274
0
    }
3275
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
3276
69.0k
    else if (check_flags)
3277
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
3278
69.0k
 skip_sigs:
3279
    /* Check cert parameters are consistent */
3280
69.0k
    if (tls1_check_cert_param(s, x, 1))
3281
62.3k
        rv |= CERT_PKEY_EE_PARAM;
3282
6.75k
    else if (!check_flags)
3283
6.75k
        goto end;
3284
62.3k
    if (!s->server)
3285
0
        rv |= CERT_PKEY_CA_PARAM;
3286
    /* In strict mode check rest of chain too */
3287
62.3k
    else if (strict_mode) {
3288
0
        rv |= CERT_PKEY_CA_PARAM;
3289
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3290
0
            X509 *ca = sk_X509_value(chain, i);
3291
0
            if (!tls1_check_cert_param(s, ca, 0)) {
3292
0
                if (check_flags) {
3293
0
                    rv &= ~CERT_PKEY_CA_PARAM;
3294
0
                    break;
3295
0
                } else
3296
0
                    goto end;
3297
0
            }
3298
0
        }
3299
0
    }
3300
62.3k
    if (!s->server && strict_mode) {
3301
0
        STACK_OF(X509_NAME) *ca_dn;
3302
0
        int check_type = 0;
3303
3304
0
        if (EVP_PKEY_is_a(pk, "RSA"))
3305
0
            check_type = TLS_CT_RSA_SIGN;
3306
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
3307
0
            check_type = TLS_CT_DSS_SIGN;
3308
0
        else if (EVP_PKEY_is_a(pk, "EC"))
3309
0
            check_type = TLS_CT_ECDSA_SIGN;
3310
3311
0
        if (check_type) {
3312
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
3313
0
            size_t j;
3314
3315
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
3316
0
                if (*ctypes == check_type) {
3317
0
                    rv |= CERT_PKEY_CERT_TYPE;
3318
0
                    break;
3319
0
                }
3320
0
            }
3321
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
3322
0
                goto end;
3323
0
        } else {
3324
0
            rv |= CERT_PKEY_CERT_TYPE;
3325
0
        }
3326
3327
0
        ca_dn = s->s3.tmp.peer_ca_names;
3328
3329
0
        if (ca_dn == NULL
3330
0
            || sk_X509_NAME_num(ca_dn) == 0
3331
0
            || ssl_check_ca_name(ca_dn, x))
3332
0
            rv |= CERT_PKEY_ISSUER_NAME;
3333
0
        else
3334
0
            for (i = 0; i < sk_X509_num(chain); i++) {
3335
0
                X509 *xtmp = sk_X509_value(chain, i);
3336
3337
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
3338
0
                    rv |= CERT_PKEY_ISSUER_NAME;
3339
0
                    break;
3340
0
                }
3341
0
            }
3342
3343
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
3344
0
            goto end;
3345
0
    } else
3346
62.3k
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
3347
3348
62.3k
    if (!check_flags || (rv & check_flags) == check_flags)
3349
62.3k
        rv |= CERT_PKEY_VALID;
3350
3351
207k
 end:
3352
3353
207k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
3354
96.6k
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
3355
110k
    else
3356
110k
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
3357
3358
    /*
3359
     * When checking a CERT_PKEY structure all flags are irrelevant if the
3360
     * chain is invalid.
