Coverage Report

Created: 2025-11-16 06:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl34/ssl/t1_lib.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <openssl/objects.h>
13
#include <openssl/evp.h>
14
#include <openssl/hmac.h>
15
#include <openssl/core_names.h>
16
#include <openssl/ocsp.h>
17
#include <openssl/conf.h>
18
#include <openssl/x509v3.h>
19
#include <openssl/dh.h>
20
#include <openssl/bn.h>
21
#include <openssl/provider.h>
22
#include <openssl/param_build.h>
23
#include "internal/nelem.h"
24
#include "internal/sizes.h"
25
#include "internal/tlsgroups.h"
26
#include "ssl_local.h"
27
#include "quic/quic_local.h"
28
#include <openssl/ct.h>
29
30
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
31
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
32
33
SSL3_ENC_METHOD const TLSv1_enc_data = {
34
    tls1_setup_key_block,
35
    tls1_generate_master_secret,
36
    tls1_change_cipher_state,
37
    tls1_final_finish_mac,
38
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40
    tls1_alert_code,
41
    tls1_export_keying_material,
42
    0,
43
    ssl3_set_handshake_header,
44
    tls_close_construct_packet,
45
    ssl3_handshake_write
46
};
47
48
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49
    tls1_setup_key_block,
50
    tls1_generate_master_secret,
51
    tls1_change_cipher_state,
52
    tls1_final_finish_mac,
53
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
54
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
55
    tls1_alert_code,
56
    tls1_export_keying_material,
57
    0,
58
    ssl3_set_handshake_header,
59
    tls_close_construct_packet,
60
    ssl3_handshake_write
61
};
62
63
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
64
    tls1_setup_key_block,
65
    tls1_generate_master_secret,
66
    tls1_change_cipher_state,
67
    tls1_final_finish_mac,
68
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
69
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
70
    tls1_alert_code,
71
    tls1_export_keying_material,
72
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
73
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
74
    ssl3_set_handshake_header,
75
    tls_close_construct_packet,
76
    ssl3_handshake_write
77
};
78
79
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
80
    tls13_setup_key_block,
81
    tls13_generate_master_secret,
82
    tls13_change_cipher_state,
83
    tls13_final_finish_mac,
84
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
85
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
86
    tls13_alert_code,
87
    tls13_export_keying_material,
88
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
89
    ssl3_set_handshake_header,
90
    tls_close_construct_packet,
91
    ssl3_handshake_write
92
};
93
94
OSSL_TIME tls1_default_timeout(void)
95
116k
{
96
    /*
97
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
98
     * http, the cache would over fill
99
     */
100
116k
    return ossl_seconds2time(60 * 60 * 2);
101
116k
}
102
103
int tls1_new(SSL *s)
104
116k
{
105
116k
    if (!ssl3_new(s))
106
0
        return 0;
107
116k
    if (!s->method->ssl_clear(s))
108
0
        return 0;
109
110
116k
    return 1;
111
116k
}
112
113
void tls1_free(SSL *s)
114
64.5k
{
115
64.5k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
116
117
64.5k
    if (sc == NULL)
118
0
        return;
119
120
64.5k
    OPENSSL_free(sc->ext.session_ticket);
121
64.5k
    ssl3_free(s);
122
64.5k
}
123
124
int tls1_clear(SSL *s)
125
258k
{
126
258k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
127
128
258k
    if (sc == NULL)
129
0
        return 0;
130
131
258k
    if (!ssl3_clear(s))
132
0
        return 0;
133
134
258k
    if (s->method->version == TLS_ANY_VERSION)
135
258k
        sc->version = TLS_MAX_VERSION_INTERNAL;
136
0
    else
137
0
        sc->version = s->method->version;
138
139
258k
    return 1;
140
258k
}
141
142
/* Legacy NID to group_id mapping. Only works for groups we know about */
143
static const struct {
144
    int nid;
145
    uint16_t group_id;
146
} nid_to_group[] = {
147
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
148
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
149
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
150
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
151
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
152
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
153
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
154
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
155
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
156
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
157
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
158
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
159
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
160
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
161
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
162
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
163
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
164
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
165
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
166
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
167
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
168
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
169
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
170
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
171
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
172
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
173
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
174
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
175
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
176
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
177
    {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
178
    {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
179
    {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
180
    {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
181
    {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
182
    {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
183
    {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
184
    {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
185
    {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
186
    {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
187
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
188
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
189
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
190
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
191
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
192
};
193
194
static const unsigned char ecformats_default[] = {
195
    TLSEXT_ECPOINTFORMAT_uncompressed,
196
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
197
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
198
};
199
200
/* The default curves */
201
static const uint16_t supported_groups_default[] = {
202
    OSSL_TLS_GROUP_ID_x25519,        /* X25519 (29) */
203
    OSSL_TLS_GROUP_ID_secp256r1,     /* secp256r1 (23) */
204
    OSSL_TLS_GROUP_ID_x448,          /* X448 (30) */
205
    OSSL_TLS_GROUP_ID_secp521r1,     /* secp521r1 (25) */
206
    OSSL_TLS_GROUP_ID_secp384r1,     /* secp384r1 (24) */
207
    OSSL_TLS_GROUP_ID_gc256A,        /* GC256A (34) */
208
    OSSL_TLS_GROUP_ID_gc256B,        /* GC256B (35) */
209
    OSSL_TLS_GROUP_ID_gc256C,        /* GC256C (36) */
210
    OSSL_TLS_GROUP_ID_gc256D,        /* GC256D (37) */
211
    OSSL_TLS_GROUP_ID_gc512A,        /* GC512A (38) */
212
    OSSL_TLS_GROUP_ID_gc512B,        /* GC512B (39) */
213
    OSSL_TLS_GROUP_ID_gc512C,        /* GC512C (40) */
214
    OSSL_TLS_GROUP_ID_ffdhe2048,     /* ffdhe2048 (0x100) */
215
    OSSL_TLS_GROUP_ID_ffdhe3072,     /* ffdhe3072 (0x101) */
216
    OSSL_TLS_GROUP_ID_ffdhe4096,     /* ffdhe4096 (0x102) */
217
    OSSL_TLS_GROUP_ID_ffdhe6144,     /* ffdhe6144 (0x103) */
218
    OSSL_TLS_GROUP_ID_ffdhe8192,     /* ffdhe8192 (0x104) */
219
};
220
221
static const uint16_t suiteb_curves[] = {
222
    OSSL_TLS_GROUP_ID_secp256r1,
223
    OSSL_TLS_GROUP_ID_secp384r1,
224
};
225
226
struct provider_ctx_data_st {
227
    SSL_CTX *ctx;
228
    OSSL_PROVIDER *provider;
229
};
230
231
1.07M
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
232
static OSSL_CALLBACK add_provider_groups;
233
static int add_provider_groups(const OSSL_PARAM params[], void *data)
234
4.83M
{
235
4.83M
    struct provider_ctx_data_st *pgd = data;
236
4.83M
    SSL_CTX *ctx = pgd->ctx;
237
4.83M
    OSSL_PROVIDER *provider = pgd->provider;
238
4.83M
    const OSSL_PARAM *p;
239
4.83M
    TLS_GROUP_INFO *ginf = NULL;
240
4.83M
    EVP_KEYMGMT *keymgmt;
241
4.83M
    unsigned int gid;
242
4.83M
    unsigned int is_kem = 0;
243
4.83M
    int ret = 0;
244
245
4.83M
    if (ctx->group_list_max_len == ctx->group_list_len) {
246
539k
        TLS_GROUP_INFO *tmp = NULL;
247
248
539k
        if (ctx->group_list_max_len == 0)
249
91.7k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
250
539k
                                 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251
448k
        else
252
448k
            tmp = OPENSSL_realloc(ctx->group_list,
253
539k
                                  (ctx->group_list_max_len
254
539k
                                   + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
255
539k
                                  * sizeof(TLS_GROUP_INFO));
256
539k
        if (tmp == NULL)
257
0
            return 0;
258
539k
        ctx->group_list = tmp;
259
539k
        memset(tmp + ctx->group_list_max_len,
260
539k
               0,
261
539k
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
262
539k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
263
539k
    }
264
265
4.83M
    ginf = &ctx->group_list[ctx->group_list_len];
266
267
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
268
4.83M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
269
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
270
0
        goto err;
271
0
    }
272
4.83M
    ginf->tlsname = OPENSSL_strdup(p->data);
273
4.83M
    if (ginf->tlsname == NULL)
274
0
        goto err;
275
276
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
277
4.83M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
278
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
279
0
        goto err;
280
0
    }
281
4.83M
    ginf->realname = OPENSSL_strdup(p->data);
282
4.83M
    if (ginf->realname == NULL)
283
0
        goto err;
284
285
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286
4.83M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288
0
        goto err;
289
0
    }
290
4.83M
    ginf->group_id = (uint16_t)gid;
291
292
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293
4.83M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295
0
        goto err;
296
0
    }
297
4.83M
    ginf->algorithm = OPENSSL_strdup(p->data);
298
4.83M
    if (ginf->algorithm == NULL)
299
0
        goto err;
300
301
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
302
4.83M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
303
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
304
0
        goto err;
305
0
    }
306
307
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
308
4.83M
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
309
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310
0
        goto err;
311
0
    }
312
4.83M
    ginf->is_kem = 1 & is_kem;
313
314
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
315
4.83M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
316
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
317
0
        goto err;
318
0
    }
319
320
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
321
4.83M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
322
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
323
0
        goto err;
324
0
    }
325
326
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
327
4.83M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
328
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
329
0
        goto err;
330
0
    }
331
332
4.83M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
333
4.83M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
334
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
335
0
        goto err;
336
0
    }
337
    /*
338
     * Now check that the algorithm is actually usable for our property query
339
     * string. Regardless of the result we still return success because we have
340
     * successfully processed this group, even though we may decide not to use
341
     * it.
342
     */
343
4.83M
    ret = 1;
344
4.83M
    ERR_set_mark();
345
4.83M
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
346
4.83M
    if (keymgmt != NULL) {
347
        /*
348
         * We have successfully fetched the algorithm - however if the provider
349
         * doesn't match this one then we ignore it.
350
         *
351
         * Note: We're cheating a little here. Technically if the same algorithm
352
         * is available from more than one provider then it is undefined which
353
         * implementation you will get back. Theoretically this could be
354
         * different every time...we assume here that you'll always get the
355
         * same one back if you repeat the exact same fetch. Is this a reasonable
356
         * assumption to make (in which case perhaps we should document this
357
         * behaviour)?
358
         */
359
4.83M
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
360
            /* We have a match - so we will use this group */
361
4.83M
            ctx->group_list_len++;
362
4.83M
            ginf = NULL;
363
4.83M
        }
364
4.83M
        EVP_KEYMGMT_free(keymgmt);
365
4.83M
    }
366
4.83M
    ERR_pop_to_mark();
367
4.83M
 err:
368
4.83M
    if (ginf != NULL) {
369
0
        OPENSSL_free(ginf->tlsname);
370
0
        OPENSSL_free(ginf->realname);
371
0
        OPENSSL_free(ginf->algorithm);
372
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
373
0
    }
374
4.83M
    return ret;
375
4.83M
}
376
377
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
378
302k
{
379
302k
    struct provider_ctx_data_st pgd;
380
381
302k
    pgd.ctx = vctx;
382
302k
    pgd.provider = provider;
383
302k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
384
302k
                                          add_provider_groups, &pgd);
385
302k
}
386
387
int ssl_load_groups(SSL_CTX *ctx)
388
91.7k
{
389
91.7k
    size_t i, j, num_deflt_grps = 0;
390
91.7k
    uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
391
392
91.7k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
393
0
        return 0;
394
395
1.65M
    for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
396
76.0M
        for (j = 0; j < ctx->group_list_len; j++) {
397
75.4M
            if (ctx->group_list[j].group_id == supported_groups_default[i]) {
398
917k
                tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
399
917k
                break;
400
917k
            }
401
75.4M
        }
402
1.56M
    }
403
404
91.7k
    if (num_deflt_grps == 0)
405
0
        return 1;
406
407
91.7k
    ctx->ext.supported_groups_default
408
91.7k
        = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
409
410
91.7k
    if (ctx->ext.supported_groups_default == NULL)
411
0
        return 0;
412
413
91.7k
    memcpy(ctx->ext.supported_groups_default,
414
91.7k
           tmp_supp_groups,
415
91.7k
           num_deflt_grps * sizeof(tmp_supp_groups[0]));
416
91.7k
    ctx->ext.supported_groups_default_len = num_deflt_grps;
417
418
91.7k
    return 1;
419
91.7k
}
420
421
static const char *inferred_keytype(const TLS_SIGALG_INFO *sinf)
422
358k
{
423
358k
    return (sinf->keytype != NULL
424
358k
            ? sinf->keytype
425
358k
            : (sinf->sig_name != NULL
426
358k
               ? sinf->sig_name
427
358k
               : sinf->sigalg_name));
428
358k
}
429
430
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10
431
static OSSL_CALLBACK add_provider_sigalgs;
432
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
433
{
434
    struct provider_ctx_data_st *pgd = data;
435
    SSL_CTX *ctx = pgd->ctx;
436
    OSSL_PROVIDER *provider = pgd->provider;
437
    const OSSL_PARAM *p;
438
    TLS_SIGALG_INFO *sinf = NULL;
439
    EVP_KEYMGMT *keymgmt;
440
    const char *keytype;
441
    unsigned int code_point = 0;
442
    int ret = 0;
443
444
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
445
        TLS_SIGALG_INFO *tmp = NULL;
446
447
        if (ctx->sigalg_list_max_len == 0)
448
            tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
449
                                 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
450
        else
451
            tmp = OPENSSL_realloc(ctx->sigalg_list,
452
                                  (ctx->sigalg_list_max_len
453
                                   + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
454
                                  * sizeof(TLS_SIGALG_INFO));
455
        if (tmp == NULL)
456
            return 0;
457
        ctx->sigalg_list = tmp;
458
        memset(tmp + ctx->sigalg_list_max_len, 0,
459
               sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
460
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
461
    }
462
463
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
464
465
    /* First, mandatory parameters */
466
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
467
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
468
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
469
        goto err;
470
    }
471
    OPENSSL_free(sinf->sigalg_name);
472
    sinf->sigalg_name = OPENSSL_strdup(p->data);
473
    if (sinf->sigalg_name == NULL)
474
        goto err;
475
476
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
477
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
478
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
479
        goto err;
480
    }
481
    OPENSSL_free(sinf->name);
482
    sinf->name = OPENSSL_strdup(p->data);
483
    if (sinf->name == NULL)
484
        goto err;
485
486
    p = OSSL_PARAM_locate_const(params,
487
                                OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
488
    if (p == NULL
489
        || !OSSL_PARAM_get_uint(p, &code_point)
490
        || code_point > UINT16_MAX) {
491
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
492
        goto err;
493
    }
494
    sinf->code_point = (uint16_t)code_point;
495
496
    p = OSSL_PARAM_locate_const(params,
497
                                OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
498
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
499
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
500
        goto err;
501
    }
502
503
    /* Now, optional parameters */
504
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
505
    if (p == NULL) {
506
        sinf->sigalg_oid = NULL;
507
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
508
        goto err;
509
    } else {
510
        OPENSSL_free(sinf->sigalg_oid);
511
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
512
        if (sinf->sigalg_oid == NULL)
513
            goto err;
514
    }
515
516
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
517
    if (p == NULL) {
518
        sinf->sig_name = NULL;
519
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
520
        goto err;
521
    } else {
522
        OPENSSL_free(sinf->sig_name);
523
        sinf->sig_name = OPENSSL_strdup(p->data);
524
        if (sinf->sig_name == NULL)
525
            goto err;
526
    }
527
528
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
529
    if (p == NULL) {
530
        sinf->sig_oid = NULL;
531
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
532
        goto err;
533
    } else {
534
        OPENSSL_free(sinf->sig_oid);
535
        sinf->sig_oid = OPENSSL_strdup(p->data);
536
        if (sinf->sig_oid == NULL)
537
            goto err;
538
    }
539
540
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
541
    if (p == NULL) {
542
        sinf->hash_name = NULL;
543
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
544
        goto err;
545
    } else {
546
        OPENSSL_free(sinf->hash_name);
547
        sinf->hash_name = OPENSSL_strdup(p->data);
548
        if (sinf->hash_name == NULL)
549
            goto err;
550
    }
551
552
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
553
    if (p == NULL) {
554
        sinf->hash_oid = NULL;
555
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
556
        goto err;
557
    } else {
558
        OPENSSL_free(sinf->hash_oid);
559
        sinf->hash_oid = OPENSSL_strdup(p->data);
560
        if (sinf->hash_oid == NULL)
561
            goto err;
562
    }
563
564
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
565
    if (p == NULL) {
566
        sinf->keytype = NULL;
567
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
568
        goto err;
569
    } else {
570
        OPENSSL_free(sinf->keytype);
571
        sinf->keytype = OPENSSL_strdup(p->data);
572
        if (sinf->keytype == NULL)
573
            goto err;
574
    }
575
576
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
577
    if (p == NULL) {
578
        sinf->keytype_oid = NULL;
579
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
580
        goto err;
581
    } else {
582
        OPENSSL_free(sinf->keytype_oid);
583
        sinf->keytype_oid = OPENSSL_strdup(p->data);
584
        if (sinf->keytype_oid == NULL)
585
            goto err;
586
    }
587
588
    /* The remaining parameters below are mandatory again */
589
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
590
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
591
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
592
        goto err;
593
    }
594
    if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
595
        ((sinf->mintls < TLS1_3_VERSION))) {
596
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
597
        ret = 1;
598
        goto err;
599
    }
600
601
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
602
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
603
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
604
        goto err;
605
    }
606
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
607
        ((sinf->maxtls < sinf->mintls))) {
608
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
609
        goto err;
610
    }
611
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
612
        ((sinf->maxtls < TLS1_3_VERSION))) {
613
        /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
614
        ret = 1;
615
        goto err;
616
    }
617
618
    /*
619
     * Now check that the algorithm is actually usable for our property query
620
     * string. Regardless of the result we still return success because we have
621
     * successfully processed this signature, even though we may decide not to
622
     * use it.
