Coverage Report

Created: 2025-11-16 06:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl33/crypto/ec/ecp_nistp224.c
Line
Count
Source
1
/*
2
 * Copyright 2010-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
34
 *
35
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
36
 * and Adam Langley's public domain 64-bit C implementation of curve25519
37
 */
38
39
#include <openssl/opensslconf.h>
40
41
#include <stdint.h>
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/******************************************************************************/
56
/*-
57
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
58
 *
59
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
60
 * using 64-bit coefficients called 'limbs',
61
 * and sometimes (for multiplication results) as
62
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
63
 * using 128-bit coefficients called 'widelimbs'.
64
 * A 4-limb representation is an 'felem';
65
 * a 7-widelimb representation is a 'widefelem'.
66
 * Even within felems, bits of adjacent limbs overlap, and we don't always
67
 * reduce the representations: we ensure that inputs to each felem
68
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
69
 * and fit into a 128-bit word without overflow. The coefficients are then
70
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
71
 * We only reduce to the unique minimal representation at the end of the
72
 * computation.
73
 */
74
75
typedef uint64_t limb;
76
typedef uint64_t limb_aX __attribute((__aligned__(1)));
77
typedef uint128_t widelimb;
78
79
typedef limb felem[4];
80
typedef widelimb widefelem[7];
81
82
/*
83
 * Field element represented as a byte array. 28*8 = 224 bits is also the
84
 * group order size for the elliptic curve, and we also use this type for
85
 * scalars for point multiplication.
86
 */
87
typedef u8 felem_bytearray[28];
88
89
static const felem_bytearray nistp224_curve_params[5] = {
90
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
91
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
92
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
93
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
94
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
95
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
96
    {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
97
     0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
98
     0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
99
    {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
100
     0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
101
     0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
102
    {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
103
     0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
104
     0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
105
};
106
107
/*-
108
 * Precomputed multiples of the standard generator
109
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
110
 * (0 for the point at infinity).
111
 * For each field element, slice a_0 is word 0, etc.
112
 *
113
 * The table has 2 * 16 elements, starting with the following:
114
 * index | bits    | point
115
 * ------+---------+------------------------------
116
 *     0 | 0 0 0 0 | 0G
117
 *     1 | 0 0 0 1 | 1G
118
 *     2 | 0 0 1 0 | 2^56G
119
 *     3 | 0 0 1 1 | (2^56 + 1)G
120
 *     4 | 0 1 0 0 | 2^112G
121
 *     5 | 0 1 0 1 | (2^112 + 1)G
122
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
123
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
124
 *     8 | 1 0 0 0 | 2^168G
125
 *     9 | 1 0 0 1 | (2^168 + 1)G
126
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
127
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
128
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
129
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
130
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
131
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
132
 * followed by a copy of this with each element multiplied by 2^28.
133
 *
134
 * The reason for this is so that we can clock bits into four different
135
 * locations when doing simple scalar multiplies against the base point,
136
 * and then another four locations using the second 16 elements.
137
 */
138
static const felem gmul[2][16][3] = {
139
{{{0, 0, 0, 0},
140
  {0, 0, 0, 0},
141
  {0, 0, 0, 0}},
142
 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
143
  {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
144
  {1, 0, 0, 0}},
145
 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
146
  {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
147
  {1, 0, 0, 0}},
148
 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
149
  {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
150
  {1, 0, 0, 0}},
151
 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
152
  {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
153
  {1, 0, 0, 0}},
154
 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
155
  {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
156
  {1, 0, 0, 0}},
157
 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
158
  {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
159
  {1, 0, 0, 0}},
160
 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
161
  {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
162
  {1, 0, 0, 0}},
163
 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
164
  {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
165
  {1, 0, 0, 0}},
166
 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
167
  {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
168
  {1, 0, 0, 0}},
169
 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
170
  {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
171
  {1, 0, 0, 0}},
172
 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
173
  {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
174
  {1, 0, 0, 0}},
175
 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
176
  {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
177
  {1, 0, 0, 0}},
178
 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
179
  {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
180
  {1, 0, 0, 0}},
181
 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
182
  {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
183
  {1, 0, 0, 0}},
184
 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
185
  {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
186
  {1, 0, 0, 0}}},
187
{{{0, 0, 0, 0},
188
  {0, 0, 0, 0},
189
  {0, 0, 0, 0}},
190
 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
191
  {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
192
  {1, 0, 0, 0}},
193
 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
194
  {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
195
  {1, 0, 0, 0}},
196
 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
197
  {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
198
  {1, 0, 0, 0}},
199
 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
200
  {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
201
  {1, 0, 0, 0}},
202
 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
203
  {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
204
  {1, 0, 0, 0}},
205
 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
206
  {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
207
  {1, 0, 0, 0}},
208
 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
209
  {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
210
  {1, 0, 0, 0}},
211
 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
212
  {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
213
  {1, 0, 0, 0}},
214
 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
215
  {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
216
  {1, 0, 0, 0}},
217
 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
218
  {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
219
  {1, 0, 0, 0}},
220
 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
221
  {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
222
  {1, 0, 0, 0}},
223
 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
224
  {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
225
  {1, 0, 0, 0}},
226