3361
     */
3362
207k
    if (!check_flags) {
3363
207k
        if (rv & CERT_PKEY_VALID) {
3364
62.3k
            *pvalid = rv;
3365
144k
        } else {
3366
            /* Preserve sign and explicit sign flag, clear rest */
3367
144k
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3368
144k
            return 0;
3369
144k
        }
3370
207k
    }
3371
62.3k
    return rv;
3372
207k
}
3373
3374
/* Set validity of certificates in an SSL structure */
3375
void tls1_set_cert_validity(SSL_CONNECTION *s)
3376
25.3k
{
3377
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
3378
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
3379
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
3380
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
3381
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
3382
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
3383
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
3384
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
3385
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
3386
25.3k
}
3387
3388
/* User level utility function to check a chain is suitable */
3389
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
3390
0
{
3391
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3392
3393
0
    if (sc == NULL)
3394
0
        return 0;
3395
3396
0
    return tls1_check_chain(sc, x, pk, chain, -1);
3397
0
}
3398
3399
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
3400
0
{
3401
0
    EVP_PKEY *dhp = NULL;
3402
0
    BIGNUM *p;
3403
0
    int dh_secbits = 80, sec_level_bits;
3404
0
    EVP_PKEY_CTX *pctx = NULL;
3405
0
    OSSL_PARAM_BLD *tmpl = NULL;
3406
0
    OSSL_PARAM *params = NULL;
3407
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3408
3409
0
    if (s->cert->dh_tmp_auto != 2) {
3410
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
3411
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
3412
0
                dh_secbits = 128;
3413
0
            else
3414
0
                dh_secbits = 80;
3415
0
        } else {
3416
0
            if (s->s3.tmp.cert == NULL)
3417
0
                return NULL;
3418
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
3419
0
        }
3420
0
    }
3421
3422
    /* Do not pick a prime that is too weak for the current security level */
3423
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
3424
0
                                                 NULL, NULL);
3425
0
    if (dh_secbits < sec_level_bits)
3426
0
        dh_secbits = sec_level_bits;
3427
3428
0
    if (dh_secbits >= 192)
3429
0
        p = BN_get_rfc3526_prime_8192(NULL);
3430
0
    else if (dh_secbits >= 152)
3431
0
        p = BN_get_rfc3526_prime_4096(NULL);
3432
0
    else if (dh_secbits >= 128)
3433
0
        p = BN_get_rfc3526_prime_3072(NULL);
3434
0
    else if (dh_secbits >= 112)
3435
0
        p = BN_get_rfc3526_prime_2048(NULL);
3436
0
    else
3437
0
        p = BN_get_rfc2409_prime_1024(NULL);
3438
0
    if (p == NULL)
3439
0
        goto err;
3440
3441
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
3442
0
    if (pctx == NULL
3443
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
3444
0
        goto err;
3445
3446
0
    tmpl = OSSL_PARAM_BLD_new();
3447
0
    if (tmpl == NULL
3448
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
3449
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
3450
0
        goto err;
3451
3452
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
3453
0
    if (params == NULL
3454
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
3455
0
        goto err;
3456
3457
0
err:
3458
0
    OSSL_PARAM_free(params);
3459
0
    OSSL_PARAM_BLD_free(tmpl);
3460
0
    EVP_PKEY_CTX_free(pctx);
3461
0
    BN_free(p);
3462
0
    return dhp;
3463
0
}
3464
3465
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3466
                                 int op)
3467
144k
{
3468
144k
    int secbits = -1;
3469
144k
    EVP_PKEY *pkey = X509_get0_pubkey(x);
3470
3471
144k
    if (pkey) {
3472
        /*
3473
         * If no parameters this will return -1 and fail using the default
3474
         * security callback for any non-zero security level. This will
3475
         * reject keys which omit parameters but this only affects DSA and
3476
         * omission of parameters is never (?) done in practice.
3477
         */
3478
144k
        secbits = EVP_PKEY_get_security_bits(pkey);
3479
144k
    }
3480
144k
    if (s != NULL)
3481
21.5k
        return ssl_security(s, op, secbits, 0, x);
3482
122k
    else
3483
122k
        return ssl_ctx_security(ctx, op, secbits, 0, x);
3484
144k
}
3485
3486
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3487
                                 int op)
3488
144k
{
3489
    /* Lookup signature algorithm digest */
3490
144k
    int secbits, nid, pknid;
3491
3492
    /* Don't check signature if self signed */
3493
144k
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3494
144k
        return 1;
3495
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3496
0
        secbits = -1;
3497
    /* If digest NID not defined use signature NID */
3498
0
    if (nid == NID_undef)
3499
0
        nid = pknid;
3500
0
    if (s != NULL)
3501
0
        return ssl_security(s, op, secbits, nid, x);
3502
0
    else
3503
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
3504
0
}
3505
3506
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
3507
                      int is_ee)
3508
160k
{
3509
160k
    if (vfy)
3510
0
        vfy = SSL_SECOP_PEER;
3511
160k
    if (is_ee) {
3512
160k
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3513
0
            return SSL_R_EE_KEY_TOO_SMALL;
3514
160k
    } else {
3515
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3516
0
            return SSL_R_CA_KEY_TOO_SMALL;
3517
0
    }
3518
160k
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3519
0
        return SSL_R_CA_MD_TOO_WEAK;
3520
160k
    return 1;
3521
160k
}
3522
3523
/*
3524
 * Check security of a chain, if |sk| includes the end entity certificate then
3525
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3526
 * one to the peer. Return values: 1 if ok otherwise error code to use
3527
 */
3528
3529
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
3530
                            X509 *x, int vfy)
3531
23.7k
{
3532
23.7k
    int rv, start_idx, i;
3533
3534
23.7k
    if (x == NULL) {
3535
23.7k
        x = sk_X509_value(sk, 0);
3536
23.7k
        if (x == NULL)
3537
0
            return ERR_R_INTERNAL_ERROR;
3538
23.7k
        start_idx = 1;
3539
23.7k
    } else
3540
0
        start_idx = 0;
3541
3542
23.7k
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
3543
23.7k
    if (rv != 1)
3544
0
        return rv;
3545
3546
23.7k
    for (i = start_idx; i < sk_X509_num(sk); i++) {
3547
0
        x = sk_X509_value(sk, i);
3548
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
3549
0
        if (rv != 1)
3550
0
            return rv;
3551
0
    }
3552
23.7k
    return 1;
3553
23.7k
}
3554
3555
/*
3556
 * For TLS 1.2 servers check if we have a certificate which can be used
3557
 * with the signature algorithm "lu" and return index of certificate.