623
     */
624
    ret = 1;
625
    ERR_set_mark();
626
    keytype = inferred_keytype(sinf);
627
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
628
    if (keymgmt != NULL) {
629
        /*
630
         * We have successfully fetched the algorithm - however if the provider
631
         * doesn't match this one then we ignore it.
632
         *
633
         * Note: We're cheating a little here. Technically if the same algorithm
634
         * is available from more than one provider then it is undefined which
635
         * implementation you will get back. Theoretically this could be
636
         * different every time...we assume here that you'll always get the
637
         * same one back if you repeat the exact same fetch. Is this a reasonable
638
         * assumption to make (in which case perhaps we should document this
639
         * behaviour)?
640
         */
641
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
642
            /*
643
             * We have a match - so we could use this signature;
644
             * Check proper object registration first, though.
645
             * Don't care about return value as this may have been
646
             * done within providers or previous calls to
647
             * add_provider_sigalgs.
648
             */
649
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
650
            /* sanity check: Without successful registration don't use alg */
651
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
652
                (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
653
                    ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
654
                    goto err;
655
            }
656
            if (sinf->sig_name != NULL)
657
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
658
            if (sinf->keytype != NULL)
659
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
660
            if (sinf->hash_name != NULL)
661
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
662
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
663
                          (sinf->hash_name != NULL
664
                           ? OBJ_txt2nid(sinf->hash_name)
665
                           : NID_undef),
666
                          OBJ_txt2nid(keytype));
667
            ctx->sigalg_list_len++;
668
            sinf = NULL;
669
        }
670
        EVP_KEYMGMT_free(keymgmt);
671
    }
672
    ERR_pop_to_mark();
673
 err:
674
    if (sinf != NULL) {
675
        OPENSSL_free(sinf->name);
676
        sinf->name = NULL;
677
        OPENSSL_free(sinf->sigalg_name);
678
        sinf->sigalg_name = NULL;
679
        OPENSSL_free(sinf->sigalg_oid);
680
        sinf->sigalg_oid = NULL;
681
        OPENSSL_free(sinf->sig_name);
682
        sinf->sig_name = NULL;
683
        OPENSSL_free(sinf->sig_oid);
684
        sinf->sig_oid = NULL;
685
        OPENSSL_free(sinf->hash_name);
686
        sinf->hash_name = NULL;
687
        OPENSSL_free(sinf->hash_oid);
688
        sinf->hash_oid = NULL;
689
        OPENSSL_free(sinf->keytype);
690
        sinf->keytype = NULL;
691
        OPENSSL_free(sinf->keytype_oid);
692
        sinf->keytype_oid = NULL;
693
    }
694
    return ret;
695
}
696
697
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
698
281k
{
699
281k
    struct provider_ctx_data_st pgd;
700
701
281k
    pgd.ctx = vctx;
702
281k
    pgd.provider = provider;
703
281k
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
704
281k
                                   add_provider_sigalgs, &pgd);
705
    /*
706
     * Always OK, even if provider doesn't support the capability:
707
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
708
     */
709
281k
    return 1;
710
281k
}
711
712
int ssl_load_sigalgs(SSL_CTX *ctx)
713
140k
{
714
140k
    size_t i;
715
140k
    SSL_CERT_LOOKUP lu;
716
717
140k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
718
0
        return 0;
719
720
    /* now populate ctx->ssl_cert_info */
721
140k
    if (ctx->sigalg_list_len > 0) {
722
59.6k
        OPENSSL_free(ctx->ssl_cert_info);
723
59.6k
        ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
724
59.6k
        if (ctx->ssl_cert_info == NULL)
725
0
            return 0;
726
238k
        for(i = 0; i < ctx->sigalg_list_len; i++) {
727
179k
            const char *keytype = inferred_keytype(&ctx->sigalg_list[i]);
728
179k
            ctx->ssl_cert_info[i].pkey_nid = OBJ_txt2nid(keytype);
729
179k
            ctx->ssl_cert_info[i].amask = SSL_aANY;
730
179k
        }
731
59.6k
    }
732
733
    /*
734
     * For now, leave it at this: legacy sigalgs stay in their own
735
     * data structures until "legacy cleanup" occurs.
736
     */
737
738
140k
    return 1;
739
140k
}
740
741
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
742
477k
{
743
477k
    size_t i;
744
745
2.68M
    for (i = 0; i < ctx->group_list_len; i++) {
746
2.68M
        if (strcmp(ctx->group_list[i].tlsname, name) == 0
747
2.20M
                || strcmp(ctx->group_list[i].realname, name) == 0)
748
477k
            return ctx->group_list[i].group_id;
749
2.68M
    }
750
751
0
    return 0;
752
477k
}
753
754
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
755
3.02M
{
756
3.02M
    size_t i;
757
758
86.9M
    for (i = 0; i < ctx->group_list_len; i++) {
759
86.9M
        if (ctx->group_list[i].group_id == group_id)
760
3.02M
            return &ctx->group_list[i];
761
86.9M
    }
762
763
0
    return NULL;
764
3.02M
}
765
766
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
767
0
{
768
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
769
770
0
    if (tls_group_info == NULL)
771
0
        return NULL;
772
773
0
    return tls_group_info->tlsname;
774
0
}
775
776
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
777
1.35M
{
778
1.35M
    size_t i;
779
780
1.35M
    if (group_id == 0)
781
0
        return NID_undef;
782
783
    /*
784
     * Return well known Group NIDs - for backwards compatibility. This won't
785
     * work for groups we don't know about.
786
     */
787
43.3M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
788
43.3M
    {
789
43.3M
        if (nid_to_group[i].group_id == group_id)
790
1.29M
            return nid_to_group[i].nid;
791
43.3M
    }
792
64.5k
    if (!include_unknown)
793
64.5k
        return NID_undef;
794
0
    return TLSEXT_nid_unknown | (int)group_id;
795
64.5k
}
796
797
uint16_t tls1_nid2group_id(int nid)
798
24.8k
{
799
24.8k
    size_t i;
800
801
    /*
802
     * Return well known Group ids - for backwards compatibility. This won't
803
     * work for groups we don't know about.
804
     */
805
572k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
806
571k
    {
807
571k
        if (nid_to_group[i].nid == nid)
808
24.8k
            return nid_to_group[i].group_id;
809
571k
    }
810
811
6
    return 0;
812
24.8k
}
813
814
/*
815
 * Set *pgroups to the supported groups list and *pgroupslen to
816
 * the number of groups supported.
817
 */
818
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
819
                               size_t *pgroupslen)
820
449k
{
821
449k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
822
823
    /* For Suite B mode only include P-256, P-384 */
824
449k
    switch (tls1_suiteb(s)) {
825
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
826
0
        *pgroups = suiteb_curves;
827
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
828
0
        break;
829
830
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
831
0
        *pgroups = suiteb_curves;
832
0
        *pgroupslen = 1;
833
0
        break;
834
835
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
836
0
        *pgroups = suiteb_curves + 1;
837
0
        *pgroupslen = 1;
838
0
        break;
839
840
449k
    default:
841
449k
        if (s->ext.supportedgroups == NULL) {
842
299k
            *pgroups = sctx->ext.supported_groups_default;
843
299k
            *pgroupslen = sctx->ext.supported_groups_default_len;
844
299k
        } else {
845
150k
            *pgroups = s->ext.supportedgroups;
846
150k
            *pgroupslen = s->ext.supportedgroups_len;
847
150k
        }
848
449k
        break;
849
449k
    }
850
449k
}
851
852
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
853
                    int minversion, int maxversion,
854
                    int isec, int *okfortls13)
855
1.15M
{
856
1.15M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
857
1.15M
                                                       group_id);
858
1.15M
    int ret;
859
1.15M
    int group_minversion, group_maxversion;
860
861
1.15M
    if (okfortls13 != NULL)
862
785k
        *okfortls13 = 0;
863
864
1.15M
    if (ginfo == NULL)
865
0
        return 0;
866
867
1.15M
    group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
868
1.15M
    group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
869
870
1.15M
    if (group_minversion < 0 || group_maxversion < 0)
871
110k
        return 0;
872
1.04M
    if (group_maxversion == 0)
873
1.04M
        ret = 1;
874
0
    else
875
0
        ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
876
1.04M
    if (group_minversion > 0)
877
1.04M
        ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
878
879
1.04M
    if (!SSL_CONNECTION_IS_DTLS(s)) {
880
895k
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
881
582k
            *okfortls13 = (group_maxversion == 0)
882
0
                          || (group_maxversion >= TLS1_3_VERSION);
883
895k
    }
884
1.04M
    ret &= !isec
885
240k
           || strcmp(ginfo->algorithm, "EC") == 0
886
239k
           || strcmp(ginfo->algorithm, "X25519") == 0
887
64.8k
           || strcmp(ginfo->algorithm, "X448") == 0;
888
889
1.04M
    return ret;
890
1.15M
}
891
892
/* See if group is allowed by security callback */
893
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
894
1.35M
{
895
1.35M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
896
1.35M
                                                       group);
897
1.35M
    unsigned char gtmp[2];
898
899
1.35M
    if (ginfo == NULL)
900
0
        return 0;
901
902
1.35M
    gtmp[0] = group >> 8;
903
1.35M
    gtmp[1] = group & 0xff;
904
1.35M
    return ssl_security(s, op, ginfo->secbits,
905
1.35M
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
906
1.35M
}
907
908
/* Return 1 if "id" is in "list" */
909
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
910
90.7k
{
911
90.7k
    size_t i;
912
618k
    for (i = 0; i < listlen; i++)
913
568k
        if (list[i] == id)
914
41.0k
            return 1;
915
49.7k
    return 0;
916
90.7k
}
917
918
/*-
919
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
920
 * if there is no match.
921
 * For nmatch == -1, return number of matches
922
 * For nmatch == -2, return the id of the group to use for
923
 * a tmp key, or 0 if there is no match.
924
 */
925
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
926
34.5k
{
927
34.5k
    const uint16_t *pref, *supp;
928
34.5k
    size_t num_pref, num_supp, i;
929
34.5k
    int k;
930
34.5k
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
931
932
    /* Can't do anything on client side */
933
34.5k
    if (s->server == 0)
934
0
        return 0;
935
34.5k
    if (nmatch == -2) {
936
8.45k
        if (tls1_suiteb(s)) {
937
            /*
938
             * For Suite B ciphersuite determines curve: we already know
939
             * these are acceptable due to previous checks.
940
             */
941
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
942
943
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
944
0
                return OSSL_TLS_GROUP_ID_secp256r1;
945
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
946
0
                return OSSL_TLS_GROUP_ID_secp384r1;
947
            /* Should never happen */
948
0
            return 0;
949
0
        }
950
        /* If not Suite B just return first preference shared curve */
951
8.45k
        nmatch = 0;
952
8.45k
    }
953
    /*
954
     * If server preference set, our groups are the preference order
955
     * otherwise peer decides.
956
     */
957
34.5k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
958
0
        tls1_get_supported_groups(s, &pref, &num_pref);
959
0
        tls1_get_peer_groups(s, &supp, &num_supp);
960
34.5k
    } else {
961
34.5k
        tls1_get_peer_groups(s, &pref, &num_pref);
962
34.5k
        tls1_get_supported_groups(s, &supp, &num_supp);
963
34.5k
    }
964
965
71.8k
    for (k = 0, i = 0; i < num_pref; i++) {
966
54.6k
        uint16_t id = pref[i];
967
54.6k
        const TLS_GROUP_INFO *inf;
968
54.6k
        int minversion, maxversion;
969
970
54.6k
        if (!tls1_in_list(id, supp, num_supp)
971
21.1k
                || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
972
33.4k
            continue;
973
21.1k
        inf = tls1_group_id_lookup(ctx, id);
974
21.1k
        if (!ossl_assert(inf != NULL))
975
0
            return 0;
976
977
21.1k
        minversion = SSL_CONNECTION_IS_DTLS(s)
978
21.1k
                         ? inf->mindtls : inf->mintls;
979
21.1k
        maxversion = SSL_CONNECTION_IS_DTLS(s)
980
21.1k
                         ? inf->maxdtls : inf->maxtls;
981
21.1k
        if (maxversion == -1)
982
1.68k
            continue;
983
19.4k
        if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
984
17.2k
            || (maxversion != 0
985
0
                && ssl_version_cmp(s, s->version, maxversion) > 0))
986
2.12k
            continue;
987
988
17.2k
        if (nmatch == k)
989
17.2k
            return id;
990
0
         k++;
991
0
    }
992
17.2k
    if (nmatch == -1)
993
0
        return k;
994
    /* Out of range (nmatch > k). */
995
17.2k
    return 0;
996
17.2k
}
997
998
int tls1_set_groups(uint16_t **pext, size_t *pextlen,
999
                    int *groups, size_t ngroups)
1000
0
{
1001
0
    uint16_t *glist;
1002
0
    size_t i;
1003
    /*
1004
     * Bitmap of groups included to detect duplicates: two variables are added
1005
     * to detect duplicates as some values are more than 32.