 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
227
  {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
228
  {1, 0, 0, 0}},
229
 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
230
  {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
231
  {1, 0, 0, 0}},
232
 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
233
  {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
234
  {1, 0, 0, 0}}}
235
};
236
237
/* Precomputation for the group generator. */
238
struct nistp224_pre_comp_st {
239
    felem g_pre_comp[2][16][3];
240
    CRYPTO_REF_COUNT references;
241
};
242
243
const EC_METHOD *EC_GFp_nistp224_method(void)
244
46.5k
{
245
46.5k
    static const EC_METHOD ret = {
246
46.5k
        EC_FLAGS_DEFAULT_OCT,
247
46.5k
        NID_X9_62_prime_field,
248
46.5k
        ossl_ec_GFp_nistp224_group_init,
249
46.5k
        ossl_ec_GFp_simple_group_finish,
250
46.5k
        ossl_ec_GFp_simple_group_clear_finish,
251
46.5k
        ossl_ec_GFp_nist_group_copy,
252
46.5k
        ossl_ec_GFp_nistp224_group_set_curve,
253
46.5k
        ossl_ec_GFp_simple_group_get_curve,
254
46.5k
        ossl_ec_GFp_simple_group_get_degree,
255
46.5k
        ossl_ec_group_simple_order_bits,
256
46.5k
        ossl_ec_GFp_simple_group_check_discriminant,
257
46.5k
        ossl_ec_GFp_simple_point_init,
258
46.5k
        ossl_ec_GFp_simple_point_finish,
259
46.5k
        ossl_ec_GFp_simple_point_clear_finish,
260
46.5k
        ossl_ec_GFp_simple_point_copy,
261
46.5k
        ossl_ec_GFp_simple_point_set_to_infinity,
262
46.5k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
263
46.5k
        ossl_ec_GFp_nistp224_point_get_affine_coordinates,
264
46.5k
        0 /* point_set_compressed_coordinates */ ,
265
46.5k
        0 /* point2oct */ ,
266
46.5k
        0 /* oct2point */ ,
267
46.5k
        ossl_ec_GFp_simple_add,
268
46.5k
        ossl_ec_GFp_simple_dbl,
269
46.5k
        ossl_ec_GFp_simple_invert,
270
46.5k
        ossl_ec_GFp_simple_is_at_infinity,
271
46.5k
        ossl_ec_GFp_simple_is_on_curve,
272
46.5k
        ossl_ec_GFp_simple_cmp,
273
46.5k
        ossl_ec_GFp_simple_make_affine,
274
46.5k
        ossl_ec_GFp_simple_points_make_affine,
275
46.5k
        ossl_ec_GFp_nistp224_points_mul,
276
46.5k
        ossl_ec_GFp_nistp224_precompute_mult,
277
46.5k
        ossl_ec_GFp_nistp224_have_precompute_mult,
278
46.5k
        ossl_ec_GFp_nist_field_mul,
279
46.5k
        ossl_ec_GFp_nist_field_sqr,
280
46.5k
        0 /* field_div */ ,
281
46.5k
        ossl_ec_GFp_simple_field_inv,
282
46.5k
        0 /* field_encode */ ,
283
46.5k
        0 /* field_decode */ ,
284
46.5k
        0,                      /* field_set_to_one */
285
46.5k
        ossl_ec_key_simple_priv2oct,
286
46.5k
        ossl_ec_key_simple_oct2priv,
287
46.5k
        0, /* set private */
288
46.5k
        ossl_ec_key_simple_generate_key,
289
46.5k
        ossl_ec_key_simple_check_key,
290
46.5k
        ossl_ec_key_simple_generate_public_key,
291
46.5k
        0, /* keycopy */
292
46.5k
        0, /* keyfinish */
293
46.5k
        ossl_ecdh_simple_compute_key,
294
46.5k
        ossl_ecdsa_simple_sign_setup,
295
46.5k
        ossl_ecdsa_simple_sign_sig,
296
46.5k
        ossl_ecdsa_simple_verify_sig,
297
46.5k
        0, /* field_inverse_mod_ord */
298
46.5k
        0, /* blind_coordinates */
299
46.5k
        0, /* ladder_pre */
300
46.5k
        0, /* ladder_step */
301
46.5k
        0  /* ladder_post */
302
46.5k
    };
303
304
46.5k
    return &ret;
305
46.5k
}
306
307
/*
308
 * Helper functions to convert field elements to/from internal representation
309
 */
310
static void bin28_to_felem(felem out, const u8 in[28])
311
16.8k
{
312
16.8k
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
313
16.8k
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
314
16.8k
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
315
16.8k
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
316
16.8k
}
317
318
static void felem_to_bin28(u8 out[28], const felem in)
319
25.7k
{
320
25.7k
    unsigned i;
321
205k
    for (i = 0; i < 7; ++i) {
322
180k
        out[i] = in[0] >> (8 * i);
323
180k
        out[i + 7] = in[1] >> (8 * i);
324
180k
        out[i + 14] = in[2] >> (8 * i);
325
180k
        out[i + 21] = in[3] >> (8 * i);
326
180k
    }
327
25.7k
}
328
329
/* From OpenSSL BIGNUM to internal representation */
330
static int BN_to_felem(felem out, const BIGNUM *bn)
331
16.8k
{
332
16.8k
    felem_bytearray b_out;
333
16.8k
    int num_bytes;
334
335
16.8k
    if (BN_is_negative(bn)) {
336
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
337
0
        return 0;
338
0
    }
339
16.8k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
340
16.8k
    if (num_bytes < 0) {
341
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
342
0
        return 0;
343
0
    }
344
16.8k
    bin28_to_felem(out, b_out);
345
16.8k
    return 1;
346
16.8k
}
347
348
/* From internal representation to OpenSSL BIGNUM */
349
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
350
25.7k
{
351
25.7k
    felem_bytearray b_out;
352
25.7k
    felem_to_bin28(b_out, in);
353
25.7k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
354
25.7k
}
355
356
/******************************************************************************/
357
/*-
358
 *                              FIELD OPERATIONS
359
 *
360
 * Field operations, using the internal representation of field elements.
361
 * NB! These operations are specific to our point multiplication and cannot be
362
 * expected to be correct in general - e.g., multiplication with a large scalar
363
 * will cause an overflow.
364
 *
365
 */
366
367
static void felem_one(felem out)
368
0
{
369
0
    out[0] = 1;
370
0
    out[1] = 0;
371
0
    out[2] = 0;
372
0
    out[3] = 0;
373
0
}
374
375
static void felem_assign(felem out, const felem in)
376
1.80M
{
377
1.80M
    out[0] = in[0];
378
1.80M
    out[1] = in[1];
379
1.80M
    out[2] = in[2];
380
1.80M
    out[3] = in[3];
381
1.80M
}
382
383
/* Sum two field elements: out += in */
384
static void felem_sum(felem out, const felem in)
385
492k
{
386
492k
    out[0] += in[0];
387
492k
    out[1] += in[1];
388
492k
    out[2] += in[2];
389
492k
    out[3] += in[3];
390
492k
}
391
392
/* Subtract field elements: out -= in */
393
/* Assumes in[i] < 2^57 */
394
static void felem_diff(felem out, const felem in)
395
479k
{
396
479k
    static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
397
479k
    static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
398
479k
    static const limb two58m42m2 = (((limb) 1) << 58) -
399
479k
        (((limb) 1) << 42) - (((limb) 1) << 2);
400
401
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
402
479k
    out[0] += two58p2;
403
479k
    out[1] += two58m42m2;
404
479k
    out[2] += two58m2;
405
479k
    out[3] += two58m2;
406
407
479k
    out[0] -= in[0];
408
479k
    out[1] -= in[1];
409
479k
    out[2] -= in[2];
410
479k
    out[3] -= in[3];
411
479k
}
412
413
/* Subtract in unreduced 128-bit mode: out -= in */
414
/* Assumes in[i] < 2^119 */
415
static void widefelem_diff(widefelem out, const widefelem in)
416
315k
{
417
315k
    static const widelimb two120 = ((widelimb) 1) << 120;
418
315k
    static const widelimb two120m64 = (((widelimb) 1) << 120) -
419
315k
        (((widelimb) 1) << 64);
420
315k
    static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
421
315k
        (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
422
423
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
424
315k
    out[0] += two120;
425
315k
    out[1] += two120m64;
426
315k
    out[2] += two120m64;
427
315k
    out[3] += two120;
428
315k
    out[4] += two120m104m64;
429
315k
    out[5] += two120m64;
430
315k
    out[6] += two120m64;
431
432
315k
    out[0] -= in[0];
433
315k
    out[1] -= in[1];
434
315k
    out[2] -= in[2];
435
315k
    out[3] -= in[3];
436
315k
    out[4] -= in[4];
437
315k
    out[5] -= in[5];
438
315k
    out[6] -= in[6];
439
315k
}
440
441
/* Subtract in mixed mode: out128 -= in64 */
442
/* in[i] < 2^63 */
443
static void felem_diff_128_64(widefelem out, const felem in)
444
953k
{
445
953k
    static const widelimb two64p8 = (((widelimb) 1) << 64) +
446
953k
        (((widelimb) 1) << 8);
447
953k