3558
 */
3559
3560
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
3561
                                     const SIGALG_LOOKUP *lu)
3562
32.2k
{
3563
32.2k
    int sig_idx = lu->sig_idx;
3564
32.2k
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
3565
32.2k
                                                        SSL_CONNECTION_GET_CTX(s));
3566
3567
    /* If not recognised or not supported by cipher mask it is not suitable */
3568
32.2k
    if (clu == NULL
3569
32.2k
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3570
23.0k
            || (clu->pkey_nid == EVP_PKEY_RSA_PSS
3571
1.76k
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3572
10.1k
        return -1;
3573
3574
    /* If doing RPK, the CERT_PKEY won't be "valid" */
3575
22.0k
    if (tls12_rpk_and_privkey(s, sig_idx))
3576
0
        return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
3577
3578
22.0k
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3579
22.0k
}
3580
3581
/*
3582
 * Checks the given cert against signature_algorithm_cert restrictions sent by
3583
 * the peer (if any) as well as whether the hash from the sigalg is usable with
3584
 * the key.
3585
 * Returns true if the cert is usable and false otherwise.
3586
 */
3587
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
3588
                             X509 *x, EVP_PKEY *pkey)
3589
50.1k
{
3590
50.1k
    const SIGALG_LOOKUP *lu;
3591
50.1k
    int mdnid, pknid, supported;
3592
50.1k
    size_t i;
3593
50.1k
    const char *mdname = NULL;
3594
50.1k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3595
3596
    /*
3597
     * If the given EVP_PKEY cannot support signing with this digest,
3598
     * the answer is simply 'no'.
3599
     */
3600
50.1k
    if (sig->hash != NID_undef)
3601
50.1k
        mdname = OBJ_nid2sn(sig->hash);
3602
50.1k
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
3603
50.1k
                                                    mdname,
3604
50.1k
                                                    sctx->propq);
3605
50.1k
    if (supported <= 0)
3606
0
        return 0;
3607
3608
    /*
3609
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
3610
     * on the sigalg with which the certificate was signed (by its issuer).
3611
     */
3612
50.1k
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3613
26.4k
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3614
0
            return 0;
3615
139k
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3616
113k
            lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3617
113k
            if (lu == NULL)
3618
82.5k
                continue;
3619
3620
            /*
3621
             * This does not differentiate between the
3622
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3623
             * have a chain here that lets us look at the key OID in the
3624
             * signing certificate.
3625
             */
3626
30.5k
            if (mdnid == lu->hash && pknid == lu->sig)
3627
55
                return 1;
3628
30.5k
        }
3629
26.3k
        return 0;
3630
26.4k
    }
3631
3632
    /*
3633
     * Without signat_algorithms_cert, any certificate for which we have
3634
     * a viable public key is permitted.
3635
     */
3636
23.7k
    return 1;
3637
50.1k
}
3638
3639
/*
3640
 * Returns true if |s| has a usable certificate configured for use
3641
 * with signature scheme |sig|.
3642
 * "Usable" includes a check for presence as well as applying
3643
 * the signature_algorithm_cert restrictions sent by the peer (if any).
3644
 * Returns false if no usable certificate is found.