1006
     */
1007
0
    unsigned long *dup_list = NULL;
1008
0
    unsigned long dup_list_egrp = 0;
1009
0
    unsigned long dup_list_dhgrp = 0;
1010
1011
0
    if (ngroups == 0) {
1012
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1013
0
        return 0;
1014
0
    }
1015
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1016
0
        return 0;
1017
0
    for (i = 0; i < ngroups; i++) {
1018
0
        unsigned long idmask;
1019
0
        uint16_t id;
1020
0
        id = tls1_nid2group_id(groups[i]);
1021
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1022
0
            goto err;
1023
0
        idmask = 1L << (id & 0x00FF);
1024
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1025
0
        if (!id || ((*dup_list) & idmask))
1026
0
            goto err;
1027
0
        *dup_list |= idmask;
1028
0
        glist[i] = id;
1029
0
    }
1030
0
    OPENSSL_free(*pext);
1031
0
    *pext = glist;
1032
0
    *pextlen = ngroups;
1033
0
    return 1;
1034
0
err:
1035
0
    OPENSSL_free(glist);
1036
0
    return 0;
1037
0
}
1038
1039
0
# define GROUPLIST_INCREMENT   40
1040
# define GROUP_NAME_BUFFER_LENGTH 64
1041
typedef struct {
1042
    SSL_CTX *ctx;
1043
    size_t gidcnt;
1044
    size_t gidmax;
1045
    uint16_t *gid_arr;
1046
} gid_cb_st;
1047
1048
static int gid_cb(const char *elem, int len, void *arg)
1049
{
1050
    gid_cb_st *garg = arg;
1051
    size_t i;
1052
    uint16_t gid = 0;
1053
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1054
    int ignore_unknown = 0;
1055
1056
    if (elem == NULL)
1057
        return 0;
1058
    if (elem[0] == '?') {
1059
        ignore_unknown = 1;
1060
        ++elem;
1061
        --len;
1062
    }
1063
    if (garg->gidcnt == garg->gidmax) {
1064
        uint16_t *tmp =
1065
            OPENSSL_realloc(garg->gid_arr,
1066
                            (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1067
        if (tmp == NULL)
1068
            return 0;
1069
        garg->gidmax += GROUPLIST_INCREMENT;
1070
        garg->gid_arr = tmp;
1071
    }
1072
    if (len > (int)(sizeof(etmp) - 1))
1073
        return 0;
1074
    memcpy(etmp, elem, len);
1075
    etmp[len] = 0;
1076
1077
    gid = tls1_group_name2id(garg->ctx, etmp);
1078
    if (gid == 0) {
1079
        /* Unknown group - ignore, if ignore_unknown */
1080
        return ignore_unknown;
1081
    }
1082
    for (i = 0; i < garg->gidcnt; i++)
1083
        if (garg->gid_arr[i] == gid) {
1084
            /* Duplicate group - ignore */
1085
            return 1;
1086
        }
1087
    garg->gid_arr[garg->gidcnt++] = gid;
1088
    return 1;
1089
}
1090
1091
/* Set groups based on a colon separated list */
1092
int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
1093
                         const char *str)
1094
0
{
1095
0
    gid_cb_st gcb;
1096
0
    uint16_t *tmparr;
1097
0
    int ret = 0;
1098
1099
0
    gcb.gidcnt = 0;
1100
0
    gcb.gidmax = GROUPLIST_INCREMENT;
1101
0
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1102
0
    if (gcb.gid_arr == NULL)
1103
0
        return 0;
1104
0
    gcb.ctx = ctx;
1105
0
    if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
1106
0
        goto end;
1107
0
    if (gcb.gidcnt == 0) {
1108
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1109
0
                       "No valid groups in '%s'", str);
1110
0
        goto end;
1111
0
    }
1112
0
    if (pext == NULL) {
1113
0
        ret = 1;
1114
0
        goto end;
1115
0
    }
1116
1117
    /*
1118
     * gid_cb ensurse there are no duplicates so we can just go ahead and set
1119
     * the result
1120
     */
1121
0
    tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
1122
0
    if (tmparr == NULL)
1123
0
        goto end;
1124
0
    OPENSSL_free(*pext);
1125
0
    *pext = tmparr;
1126
0
    *pextlen = gcb.gidcnt;
1127
0
    ret = 1;
1128
0
 end:
1129
0
    OPENSSL_free(gcb.gid_arr);
1130
0
    return ret;
1131
0
}
1132
1133
/* Check a group id matches preferences */
1134
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1135
                        int check_own_groups)
1136
33.0k
    {
1137
33.0k
    const uint16_t *groups;
1138
33.0k
    size_t groups_len;
1139
1140
33.0k
    if (group_id == 0)
1141
16
        return 0;
1142
1143
    /* Check for Suite B compliance */
1144
33.0k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1145
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1146
1147
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1148
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1149
0
                return 0;
1150
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1151
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1152
0
                return 0;
1153
0
        } else {
1154
            /* Should never happen */
1155
0
            return 0;
1156
0
        }
1157
0
    }
1158
1159
33.0k
    if (check_own_groups) {
1160
        /* Check group is one of our preferences */
1161
8.61k
        tls1_get_supported_groups(s, &groups, &groups_len);
1162
8.61k
        if (!tls1_in_list(group_id, groups, groups_len))
1163
143
            return 0;
1164
8.61k
    }
1165
1166
32.8k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1167
0
        return 0;
1168
1169
    /* For clients, nothing more to check */
1170
32.8k
    if (!s->server)
1171
8.47k
        return 1;
1172
1173
    /* Check group is one of peers preferences */
1174
24.4k
    tls1_get_peer_groups(s, &groups, &groups_len);
1175
1176
    /*
1177
     * RFC 4492 does not require the supported elliptic curves extension
1178
     * so if it is not sent we can just choose any curve.
1179
     * It is invalid to send an empty list in the supported groups
1180
     * extension, so groups_len == 0 always means no extension.
1181
     */
1182
24.4k
    if (groups_len == 0)
1183
12.1k
            return 1;
1184
12.2k
    return tls1_in_list(group_id, groups, groups_len);
1185
24.4k
}
1186
1187
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1188
                         size_t *num_formats)
1189
93.0k
{
1190
    /*
1191
     * If we have a custom point format list use it otherwise use default
1192
     */
1193
93.0k
    if (s->ext.ecpointformats) {
1194
0
        *pformats = s->ext.ecpointformats;
1195
0
        *num_formats = s->ext.ecpointformats_len;
1196
93.0k
    } else {
1197
93.0k
        *pformats = ecformats_default;
1198
        /* For Suite B we don't support char2 fields */
1199
93.0k
        if (tls1_suiteb(s))
1200
0
            *num_formats = sizeof(ecformats_default) - 1;
1201
93.0k
        else
1202
93.0k
            *num_formats = sizeof(ecformats_default);
1203
93.0k
    }
1204
93.0k
}
1205
1206
/* Check a key is compatible with compression extension */
1207
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1208
25.7k
{
1209
25.7k
    unsigned char comp_id;
1210
25.7k
    size_t i;
1211
25.7k
    int point_conv;
1212
1213
    /* If not an EC key nothing to check */
1214
25.7k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1215
0
        return 1;
1216
1217
1218
    /* Get required compression id */
1219
25.7k
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1220
25.7k
    if (point_conv == 0)
1221
0
        return 0;
1222
25.7k
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1223
25.6k
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1224
25.6k
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1225
        /*
1226
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1227
         * this check.
1228
         */
1229
0
        return 1;
1230
96
    } else {
1231
96
        int field_type = EVP_PKEY_get_field_type(pkey);
1232
1233
96
        if (field_type == NID_X9_62_prime_field)
1234
90
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1235
6
        else if (field_type == NID_X9_62_characteristic_two_field)
1236
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1237
6
        else
1238
6
            return 0;
1239
96
    }
1240
    /*
1241
     * If point formats extension present check it, otherwise everything is
1242
     * supported (see RFC4492).
1243
     */
1244
25.7k
    if (s->ext.peer_ecpointformats == NULL)
1245
20.2k
        return 1;
1246
1247
9.53k
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1248
8.61k
        if (s->ext.peer_ecpointformats[i] == comp_id)
1249
4.62k
            return 1;
1250
8.61k
    }
1251
915
    return 0;
1252
5.53k
}
1253
1254
/* Return group id of a key */
1255
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1256
24.8k
{
1257
24.8k
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1258
1259
24.8k
    if (curve_nid == NID_undef)
1260
0
        return 0;
1261
24.8k
    return tls1_nid2group_id(curve_nid);
1262
24.8k
}
1263
1264
/*
1265
 * Check cert parameters compatible with extensions: currently just checks EC
1266
 * certificates have compatible curves and compression.
1267
 */
1268
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1269
75.9k
{
1270
75.9k
    uint16_t group_id;
1271
75.9k
    EVP_PKEY *pkey;
1272
75.9k
    pkey = X509_get0_pubkey(x);
1273
75.9k
    if (pkey == NULL)
1274
0
        return 0;
1275
    /* If not EC nothing to do */
1276
75.9k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1277
50.6k
        return 1;
1278
    /* Check compression */
1279
25.3k
    if (!tls1_check_pkey_comp(s, pkey))
1280
888
        return 0;
1281
24.4k
    group_id = tls1_get_group_id(pkey);
1282
    /*
1283
     * For a server we allow the certificate to not be in our list of supported
1284
     * groups.
1285
     */
1286
24.4k
    if (!tls1_check_group_id(s, group_id, !s->server))
1287
6.49k
        return 0;
1288
    /*
1289
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1290
     * SHA384+P-384.
1291
     */
1292
17.9k
    if (check_ee_md && tls1_suiteb(s)) {
1293
0
        int check_md;
1294
0
        size_t i;
1295
1296
        /* Check to see we have necessary signing algorithm */
1297
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1298
0
            check_md = NID_ecdsa_with_SHA256;
1299
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1300
0
            check_md = NID_ecdsa_with_SHA384;
1301
0
        else
1302
0
            return 0;           /* Should never happen */
1303
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1304
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1305
0
                return 1;
1306
0
        }
1307
0
        return 0;
1308
0
    }
1309
17.9k
    return 1;
1310
17.9k
}
1311
1312
/*
1313
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1314
 * @s: SSL connection
1315
 * @cid: Cipher ID we're considering using
1316
 *
1317
 * Checks that the kECDHE cipher suite we're considering using
1318
 * is compatible with the client extensions.
1319
 *
1320
 * Returns 0 when the cipher can't be used or 1 when it can.
1321
 */
1322
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1323
32.0k
{
1324
    /* If not Suite B just need a shared group */
1325
32.0k
    if (!tls1_suiteb(s))
1326
32.0k
        return tls1_shared_group(s, 0) != 0;
1327
    /*
1328
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1329
     * curves permitted.
1330
     */
1331
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1332
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1333
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1334
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1335
1336
0
    return 0;
1337
0
}
1338
1339
/* Default sigalg schemes */
1340
static const uint16_t tls12_sigalgs[] = {
1341
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1342
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1343
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1344
    TLSEXT_SIGALG_ed25519,
1345
    TLSEXT_SIGALG_ed448,
1346
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1347
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1348
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1349
1350
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1351
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1352
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1353
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1354
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1355
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1356
1357
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1358
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1359
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1360
1361
    TLSEXT_SIGALG_ecdsa_sha224,
1362
    TLSEXT_SIGALG_ecdsa_sha1,
1363
1364
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1365
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1366
1367
    TLSEXT_SIGALG_dsa_sha224,
1368
    TLSEXT_SIGALG_dsa_sha1,
1369
1370
    TLSEXT_SIGALG_dsa_sha256,
1371
    TLSEXT_SIGALG_dsa_sha384,
1372
    TLSEXT_SIGALG_dsa_sha512,
1373
1374
#ifndef OPENSSL_NO_GOST
1375
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1376
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1377
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1378
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1379
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1380
#endif
1381
};
1382
1383
1384
static const uint16_t suiteb_sigalgs[] = {
1385
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1386
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1387
};
1388
1389
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1390
    {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name, TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1391
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1392
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1393
    {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name, TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1394
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1395
     NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1396
    {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name, TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1397
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1398
     NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1399
    {TLSEXT_SIGALG_ed25519_name, TLSEXT_SIGALG_ed25519,
1400
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1401
     NID_undef, NID_undef, 1},
1402
    {TLSEXT_SIGALG_ed448_name, TLSEXT_SIGALG_ed448,
1403
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1404
     NID_undef, NID_undef, 1},
1405
    {TLSEXT_SIGALG_ecdsa_sha224_name, TLSEXT_SIGALG_ecdsa_sha224,
1406
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1407
     NID_ecdsa_with_SHA224, NID_undef, 1},
1408
    {TLSEXT_SIGALG_ecdsa_sha1_name, TLSEXT_SIGALG_ecdsa_sha1,
1409
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1410
     NID_ecdsa_with_SHA1, NID_undef, 1},
1411
    {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name, TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1412
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1413
     NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
1414
    {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name, TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1415
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1416
     NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
1417
    {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name, TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1418
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1419
     NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
1420
    {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name, TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1421
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1422
     NID_undef, NID_undef, 1},
1423
    {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name, TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1424
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1425
     NID_undef, NID_undef, 1},
1426
    {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name, TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1427
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1428
     NID_undef, NID_undef, 1},
1429
    {TLSEXT_SIGALG_rsa_pss_pss_sha256_name, TLSEXT_SIGALG_rsa_pss_pss_sha256,
1430
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1431
     NID_undef, NID_undef, 1},
1432
    {TLSEXT_SIGALG_rsa_pss_pss_sha384_name, TLSEXT_SIGALG_rsa_pss_pss_sha384,
1433
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1434
     NID_undef, NID_undef, 1},
1435
    {TLSEXT_SIGALG_rsa_pss_pss_sha512_name, TLSEXT_SIGALG_rsa_pss_pss_sha512,
1436
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1437
     NID_undef, NID_undef, 1},
1438
    {TLSEXT_SIGALG_rsa_pkcs1_sha256_name, TLSEXT_SIGALG_rsa_pkcs1_sha256,
1439
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1440
     NID_sha256WithRSAEncryption, NID_undef, 1},
1441
    {TLSEXT_SIGALG_rsa_pkcs1_sha384_name, TLSEXT_SIGALG_rsa_pkcs1_sha384,
1442
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1443
     NID_sha384WithRSAEncryption, NID_undef, 1},
1444
    {TLSEXT_SIGALG_rsa_pkcs1_sha512_name, TLSEXT_SIGALG_rsa_pkcs1_sha512,
1445
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1446
     NID_sha512WithRSAEncryption, NID_undef, 1},
1447
    {TLSEXT_SIGALG_rsa_pkcs1_sha224_name, TLSEXT_SIGALG_rsa_pkcs1_sha224,
1448
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1449
     NID_sha224WithRSAEncryption, NID_undef, 1},
1450
    {TLSEXT_SIGALG_rsa_pkcs1_sha1_name, TLSEXT_SIGALG_rsa_pkcs1_sha1,
1451
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1452
     NID_sha1WithRSAEncryption, NID_undef, 1},
1453
    {TLSEXT_SIGALG_dsa_sha256_name, TLSEXT_SIGALG_dsa_sha256,
1454
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1455
     NID_dsa_with_SHA256, NID_undef, 1},
1456
    {TLSEXT_SIGALG_dsa_sha384_name, TLSEXT_SIGALG_dsa_sha384,
1457
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1458
     NID_undef, NID_undef, 1},
1459
    {TLSEXT_SIGALG_dsa_sha512_name, TLSEXT_SIGALG_dsa_sha512,
1460
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1461
     NID_undef, NID_undef, 1},
1462
    {TLSEXT_SIGALG_dsa_sha224_name, TLSEXT_SIGALG_dsa_sha224,
1463
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1464
     NID_undef, NID_undef, 1},
1465
    {TLSEXT_SIGALG_dsa_sha1_name, TLSEXT_SIGALG_dsa_sha1,
1466
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1467
     NID_dsaWithSHA1, NID_undef, 1},
1468
#ifndef OPENSSL_NO_GOST
1469
    {TLSEXT_SIGALG_gostr34102012_256_intrinsic_name, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1470
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1471
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1472
     NID_undef, NID_undef, 1},
1473
    {TLSEXT_SIGALG_gostr34102012_512_intrinsic_name, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1474
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1475
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1476
     NID_undef, NID_undef, 1},
1477
    {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1478
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1479
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1480
     NID_undef, NID_undef, 1},
1481
    {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1482
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1483
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1484
     NID_undef, NID_undef, 1},
1485
    {TLSEXT_SIGALG_gostr34102001_gostr3411_name, TLSEXT_SIGALG_gostr34102001_gostr3411,
1486
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1487
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1488
     NID_undef, NID_undef, 1}
1489
#endif
1490
};
1491
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1492
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1493
    "rsa_pkcs1_md5_sha1", 0,
1494
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1495
     EVP_PKEY_RSA, SSL_PKEY_RSA,
1496
     NID_undef, NID_undef, 1
1497
};
1498
1499
/*
1500
 * Default signature algorithm values used if signature algorithms not present.