    static const widelimb two64m8 = (((widelimb) 1) << 64) -
448
953k
        (((widelimb) 1) << 8);
449
953k
    static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
450
953k
        (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
451
452
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
453
953k
    out[0] += two64p8;
454
953k
    out[1] += two64m48m8;
455
953k
    out[2] += two64m8;
456
953k
    out[3] += two64m8;
457
458
953k
    out[0] -= in[0];
459
953k
    out[1] -= in[1];
460
953k
    out[2] -= in[2];
461
953k
    out[3] -= in[3];
462
953k
}
463
464
/*
465
 * Multiply a field element by a scalar: out = out * scalar The scalars we
466
 * actually use are small, so results fit without overflow
467
 */
468
static void felem_scalar(felem out, const limb scalar)
469
644k
{
470
644k
    out[0] *= scalar;
471
644k
    out[1] *= scalar;
472
644k
    out[2] *= scalar;
473
644k
    out[3] *= scalar;
474
644k
}
475
476
/*
477
 * Multiply an unreduced field element by a scalar: out = out * scalar The
478
 * scalars we actually use are small, so results fit without overflow
479
 */
480
static void widefelem_scalar(widefelem out, const widelimb scalar)
481
164k
{
482
164k
    out[0] *= scalar;
483
164k
    out[1] *= scalar;
484
164k
    out[2] *= scalar;
485
164k
    out[3] *= scalar;
486
164k
    out[4] *= scalar;
487
164k
    out[5] *= scalar;
488
164k
    out[6] *= scalar;
489
164k
}
490
491
/* Square a field element: out = in^2 */
492
static void felem_square(widefelem out, const felem in)
493
2.45M
{
494
2.45M
    limb tmp0, tmp1, tmp2;
495
2.45M
    tmp0 = 2 * in[0];
496
2.45M
    tmp1 = 2 * in[1];
497
2.45M
    tmp2 = 2 * in[2];
498
2.45M
    out[0] = ((widelimb) in[0]) * in[0];
499
2.45M
    out[1] = ((widelimb) in[0]) * tmp1;
500
2.45M
    out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
501
2.45M
    out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
502
2.45M
    out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
503
2.45M
    out[5] = ((widelimb) in[3]) * tmp2;
504
2.45M
    out[6] = ((widelimb) in[3]) * in[3];
505
2.45M
}
506
507
/* Multiply two field elements: out = in1 * in2 */
508
static void felem_mul(widefelem out, const felem in1, const felem in2)
509
1.86M
{
510
1.86M
    out[0] = ((widelimb) in1[0]) * in2[0];
511
1.86M
    out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
512
1.86M
    out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
513
1.86M
             ((widelimb) in1[2]) * in2[0];
514
1.86M
    out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
515
1.86M
             ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
516
1.86M
    out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
517
1.86M
             ((widelimb) in1[3]) * in2[1];
518
1.86M
    out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
519
1.86M
    out[6] = ((widelimb) in1[3]) * in2[3];
520
1.86M
}
521
522
/*-
523
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
524
 * Requires in[i] < 2^126,
525
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
526
static void felem_reduce(felem out, const widefelem in)
527
4.02M
{
528
4.02M
    static const widelimb two127p15 = (((widelimb) 1) << 127) +
529
4.02M
        (((widelimb) 1) << 15);
530
4.02M
    static const widelimb two127m71 = (((widelimb) 1) << 127) -
531
4.02M
        (((widelimb) 1) << 71);
532
4.02M
    static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
533
4.02M
        (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
534
4.02M
    widelimb output[5];
535
536
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
537
4.02M
    output[0] = in[0] + two127p15;
538
4.02M
    output[1] = in[1] + two127m71m55;
539
4.02M
    output[2] = in[2] + two127m71;
540
4.02M
    output[3] = in[3];
541
4.02M
    output[4] = in[4];
542
543
    /* Eliminate in[4], in[5], in[6] */
544
4.02M
    output[4] += in[6] >> 16;
545
4.02M
    output[3] += (in[6] & 0xffff) << 40;
546
4.02M
    output[2] -= in[6];
547
548
4.02M
    output[3] += in[5] >> 16;
549
4.02M
    output[2] += (in[5] & 0xffff) << 40;
550
4.02M
    output[1] -= in[5];
551
552
4.02M
    output[2] += output[4] >> 16;
553
4.02M
    output[1] += (output[4] & 0xffff) << 40;
554
4.02M
    output[0] -= output[4];
555
556
    /* Carry 2 -> 3 -> 4 */
557
4.02M
    output[3] += output[2] >> 56;
558
4.02M
    output[2] &= 0x00ffffffffffffff;
559
560
4.02M
    output[4] = output[3] >> 56;
561
4.02M
    output[3] &= 0x00ffffffffffffff;
562
563
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
564
565
    /* Eliminate output[4] */
566
4.02M
    output[2] += output[4] >> 16;
567
    /* output[2] < 2^56 + 2^56 = 2^57 */
568
4.02M
    output[1] += (output[4] & 0xffff) << 40;
569
4.02M
    output[0] -= output[4];
570
571
    /* Carry 0 -> 1 -> 2 -> 3 */
572
4.02M
    output[1] += output[0] >> 56;
573
4.02M
    out[0] = output[0] & 0x00ffffffffffffff;
574
575
4.02M
    output[2] += output[1] >> 56;
576
    /* output[2] < 2^57 + 2^72 */
577
4.02M
    out[1] = output[1] & 0x00ffffffffffffff;
578
4.02M
    output[3] += output[2] >> 56;
579
    /* output[3] <= 2^56 + 2^16 */
580
4.02M
    out[2] = output[2] & 0x00ffffffffffffff;
581
582
    /*-
583
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
584
     * out[3] <= 2^56 + 2^16 (due to final carry),
585
     * so out < 2*p
586
     */
587
4.02M
    out[3] = output[3];
588
4.02M
}
589
590
static void felem_square_reduce(felem out, const felem in)
591
0
{
592
0
    widefelem tmp;
593
0
    felem_square(tmp, in);
594
0
    felem_reduce(out, tmp);
595
0
}
596
597
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
598
0
{
599
0
    widefelem tmp;
600
0
    felem_mul(tmp, in1, in2);
601
0
    felem_reduce(out, tmp);
602
0
}
603
604
/*
605
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
606
 * call felem_reduce first)
607
 */
608
static void felem_contract(felem out, const felem in)
609
18.7k
{
610
18.7k
    static const int64_t two56 = ((limb) 1) << 56;
611
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
612
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
613
18.7k
    int64_t tmp[4], a;
614
18.7k
    tmp[0] = in[0];
615
18.7k
    tmp[1] = in[1];
616
18.7k
    tmp[2] = in[2];
617
18.7k
    tmp[3] = in[3];
618
    /* Case 1: a = 1 iff in >= 2^224 */
619
18.7k
    a = (in[3] >> 56);
620
18.7k
    tmp[0] -= a;
621
18.7k
    tmp[1] += a << 40;
622
18.7k
    tmp[3] &= 0x00ffffffffffffff;
623
    /*
624
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
625
     * and the lower part is non-zero
626
     */
627
18.7k
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
628
18.7k
        (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
629
18.7k
    a &= 0x00ffffffffffffff;
630
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
631
18.7k
    a = (a - 1) >> 63;
632
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
633
18.7k
    tmp[3] &= a ^ 0xffffffffffffffff;
634
18.7k
    tmp[2] &= a ^ 0xffffffffffffffff;
635
18.7k
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
636
18.7k
    tmp[0] -= 1 & a;
637
638
    /*
639
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
640
     * non-zero, so we only need one step
641
     */
642
18.7k
    a = tmp[0] >> 63;
643
18.7k
    tmp[0] += two56 & a;
644
18.7k
    tmp[1] -= 1 & a;
645
646
    /* carry 1 -> 2 -> 3 */
647
18.7k
    tmp[2] += tmp[1] >> 56;
648
18.7k
    tmp[1] &= 0x00ffffffffffffff;
649
650
18.7k
    tmp[3] += tmp[2] >> 56;
651
18.7k
    tmp[2] &= 0x00ffffffffffffff;
652
653
    /* Now 0 <= out < p */
654
18.7k
    out[0] = tmp[0];
655
18.7k
    out[1] = tmp[1];
656
18.7k
    out[2] = tmp[2];
657
18.7k
    out[3] = tmp[3];
658
18.7k
}
659
660
/*
661
 * Get negative value: out = -in
662
 * Requires in[i] < 2^63,
663
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
664
 */
665
static void felem_neg(felem out, const felem in)
666
19.9k
{
667
19.9k
    widefelem tmp;
668
669
19.9k
    memset(tmp, 0, sizeof(tmp));
670
19.9k
    felem_diff_128_64(tmp, in);
671
19.9k
    felem_reduce(out, tmp);
672
19.9k
}
673
674
/*
675
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
676
 * elements are reduced to in < 2^225, so we only need to check three cases:
677
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
678
 */