3645
 */
3646
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
3647
50.5k
{
3648
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3649
50.5k
    if (idx == -1)
3650
7.30k
        idx = sig->sig_idx;
3651
50.5k
    if (!ssl_has_cert(s, idx))
3652
348
        return 0;
3653
3654
50.1k
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3655
50.1k
                             s->cert->pkeys[idx].privatekey);
3656
50.5k
}
3657
3658
/*
3659
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3660
 * specified signature scheme |sig|, or false otherwise.
3661
 */
3662
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
3663
                          EVP_PKEY *pkey)
3664
0
{
3665
0
    size_t idx;
3666
3667
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
3668
0
        return 0;
3669
3670
    /* Check the key is consistent with the sig alg */
3671
0
    if ((int)idx != sig->sig_idx)
3672
0
        return 0;
3673
3674
0
    return check_cert_usable(s, sig, x, pkey);
3675
0
}
3676
3677
/*
3678
 * Find a signature scheme that works with the supplied certificate |x| and key
3679
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3680
 * available certs/keys to find one that works.
3681
 */
3682
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
3683
                                         EVP_PKEY *pkey)
3684
2.41k
{
3685
2.41k
    const SIGALG_LOOKUP *lu = NULL;
3686
2.41k
    size_t i;
3687
2.41k
    int curve = -1;
3688
2.41k
    EVP_PKEY *tmppkey;
3689
2.41k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3690
3691
    /* Look for a shared sigalgs matching possible certificates */
3692
7.57k
    for (i = 0; i < s->shared_sigalgslen; i++) {
3693
7.46k
        lu = s->shared_sigalgs[i];
3694
3695
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3696
7.46k
        if (lu->hash == NID_sha1
3697
6.46k
            || lu->hash == NID_sha224
3698
6.20k
            || lu->sig == EVP_PKEY_DSA
3699
6.20k
            || lu->sig == EVP_PKEY_RSA)
3700
2.57k
            continue;
3701
        /* Check that we have a cert, and signature_algorithms_cert */
3702
4.89k
        if (!tls1_lookup_md(sctx, lu, NULL))
3703
0
            continue;
3704
4.89k
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3705
4.61k
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3706
277
            continue;
3707
3708
4.61k
        tmppkey = (pkey != NULL) ? pkey
3709
4.61k
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
3710
3711
4.61k
        if (lu->sig == EVP_PKEY_EC) {
3712
4.34k
            if (curve == -1)
3713
2.22k
                curve = ssl_get_EC_curve_nid(tmppkey);
3714
4.34k
            if (lu->curve != NID_undef && curve != lu->curve)
3715
2.31k
                continue;
3716
4.34k
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3717
            /* validate that key is large enough for the signature algorithm */
3718
272
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
3719
0
                continue;
3720
272
        }
3721
2.30k
        break;
3722
4.61k
    }
3723
3724
2.41k
    if (i == s->shared_sigalgslen)
3725
112
        return NULL;
3726
3727
2.30k
    return lu;
3728
2.41k
}
3729
3730
/*
3731
 * Choose an appropriate signature algorithm based on available certificates
3732
 * Sets chosen certificate and signature algorithm.
3733
 *
3734
 * For servers if we fail to find a required certificate it is a fatal error,
3735
 * an appropriate error code is set and a TLS alert is sent.
3736
 *
3737
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3738
 * a fatal error: we will either try another certificate or not present one
3739
 * to the server. In this case no error is set.