1501
 * From RFC5246. Note: order must match certificate index order.
1502
 */
1503
static const uint16_t tls_default_sigalg[] = {
1504
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1505
    0, /* SSL_PKEY_RSA_PSS_SIGN */
1506
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1507
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1508
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1509
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1510
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1511
    0, /* SSL_PKEY_ED25519 */
1512
    0, /* SSL_PKEY_ED448 */
1513
};
1514
1515
int ssl_setup_sigalgs(SSL_CTX *ctx)
1516
80.9k
{
1517
80.9k
    size_t i, cache_idx, sigalgs_len;
1518
80.9k
    const SIGALG_LOOKUP *lu;
1519
80.9k
    SIGALG_LOOKUP *cache = NULL;
1520
80.9k
    uint16_t *tls12_sigalgs_list = NULL;
1521
80.9k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1522
80.9k
    int ret = 0;
1523
1524
80.9k
    if (ctx == NULL)
1525
0
        goto err;
1526
1527
80.9k
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
1528
1529
80.9k
    cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
1530
80.9k
    if (cache == NULL || tmpkey == NULL)
1531
0
        goto err;
1532
1533
80.9k
    tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
1534
80.9k
    if (tls12_sigalgs_list == NULL)
1535
0
        goto err;
1536
1537
80.9k
    ERR_set_mark();
1538
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
1539
80.9k
    for (i = 0, lu = sigalg_lookup_tbl;
1540
2.59M
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1541
2.50M
        EVP_PKEY_CTX *pctx;
1542
1543
2.50M
        cache[i] = *lu;
1544
2.50M
        tls12_sigalgs_list[i] = tls12_sigalgs[i];
1545
1546
        /*
1547
         * Check hash is available.
1548
         * This test is not perfect. A provider could have support
1549
         * for a signature scheme, but not a particular hash. However the hash
1550
         * could be available from some other loaded provider. In that case it
1551
         * could be that the signature is available, and the hash is available
1552
         * independently - but not as a combination. We ignore this for now.
1553
         */
1554
2.50M
        if (lu->hash != NID_undef
1555
2.34M
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1556
404k
            cache[i].enabled = 0;
1557
404k
            continue;
1558
404k
        }
1559
1560
2.10M
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1561
0
            cache[i].enabled = 0;
1562
0
            continue;
1563
0
        }
1564
2.10M
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1565
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1566
2.10M
        if (pctx == NULL)
1567
0
            cache[i].enabled = 0;
1568
2.10M
        EVP_PKEY_CTX_free(pctx);
1569
2.10M
    }
1570
1571
    /* Now complete cache and tls12_sigalgs list with provider sig information */
1572
80.9k
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
1573
80.9k
    for (i = 0; i < ctx->sigalg_list_len; i++) {
1574
0
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
1575
0
        cache[cache_idx].name = si.name;
1576
0
        cache[cache_idx].sigalg = si.code_point;
1577
0
        tls12_sigalgs_list[cache_idx] = si.code_point;
1578
0
        cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
1579
0
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
1580
0
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
1581
0
        cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
1582
0
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
1583
0
        cache[cache_idx].curve = NID_undef;
1584
        /* all provided sigalgs are enabled by load */
1585
0
        cache[cache_idx].enabled = 1;
1586
0
        cache_idx++;
1587
0
    }
1588
80.9k
    ERR_pop_to_mark();
1589
80.9k
    ctx->sigalg_lookup_cache = cache;
1590
80.9k
    ctx->tls12_sigalgs = tls12_sigalgs_list;
1591
80.9k
    ctx->tls12_sigalgs_len = sigalgs_len;
1592
80.9k
    cache = NULL;
1593
80.9k
    tls12_sigalgs_list = NULL;
1594
1595
80.9k
    ret = 1;
1596
80.9k
 err:
1597
80.9k
    OPENSSL_free(cache);
1598
80.9k
    OPENSSL_free(tls12_sigalgs_list);
1599
80.9k
    EVP_PKEY_free(tmpkey);
1600
80.9k
    return ret;
1601
80.9k
}
1602
1603
0
#define SIGLEN_BUF_INCREMENT 100
1604
1605
char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
1606
0
{
1607
0
    size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
1608
0
    const SIGALG_LOOKUP *lu;
1609
0
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1610
0
    char *retval = OPENSSL_malloc(maxretlen);
1611
1612
0
    if (retval == NULL)
1613
0
        return NULL;
1614
1615
    /* ensure retval string is NUL terminated */
1616
0
    retval[0] = (char)0;
1617
1618
0
    for (i = 0, lu = sigalg_lookup_tbl;
1619
0
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1620
0
        EVP_PKEY_CTX *pctx;
1621
0
        int enabled = 1;
1622
1623
0
        ERR_set_mark();
1624
        /* Check hash is available in some provider. */
1625
0
        if (lu->hash != NID_undef) {
1626
0
            EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
1627
1628
            /* If unable to create we assume the hash algorithm is unavailable */
1629
0
            if (hash == NULL) {
1630
0
                enabled = 0;
1631
0
                ERR_pop_to_mark();
1632
0
                continue;
1633
0
            }
1634
0
            EVP_MD_free(hash);
1635
0
        }
1636
1637
0
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1638
0
            enabled = 0;
1639
0
            ERR_pop_to_mark();
1640
0
            continue;
1641
0
        }
1642
0
        pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
1643
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1644
0
        if (pctx == NULL)
1645
0
            enabled = 0;
1646
0
        ERR_pop_to_mark();
1647
0
        EVP_PKEY_CTX_free(pctx);
1648
1649
0
        if (enabled) {
1650
0
            const char *sa = lu->name;
1651
1652
0
            if (sa != NULL) {
1653
0
                if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
1654
0
                    char *tmp;
1655
1656
0
                    maxretlen += SIGLEN_BUF_INCREMENT;
1657
0
                    tmp = OPENSSL_realloc(retval, maxretlen);
1658
0
                    if (tmp == NULL) {
1659
0
                        OPENSSL_free(retval);
1660
0
                        return NULL;
1661
0
                    }
1662
0
                    retval = tmp;
1663
0
                }
1664
0
                if (strlen(retval) > 0)
1665
0
                    OPENSSL_strlcat(retval, ":", maxretlen);
1666
0
                OPENSSL_strlcat(retval, sa, maxretlen);
1667
0
            } else {
1668
                /* lu->name must not be NULL */
1669
0
                ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1670
0
            }
1671
0
        }
1672
0
    }
1673
1674
0
    EVP_PKEY_free(tmpkey);
1675
0
    return retval;
1676
0
}
1677
1678
/* Lookup TLS signature algorithm */
1679
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
1680
                                               uint16_t sigalg)
1681
14.0M
{
1682
14.0M
    size_t i;
1683
14.0M
    const SIGALG_LOOKUP *lu;
1684
1685
14.0M
    for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
1686
225M
         i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1687
225M
         lu++, i++) {
1688
225M
        if (lu->sigalg == sigalg) {
1689
13.6M
            if (!lu->enabled)
1690
1.43M
                return NULL;
1691
12.1M
            return lu;
1692
13.6M
        }
1693
225M
    }
1694
379k
    return NULL;
1695
14.0M
}
1696
/* Lookup hash: return 0 if invalid or not enabled */
1697
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1698
3.82M
{
1699
3.82M
    const EVP_MD *md;
1700
1701
3.82M
    if (lu == NULL)
1702
0
        return 0;
1703
    /* lu->hash == NID_undef means no associated digest */
1704
3.82M
    if (lu->hash == NID_undef) {
1705
334k
        md = NULL;
1706
3.48M
    } else {
1707
3.48M
        md = ssl_md(ctx, lu->hash_idx);
1708
3.48M
        if (md == NULL)
1709
0
            return 0;
1710
3.48M
    }
1711
3.82M
    if (pmd)
1712
3.73M
        *pmd = md;
1713
3.82M
    return 1;
1714
3.82M
}
1715
1716
/*
1717
 * Check if key is large enough to generate RSA-PSS signature.
1718
 *
1719
 * The key must greater than or equal to 2 * hash length + 2.
1720
 * SHA512 has a hash length of 64 bytes, which is incompatible
1721
 * with a 128 byte (1024 bit) key.
1722
 */
1723
940
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1724
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1725
                                      const SIGALG_LOOKUP *lu)
1726
940
{
1727
940
    const EVP_MD *md;
1728
1729
940
    if (pkey == NULL)
1730
0
        return 0;
1731
940
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1732
0
        return 0;
1733
940
    if (EVP_MD_get_size(md) <= 0)
1734
0
        return 0;
1735
940
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1736
0
        return 0;
1737
940
    return 1;
1738
940
}
1739
1740
/*
1741
 * Returns a signature algorithm when the peer did not send a list of supported
1742
 * signature algorithms. The signature algorithm is fixed for the certificate
1743
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1744
 * certificate type from |s| will be used.
1745
 * Returns the signature algorithm to use, or NULL on error.
1746
 */
1747
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
1748
                                                   int idx)
1749
234k
{
1750
234k
    if (idx == -1) {
1751
18.1k
        if (s->server) {
1752
18.1k
            size_t i;
1753
1754
            /* Work out index corresponding to ciphersuite */
1755
25.5k
            for (i = 0; i < s->ssl_pkey_num; i++) {
1756
25.5k
                const SSL_CERT_LOOKUP *clu
1757
25.5k
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
1758
1759
25.5k
                if (clu == NULL)
1760
0
                    continue;
1761
25.5k
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1762
18.1k
                    idx = i;
1763
18.1k
                    break;
1764
18.1k
                }
1765
25.5k
            }
1766
1767
            /*
1768
             * Some GOST ciphersuites allow more than one signature algorithms
1769
             * */
1770
18.1k
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1771
0
                int real_idx;
1772
1773
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1774
0
                     real_idx--) {
1775
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1776
0
                        idx = real_idx;
1777
0
                        break;
1778
0
                    }
1779
0
                }
1780
0
            }
1781
            /*
1782
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1783
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1784
             */
1785
18.1k
            else if (idx == SSL_PKEY_GOST12_256) {
1786
0
                int real_idx;
1787
1788
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1789
0
                     real_idx--) {
1790
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
1791
0
                         idx = real_idx;
1792
0
                         break;
1793
0
                     }
1794
0
                }
1795
0
            }
1796
18.1k
        } else {
1797
0
            idx = s->cert->key - s->cert->pkeys;
1798
0
        }
1799
18.1k
    }
1800
234k
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1801
24.8k
        return NULL;
1802
1803
210k
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1804
201k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1805
1806
201k
        if (lu == NULL)
1807
126k
            return NULL;
1808
75.0k
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
1809
0
            return NULL;
1810
75.0k
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1811
0
            return NULL;
1812
75.0k
        return lu;
1813
75.0k
    }
1814
8.14k
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1815
0
        return NULL;
1816
8.14k
    return &legacy_rsa_sigalg;
1817
8.14k
}
1818
/* Set peer sigalg based key type */
1819
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
1820
1.60k
{
1821
1.60k
    size_t idx;
1822
1.60k
    const SIGALG_LOOKUP *lu;
1823
1824
1.60k
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
1825
0
        return 0;
1826
1.60k
    lu = tls1_get_legacy_sigalg(s, idx);
1827
1.60k
    if (lu == NULL)
1828
7
        return 0;
1829
1.59k
    s->s3.tmp.peer_sigalg = lu;
1830
1.59k
    return 1;
1831
1.60k
}
1832
1833
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
1834
507k
{
1835
    /*
1836
     * If Suite B mode use Suite B sigalgs only, ignore any other
1837
     * preferences.
1838
     */
1839
507k
    switch (tls1_suiteb(s)) {
1840
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
1841
0
        *psigs = suiteb_sigalgs;
1842
0
        return OSSL_NELEM(suiteb_sigalgs);
1843
1844
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1845
0
        *psigs = suiteb_sigalgs;
1846
0
        return 1;
1847
1848
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
1849
0
        *psigs = suiteb_sigalgs + 1;
1850
0
        return 1;
1851
507k
    }
1852
    /*
1853
     *  We use client_sigalgs (if not NULL) if we're a server
1854
     *  and sending a certificate request or if we're a client and
1855
     *  determining which shared algorithm to use.
1856
     */
1857
507k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1858
0
        *psigs = s->cert->client_sigalgs;
1859
0
        return s->cert->client_sigalgslen;
1860
507k
    } else if (s->cert->conf_sigalgs) {
1861
0
        *psigs = s->cert->conf_sigalgs;
1862
0
        return s->cert->conf_sigalgslen;
1863
507k
    } else {
1864
507k
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1865
507k
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1866
507k
    }
1867
507k
}
1868
1869
/*
1870
 * Called by servers only. Checks that we have a sig alg that supports the
1871
 * specified EC curve.
1872
 */
1873
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
1874
0
{
1875
0
   const uint16_t *sigs;
1876
0
   size_t siglen, i;
1877
1878
0
    if (s->cert->conf_sigalgs) {
1879
0
        sigs = s->cert->conf_sigalgs;
1880
0
        siglen = s->cert->conf_sigalgslen;
1881
0
    } else {
1882
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1883
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1884
0
    }
1885
1886
0
    for (i = 0; i < siglen; i++) {
1887
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1888
1889
0
        if (lu == NULL)
1890
0
            continue;
1891
0
        if (lu->sig == EVP_PKEY_EC
1892
0
                && lu->curve != NID_undef
1893
0
                && curve == lu->curve)
1894
0
            return 1;
1895
0
    }
1896
1897
0
    return 0;
1898
0
}
1899
1900
/*
1901
 * Return the number of security bits for the signature algorithm, or 0 on
1902
 * error.
1903
 */
1904
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1905
2.19M
{
1906
2.19M
    const EVP_MD *md = NULL;
1907
2.19M
    int secbits = 0;
1908
1909
2.19M
    if (!tls1_lookup_md(ctx, lu, &md))
1910
0
        return 0;
1911
2.19M
    if (md != NULL)
1912
1.95M
    {
1913
1.95M
        int md_type = EVP_MD_get_type(md);
1914
1915
        /* Security bits: half digest bits */
1916
1.95M
        secbits = EVP_MD_get_size(md) * 4;
1917
1.95M
        if (secbits <= 0)
1918
0
            return 0;
1919
        /*
1920
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
1921
         * they're no longer accepted at security level 1. The real values don't
1922
         * really matter as long as they're lower than 80, which is our
1923
         * security level 1.
1924
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1925
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1926
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1927
         * puts a chosen-prefix attack for MD5 at 2^39.