679
static limb felem_is_zero(const felem in)
680
604k
{
681
604k
    limb zero, two224m96p1, two225m97p2;
682
683
604k
    zero = in[0] | in[1] | in[2] | in[3];
684
604k
    zero = (((int64_t) (zero) - 1) >> 63) & 1;
685
604k
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
686
604k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
687
604k
    two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
688
604k
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
689
604k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
690
604k
    two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
691
604k
    return (zero | two224m96p1 | two225m97p2);
692
604k
}
693
694
static int felem_is_zero_int(const void *in)
695
0
{
696
0
    return (int)(felem_is_zero(in) & ((limb) 1));
697
0
}
698
699
/* Invert a field element */
700
/* Computation chain copied from djb's code */
701
static void felem_inv(felem out, const felem in)
702
5.18k
{
703
5.18k
    felem ftmp, ftmp2, ftmp3, ftmp4;
704
5.18k
    widefelem tmp;
705
5.18k
    unsigned i;
706
707
5.18k
    felem_square(tmp, in);
708
5.18k
    felem_reduce(ftmp, tmp);    /* 2 */
709
5.18k
    felem_mul(tmp, in, ftmp);
710
5.18k
    felem_reduce(ftmp, tmp);    /* 2^2 - 1 */
711
5.18k
    felem_square(tmp, ftmp);
712
5.18k
    felem_reduce(ftmp, tmp);    /* 2^3 - 2 */
713
5.18k
    felem_mul(tmp, in, ftmp);
714
5.18k
    felem_reduce(ftmp, tmp);    /* 2^3 - 1 */
715
5.18k
    felem_square(tmp, ftmp);
716
5.18k
    felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */
717
5.18k
    felem_square(tmp, ftmp2);
718
5.18k
    felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */
719
5.18k
    felem_square(tmp, ftmp2);
720
5.18k
    felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */
721
5.18k
    felem_mul(tmp, ftmp2, ftmp);
722
5.18k
    felem_reduce(ftmp, tmp);    /* 2^6 - 1 */
723
5.18k
    felem_square(tmp, ftmp);
724
5.18k
    felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */
725
31.1k
    for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */
726
25.9k
        felem_square(tmp, ftmp2);
727
25.9k
        felem_reduce(ftmp2, tmp);
728
25.9k
    }
729
5.18k
    felem_mul(tmp, ftmp2, ftmp);
730
5.18k
    felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */
731
5.18k
    felem_square(tmp, ftmp2);
732
5.18k
    felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */
733
62.2k
    for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */
734
57.0k
        felem_square(tmp, ftmp3);
735
57.0k
        felem_reduce(ftmp3, tmp);
736
57.0k
    }
737
5.18k
    felem_mul(tmp, ftmp3, ftmp2);
738
5.18k
    felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */
739
5.18k
    felem_square(tmp, ftmp2);
740
5.18k
    felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */
741
124k
    for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */
742
119k
        felem_square(tmp, ftmp3);
743
119k
        felem_reduce(ftmp3, tmp);
744
119k
    }
745
5.18k
    felem_mul(tmp, ftmp3, ftmp2);
746
5.18k
    felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */
747
5.18k
    felem_square(tmp, ftmp3);
748
5.18k
    felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */
749
248k
    for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */
750
243k
        felem_square(tmp, ftmp4);
751
243k
        felem_reduce(ftmp4, tmp);
752
243k
    }
753
5.18k
    felem_mul(tmp, ftmp3, ftmp4);
754
5.18k
    felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */
755
5.18k
    felem_square(tmp, ftmp3);
756
5.18k
    felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */
757
124k
    for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */
758
119k
        felem_square(tmp, ftmp4);
759
119k
        felem_reduce(ftmp4, tmp);
760
119k
    }
761
5.18k
    felem_mul(tmp, ftmp2, ftmp4);
762
5.18k
    felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */
763
36.3k
    for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */
764
31.1k
        felem_square(tmp, ftmp2);
765
31.1k
        felem_reduce(ftmp2, tmp);
766
31.1k
    }
767
5.18k
    felem_mul(tmp, ftmp2, ftmp);
768
5.18k
    felem_reduce(ftmp, tmp);    /* 2^126 - 1 */
769
5.18k
    felem_square(tmp, ftmp);
770
5.18k
    felem_reduce(ftmp, tmp);    /* 2^127 - 2 */
771
5.18k
    felem_mul(tmp, ftmp, in);
772
5.18k
    felem_reduce(ftmp, tmp);    /* 2^127 - 1 */
773
508k
    for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */
774
503k
        felem_square(tmp, ftmp);
775
503k
        felem_reduce(ftmp, tmp);
776
503k
    }
777
5.18k
    felem_mul(tmp, ftmp, ftmp3);
778
5.18k
    felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */
779
5.18k
}
780
781
/*
782
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
783
 * out to itself.
784
 */
785
static void copy_conditional(felem out, const felem in, limb icopy)
786
927k
{
787
927k
    unsigned i;
788
    /*
789
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
790
     */
791
927k
    const limb copy = -icopy;
792
4.63M
    for (i = 0; i < 4; ++i) {
793
3.70M
        const limb tmp = copy & (in[i] ^ out[i]);
794
3.70M
        out[i] ^= tmp;
795
3.70M
    }
796
927k
}
797
798
/******************************************************************************/
799
/*-
800
 *                       ELLIPTIC CURVE POINT OPERATIONS
801
 *
802
 * Points are represented in Jacobian projective coordinates:
803
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
804
 * or to the point at infinity if Z == 0.
805
 *
806
 */
807
808
/*-
809
 * Double an elliptic curve point:
810
 * (X', Y', Z') = 2 * (X, Y, Z), where
811
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
812
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
813
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
814
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
815
 * while x_out == y_in is not (maybe this works, but it's not tested).
816
 */
817
static void
818
point_double(felem x_out, felem y_out, felem z_out,
819
             const felem x_in, const felem y_in, const felem z_in)
820
164k
{
821
164k
    widefelem tmp, tmp2;
822
164k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
823
824
164k
    felem_assign(ftmp, x_in);
825
164k
    felem_assign(ftmp2, x_in);
826
827
    /* delta = z^2 */
828
164k
    felem_square(tmp, z_in);
829
164k
    felem_reduce(delta, tmp);
830
831
    /* gamma = y^2 */
832
164k
    felem_square(tmp, y_in);
833
164k
    felem_reduce(gamma, tmp);
834
835
    /* beta = x*gamma */
836
164k
    felem_mul(tmp, x_in, gamma);
837
164k
    felem_reduce(beta, tmp);
838
839
    /* alpha = 3*(x-delta)*(x+delta) */
840
164k
    felem_diff(ftmp, delta);
841
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
842
164k
    felem_sum(ftmp2, delta);
843
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
844
164k
    felem_scalar(ftmp2, 3);
845
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
846
164k
    felem_mul(tmp, ftmp, ftmp2);
847
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
848
164k
    felem_reduce(alpha, tmp);
849
850
    /* x' = alpha^2 - 8*beta */
851
164k
    felem_square(tmp, alpha);
852
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
853
164k
    felem_assign(ftmp, beta);
854
164k
    felem_scalar(ftmp, 8);
855
    /* ftmp[i] < 8 * 2^57 = 2^60 */
856
164k
    felem_diff_128_64(tmp, ftmp);
857
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
858
164k
    felem_reduce(x_out, tmp);
859
860
    /* z' = (y + z)^2 - gamma - delta */
861
164k
    felem_sum(delta, gamma);
862
    /* delta[i] < 2^57 + 2^57 = 2^58 */
863
164k
    felem_assign(ftmp, y_in);
864
164k
    felem_sum(ftmp, z_in);
865
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
866
164k
    felem_square(tmp, ftmp);
867
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
868
164k
    felem_diff_128_64(tmp, delta);
869
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
870
164k
    felem_reduce(z_out, tmp);
871
872
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
873
164k
    felem_scalar(beta, 4);
874
    /* beta[i] < 4 * 2^57 = 2^59 */
875
164k
    felem_diff(beta, x_out);
876
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
877
164k
    felem_mul(tmp, alpha, beta);
878
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