3740
 */
3741
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
3742
13.9k
{
3743
13.9k
    const SIGALG_LOOKUP *lu = NULL;
3744
13.9k
    int sig_idx = -1;
3745
3746
13.9k
    s->s3.tmp.cert = NULL;
3747
13.9k
    s->s3.tmp.sigalg = NULL;
3748
3749
13.9k
    if (SSL_CONNECTION_IS_TLS13(s)) {
3750
1.74k
        lu = find_sig_alg(s, NULL, NULL);
3751
1.74k
        if (lu == NULL) {
3752
83
            if (!fatalerrs)
3753
0
                return 1;
3754
83
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3755
83
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3756
83
            return 0;
3757
83
        }
3758
12.1k
    } else {
3759
        /* If ciphersuite doesn't require a cert nothing to do */
3760
12.1k
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3761
1.14k
            return 1;
3762
11.0k
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3763
15
                return 1;
3764
3765
11.0k
        if (SSL_USE_SIGALGS(s)) {
3766
8.81k
            size_t i;
3767
8.81k
            if (s->s3.tmp.peer_sigalgs != NULL) {
3768
1.69k
                int curve = -1;
3769
1.69k
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3770
3771
                /* For Suite B need to match signature algorithm to curve */
3772
1.69k
                if (tls1_suiteb(s))
3773
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3774
0
                                                 .privatekey);
3775
3776
                /*
3777
                 * Find highest preference signature algorithm matching
3778
                 * cert type
3779
                 */
3780
17.8k
                for (i = 0; i < s->shared_sigalgslen; i++) {
3781
17.3k
                    lu = s->shared_sigalgs[i];
3782
3783
17.3k
                    if (s->server) {
3784
17.3k
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3785
5.21k
                            continue;
3786
17.3k
                    } else {
3787
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
3788
3789
0
                        sig_idx = lu->sig_idx;
3790
0
                        if (cc_idx != sig_idx)
3791
0
                            continue;
3792
0
                    }
3793
                    /* Check that we have a cert, and sig_algs_cert */
3794
12.1k
                    if (!has_usable_cert(s, lu, sig_idx))
3795
10.9k
                        continue;
3796
1.16k
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
3797
                        /* validate that key is large enough for the signature algorithm */
3798
318
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3799
3800
318
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
3801
0
                            continue;
3802
318
                    }
3803
1.16k
                    if (curve == -1 || lu->curve == curve)
3804
1.16k
                        break;
3805
1.16k
                }
3806
1.69k
#ifndef OPENSSL_NO_GOST
3807
                /*
3808
                 * Some Windows-based implementations do not send GOST algorithms indication
3809
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3810
                 * we have to assume GOST support.
3811
                 */
3812
1.69k
                if (i == s->shared_sigalgslen
3813
526
                    && (s->s3.tmp.new_cipher->algorithm_auth
3814
526
                        & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
3815
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3816
0
                    if (!fatalerrs)
3817
0
                      return 1;
3818
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3819
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3820
0
                    return 0;
3821
0
                  } else {
3822
0
                    i = 0;
3823
0
                    sig_idx = lu->sig_idx;
3824
0
                  }
3825
0
                }
3826
1.69k
#endif
3827
1.69k
                if (i == s->shared_sigalgslen) {
3828
526
                    if (!fatalerrs)
3829
0
                        return 1;
3830
526
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3831
526
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3832
526
                    return 0;
3833
526
                }
3834
7.11k
            } else {
3835
                /*
3836
                 * If we have no sigalg use defaults
3837
                 */
3838
7.11k
                const uint16_t *sent_sigs;
3839
7.11k
                size_t sent_sigslen;
3840
3841
7.11k
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3842
0
                    if (!fatalerrs)
3843
0
                        return 1;
3844
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3845
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3846
0
                    return 0;
3847
0
                }
3848
3849
                /* Check signature matches a type we sent */
3850
7.11k
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3851
147k
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3852
147k
                    if (lu->sigalg == *sent_sigs
3853
7.11k
                            && has_usable_cert(s, lu, lu->sig_idx))
3854
7.11k
                        break;
3855
147k
                }
3856
7.11k
                if (i == sent_sigslen) {
3857
0
                    if (!fatalerrs)
3858
0
                        return 1;
3859
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3860
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
3861
0
                    return 0;
3862
0
                }
3863
7.11k
            }
3864
8.81k
        } else {
3865
2.19k
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3866
0
                if (!fatalerrs)
3867
0
                    return 1;
3868
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3869
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3870
0
                return 0;
3871
0
            }
3872
2.19k
        }
3873
11.0k
    }
3874
12.1k
    if (sig_idx == -1)
3875
10.9k
        sig_idx = lu->sig_idx;
3876
12.1k
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3877
12.1k
    s->cert->key = s->s3.tmp.cert;
3878
12.1k
    s->s3.tmp.sigalg = lu;
3879
12.1k
    return 1;
3880
13.9k
}
3881
3882
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3883
0
{
3884
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3885
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3886
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3887
0
        return 0;
3888
0
    }
3889
3890
0
    ctx->ext.max_fragment_len_mode = mode;
3891
0
    return 1;
3892
0
}
3893
3894
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3895
0
{
3896
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
3897
3898
0
    if (sc == NULL
3899
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
3900
0
        return 0;
3901
3902
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3903
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3904
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3905
0
        return 0;
3906
0
    }
3907
3908
0
    sc->ext.max_fragment_len_mode = mode;
3909
0
    return 1;
3910
0
}
3911
3912
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3913
0
{
3914
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
3915
0
        return TLSEXT_max_fragment_length_DISABLED;
3916
0
    return session->ext.max_fragment_len_mode;
3917
0
}
3918
3919
/*
3920
 * Helper functions for HMAC access with legacy support included.