1928
         */
1929
1.95M
        if (md_type == NID_sha1)
1930
186k
            secbits = 64;
1931
1.77M
        else if (md_type == NID_md5_sha1)
1932
5.17k
            secbits = 67;
1933
1.76M
        else if (md_type == NID_md5)
1934
0
            secbits = 39;
1935
1.95M
    } else {
1936
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1937
235k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1938
65.7k
            secbits = 128;
1939
169k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1940
73.8k
            secbits = 224;
1941
235k
    }
1942
    /*
1943
     * For provider-based sigalgs we have secbits information available
1944
     * in the (provider-loaded) sigalg_list structure
1945
     */
1946
2.19M
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
1947
95.5k
               && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
1948
95.5k
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
1949
95.5k
    }
1950
2.19M
    return secbits;
1951
2.19M
}
1952
1953
/*
1954
 * Check signature algorithm is consistent with sent supported signature
1955
 * algorithms and if so set relevant digest and signature scheme in
1956
 * s.
1957
 */
1958
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
1959
11.4k
{
1960
11.4k
    const uint16_t *sent_sigs;
1961
11.4k
    const EVP_MD *md = NULL;
1962
11.4k
    char sigalgstr[2];
1963
11.4k
    size_t sent_sigslen, i, cidx;
1964
11.4k
    int pkeyid = -1;
1965
11.4k
    const SIGALG_LOOKUP *lu;
1966
11.4k
    int secbits = 0;
1967
1968
11.4k
    pkeyid = EVP_PKEY_get_id(pkey);
1969
1970
11.4k
    if (SSL_CONNECTION_IS_TLS13(s)) {
1971
        /* Disallow DSA for TLS 1.3 */
1972
10.0k
        if (pkeyid == EVP_PKEY_DSA) {
1973
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1974
0
            return 0;
1975
0
        }
1976
        /* Only allow PSS for TLS 1.3 */
1977
10.0k
        if (pkeyid == EVP_PKEY_RSA)
1978
10.0k
            pkeyid = EVP_PKEY_RSA_PSS;
1979
10.0k
    }
1980
11.4k
    lu = tls1_lookup_sigalg(s, sig);
1981
    /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
1982
11.4k
    if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
1983
0
        pkeyid = lu->sig;
1984
1985
    /* Should never happen */
1986
11.4k
    if (pkeyid == -1)
1987
0
        return -1;
1988
1989
    /*
1990
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1991
     * is consistent with signature: RSA keys can be used for RSA-PSS
1992
     */
1993
11.4k
    if (lu == NULL
1994
11.3k
        || (SSL_CONNECTION_IS_TLS13(s)
1995
10.0k
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1996
11.3k
        || (pkeyid != lu->sig
1997
196
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1998
106
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1999
106
        return 0;
2000
106
    }
2001
    /* Check the sigalg is consistent with the key OID */
2002
11.3k
    if (!ssl_cert_lookup_by_nid(
2003
11.3k
                 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2004
11.3k
                 &cidx, SSL_CONNECTION_GET_CTX(s))
2005
11.3k
            || lu->sig_idx != (int)cidx) {
2006
6
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2007
6
        return 0;
2008
6
    }
2009
2010
11.3k
    if (pkeyid == EVP_PKEY_EC) {
2011
2012
        /* Check point compression is permitted */
2013
205
        if (!tls1_check_pkey_comp(s, pkey)) {
2014
16
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2015
16
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
2016
16
            return 0;
2017
16
        }
2018
2019
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2020
189
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2021
0
            int curve = ssl_get_EC_curve_nid(pkey);
2022
2023
0
            if (lu->curve != NID_undef && curve != lu->curve) {
2024
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2025
0
                return 0;
2026
0
            }
2027
0
        }
2028
189
        if (!SSL_CONNECTION_IS_TLS13(s)) {
2029
            /* Check curve matches extensions */
2030
189
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2031
7
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2032
7
                return 0;
2033
7
            }
2034
182
            if (tls1_suiteb(s)) {
2035
                /* Check sigalg matches a permissible Suite B value */
2036
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2037
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2038
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2039
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
2040
0
                    return 0;
2041
0
                }
2042
0
            }
2043
182
        }
2044
11.1k
    } else if (tls1_suiteb(s)) {
2045
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2046
0
        return 0;
2047
0
    }
2048
2049
    /* Check signature matches a type we sent */
2050
11.2k
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2051
145k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2052
145k
        if (sig == *sent_sigs)
2053
11.2k
            break;
2054
145k
    }
2055
    /* Allow fallback to SHA1 if not strict mode */
2056
11.2k
    if (i == sent_sigslen && (lu->hash != NID_sha1
2057
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2058
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2059
0
        return 0;
2060
0
    }
2061
11.2k
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2062
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2063
0
        return 0;
2064
0
    }
2065
    /*
2066
     * Make sure security callback allows algorithm. For historical
2067
     * reasons we have to pass the sigalg as a two byte char array.
2068
     */
2069
11.2k
    sigalgstr[0] = (sig >> 8) & 0xff;
2070
11.2k
    sigalgstr[1] = sig & 0xff;
2071
11.2k
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2072
11.2k
    if (secbits == 0 ||
2073
11.2k
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
2074
11.2k
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
2075
11.2k
                      (void *)sigalgstr)) {
2076
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2077
0
        return 0;
2078
0
    }
2079
    /* Store the sigalg the peer uses */
2080
11.2k
    s->s3.tmp.peer_sigalg = lu;
2081
11.2k
    return 1;
2082
11.2k
}
2083
2084
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2085
0
{
2086
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2087
2088
0
    if (sc == NULL)
2089
0
        return 0;
2090
2091
0
    if (sc->s3.tmp.peer_sigalg == NULL)
2092
0
        return 0;
2093
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2094
0
    return 1;
2095
0
}
2096
2097
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2098
0
{
2099
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2100
2101
0
    if (sc == NULL)
2102
0
        return 0;
2103
2104
0
    if (sc->s3.tmp.sigalg == NULL)
2105
0
        return 0;
2106
0
    *pnid = sc->s3.tmp.sigalg->sig;
2107
0
    return 1;
2108
0
}
2109
2110
/*
2111
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2112
 * supported, doesn't appear in supported signature algorithms, isn't supported
2113
 * by the enabled protocol versions or by the security level.
2114
 *
2115
 * This function should only be used for checking which ciphers are supported
2116
 * by the client.
2117
 *
2118
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2119
 */
2120
int ssl_set_client_disabled(SSL_CONNECTION *s)
2121
334k
{
2122
334k
    s->s3.tmp.mask_a = 0;
2123
334k
    s->s3.tmp.mask_k = 0;
2124
334k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2125
334k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2126
334k
                                &s->s3.tmp.max_ver, NULL) != 0)
2127
0
        return 0;
2128
334k
#ifndef OPENSSL_NO_PSK
2129
    /* with PSK there must be client callback set */
2130
334k
    if (!s->psk_client_callback) {
2131
334k
        s->s3.tmp.mask_a |= SSL_aPSK;
2132
334k
        s->s3.tmp.mask_k |= SSL_PSK;
2133
334k
    }
2134
334k
#endif                          /* OPENSSL_NO_PSK */
2135
334k
#ifndef OPENSSL_NO_SRP
2136
334k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2137
334k
        s->s3.tmp.mask_a |= SSL_aSRP;
2138
334k
        s->s3.tmp.mask_k |= SSL_kSRP;
2139
334k
    }
2140
334k
#endif
2141
334k
    return 1;
2142
334k
}
2143
2144
/*
2145
 * ssl_cipher_disabled - check that a cipher is disabled or not
2146
 * @s: SSL connection that you want to use the cipher on
2147
 * @c: cipher to check
2148
 * @op: Security check that you want to do
2149
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2150
 *
2151
 * Returns 1 when it's disabled, 0 when enabled.
2152
 */
2153
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2154
                        int op, int ecdhe)
2155
25.2M
{
2156
25.2M
    int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2157
25.2M
    int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2158
2159
25.2M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2160
14.6M
        || c->algorithm_auth & s->s3.tmp.mask_a)
2161
10.5M
        return 1;
2162
14.6M
    if (s->s3.tmp.max_ver == 0)
2163
0
        return 1;
2164
2165
14.6M
    if (SSL_IS_QUIC_HANDSHAKE(s))
2166
        /* For QUIC, only allow these ciphersuites. */
2167
372k
        switch (SSL_CIPHER_get_id(c)) {
2168
118k
        case TLS1_3_CK_AES_128_GCM_SHA256:
2169
253k
        case TLS1_3_CK_AES_256_GCM_SHA384:
2170
372k
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2171
372k
            break;
2172
26
        default:
2173
26
            return 1;
2174
372k
        }
2175
2176
    /*
2177
     * For historical reasons we will allow ECHDE to be selected by a server
2178
     * in SSLv3 if we are a client
2179
     */
2180
14.6M
    if (minversion == TLS1_VERSION
2181
950k
            && ecdhe
2182
4.14k
            && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2183
4.13k
        minversion = SSL3_VERSION;
2184
2185
14.6M
    if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2186
14.3M
        || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2187
359k
        return 1;
2188
2189
14.3M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2190
14.6M
}
2191
2192
int tls_use_ticket(SSL_CONNECTION *s)
2193
152k
{
2194
152k
    if ((s->options & SSL_OP_NO_TICKET))
2195
0
        return 0;
2196
152k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2197
152k
}
2198
2199
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2200
26.1k
{
2201
26.1k
    size_t i;
2202
2203
    /* Clear any shared signature algorithms */
2204
26.1k
    OPENSSL_free(s->shared_sigalgs);
2205
26.1k
    s->shared_sigalgs = NULL;
2206
26.1k
    s->shared_sigalgslen = 0;
2207
2208
    /* Clear certificate validity flags */
2209
26.1k
    if (s->s3.tmp.valid_flags)
2210
110
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2211
26.0k
    else
2212
26.0k
        s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2213
26.1k
    if (s->s3.tmp.valid_flags == NULL)
2214
0
        return 0;
2215
    /*
2216
     * If peer sent no signature algorithms check to see if we support
2217
     * the default algorithm for each certificate type
2218
     */
2219
26.1k
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2220
25.4k
            && s->s3.tmp.peer_sigalgs == NULL) {
2221
19.2k
        const uint16_t *sent_sigs;
2222
19.2k
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2223
2224
217k
        for (i = 0; i < s->ssl_pkey_num; i++) {
2225
198k
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2226
198k
            size_t j;
2227
2228
198k
            if (lu == NULL)
2229
140k
                continue;
2230
            /* Check default matches a type we sent */
2231
1.29M
            for (j = 0; j < sent_sigslen; j++) {
2232
1.28M
                if (lu->sigalg == sent_sigs[j]) {
2233
53.3k
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2234
53.3k
                        break;
2235
53.3k
                }
2236
1.28M
            }
2237
57.7k
        }
2238
19.2k
        return 1;
2239
19.2k
    }
2240
2241
6.93k
    if (!tls1_process_sigalgs(s)) {
2242
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2243
0
        return 0;
2244
0
    }
2245
6.93k
    if (s->shared_sigalgs != NULL)
2246
6.83k
        return 1;
2247
2248
    /* Fatal error if no shared signature algorithms */
2249
6.93k
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2250
103
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2251
103
    return 0;
2252
6.93k
}
2253
2254
/*-
2255
 * Gets the ticket information supplied by the client if any.
2256
 *
2257
 *   hello: The parsed ClientHello data
2258
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
2259
 *       point to the resulting session.
2260
 */
2261
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2262
                                             CLIENTHELLO_MSG *hello,
2263
                                             SSL_SESSION **ret)
2264
25.9k
{
2265
25.9k
    size_t size;
2266
25.9k
    RAW_EXTENSION *ticketext;
2267
2268
25.9k
    *ret = NULL;
2269
25.9k
    s->ext.ticket_expected = 0;
2270
2271
    /*
2272
     * If tickets disabled or not supported by the protocol version
2273
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
2274
     * resumption.
2275
     */
2276
25.9k
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
2277
0
        return SSL_TICKET_NONE;
2278
2279
25.9k
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
2280
25.9k
    if (!ticketext->present)
2281
20.0k
        return SSL_TICKET_NONE;
2282
2283
5.91k
    size = PACKET_remaining(&ticketext->data);
2284
2285
5.91k
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
2286
5.91k
                              hello->session_id, hello->session_id_len, ret);
2287
25.9k
}
2288
2289
/*-
2290
 * tls_decrypt_ticket attempts to decrypt a session ticket.
2291
 *
2292
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
2293
 * expecting a pre-shared key ciphersuite, in which case we have no use for
2294
 * session tickets and one will never be decrypted, nor will
2295
 * s->ext.ticket_expected be set to 1.
2296
 *
2297
 * Side effects:
2298
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
2299
 *   a new session ticket to the client because the client indicated support
2300
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2301
 *   a session ticket or we couldn't use the one it gave us, or if
2302
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
2303
 *   Otherwise, s->ext.ticket_expected is set to 0.
2304
 *
2305
 *   etick: points to the body of the session ticket extension.
2306
 *   eticklen: the length of the session tickets extension.
2307
 *   sess_id: points at the session ID.
2308
 *   sesslen: the length of the session ID.
2309
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
2310
 *       point to the resulting session.
2311
 */
2312
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
2313
                                     const unsigned char *etick,
2314
                                     size_t eticklen,
2315
                                     const unsigned char *sess_id,
2316
                                     size_t sesslen, SSL_SESSION **psess)
2317
6.81k
{
2318
6.81k
    SSL_SESSION *sess = NULL;
2319
6.81k
    unsigned char *sdec;
2320
6.81k
    const unsigned char *p;
2321
6.81k
    int slen, ivlen, renew_ticket = 0, declen;
2322
6.81k
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
2323
6.81k
    size_t mlen;
2324
6.81k
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
2325
6.81k
    SSL_HMAC *hctx = NULL;
2326
6.81k
    EVP_CIPHER_CTX *ctx = NULL;
2327
6.81k
    SSL_CTX *tctx = s->session_ctx;
2328
6.81k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
2329
2330
6.81k
    if (eticklen == 0) {
2331
        /*
2332
         * The client will accept a ticket but doesn't currently have
2333
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
2334
         */
2335
3.82k
        ret = SSL_TICKET_EMPTY;
2336
3.82k
        goto end;
2337
3.82k
    }
2338
2.98k
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
2339
        /*
2340
         * Indicate that the ticket couldn't be decrypted rather than
2341
         * generating the session from ticket now, trigger
2342
         * abbreviated handshake based on external mechanism to
2343
         * calculate the master secret later.
2344
         */
2345
0
        ret = SSL_TICKET_NO_DECRYPT;
2346
0
        goto end;
2347
0
    }
2348
2349
    /* Need at least keyname + iv */
2350
2.98k
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
2351
1.09k
        ret = SSL_TICKET_NO_DECRYPT;
2352
1.09k
        goto end;
2353
1.09k
    }
2354
2355
    /* Initialize session ticket encryption and HMAC contexts */
2356
1.89k
    hctx = ssl_hmac_new(tctx);
2357
1.89k
    if (hctx == NULL) {
2358
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2359
0
        goto end;
2360
0
    }
2361
1.89k
    ctx = EVP_CIPHER_CTX_new();
2362
1.89k
    if (ctx == NULL) {
2363
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
2364
0
        goto end;
2365
0
    }
2366
1.89k
#ifndef OPENSSL_NO_DEPRECATED_3_0
2367
1.89k
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
2368
#else
2369
    if (tctx->ext.ticket_key_evp_cb != NULL)
2370
#endif
2371
0
    {
2372
0
        unsigned char *nctick = (unsigned char *)etick;
2373
0
        int rv = 0;
2374
2375
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
2376
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
2377
0
                                             nctick,
2378
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
2379
0
                                             ctx,
2380
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
2381
0
                                             0);
2382
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
2383
0
        else if (tctx->ext.ticket_key_cb != NULL)
2384
            /* if 0 is returned, write an empty ticket */
2385
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
2386
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
2387
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
2388
0
#endif
2389
0
        if (rv < 0) {
2390
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2391
0
            goto end;
2392
0
        }
2393
0
        if (rv == 0) {
2394
0
            ret = SSL_TICKET_NO_DECRYPT;
2395
0
            goto end;
2396
0
        }
2397
0
        if (rv == 2)
2398
0
            renew_ticket = 1;
2399
1.89k
    } else {
2400
1.89k
        EVP_CIPHER *aes256cbc = NULL;
2401
2402
        /* Check key name matches */
2403
1.89k
        if (memcmp(etick, tctx->ext.tick_key_name,
2404
1.89k
                   TLSEXT_KEYNAME_LENGTH) != 0) {
2405
569
            ret = SSL_TICKET_NO_DECRYPT;
2406
569
            goto end;
2407
569
        }
2408
2409
1.32k
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
2410
1.32k
                                     sctx->propq);
2411
1.32k
        if (aes256cbc == NULL
2412
1.32k
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
2413
1.32k
                             sizeof(tctx->ext.secure->tick_hmac_key),
2414
1.32k
                             "SHA256") <= 0
2415
1.32k
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
2416
1.32k
                                  tctx->ext.secure->tick_aes_key,
2417
1.32k
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
2418
0
            EVP_CIPHER_free(aes256cbc);
2419
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2420
0
            goto end;
2421
0
        }
2422
1.32k
        EVP_CIPHER_free(aes256cbc);
2423
1.32k
        if (SSL_CONNECTION_IS_TLS13(s))
2424
573
            renew_ticket = 1;
2425
1.32k
    }
2426
    /*
2427
     * Attempt to process session ticket, first conduct sanity and integrity
2428
     * checks on ticket.