879
164k
    felem_square(tmp2, gamma);
880
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
881
164k
    widefelem_scalar(tmp2, 8);
882
    /* tmp2[i] < 8 * 2^116 = 2^119 */
883
164k
    widefelem_diff(tmp, tmp2);
884
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
885
164k
    felem_reduce(y_out, tmp);
886
164k
}
887
888
/*-
889
 * Add two elliptic curve points:
890
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
891
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
892
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
893
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
894
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
895
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
896
 *
897
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
898
 */
899
900
/*
901
 * This function is not entirely constant-time: it includes a branch for
902
 * checking whether the two input points are equal, (while not equal to the
903
 * point at infinity). This case never happens during single point
904
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
905
 */
906
static void point_add(felem x3, felem y3, felem z3,
907
                      const felem x1, const felem y1, const felem z1,
908
                      const int mixed, const felem x2, const felem y2,
909
                      const felem z2)
910
151k
{
911
151k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
912
151k
    widefelem tmp, tmp2;
913
151k
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
914
151k
    limb points_equal;
915
916
151k
    if (!mixed) {
917
        /* ftmp2 = z2^2 */
918
22.6k
        felem_square(tmp, z2);
919
22.6k
        felem_reduce(ftmp2, tmp);
920
921
        /* ftmp4 = z2^3 */
922
22.6k
        felem_mul(tmp, ftmp2, z2);
923
22.6k
        felem_reduce(ftmp4, tmp);
924
925
        /* ftmp4 = z2^3*y1 */
926
22.6k
        felem_mul(tmp2, ftmp4, y1);
927
22.6k
        felem_reduce(ftmp4, tmp2);
928
929
        /* ftmp2 = z2^2*x1 */
930
22.6k
        felem_mul(tmp2, ftmp2, x1);
931
22.6k
        felem_reduce(ftmp2, tmp2);
932
128k
    } else {
933
        /*
934
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
935
         */
936
937
        /* ftmp4 = z2^3*y1 */
938
128k
        felem_assign(ftmp4, y1);
939
940
        /* ftmp2 = z2^2*x1 */
941
128k
        felem_assign(ftmp2, x1);
942
128k
    }
943
944
    /* ftmp = z1^2 */
945
151k
    felem_square(tmp, z1);
946
151k
    felem_reduce(ftmp, tmp);
947
948
    /* ftmp3 = z1^3 */
949
151k
    felem_mul(tmp, ftmp, z1);
950
151k
    felem_reduce(ftmp3, tmp);
951
952
    /* tmp = z1^3*y2 */
953
151k
    felem_mul(tmp, ftmp3, y2);
954
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
955
956
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
957
151k
    felem_diff_128_64(tmp, ftmp4);
958
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
959
151k
    felem_reduce(ftmp3, tmp);
960
961
    /* tmp = z1^2*x2 */
962
151k
    felem_mul(tmp, ftmp, x2);
963
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
964
965
    /* ftmp = z1^2*x2 - z2^2*x1 */
966
151k
    felem_diff_128_64(tmp, ftmp2);
967
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
968
151k
    felem_reduce(ftmp, tmp);
969
970
    /*
971
     * The formulae are incorrect if the points are equal, in affine coordinates
972
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
973
     * happens.
974
     *
975
     * We use bitwise operations to avoid potential side-channels introduced by
976
     * the short-circuiting behaviour of boolean operators.
977
     */
978
151k
    x_equal = felem_is_zero(ftmp);
979
151k
    y_equal = felem_is_zero(ftmp3);
980
    /*
981
     * The special case of either point being the point at infinity (z1 and/or
982
     * z2 are zero), is handled separately later on in this function, so we
983
     * avoid jumping to point_double here in those special cases.
984
     */
985
151k
    z1_is_zero = felem_is_zero(z1);
986
151k
    z2_is_zero = felem_is_zero(z2);
987
988
    /*
989
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
990
     * specific implementation `felem_is_zero()` returns truth as `0x1`
991
     * (rather than `0xff..ff`).
992
     *
993
     * This implies that `~true` in this implementation becomes
994
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
995
     * the if expression, we mask out only the last bit in the next
996
     * line.
997
     */
998
151k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
999
1000
151k
    if (points_equal) {
1001
        /*
1002
         * This is obviously not constant-time but, as mentioned before, this
1003
         * case never happens during single point multiplication, so there is no
1004
         * timing leak for ECDH or ECDSA signing.
1005
         */
1006
0
        point_double(x3, y3, z3, x1, y1, z1);
1007
0
        return;
1008
0
    }
1009
1010
    /* ftmp5 = z1*z2 */
1011
151k
    if (!mixed) {
1012
22.6k
        felem_mul(tmp, z1, z2);
1013
22.6k
        felem_reduce(ftmp5, tmp);
1014
128k
    } else {
1015
        /* special case z2 = 0 is handled later */
1016
128k
        felem_assign(ftmp5, z1);
1017
128k
    }
1018
1019
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1020
151k
    felem_mul(tmp, ftmp, ftmp5);
1021
151k
    felem_reduce(z_out, tmp);
1022
1023
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1024
151k
    felem_assign(ftmp5, ftmp);
1025
151k
    felem_square(tmp, ftmp);
1026
151k
    felem_reduce(ftmp, tmp);
1027
1028
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1029
151k
    felem_mul(tmp, ftmp, ftmp5);
1030
151k
    felem_reduce(ftmp5, tmp);
1031
1032
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1033
151k
    felem_mul(tmp, ftmp2, ftmp);
1034
151k
    felem_reduce(ftmp2, tmp);
1035
1036
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1037
151k
    felem_mul(tmp, ftmp4, ftmp5);
1038
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1039
1040
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1041
151k
    felem_square(tmp2, ftmp3);
1042
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1043
1044
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1045
151k
    felem_diff_128_64(tmp2, ftmp5);
1046
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1047
1048
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1049
151k
    felem_assign(ftmp5, ftmp2);
1050
151k
    felem_scalar(ftmp5, 2);
1051
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1052
1053
    /*-
1054
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1055
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1056
     */
1057
151k
    felem_diff_128_64(tmp2, ftmp5);
1058
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1059
151k
    felem_reduce(x_out, tmp2);
1060
1061
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1062
151k
    felem_diff(ftmp2, x_out);
1063
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1064
1065
    /*
1066
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1067
     */
1068
151k
    felem_mul(tmp2, ftmp3, ftmp2);
1069
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1070
1071
    /*-
1072
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1073
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1074
     */
1075
151k
    widefelem_diff(tmp2, tmp);
1076
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1077
151k
    felem_reduce(y_out, tmp2);
1078
1079
    /*
1080
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1081
     * the point at infinity, so we need to check for this separately
1082
     */
1083
1084
    /*
1085
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1086
     */
1087
151k
    copy_conditional(x_out, x2, z1_is_zero);
1088
151k
    copy_conditional(x_out, x1, z2_is_zero);
1089
151k
    copy_conditional(y_out, y2, z1_is_zero);
1090
151k
    copy_conditional(y_out, y1, z2_is_zero);
1091
151k
    copy_conditional(z_out, z2, z1_is_zero);
1092
151k
    copy_conditional(z_out, z1, z2_is_zero);
1093
151k
    felem_assign(x3, x_out);
1094
151k
    felem_assign(y3, y_out);
1095
151k
    felem_assign(z3, z_out);
1096
151k
}
1097
1098
/*
1099
 * select_point selects the |idx|th point from a precomputation table and
1100
 * copies it to out.