3921
 */
3922
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3923
2.00k
{
3924
2.00k
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3925
2.00k
    EVP_MAC *mac = NULL;
3926
3927
2.00k
    if (ret == NULL)
3928
0
        return NULL;
3929
2.00k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3930
2.00k
    if (ctx->ext.ticket_key_evp_cb == NULL
3931
2.00k
            && ctx->ext.ticket_key_cb != NULL) {
3932
0
        if (!ssl_hmac_old_new(ret))
3933
0
            goto err;
3934
0
        return ret;
3935
0
    }
3936
2.00k
#endif
3937
2.00k
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3938
2.00k
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3939
0
        goto err;
3940
2.00k
    EVP_MAC_free(mac);
3941
2.00k
    return ret;
3942
0
 err:
3943
0
    EVP_MAC_CTX_free(ret->ctx);
3944
0
    EVP_MAC_free(mac);
3945
0
    OPENSSL_free(ret);
3946
0
    return NULL;
3947
2.00k
}
3948
3949
void ssl_hmac_free(SSL_HMAC *ctx)
3950
6.92k
{
3951
6.92k
    if (ctx != NULL) {
3952
2.00k
        EVP_MAC_CTX_free(ctx->ctx);
3953
2.00k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3954
2.00k
        ssl_hmac_old_free(ctx);
3955
2.00k
#endif
3956
2.00k
        OPENSSL_free(ctx);
3957
2.00k
    }
3958
6.92k
}
3959
3960
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3961
0
{
3962
0
    return ctx->ctx;
3963
0
}
3964
3965
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3966
1.44k
{
3967
1.44k
    OSSL_PARAM params[2], *p = params;
3968
3969
1.44k
    if (ctx->ctx != NULL) {
3970
1.44k
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3971
1.44k
        *p = OSSL_PARAM_construct_end();
3972
1.44k
        if (EVP_MAC_init(ctx->ctx, key, len, params))
3973
1.44k
            return 1;
3974
1.44k
    }
3975
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3976
0
    if (ctx->old_ctx != NULL)
3977
0
        return ssl_hmac_old_init(ctx, key, len, md);
3978
0
#endif
3979
0
    return 0;
3980
0
}
3981
3982
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3983
1.28k
{
3984
1.28k
    if (ctx->ctx != NULL)
3985
1.28k
        return EVP_MAC_update(ctx->ctx, data, len);
3986
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3987
0
    if (ctx->old_ctx != NULL)
3988
0
        return ssl_hmac_old_update(ctx, data, len);
3989
0
#endif
3990
0
    return 0;
3991
0
}
3992
3993
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3994
                   size_t max_size)
3995
1.28k
{
3996
1.28k
    if (ctx->ctx != NULL)
3997
1.28k
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
3998
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3999
0
    if (ctx->old_ctx != NULL)
4000
0
        return ssl_hmac_old_final(ctx, md, len);
4001
0
#endif
4002
0
    return 0;
4003
0
}
4004
4005
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4006
1.32k
{
4007
1.32k
    if (ctx->ctx != NULL)
4008
1.32k
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4009
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4010
0
    if (ctx->old_ctx != NULL)
4011
0
        return ssl_hmac_old_size(ctx);
4012
0
#endif
4013
0
    return 0;
4014
0
}
4015
4016
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4017
28.0k
{
4018
28.0k
    char gname[OSSL_MAX_NAME_SIZE];
4019
4020
28.0k
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4021
28.0k
        return OBJ_txt2nid(gname);
4022
4023
0
    return NID_undef;
4024
28.0k
}
4025
4026
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4027
                                     const unsigned char *enckey,
4028
                                     size_t enckeylen)
4029
27.9k
{
4030
27.9k
    if (EVP_PKEY_is_a(pkey, "DH")) {
4031
149
        int bits = EVP_PKEY_get_bits(pkey);
4032
4033
149
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4034
            /* the encoded key must be padded to the length of the p */
4035
13
            return 0;
4036
27.8k
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4037
196
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4038
188
            || enckey[0] != 0x04)
4039
47
            return 0;
4040
196
    }
4041
4042
27.9k
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4043
27.9k
}