2429
     */
2430
1.32k
    mlen = ssl_hmac_size(hctx);
2431
1.32k
    if (mlen == 0) {
2432
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2433
0
        goto end;
2434
0
    }
2435
2436
1.32k
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
2437
1.32k
    if (ivlen < 0) {
2438
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2439
0
        goto end;
2440
0
    }
2441
2442
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
2443
1.32k
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
2444
155
        ret = SSL_TICKET_NO_DECRYPT;
2445
155
        goto end;
2446
155
    }
2447
1.17k
    eticklen -= mlen;
2448
    /* Check HMAC of encrypted ticket */
2449
1.17k
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
2450
1.17k
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
2451
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2452
0
        goto end;
2453
0
    }
2454
2455
1.17k
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2456
200
        ret = SSL_TICKET_NO_DECRYPT;
2457
200
        goto end;
2458
200
    }
2459
    /* Attempt to decrypt session data */
2460
    /* Move p after IV to start of encrypted ticket, update length */
2461
972
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
2462
972
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
2463
972
    sdec = OPENSSL_malloc(eticklen);
2464
972
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
2465
972
                                          (int)eticklen) <= 0) {
2466
0
        OPENSSL_free(sdec);
2467
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
2468
0
        goto end;
2469
0
    }
2470
972
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
2471
76
        OPENSSL_free(sdec);
2472
76
        ret = SSL_TICKET_NO_DECRYPT;
2473
76
        goto end;
2474
76
    }
2475
896
    slen += declen;
2476
896
    p = sdec;
2477
2478
896
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
2479
896
    slen -= p - sdec;
2480
896
    OPENSSL_free(sdec);
2481
896
    if (sess) {
2482
        /* Some additional consistency checks */
2483
728
        if (slen != 0) {
2484
12
            SSL_SESSION_free(sess);
2485
12
            sess = NULL;
2486
12
            ret = SSL_TICKET_NO_DECRYPT;
2487
12
            goto end;
2488
12
        }
2489
        /*
2490
         * The session ID, if non-empty, is used by some clients to detect
2491
         * that the ticket has been accepted. So we copy it to the session
2492
         * structure. If it is empty set length to zero as required by
2493
         * standard.
2494
         */
2495
716
        if (sesslen) {
2496
274
            memcpy(sess->session_id, sess_id, sesslen);
2497
274
            sess->session_id_length = sesslen;
2498
274
        }
2499
716
        if (renew_ticket)
2500
422
            ret = SSL_TICKET_SUCCESS_RENEW;
2501
294
        else
2502
294
            ret = SSL_TICKET_SUCCESS;
2503
716
        goto end;
2504
728
    }
2505
168
    ERR_clear_error();
2506
    /*
2507
     * For session parse failure, indicate that we need to send a new ticket.
2508
     */
2509
168
    ret = SSL_TICKET_NO_DECRYPT;
2510
2511
6.81k
 end:
2512
6.81k
    EVP_CIPHER_CTX_free(ctx);
2513
6.81k
    ssl_hmac_free(hctx);
2514
2515
    /*
2516
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
2517
     * detected above. The callback is responsible for checking |ret| before it
2518
     * performs any action
2519
     */
2520
6.81k
    if (s->session_ctx->decrypt_ticket_cb != NULL
2521
0
            && (ret == SSL_TICKET_EMPTY
2522
0
                || ret == SSL_TICKET_NO_DECRYPT
2523
0
                || ret == SSL_TICKET_SUCCESS
2524
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
2525
0
        size_t keyname_len = eticklen;
2526
0
        int retcb;
2527
2528
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2529
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
2530
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
2531
0
                                                  sess, etick, keyname_len,
2532
0
                                                  ret,
2533
0
                                                  s->session_ctx->ticket_cb_data);
2534
0
        switch (retcb) {
2535
0
        case SSL_TICKET_RETURN_ABORT:
2536
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2537
0
            break;
2538
2539
0
        case SSL_TICKET_RETURN_IGNORE:
2540
0
            ret = SSL_TICKET_NONE;
2541
0
            SSL_SESSION_free(sess);
2542
0
            sess = NULL;
2543
0
            break;
2544
2545
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
2546
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2547
0
                ret = SSL_TICKET_NO_DECRYPT;
2548
            /* else the value of |ret| will already do the right thing */
2549
0
            SSL_SESSION_free(sess);
2550
0
            sess = NULL;
2551
0
            break;
2552
2553
0
        case SSL_TICKET_RETURN_USE:
2554
0
        case SSL_TICKET_RETURN_USE_RENEW:
2555
0
            if (ret != SSL_TICKET_SUCCESS
2556
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
2557
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
2558
0
            else if (retcb == SSL_TICKET_RETURN_USE)
2559
0
                ret = SSL_TICKET_SUCCESS;
2560
0
            else
2561
0
                ret = SSL_TICKET_SUCCESS_RENEW;
2562
0
            break;
2563
2564
0
        default:
2565
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2566
0
        }
2567
0
    }
2568
2569
6.81k
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
2570
6.81k
        switch (ret) {
2571
2.27k
        case SSL_TICKET_NO_DECRYPT:
2572
2.69k
        case SSL_TICKET_SUCCESS_RENEW:
2573
6.51k
        case SSL_TICKET_EMPTY:
2574
6.51k
            s->ext.ticket_expected = 1;
2575
6.81k
        }
2576
6.81k
    }
2577
2578
6.81k
    *psess = sess;
2579
2580
6.81k
    return ret;
2581
6.81k
}
2582
2583
/* Check to see if a signature algorithm is allowed */
2584
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
2585
                                const SIGALG_LOOKUP *lu)
2586
4.45M
{
2587
4.45M
    unsigned char sigalgstr[2];
2588
4.45M
    int secbits;
2589
2590
4.45M
    if (lu == NULL || !lu->enabled)
2591
0
        return 0;
2592
    /* DSA is not allowed in TLS 1.3 */
2593
4.45M
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2594
8.28k
        return 0;
2595
    /*
2596
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2597
     * spec
2598
     */
2599
4.44M
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
2600
3.47M
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
2601
1.89M
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2602
1.17M
            || lu->hash_idx == SSL_MD_MD5_IDX
2603
1.17M
            || lu->hash_idx == SSL_MD_SHA224_IDX))
2604
781k
        return 0;
2605
2606
    /* See if public key algorithm allowed */
2607
3.66M
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
2608
0
        return 0;
2609
2610
3.66M
    if (lu->sig == NID_id_GostR3410_2012_256
2611
3.66M
            || lu->sig == NID_id_GostR3410_2012_512
2612
3.66M
            || lu->sig == NID_id_GostR3410_2001) {
2613
        /* We never allow GOST sig algs on the server with TLSv1.3 */
2614
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
2615
0
            return 0;
2616
0
        if (!s->server
2617
0
                && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
2618
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2619
0
            int i, num;
2620
0
            STACK_OF(SSL_CIPHER) *sk;
2621
2622
            /*
2623
             * We're a client that could negotiate TLSv1.3. We only allow GOST
2624
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2625
             * ciphersuites enabled.
2626
             */
2627
2628
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2629
0
                return 0;
2630
2631
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
2632
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2633
0
            for (i = 0; i < num; i++) {
2634
0
                const SSL_CIPHER *c;
2635
2636
0
                c = sk_SSL_CIPHER_value(sk, i);
2637
                /* Skip disabled ciphers */
2638
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2639
0
                    continue;
2640
2641
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2642
0
                    break;
2643
0
            }
2644
0
            if (i == num)
2645
0
                return 0;
2646
0
        }
2647
0
    }
2648
2649
    /* Finally see if security callback allows it */
2650
3.66M
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2651
3.66M
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2652
3.66M
    sigalgstr[1] = lu->sigalg & 0xff;
2653
3.66M
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2654
3.66M
}
2655
2656
/*
2657
 * Get a mask of disabled public key algorithms based on supported signature
2658
 * algorithms. For example if no signature algorithm supports RSA then RSA is
2659
 * disabled.
2660
 */
2661
2662
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
2663
334k
{
2664
334k
    const uint16_t *sigalgs;
2665
334k
    size_t i, sigalgslen;
2666
334k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2667
    /*
2668
     * Go through all signature algorithms seeing if we support any
2669
     * in disabled_mask.
2670
     */
2671
334k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2672
10.2M
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
2673
9.93M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2674
9.93M
        const SSL_CERT_LOOKUP *clu;
2675
2676
9.93M
        if (lu == NULL)
2677
1.02M
            continue;
2678
2679
8.91M
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
2680
8.91M
                                     SSL_CONNECTION_GET_CTX(s));
2681
8.91M
        if (clu == NULL)
2682
0
                continue;
2683
2684
        /* If algorithm is disabled see if we can enable it */
2685
8.91M
        if ((clu->amask & disabled_mask) != 0
2686
1.40M
                && tls12_sigalg_allowed(s, op, lu))
2687
901k
            disabled_mask &= ~clu->amask;
2688
8.91M
    }
2689
334k
    *pmask_a |= disabled_mask;
2690
334k
}
2691
2692
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
2693
                       const uint16_t *psig, size_t psiglen)
2694
110k
{
2695
110k
    size_t i;
2696
110k
    int rv = 0;
2697
2698
3.40M
    for (i = 0; i < psiglen; i++, psig++) {
2699
3.29M
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2700
2701
3.29M
        if (lu == NULL
2702
2.95M
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2703
823k
            continue;
2704
2.46M
        if (!WPACKET_put_bytes_u16(pkt, *psig))
2705
0
            return 0;
2706
        /*
2707
         * If TLS 1.3 must have at least one valid TLS 1.3 message
2708
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2709
         */
2710
2.46M
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
2711
0
            || (lu->sig != EVP_PKEY_RSA
2712
0
                && lu->hash != NID_sha1
2713
0
                && lu->hash != NID_sha224)))
2714
110k
            rv = 1;
2715
2.46M
    }
2716
110k
    if (rv == 0)
2717
110k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2718
110k
    return rv;
2719
110k
}
2720
2721
/* Given preference and allowed sigalgs set shared sigalgs */
2722
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
2723
                                   const SIGALG_LOOKUP **shsig,
2724
                                   const uint16_t *pref, size_t preflen,
2725
                                   const uint16_t *allow, size_t allowlen)
2726
17.0k
{
2727
17.0k
    const uint16_t *ptmp, *atmp;
2728
17.0k
    size_t i, j, nmatch = 0;
2729
458k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2730
441k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2731
2732
        /* Skip disabled hashes or signature algorithms */
2733
441k
        if (lu == NULL
2734
195k
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2735
254k
            continue;
2736
2.89M
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2737
2.89M
            if (*ptmp == *atmp) {
2738
187k
                nmatch++;
2739
187k
                if (shsig)
2740
93.7k
                    *shsig++ = lu;
2741
187k
                break;
2742
187k
            }
2743
2.89M
        }
2744
187k
    }
2745
17.0k
    return nmatch;
2746
17.0k
}
2747
2748
/* Set shared signature algorithms for SSL structures */
2749
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
2750
8.60k
{
2751
8.60k
    const uint16_t *pref, *allow, *conf;
2752
8.60k
    size_t preflen, allowlen, conflen;
2753
8.60k
    size_t nmatch;
2754
8.60k
    const SIGALG_LOOKUP **salgs = NULL;
2755
8.60k
    CERT *c = s->cert;
2756
8.60k
    unsigned int is_suiteb = tls1_suiteb(s);
2757
2758
8.60k
    OPENSSL_free(s->shared_sigalgs);
2759
8.60k
    s->shared_sigalgs = NULL;
2760
8.60k
    s->shared_sigalgslen = 0;
2761
    /* If client use client signature algorithms if not NULL */
2762
8.60k
    if (!s->server && c->client_sigalgs && !is_suiteb) {
2763
0
        conf = c->client_sigalgs;
2764
0
        conflen = c->client_sigalgslen;
2765
8.60k
    } else if (c->conf_sigalgs && !is_suiteb) {
2766
0
        conf = c->conf_sigalgs;
2767
0
        conflen = c->conf_sigalgslen;
2768
0
    } else
2769
8.60k
        conflen = tls12_get_psigalgs(s, 0, &conf);
2770
8.60k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2771
0
        pref = conf;
2772
0
        preflen = conflen;
2773
0
        allow = s->s3.tmp.peer_sigalgs;
2774
0
        allowlen = s->s3.tmp.peer_sigalgslen;
2775
8.60k
    } else {
2776
8.60k
        allow = conf;
2777
8.60k
        allowlen = conflen;
2778
8.60k
        pref = s->s3.tmp.peer_sigalgs;
2779
8.60k
        preflen = s->s3.tmp.peer_sigalgslen;
2780
8.60k
    }
2781
8.60k
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2782
8.60k
    if (nmatch) {
2783
8.40k
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
2784
0
            return 0;
2785
8.40k
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2786
8.40k
    } else {
2787
201
        salgs = NULL;
2788
201
    }
2789
8.60k
    s->shared_sigalgs = salgs;
2790
8.60k
    s->shared_sigalgslen = nmatch;
2791
8.60k
    return 1;
2792
8.60k
}
2793
2794
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2795
27.9k
{
2796
27.9k
    unsigned int stmp;
2797
27.9k
    size_t size, i;
2798
27.9k
    uint16_t *buf;
2799
2800
27.9k
    size = PACKET_remaining(pkt);
2801
2802
    /* Invalid data length */
2803
27.9k
    if (size == 0 || (size & 1) != 0)
2804
64
        return 0;
2805
2806
27.8k
    size >>= 1;
2807
2808
27.8k
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
2809
0
        return 0;
2810
318k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2811
290k
        buf[i] = stmp;
2812
2813
27.8k
    if (i != size) {
2814
0
        OPENSSL_free(buf);
2815
0
        return 0;
2816
0
    }
2817
2818
27.8k
    OPENSSL_free(*pdest);
2819
27.8k
    *pdest = buf;
2820
27.8k
    *pdestlen = size;
2821
2822
27.8k
    return 1;
2823
27.8k
}
2824
2825
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
2826
10.5k
{
2827
    /* Extension ignored for inappropriate versions */
2828
10.5k
    if (!SSL_USE_SIGALGS(s))
2829
287
        return 1;
2830
    /* Should never happen */
2831
10.3k
    if (s->cert == NULL)
2832
0
        return 0;
2833
2834
10.3k
    if (cert)
2835
1.01k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2836
1.01k
                             &s->s3.tmp.peer_cert_sigalgslen);
2837
9.28k
    else
2838
9.28k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2839
9.28k
                             &s->s3.tmp.peer_sigalgslen);
2840
2841
10.3k
}
2842
2843
/* Set preferred digest for each key type */