1101
 * The pre_comp array argument should be size of |size| argument
1102
 */
1103
static void select_point(const u64 idx, unsigned int size,
1104
                         const felem pre_comp[][3], felem out[3])
1105
150k
{
1106
150k
    unsigned i, j;
1107
150k
    limb *outlimbs = &out[0][0];
1108
1109
150k
    memset(out, 0, sizeof(*out) * 3);
1110
2.58M
    for (i = 0; i < size; i++) {
1111
2.43M
        const limb *inlimbs = &pre_comp[i][0][0];
1112
2.43M
        u64 mask = i ^ idx;
1113
2.43M
        mask |= mask >> 4;
1114
2.43M
        mask |= mask >> 2;
1115
2.43M
        mask |= mask >> 1;
1116
2.43M
        mask &= 1;
1117
2.43M
        mask--;
1118
31.6M
        for (j = 0; j < 4 * 3; j++)
1119
29.2M
            outlimbs[j] |= inlimbs[j] & mask;
1120
2.43M
    }
1121
150k
}
1122
1123
/* get_bit returns the |i|th bit in |in| */
1124
static char get_bit(const felem_bytearray in, unsigned i)
1125
643k
{
1126
643k
    if (i >= 224)
1127
888
        return 0;
1128
642k
    return (in[i >> 3] >> (i & 7)) & 1;
1129
643k
}
1130
1131
/*
1132
 * Interleaved point multiplication using precomputed point multiples: The
1133
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1134
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1135
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1136
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1137
 */
1138
static void batch_mul(felem x_out, felem y_out, felem z_out,
1139
                      const felem_bytearray scalars[],
1140
                      const unsigned num_points, const u8 *g_scalar,
1141
                      const int mixed, const felem pre_comp[][17][3],
1142
                      const felem g_pre_comp[2][16][3])
1143
2.78k
{
1144
2.78k
    int i, skip;
1145
2.78k
    unsigned num;
1146
2.78k
    unsigned gen_mul = (g_scalar != NULL);
1147
2.78k
    felem nq[3], tmp[4];
1148
2.78k
    u64 bits;
1149
2.78k
    u8 sign, digit;
1150
1151
    /* set nq to the point at infinity */
1152
2.78k
    memset(nq, 0, sizeof(nq));
1153
1154
    /*
1155
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1156
     * of the generator (two in each of the last 28 rounds) and additions of
1157
     * other points multiples (every 5th round).
1158
     */
1159
2.78k
    skip = 1;                   /* save two point operations in the first
1160
                                 * round */
1161
166k
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1162
        /* double */
1163
163k
        if (!skip)
1164
160k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1165
1166
        /* add multiples of the generator */
1167
163k
        if (gen_mul && (i <= 27)) {
1168
            /* first, look 28 bits upwards */
1169
65.4k
            bits = get_bit(g_scalar, i + 196) << 3;
1170
65.4k
            bits |= get_bit(g_scalar, i + 140) << 2;
1171
65.4k
            bits |= get_bit(g_scalar, i + 84) << 1;
1172
65.4k
            bits |= get_bit(g_scalar, i + 28);
1173
            /* select the point to add, in constant time */
1174
65.4k
            select_point(bits, 16, g_pre_comp[1], tmp);
1175
1176
65.4k
            if (!skip) {
1177
                /* value 1 below is argument for "mixed" */
1178
63.0k
                point_add(nq[0], nq[1], nq[2],
1179
63.0k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1180
63.0k
            } else {
1181
2.33k
                memcpy(nq, tmp, 3 * sizeof(felem));
1182
2.33k
                skip = 0;
1183
2.33k
            }
1184
1185
            /* second, look at the current position */
1186
65.4k
            bits = get_bit(g_scalar, i + 168) << 3;
1187
65.4k
            bits |= get_bit(g_scalar, i + 112) << 2;
1188
65.4k
            bits |= get_bit(g_scalar, i + 56) << 1;
1189
65.4k
            bits |= get_bit(g_scalar, i);
1190
            /* select the point to add, in constant time */
1191
65.4k
            select_point(bits, 16, g_pre_comp[0], tmp);
1192
65.4k
            point_add(nq[0], nq[1], nq[2],
1193
65.4k
                      nq[0], nq[1], nq[2],
1194
65.4k
                      1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1195
65.4k
        }
1196
1197
        /* do other additions every 5 doublings */
1198
163k
        if (num_points && (i % 5 == 0)) {
1199
            /* loop over all scalars */
1200
39.9k
            for (num = 0; num < num_points; ++num) {
1201
19.9k
                bits = get_bit(scalars[num], i + 4) << 5;
1202
19.9k
                bits |= get_bit(scalars[num], i + 3) << 4;
1203
19.9k
                bits |= get_bit(scalars[num], i + 2) << 3;
1204
19.9k
                bits |= get_bit(scalars[num], i + 1) << 2;
1205
19.9k
                bits |= get_bit(scalars[num], i) << 1;
1206
19.9k
                bits |= get_bit(scalars[num], i - 1);
1207
19.9k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1208
1209
                /* select the point to add or subtract */
1210
19.9k
                select_point(digit, 17, pre_comp[num], tmp);
1211
19.9k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1212
                                            * point */
1213
19.9k
                copy_conditional(tmp[1], tmp[3], sign);
1214
1215
19.9k
                if (!skip) {
1216
19.5k
                    point_add(nq[0], nq[1], nq[2],
1217
19.5k
                              nq[0], nq[1], nq[2],
1218
19.5k
                              mixed, tmp[0], tmp[1], tmp[2]);
1219
19.5k
                } else {
1220
444
                    memcpy(nq, tmp, 3 * sizeof(felem));
1221
444
                    skip = 0;
1222
444
                }
1223
19.9k
            }
1224
19.9k
        }
1225
163k
    }
1226
2.78k
    felem_assign(x_out, nq[0]);
1227
2.78k
    felem_assign(y_out, nq[1]);
1228
2.78k
    felem_assign(z_out, nq[2]);
1229
2.78k
}
1230
1231
/******************************************************************************/
1232
/*
1233
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1234
 */
1235
1236
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1237
0
{
1238
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1239
1240
0
    if (ret == NULL)
1241
0
        return ret;
1242
1243
1244
0
    if (!CRYPTO_NEW_REF(&ret->references, 1)) {
1245
0
        OPENSSL_free(ret);
1246
0
        return NULL;
1247
0
    }
1248
0
    return ret;
1249
0
}
1250
1251
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1252
0
{
1253
0
    int i;
1254
0
    if (p != NULL)
1255
0
        CRYPTO_UP_REF(&p->references, &i);
1256
0
    return p;
1257
0
}
1258
1259
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1260
0
{
1261
0
    int i;
1262
1263
0
    if (p == NULL)
1264
0
        return;
1265
1266
0
    CRYPTO_DOWN_REF(&p->references, &i);
1267
0
    REF_PRINT_COUNT("EC_nistp224", i, p);
1268
0
    if (i > 0)
1269
0
        return;
1270
0
    REF_ASSERT_ISNT(i < 0);
1271
1272
0
    CRYPTO_FREE_REF(&p->references);
1273
0
    OPENSSL_free(p);
1274
0
}
1275
1276
/******************************************************************************/
1277
/*
1278
 * OPENSSL EC_METHOD FUNCTIONS
1279
 */
1280
1281
int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)
1282
89.5k
{
1283
89.5k
    int ret;
1284
89.5k
    ret = ossl_ec_GFp_simple_group_init(group);
1285
89.5k
    group->a_is_minus3 = 1;
1286
89.5k
    return ret;
1287
89.5k
}
1288
1289
int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1290
                                         const BIGNUM *a, const BIGNUM *b,
1291
                                         BN_CTX *ctx)
1292
46.5k
{
1293
46.5k
    int ret = 0;
1294
46.5k
    BIGNUM *curve_p, *curve_a, *curve_b;
1295
46.5k
#ifndef FIPS_MODULE
1296
46.5k
    BN_CTX *new_ctx = NULL;
1297
1298
46.5k
    if (ctx == NULL)
1299
0
        ctx = new_ctx = BN_CTX_new();
1300
46.5k
#endif
1301
46.5k
    if (ctx == NULL)
1302
0
        return 0;
1303
1304
46.5k
    BN_CTX_start(ctx);
1305
46.5k
    curve_p = BN_CTX_get(ctx);
1306
46.5k
    curve_a = BN_CTX_get(ctx);
1307
46.5k
    curve_b = BN_CTX_get(ctx);
1308
46.5k
    if (curve_b == NULL)
1309
0
        goto err;
1310
46.5k
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1311
46.5k
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1312
46.5k
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1313
46.5k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1314
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1315
0
        goto err;
1316
0
    }
1317
46.5k
    group->field_mod_func = BN_nist_mod_224;
1318
46.5k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1319
46.5k
 err:
1320
46.5k
    BN_CTX_end(ctx);
1321
46.5k
#ifndef FIPS_MODULE
1322
46.5k
    BN_CTX_free(new_ctx);
1323
46.5k
#endif
1324
46.5k
    return ret;
1325
46.5k
}
1326
1327
/*
1328
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1329
 * (X/Z^2, Y/Z^3)
1330
 */
1331
int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1332
                                                      const EC_POINT *point,
1333
                                                      BIGNUM *x, BIGNUM *y,
1334
                                                      BN_CTX *ctx)
1335
5.18k
{
1336
5.18k
    felem z1, z2, x_in, y_in, x_out, y_out;
1337
5.18k
    widefelem tmp;
1338
1339
5.18k
    if (EC_POINT_is_at_infinity(group, point)) {
1340
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1341
0
        return 0;
1342
0
    }
1343
5.18k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1344
5.18k
        (!BN_to_felem(z1, point->Z)))
1345
0
        return 0;
1346
5.18k
    felem_inv(z2, z1);
1347
5.18k
    felem_square(tmp, z2);
1348
5.18k
    felem_reduce(z1, tmp);
1349
5.18k
    felem_mul(tmp, x_in, z1);
1350
5.18k
    felem_reduce(x_in, tmp);
1351
5.18k
    felem_contract(x_out, x_in);
1352
5.18k
    if (x != NULL) {
1353
5.18k
        if (!felem_to_BN(x, x_out)) {
1354
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1355
0
            return 0;
1356
0
        }
1357
5.18k
    }
1358
5.18k
    felem_mul(tmp, z1, z2);
1359
5.18k
    felem_reduce(z1, tmp);
1360
5.18k
    felem_mul(tmp, y_in, z1);
1361
5.18k
    felem_reduce(y_in, tmp);
1362
5.18k
    felem_contract(y_out, y_in);
1363
5.18k
    if (y != NULL) {
1364
5.18k
        if (!felem_to_BN(y, y_out)) {
1365
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1366
0
            return 0;
1367
0
        }
1368
5.18k
    }
1369
5.18k
    return 1;
1370
5.18k
}
1371
1372
static void make_points_affine(size_t num, felem points[ /* num */ ][3],
1373
                               felem tmp_felems[ /* num+1 */ ])
1374
0
{
1375
    /*
1376
     * Runs in constant time, unless an input is the point at infinity (which
1377
     * normally shouldn't happen).
1378
     */
1379
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1380
0
                                                  points,
1381
0
                                                  sizeof(felem),
1382
0
                                                  tmp_felems,
1383
0
                                                  (void (*)(void *))felem_one,
1384
0
                                                  felem_is_zero_int,
1385
0
                                                  (void (*)(void *, const void *))
1386
0
                                                  felem_assign,
1387
0
                                                  (void (*)(void *, const void *))
1388
0
                                                  felem_square_reduce, (void (*)
1389
0
                                                                        (void *,
1390
0
                                                                         const void
1391
0
                                                                         *,
1392
0
                                                                         const void
1393
0
                                                                         *))
1394
0
                                                  felem_mul_reduce,
1395
0
                                                  (void (*)(void *, const void *))
1396
0
                                                  felem_inv,
1397
0
                                                  (void (*)(void *, const void *))
1398
0
                                                  felem_contract);
1399
0
}
1400
1401
/*
1402
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1403
 * values Result is stored in r (r can equal one of the inputs).
1404
 */
1405
int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1406
                                    const BIGNUM *scalar, size_t num,
1407
                                    const EC_POINT *points[],
1408
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1409
2.78k
{
1410
2.78k
    int ret = 0;
1411
2.78k
    int j;
1412
2.78k
    unsigned i;
1413
2.78k
    int mixed = 0;
1414
2.78k
    BIGNUM *x, *y, *z, *tmp_scalar;
1415
2.78k
    felem_bytearray g_secret;
1416
2.78k
    felem_bytearray *secrets = NULL;
1417
2.78k
    felem (*pre_comp)[17][3] = NULL;
1418
2.78k
    felem *tmp_felems = NULL;
1419
2.78k
    int num_bytes;
1420
2.78k
    int have_pre_comp = 0;
1421
2.78k
    size_t num_points = num;
1422
2.78k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1423
2.78k
    NISTP224_PRE_COMP *pre = NULL;
1424
2.78k
    const felem(*g_pre_comp)[16][3] = NULL;
1425
2.78k
    EC_POINT *generator = NULL;
1426
2.78k
    const EC_POINT *p = NULL;
1427
2.78k
    const BIGNUM *p_scalar = NULL;
1428
1429
2.78k
    BN_CTX_start(ctx);
1430
2.78k
    x = BN_CTX_get(ctx);
1431
2.78k
    y = BN_CTX_get(ctx);
1432
2.78k
    z = BN_CTX_get(ctx);
1433
2.78k
    tmp_scalar = BN_CTX_get(ctx);
1434
2.78k
    if (tmp_scalar == NULL)
1435
0
        goto err;
1436
1437
2.78k
    if (scalar != NULL) {
1438
2.33k
        pre = group->pre_comp.nistp224;
1439
2.33k
        if (pre)
1440
            /* we have precomputation, try to use it */
1441
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1442
2.33k
        else
1443
            /* try to use the standard precomputation */
1444
2.33k
            g_pre_comp = &gmul[0];
1445
2.33k
        generator = EC_POINT_new(group);
1446
2.33k
        if (generator == NULL)
1447
0
            goto err;
1448
        /* get the generator from precomputation */
1449
2.33k
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1450
2.33k
            !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1451
2.33k
            !felem_to_BN(z, g_pre_comp[0][1][2])) {
1452
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1453
0
            goto err;
1454
0
        }
1455
2.33k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1456
2.33k
                                                                generator,
1457
2.33k
                                                                x, y, z, ctx))
1458
0
            goto err;
1459
2.33k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1460
            /* precomputation matches generator */
1461
2.33k
            have_pre_comp = 1;
1462
0
        else
1463
            /*
1464
             * we don't have valid precomputation: treat the generator as a
1465
             * random point
1466
             */
1467
0
            num_points = num_points + 1;
1468
2.33k
    }
1469
1470
2.78k
    if (num_points > 0) {
1471
444
        if (num_points >= 3) {
1472
            /*
1473
             * unless we precompute multiples for just one or two points,
1474
             * converting those into affine form is time well spent
1475
             */
1476
0
            mixed = 1;
1477
0
        }
1478
444
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1479
444
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1480
444
        if (mixed)
1481
0
            tmp_felems =
1482
0
                OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1483
444
        if ((secrets == NULL) || (pre_comp == NULL)
1484
444
            || (mixed && (tmp_felems == NULL)))
1485
0
            goto err;
1486
1487
        /*
1488
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1489
         * i.e., they contribute nothing to the linear combination
1490
         */
1491
888
        for (i = 0; i < num_points; ++i) {
1492
444
            if (i == num) {
1493
                /* the generator */
1494
0
                p = EC_GROUP_get0_generator(group);
1495
0
                p_scalar = scalar;
1496
444
            } else {
1497
                /* the i^th point */
1498
444
                p = points[i];
1499
444
                p_scalar = scalars[i];
1500
444
            }
1501
444
            if ((p_scalar != NULL) && (p != NULL)) {
1502
                /* reduce scalar to 0 <= scalar < 2^224 */
1503
444
                if ((BN_num_bits(p_scalar) > 224)
1504
444
                    || (BN_is_negative(p_scalar))) {
1505
                    /*
1506
                     * this is an unusual input, and we don't guarantee
1507
                     * constant-timeness
1508
                     */
1509
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1510
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1511
0
                        goto err;
1512
0
                    }
1513
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1514
0
                                               secrets[i], sizeof(secrets[i]));
1515
444
                } else {
1516
444
                    num_bytes = BN_bn2lebinpad(p_scalar,
1517
444
                                               secrets[i], sizeof(secrets[i]));
1518
444
                }
1519
444
                if (num_bytes < 0) {
1520
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1521
0
                    goto err;
1522
0
                }
1523
                /* precompute multiples */
1524
444
                if ((!BN_to_felem(x_out, p->X)) ||
1525
444
                    (!BN_to_felem(y_out, p->Y)) ||
1526
444
                    (!BN_to_felem(z_out, p->Z)))
1527
0
                    goto err;
1528
444
                felem_assign(pre_comp[i][1][0], x_out);
1529
444
                felem_assign(pre_comp[i][1][1], y_out);
1530
444
                felem_assign(pre_comp[i][1][2], z_out);
1531
7.10k
                for (j = 2; j <= 16; ++j) {
1532
6.66k
                    if (j & 1) {
1533
3.10k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1534