2844
2845
int tls1_process_sigalgs(SSL_CONNECTION *s)
2846
8.60k
{
2847
8.60k
    size_t i;
2848
8.60k
    uint32_t *pvalid = s->s3.tmp.valid_flags;
2849
2850
8.60k
    if (!tls1_set_shared_sigalgs(s))
2851
0
        return 0;
2852
2853
96.8k
    for (i = 0; i < s->ssl_pkey_num; i++)
2854
88.2k
        pvalid[i] = 0;
2855
2856
102k
    for (i = 0; i < s->shared_sigalgslen; i++) {
2857
93.7k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2858
93.7k
        int idx = sigptr->sig_idx;
2859
2860
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
2861
93.7k
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2862
2.44k
            continue;
2863
        /* If not disabled indicate we can explicitly sign */
2864
91.3k
        if (pvalid[idx] == 0
2865
15.8k
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
2866
15.8k
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2867
91.3k
    }
2868
8.60k
    return 1;
2869
8.60k
}
2870
2871
int SSL_get_sigalgs(SSL *s, int idx,
2872
                    int *psign, int *phash, int *psignhash,
2873
                    unsigned char *rsig, unsigned char *rhash)
2874
0
{
2875
0
    uint16_t *psig;
2876
0
    size_t numsigalgs;
2877
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2878
2879
0
    if (sc == NULL)
2880
0
        return 0;
2881
2882
0
    psig = sc->s3.tmp.peer_sigalgs;
2883
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
2884
2885
0
    if (psig == NULL || numsigalgs > INT_MAX)
2886
0
        return 0;
2887
0
    if (idx >= 0) {
2888
0
        const SIGALG_LOOKUP *lu;
2889
2890
0
        if (idx >= (int)numsigalgs)
2891
0
            return 0;
2892
0
        psig += idx;
2893
0
        if (rhash != NULL)
2894
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
2895
0
        if (rsig != NULL)
2896
0
            *rsig = (unsigned char)(*psig & 0xff);
2897
0
        lu = tls1_lookup_sigalg(sc, *psig);
2898
0
        if (psign != NULL)
2899
0
            *psign = lu != NULL ? lu->sig : NID_undef;
2900
0
        if (phash != NULL)
2901
0
            *phash = lu != NULL ? lu->hash : NID_undef;
2902
0
        if (psignhash != NULL)
2903
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2904
0
    }
2905
0
    return (int)numsigalgs;
2906
0
}
2907
2908
int SSL_get_shared_sigalgs(SSL *s, int idx,
2909
                           int *psign, int *phash, int *psignhash,
2910
                           unsigned char *rsig, unsigned char *rhash)
2911
0
{
2912
0
    const SIGALG_LOOKUP *shsigalgs;
2913
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2914
2915
0
    if (sc == NULL)
2916
0
        return 0;
2917
2918
0
    if (sc->shared_sigalgs == NULL
2919
0
        || idx < 0
2920
0
        || idx >= (int)sc->shared_sigalgslen
2921
0
        || sc->shared_sigalgslen > INT_MAX)
2922
0
        return 0;
2923
0
    shsigalgs = sc->shared_sigalgs[idx];
2924
0
    if (phash != NULL)
2925
0
        *phash = shsigalgs->hash;
2926
0
    if (psign != NULL)
2927
0
        *psign = shsigalgs->sig;
2928
0
    if (psignhash != NULL)
2929
0
        *psignhash = shsigalgs->sigandhash;
2930
0
    if (rsig != NULL)
2931
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2932
0
    if (rhash != NULL)
2933
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2934
0
    return (int)sc->shared_sigalgslen;
2935
0
}
2936
2937
/* Maximum possible number of unique entries in sigalgs array */
2938
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2939
2940
typedef struct {
2941
    size_t sigalgcnt;
2942
    /* TLSEXT_SIGALG_XXX values */
2943
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2944
    SSL_CTX *ctx;
2945
} sig_cb_st;
2946
2947
static void get_sigorhash(int *psig, int *phash, const char *str)
2948
0
{
2949
0
    if (strcmp(str, "RSA") == 0) {
2950
0
        *psig = EVP_PKEY_RSA;
2951
0
    } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2952
0
        *psig = EVP_PKEY_RSA_PSS;
2953
0
    } else if (strcmp(str, "DSA") == 0) {
2954
0
        *psig = EVP_PKEY_DSA;
2955
0
    } else if (strcmp(str, "ECDSA") == 0) {
2956
0
        *psig = EVP_PKEY_EC;
2957
0
    } else {
2958
0
        *phash = OBJ_sn2nid(str);
2959
0
        if (*phash == NID_undef)
2960
0
            *phash = OBJ_ln2nid(str);
2961
0
    }
2962
0
}
2963
/* Maximum length of a signature algorithm string component */
2964
#define TLS_MAX_SIGSTRING_LEN   40
2965
2966
static int sig_cb(const char *elem, int len, void *arg)
2967
0
{
2968
0
    sig_cb_st *sarg = arg;
2969
0
    size_t i = 0;
2970
0
    const SIGALG_LOOKUP *s;
2971
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2972
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
2973
0
    int ignore_unknown = 0;
2974
2975
0
    if (elem == NULL)
2976
0
        return 0;
2977
0
    if (elem[0] == '?') {
2978
0
        ignore_unknown = 1;
2979
0
        ++elem;
2980
0
        --len;
2981
0
    }
2982
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2983
0
        return 0;
2984
0
    if (len > (int)(sizeof(etmp) - 1))
2985
0
        return 0;
2986
0
    memcpy(etmp, elem, len);
2987
0
    etmp[len] = 0;
2988
0
    p = strchr(etmp, '+');
2989
    /*
2990
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2991
     * if there's no '+' in the provided name, look for the new-style combined
2992
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2993
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2994
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
2995
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
2996
     * in the table.
2997
     */
2998
0
    if (p == NULL) {
2999
        /* Load provider sigalgs */
3000
0
        if (sarg->ctx != NULL) {
3001
            /* Check if a provider supports the sigalg */
3002
0
            for (i = 0; i < sarg->ctx->sigalg_list_len; i++) {
3003
0
                if (sarg->ctx->sigalg_list[i].sigalg_name != NULL
3004
0
                    && strcmp(etmp,
3005
0
                              sarg->ctx->sigalg_list[i].sigalg_name) == 0) {
3006
0
                    sarg->sigalgs[sarg->sigalgcnt++] =
3007
0
                        sarg->ctx->sigalg_list[i].code_point;
3008
0
                    break;
3009
0
                }
3010
0
            }
3011
0
        }
3012
        /* Check the built-in sigalgs */
3013
0
        if (sarg->ctx == NULL || i == sarg->ctx->sigalg_list_len) {
3014
0
            for (i = 0, s = sigalg_lookup_tbl;
3015
0
                 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3016
0
                if (s->name != NULL && strcmp(etmp, s->name) == 0) {
3017
0
                    sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3018
0
                    break;
3019
0
                }
3020
0
            }
3021
0
            if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
3022
                /* Ignore unknown algorithms if ignore_unknown */
3023
0
                return ignore_unknown;
3024
0
            }
3025
0
        }
3026
0
    } else {
3027
0
        *p = 0;
3028
0
        p++;
3029
0
        if (*p == 0)
3030
0
            return 0;
3031
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
3032
0
        get_sigorhash(&sig_alg, &hash_alg, p);
3033
0
        if (sig_alg == NID_undef || hash_alg == NID_undef) {
3034
            /* Ignore unknown algorithms if ignore_unknown */
3035
0
            return ignore_unknown;
3036
0
        }
3037
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
3038
0
             i++, s++) {
3039
0
            if (s->hash == hash_alg && s->sig == sig_alg) {
3040
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3041
0
                break;
3042
0
            }
3043
0
        }
3044
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
3045
            /* Ignore unknown algorithms if ignore_unknown */
3046
0
            return ignore_unknown;
3047
0
        }
3048
0
    }
3049
3050
    /* Ignore duplicates */
3051
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3052
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3053
0
            sarg->sigalgcnt--;
3054
0
            return 1;
3055
0
        }
3056
0
    }
3057
0
    return 1;
3058
0
}
3059
3060
/*
3061
 * Set supported signature algorithms based on a colon separated list of the
3062
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3063
 */
3064
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3065
0
{
3066
0
    sig_cb_st sig;
3067
0
    sig.sigalgcnt = 0;
3068
3069
0
    if (ctx != NULL)
3070
0
        sig.ctx = ctx;
3071
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3072
0
        return 0;
3073
0
    if (sig.sigalgcnt == 0) {
3074
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3075
0
                       "No valid signature algorithms in '%s'", str);
3076
0
        return 0;
3077
0
    }
3078
0
    if (c == NULL)
3079
0
        return 1;
3080
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3081
0
}
3082
3083
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3084
                     int client)
3085
0
{
3086
0
    uint16_t *sigalgs;
3087
3088
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3089
0
        return 0;
3090
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3091
3092
0
    if (client) {
3093
0
        OPENSSL_free(c->client_sigalgs);
3094
0
        c->client_sigalgs = sigalgs;
3095
0
        c->client_sigalgslen = salglen;
3096
0
    } else {
3097
0
        OPENSSL_free(c->conf_sigalgs);
3098
0
        c->conf_sigalgs = sigalgs;
3099
0
        c->conf_sigalgslen = salglen;
3100
0
    }
3101
3102
0
    return 1;
3103
0
}
3104
3105
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3106
0
{
3107
0
    uint16_t *sigalgs, *sptr;
3108
0
    size_t i;
3109
3110
0
    if (salglen & 1)
3111
0
        return 0;
3112
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3113
0
        return 0;
3114
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3115
0
        size_t j;
3116
0
        const SIGALG_LOOKUP *curr;
3117
0
        int md_id = *psig_nids++;
3118
0
        int sig_id = *psig_nids++;
3119
3120
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3121
0
             j++, curr++) {
3122
0
            if (curr->hash == md_id && curr->sig == sig_id) {
3123
0
                *sptr++ = curr->sigalg;
3124
0
                break;
3125
0
            }
3126
0
        }
3127
3128
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3129
0
            goto err;
3130
0
    }
3131
3132
0
    if (client) {
3133
0
        OPENSSL_free(c->client_sigalgs);
3134
0
        c->client_sigalgs = sigalgs;
3135
0
        c->client_sigalgslen = salglen / 2;
3136
0
    } else {
3137
0
        OPENSSL_free(c->conf_sigalgs);
3138
0
        c->conf_sigalgs = sigalgs;
3139
0
        c->conf_sigalgslen = salglen / 2;
3140
0
    }
3141
3142
0
    return 1;
3143
3144
0
 err:
3145
0
    OPENSSL_free(sigalgs);
3146
0
    return 0;
3147
0
}
3148
3149
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3150
0
{
3151
0
    int sig_nid, use_pc_sigalgs = 0;
3152
0
    size_t i;
3153
0
    const SIGALG_LOOKUP *sigalg;
3154
0
    size_t sigalgslen;
3155
3156
0
    if (default_nid == -1)
3157
0
        return 1;
3158
0
    sig_nid = X509_get_signature_nid(x);
3159
0
    if (default_nid)
3160
0
        return sig_nid == default_nid ? 1 : 0;
3161
3162
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3163
        /*
3164
         * If we're in TLSv1.3 then we only get here if we're checking the
3165
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3166
         * otherwise we default to normal sigalgs.
3167
         */
3168
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3169
0
        use_pc_sigalgs = 1;
3170
0
    } else {
3171
0
        sigalgslen = s->shared_sigalgslen;
3172
0
    }
3173
0
    for (i = 0; i < sigalgslen; i++) {
3174
0
        sigalg = use_pc_sigalgs
3175
0
                 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
3176
0
                 : s->shared_sigalgs[i];
3177
0
        if (sigalg != NULL && sig_nid == sigalg->sigandhash)
3178
0
            return 1;
3179
0
    }
3180
0
    return 0;
3181
0
}
3182
3183
/* Check to see if a certificate issuer name matches list of CA names */
3184
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3185
0
{
3186
0
    const X509_NAME *nm;
3187
0
    int i;
3188
0
    nm = X509_get_issuer_name(x);
3189
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
3190
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3191
0
            return 1;
3192
0
    }
3193
0
    return 0;
3194
0
}
3195
3196
/*
3197
 * Check certificate chain is consistent with TLS extensions and is usable by
3198
 * server. This servers two purposes: it allows users to check chains before
3199
 * passing them to the server and it allows the server to check chains before
3200
 * attempting to use them.
3201
 */
3202
3203
/* Flags which need to be set for a certificate when strict mode not set */
3204
3205
#define CERT_PKEY_VALID_FLAGS \
3206
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3207
/* Strict mode flags */
3208
#define CERT_PKEY_STRICT_FLAGS \
3209
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3210
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3211
3212
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3213
                     STACK_OF(X509) *chain, int idx)
3214
207k
{
3215
207k
    int i;
3216
207k
    int rv = 0;
3217
207k
    int check_flags = 0, strict_mode;
3218
207k
    CERT_PKEY *cpk = NULL;
3219
207k
    CERT *c = s->cert;
3220
207k
    uint32_t *pvalid;
3221
207k
    unsigned int suiteb_flags = tls1_suiteb(s);
3222
3223
    /*
3224
     * Meaning of idx:
3225
     * idx == -1 means SSL_check_chain() invocation
3226
     * idx == -2 means checking client certificate chains
3227
     * idx >= 0 means checking SSL_PKEY index
3228
     *
3229
     * For RPK, where there may be no cert, we ignore -1
3230
     */
3231
207k
    if (idx != -1) {
3232
207k
        if (idx == -2) {
3233
0
            cpk = c->key;
3234
0
            idx = (int)(cpk - c->pkeys);
3235
0
        } else
3236
207k
            cpk = c->pkeys + idx;
3237
207k
        pvalid = s->s3.tmp.valid_flags + idx;
3238
207k
        x = cpk->x509;
3239
207k
        pk = cpk->privatekey;
3240
207k
        chain = cpk->chain;
3241
207k
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3242
207k
        if (tls12_rpk_and_privkey(s, idx)) {
3243
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
3244
0
                return 0;
3245
0
            *pvalid = rv = CERT_PKEY_RPK;
3246
0
            return rv;
3247
0
        }
3248
        /* If no cert or key, forget it */
3249
207k
        if (x == NULL || pk == NULL)
3250
138k
            goto end;
3251
207k
    } else {
3252
0
        size_t certidx;
3253
3254
0
        if (x == NULL || pk == NULL)
3255
0
            return 0;
3256
3257
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
3258
0
                                    SSL_CONNECTION_GET_CTX(s)) == NULL)
3259
0
            return 0;
3260
0
        idx = certidx;
3261
0
        pvalid = s->s3.tmp.valid_flags + idx;
3262
3263
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3264
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
3265
0
        else
3266
0
            check_flags = CERT_PKEY_VALID_FLAGS;
3267
0
        strict_mode = 1;
3268
0
    }
3269
3270
69.0k
    if (suiteb_flags) {
3271
0
        int ok;
3272
0
        if (check_flags)
3273
0
            check_flags |= CERT_PKEY_SUITEB;
3274
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3275
0
        if (ok == X509_V_OK)
3276
0
            rv |= CERT_PKEY_SUITEB;
3277
0
        else if (!check_flags)
3278
0
            goto end;
3279
0
    }
3280
3281
    /*
3282
     * Check all signature algorithms are consistent with signature
3283
     * algorithms extension if TLS 1.2 or later and strict mode.