3.10k
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1535
3.10k
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1536
3.10k
                                  pre_comp[i][j - 1][0],
1537
3.10k
                                  pre_comp[i][j - 1][1],
1538
3.10k
                                  pre_comp[i][j - 1][2]);
1539
3.55k
                    } else {
1540
3.55k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1541
3.55k
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1542
3.55k
                                     pre_comp[i][j / 2][1],
1543
3.55k
                                     pre_comp[i][j / 2][2]);
1544
3.55k
                    }
1545
6.66k
                }
1546
444
            }
1547
444
        }
1548
444
        if (mixed)
1549
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1550
444
    }
1551
1552
    /* the scalar for the generator */
1553
2.78k
    if ((scalar != NULL) && (have_pre_comp)) {
1554
2.33k
        memset(g_secret, 0, sizeof(g_secret));
1555
        /* reduce scalar to 0 <= scalar < 2^224 */
1556
2.33k
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1557
            /*
1558
             * this is an unusual input, and we don't guarantee
1559
             * constant-timeness
1560
             */
1561
481
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1562
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1563
0
                goto err;
1564
0
            }
1565
481
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1566
1.85k
        } else {
1567
1.85k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1568
1.85k
        }
1569
        /* do the multiplication with generator precomputation */
1570
2.33k
        batch_mul(x_out, y_out, z_out,
1571
2.33k
                  (const felem_bytearray(*))secrets, num_points,
1572
2.33k
                  g_secret,
1573
2.33k
                  mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1574
2.33k
    } else {
1575
        /* do the multiplication without generator precomputation */
1576
444
        batch_mul(x_out, y_out, z_out,
1577
444
                  (const felem_bytearray(*))secrets, num_points,
1578
444
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1579
444
    }
1580
    /* reduce the output to its unique minimal representation */
1581
2.78k
    felem_contract(x_in, x_out);
1582
2.78k
    felem_contract(y_in, y_out);
1583
2.78k
    felem_contract(z_in, z_out);
1584
2.78k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1585
2.78k
        (!felem_to_BN(z, z_in))) {
1586
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1587
0
        goto err;
1588
0
    }
1589
2.78k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1590
2.78k
                                                             ctx);
1591
1592
2.78k
 err:
1593
2.78k
    BN_CTX_end(ctx);
1594
2.78k
    EC_POINT_free(generator);
1595
2.78k
    OPENSSL_free(secrets);
1596
2.78k
    OPENSSL_free(pre_comp);
1597
2.78k
    OPENSSL_free(tmp_felems);
1598
2.78k
    return ret;
1599
2.78k
}
1600
1601
int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1602
0
{
1603
0
    int ret = 0;
1604
0
    NISTP224_PRE_COMP *pre = NULL;
1605
0
    int i, j;
1606
0
    BIGNUM *x, *y;
1607
0
    EC_POINT *generator = NULL;
1608
0
    felem tmp_felems[32];
1609
0
#ifndef FIPS_MODULE
1610
0
    BN_CTX *new_ctx = NULL;
1611
0
#endif
1612
1613
    /* throw away old precomputation */
1614
0
    EC_pre_comp_free(group);
1615
1616
0
#ifndef FIPS_MODULE
1617
0
    if (ctx == NULL)
1618
0
        ctx = new_ctx = BN_CTX_new();
1619
0
#endif
1620
0
    if (ctx == NULL)
1621
0
        return 0;
1622
1623
0
    BN_CTX_start(ctx);
1624
0
    x = BN_CTX_get(ctx);
1625
0
    y = BN_CTX_get(ctx);
1626
0
    if (y == NULL)
1627
0
        goto err;
1628
    /* get the generator */
1629
0
    if (group->generator == NULL)
1630
0
        goto err;
1631
0
    generator = EC_POINT_new(group);
1632
0
    if (generator == NULL)
1633
0
        goto err;
1634
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1635
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1636
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1637
0
        goto err;
1638
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1639
0
        goto err;
1640
    /*
1641
     * if the generator is the standard one, use built-in precomputation
1642
     */
1643
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1644
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1645
0
        goto done;
1646
0
    }
1647
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1648
0
        (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1649
0
        (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1650
0
        goto err;
1651
    /*
1652
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1653
     * 2^140*G, 2^196*G for the second one
1654
     */
1655
0
    for (i = 1; i <= 8; i <<= 1) {
1656
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1657
0
                     pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1658
0
                     pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1659
0
        for (j = 0; j < 27; ++j) {
1660
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1661
0
                         pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1662
0
                         pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1663
0
        }
1664
0
        if (i == 8)
1665
0
            break;
1666
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1667
0
                     pre->g_pre_comp[0][2 * i][1],
1668
0
                     pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1669
0
                     pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1670
0
        for (j = 0; j < 27; ++j) {
1671
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1672
0
                         pre->g_pre_comp[0][2 * i][1],
1673
0
                         pre->g_pre_comp[0][2 * i][2],
1674
0
                         pre->g_pre_comp[0][2 * i][0],
1675
0
                         pre->g_pre_comp[0][2 * i][1],
1676
0
                         pre->g_pre_comp[0][2 * i][2]);
1677
0
        }
1678
0
    }
1679
0
    for (i = 0; i < 2; i++) {
1680
        /* g_pre_comp[i][0] is the point at infinity */
1681
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1682
        /* the remaining multiples */
1683
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1684
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1685
0
                  pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1686
0
                  pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1687
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1688
0
                  pre->g_pre_comp[i][2][2]);
1689
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1690
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1691
0
                  pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1692
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1693
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1694
0
                  pre->g_pre_comp[i][2][2]);
1695
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1696
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1697
0
                  pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1698
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1699
0
                  0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1700
0
                  pre->g_pre_comp[i][4][2]);
1701
        /*
1702
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1703
         */
1704
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1705
0
                  pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1706
0
                  pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1707
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1708
0
                  pre->g_pre_comp[i][2][2]);
1709
0
        for (j = 1; j < 8; ++j) {
1710
            /* odd multiples: add G resp. 2^28*G */
1711
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1712
0
                      pre->g_pre_comp[i][2 * j + 1][1],
1713
0
                      pre->g_pre_comp[i][2 * j + 1][2],
1714
0
                      pre->g_pre_comp[i][2 * j][0],
1715
0
                      pre->g_pre_comp[i][2 * j][1],
1716
0
                      pre->g_pre_comp[i][2 * j][2], 0,
1717
0
                      pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1718
0
                      pre->g_pre_comp[i][1][2]);
1719
0
        }
1720
0
    }
1721
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1722
1723
0
 done:
1724
0
    SETPRECOMP(group, nistp224, pre);
1725
0
    pre = NULL;
1726
0
    ret = 1;
1727
0
 err:
1728
0
    BN_CTX_end(ctx);
1729
0
    EC_POINT_free(generator);
1730
0
#ifndef FIPS_MODULE
1731
0
    BN_CTX_free(new_ctx);
1732
0
#endif
1733
0
    EC_nistp224_pre_comp_free(pre);
1734
0
    return ret;
1735
0
}
1736
1737
int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1738
0
{
1739
    return HAVEPRECOMP(group, nistp224);
1740
0
}