3284
     */
3285
69.0k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
3286
32.2k
        && strict_mode) {
3287
0
        int default_nid;
3288
0
        int rsign = 0;
3289
3290
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
3291
0
                || s->s3.tmp.peer_sigalgs != NULL) {
3292
0
            default_nid = 0;
3293
        /* If no sigalgs extension use defaults from RFC5246 */
3294
0
        } else {
3295
0
            switch (idx) {
3296
0
            case SSL_PKEY_RSA:
3297
0
                rsign = EVP_PKEY_RSA;
3298
0
                default_nid = NID_sha1WithRSAEncryption;
3299
0
                break;
3300
3301
0
            case SSL_PKEY_DSA_SIGN:
3302
0
                rsign = EVP_PKEY_DSA;
3303
0
                default_nid = NID_dsaWithSHA1;
3304
0
                break;
3305
3306
0
            case SSL_PKEY_ECC:
3307
0
                rsign = EVP_PKEY_EC;
3308
0
                default_nid = NID_ecdsa_with_SHA1;
3309
0
                break;
3310
3311
0
            case SSL_PKEY_GOST01:
3312
0
                rsign = NID_id_GostR3410_2001;
3313
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
3314
0
                break;
3315
3316
0
            case SSL_PKEY_GOST12_256:
3317
0
                rsign = NID_id_GostR3410_2012_256;
3318
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
3319
0
                break;
3320
3321
0
            case SSL_PKEY_GOST12_512:
3322
0
                rsign = NID_id_GostR3410_2012_512;
3323
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
3324
0
                break;
3325
3326
0
            default:
3327
0
                default_nid = -1;
3328
0
                break;
3329
0
            }
3330
0
        }
3331
        /*
3332
         * If peer sent no signature algorithms extension and we have set
3333
         * preferred signature algorithms check we support sha1.
3334
         */
3335
0
        if (default_nid > 0 && c->conf_sigalgs) {
3336
0
            size_t j;
3337
0
            const uint16_t *p = c->conf_sigalgs;
3338
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
3339
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
3340
3341
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
3342
0
                    break;
3343
0
            }
3344
0
            if (j == c->conf_sigalgslen) {
3345
0
                if (check_flags)
3346
0
                    goto skip_sigs;
3347
0
                else
3348
0
                    goto end;
3349
0
            }
3350
0
        }
3351
        /* Check signature algorithm of each cert in chain */
3352
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
3353
            /*
3354
             * We only get here if the application has called SSL_check_chain(),
3355
             * so check_flags is always set.
3356
             */
3357
0
            if (find_sig_alg(s, x, pk) != NULL)
3358
0
                rv |= CERT_PKEY_EE_SIGNATURE;
3359
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
3360
0
            if (!check_flags)
3361
0
                goto end;
3362
0
        } else
3363
0
            rv |= CERT_PKEY_EE_SIGNATURE;
3364
0
        rv |= CERT_PKEY_CA_SIGNATURE;
3365
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3366
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
3367
0
                if (check_flags) {
3368
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
3369
0
                    break;
3370
0
                } else
3371
0
                    goto end;
3372
0
            }
3373
0
        }
3374
0
    }
3375
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
3376
69.0k
    else if (check_flags)
3377
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
3378
69.0k
 skip_sigs:
3379
    /* Check cert parameters are consistent */
3380
69.0k
    if (tls1_check_cert_param(s, x, 1))
3381
62.3k
        rv |= CERT_PKEY_EE_PARAM;
3382
6.75k
    else if (!check_flags)
3383
6.75k
        goto end;
3384
62.3k
    if (!s->server)
3385
0
        rv |= CERT_PKEY_CA_PARAM;
3386
    /* In strict mode check rest of chain too */
3387
62.3k
    else if (strict_mode) {
3388
0
        rv |= CERT_PKEY_CA_PARAM;
3389
0
        for (i = 0; i < sk_X509_num(chain); i++) {
3390
0
            X509 *ca = sk_X509_value(chain, i);
3391
0
            if (!tls1_check_cert_param(s, ca, 0)) {
3392
0
                if (check_flags) {
3393
0
                    rv &= ~CERT_PKEY_CA_PARAM;
3394
0
                    break;
3395
0
                } else
3396
0
                    goto end;
3397
0
            }
3398
0
        }
3399
0
    }
3400
62.3k
    if (!s->server && strict_mode) {
3401
0
        STACK_OF(X509_NAME) *ca_dn;
3402
0
        int check_type = 0;
3403
3404
0
        if (EVP_PKEY_is_a(pk, "RSA"))
3405
0
            check_type = TLS_CT_RSA_SIGN;
3406
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
3407
0
            check_type = TLS_CT_DSS_SIGN;
3408
0
        else if (EVP_PKEY_is_a(pk, "EC"))
3409
0
            check_type = TLS_CT_ECDSA_SIGN;
3410
3411
0
        if (check_type) {
3412
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
3413
0
            size_t j;
3414
3415
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
3416
0
                if (*ctypes == check_type) {
3417
0
                    rv |= CERT_PKEY_CERT_TYPE;
3418
0
                    break;
3419
0
                }
3420
0
            }
3421
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
3422
0
                goto end;
3423
0
        } else {
3424
0
            rv |= CERT_PKEY_CERT_TYPE;
3425
0
        }
3426
3427
0
        ca_dn = s->s3.tmp.peer_ca_names;
3428
3429
0
        if (ca_dn == NULL
3430
0
            || sk_X509_NAME_num(ca_dn) == 0
3431
0
            || ssl_check_ca_name(ca_dn, x))
3432
0
            rv |= CERT_PKEY_ISSUER_NAME;
3433
0
        else
3434
0
            for (i = 0; i < sk_X509_num(chain); i++) {
3435
0
                X509 *xtmp = sk_X509_value(chain, i);
3436
3437
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
3438
0
                    rv |= CERT_PKEY_ISSUER_NAME;
3439
0
                    break;
3440
0
                }
3441
0
            }
3442
3443
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
3444
0
            goto end;
3445
0
    } else
3446
62.3k
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
3447
3448
62.3k
    if (!check_flags || (rv & check_flags) == check_flags)
3449
62.3k
        rv |= CERT_PKEY_VALID;
3450
3451
207k
 end:
3452
3453
207k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
3454
96.6k
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
3455
110k
    else
3456
110k
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
3457
3458
    /*
3459
     * When checking a CERT_PKEY structure all flags are irrelevant if the
3460
     * chain is invalid.
3461
     */
3462
207k
    if (!check_flags) {
3463
207k
        if (rv & CERT_PKEY_VALID) {
3464
62.3k
            *pvalid = rv;
3465
144k
        } else {
3466
            /* Preserve sign and explicit sign flag, clear rest */
3467
144k
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3468
144k
            return 0;
3469
144k
        }
3470
207k
    }
3471
62.3k
    return rv;
3472
207k
}
3473
3474
/* Set validity of certificates in an SSL structure */
3475
void tls1_set_cert_validity(SSL_CONNECTION *s)
3476
25.3k
{
3477
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
3478
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
3479
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
3480
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
3481
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
3482
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
3483
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
3484
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
3485
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
3486
25.3k
}
3487
3488
/* User level utility function to check a chain is suitable */
3489
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
3490
0
{
3491
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3492
3493
0
    if (sc == NULL)
3494
0
        return 0;
3495
3496
0
    return tls1_check_chain(sc, x, pk, chain, -1);
3497
0
}
3498
3499
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
3500
0
{
3501
0
    EVP_PKEY *dhp = NULL;
3502
0
    BIGNUM *p;
3503
0
    int dh_secbits = 80, sec_level_bits;
3504
0
    EVP_PKEY_CTX *pctx = NULL;
3505
0
    OSSL_PARAM_BLD *tmpl = NULL;
3506
0
    OSSL_PARAM *params = NULL;
3507
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3508
3509
0
    if (s->cert->dh_tmp_auto != 2) {
3510
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
3511
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
3512
0
                dh_secbits = 128;
3513
0
            else
3514
0
                dh_secbits = 80;
3515
0
        } else {
3516
0
            if (s->s3.tmp.cert == NULL)
3517
0
                return NULL;
3518
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
3519
0
        }
3520
0
    }
3521
3522
    /* Do not pick a prime that is too weak for the current security level */
3523
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
3524
0
                                                 NULL, NULL);
3525
0
    if (dh_secbits < sec_level_bits)
3526
0
        dh_secbits = sec_level_bits;
3527
3528
0
    if (dh_secbits >= 192)
3529
0
        p = BN_get_rfc3526_prime_8192(NULL);
3530
0
    else if (dh_secbits >= 152)
3531
0
        p = BN_get_rfc3526_prime_4096(NULL);
3532
0
    else if (dh_secbits >= 128)
3533
0
        p = BN_get_rfc3526_prime_3072(NULL);
3534
0
    else if (dh_secbits >= 112)
3535
0
        p = BN_get_rfc3526_prime_2048(NULL);
3536
0
    else
3537
0
        p = BN_get_rfc2409_prime_1024(NULL);
3538
0
    if (p == NULL)
3539
0
        goto err;
3540
3541
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
3542
0
    if (pctx == NULL
3543
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
3544
0
        goto err;
3545
3546
0
    tmpl = OSSL_PARAM_BLD_new();
3547
0
    if (tmpl == NULL
3548
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
3549
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
3550
0
        goto err;
3551
3552
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
3553
0
    if (params == NULL
3554
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
3555
0
        goto err;
3556
3557
0
err:
3558
0
    OSSL_PARAM_free(params);
3559
0
    OSSL_PARAM_BLD_free(tmpl);
3560
0
    EVP_PKEY_CTX_free(pctx);
3561
0
    BN_free(p);
3562
0
    return dhp;
3563
0
}
3564
3565
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3566
                                 int op)
3567
144k
{
3568
144k
    int secbits = -1;
3569
144k
    EVP_PKEY *pkey = X509_get0_pubkey(x);
3570
3571
144k
    if (pkey) {
3572
        /*
3573
         * If no parameters this will return -1 and fail using the default
3574
         * security callback for any non-zero security level. This will
3575
         * reject keys which omit parameters but this only affects DSA and
3576
         * omission of parameters is never (?) done in practice.
3577
         */
3578
144k
        secbits = EVP_PKEY_get_security_bits(pkey);
3579
144k
    }
3580
144k
    if (s != NULL)
3581
21.5k
        return ssl_security(s, op, secbits, 0, x);
3582
122k
    else
3583
122k
        return ssl_ctx_security(ctx, op, secbits, 0, x);
3584
144k
}
3585
3586
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3587
                                 int op)
3588
144k
{
3589
    /* Lookup signature algorithm digest */
3590
144k
    int secbits, nid, pknid;
3591
3592
    /* Don't check signature if self signed */
3593
144k
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3594
144k
        return 1;
3595
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3596
0
        secbits = -1;
3597
    /* If digest NID not defined use signature NID */
3598
0
    if (nid == NID_undef)
3599
0
        nid = pknid;
3600
0
    if (s != NULL)
3601
0
        return ssl_security(s, op, secbits, nid, x);
3602
0
    else
3603
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
3604
0
}
3605
3606
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
3607
                      int is_ee)
3608
160k
{
3609
160k
    if (vfy)
3610
0
        vfy = SSL_SECOP_PEER;
3611
160k
    if (is_ee) {
3612
160k
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3613
0
            return SSL_R_EE_KEY_TOO_SMALL;
3614
160k
    } else {
3615
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3616
0
            return SSL_R_CA_KEY_TOO_SMALL;
3617
0
    }
3618
160k
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3619
0
        return SSL_R_CA_MD_TOO_WEAK;
3620
160k
    return 1;
3621
160k
}
3622
3623
/*
3624
 * Check security of a chain, if |sk| includes the end entity certificate then
3625
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3626
 * one to the peer. Return values: 1 if ok otherwise error code to use
3627
 */
3628
3629
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
3630
                            X509 *x, int vfy)
3631
23.7k
{
3632
23.7k
    int rv, start_idx, i;
3633
3634
23.7k
    if (x == NULL) {
3635
23.7k
        x = sk_X509_value(sk, 0);
3636
23.7k
        if (x == NULL)
3637
0
            return ERR_R_INTERNAL_ERROR;
3638
23.7k
        start_idx = 1;
3639
23.7k
    } else
3640
0
        start_idx = 0;
3641
3642
23.7k
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
3643
23.7k
    if (rv != 1)
3644
0
        return rv;
3645
3646
23.7k
    for (i = start_idx; i < sk_X509_num(sk); i++) {
3647
0
        x = sk_X509_value(sk, i);
3648
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
3649
0
        if (rv != 1)
3650
0
            return rv;
3651
0
    }
3652
23.7k
    return 1;
3653
23.7k
}
3654
3655
/*
3656
 * For TLS 1.2 servers check if we have a certificate which can be used
3657
 * with the signature algorithm "lu" and return index of certificate.
3658
 */
3659
3660
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
3661
                                     const SIGALG_LOOKUP *lu)
3662
32.2k
{
3663
32.2k
    int sig_idx = lu->sig_idx;
3664
32.2k
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
3665
32.2k
                                                        SSL_CONNECTION_GET_CTX(s));
3666
3667
    /* If not recognised or not supported by cipher mask it is not suitable */
3668
32.2k
    if (clu == NULL
3669
32.2k
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3670
23.0k
            || (clu->pkey_nid == EVP_PKEY_RSA_PSS
3671
1.76k
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3672
10.1k
        return -1;
3673
3674
    /* If doing RPK, the CERT_PKEY won't be "valid" */
3675
22.0k
    if (tls12_rpk_and_privkey(s, sig_idx))
3676
0
        return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
3677
3678
22.0k
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3679
22.0k
}
3680
3681
/*
3682
 * Checks the given cert against signature_algorithm_cert restrictions sent by
3683
 * the peer (if any) as well as whether the hash from the sigalg is usable with
3684
 * the key.
3685
 * Returns true if the cert is usable and false otherwise.
3686
 */
3687
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
3688
                             X509 *x, EVP_PKEY *pkey)
3689
50.1k
{
3690
50.1k
    const SIGALG_LOOKUP *lu;
3691
50.1k
    int mdnid, pknid, supported;
3692
50.1k
    size_t i;
3693
50.1k
    const char *mdname = NULL;
3694
50.1k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3695
3696
    /*
3697
     * If the given EVP_PKEY cannot support signing with this digest,
3698
     * the answer is simply 'no'.
3699
     */
3700
50.1k
    if (sig->hash != NID_undef)
3701
50.1k
        mdname = OBJ_nid2sn(sig->hash);
3702
50.1k
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
3703
50.1k
                                                    mdname,
3704
50.1k
                                                    sctx->propq);
3705
50.1k
    if (supported <= 0)
3706
0
        return 0;
3707
3708
    /*
3709
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
3710
     * on the sigalg with which the certificate was signed (by its issuer).
3711
     */
3712
50.1k
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3713
26.4k
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3714
0
            return 0;
3715
139k
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3716
113k
            lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3717
113k
            if (lu == NULL)
3718
82.5k
                continue;
3719
3720
            /*
3721
             * This does not differentiate between the
3722
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3723
             * have a chain here that lets us look at the key OID in the
3724
             * signing certificate.
3725
             */
3726
30.5k
            if (mdnid == lu->hash && pknid == lu->sig)
3727
55
                return 1;
3728
30.5k
        }
3729
26.3k
        return 0;
3730
26.4k
    }
3731
3732
    /*
3733
     * Without signat_algorithms_cert, any certificate for which we have
3734
     * a viable public key is permitted.
3735
     */
3736
23.7k
    return 1;
3737
50.1k
}
3738
3739
/*
3740
 * Returns true if |s| has a usable certificate configured for use
3741
 * with signature scheme |sig|.
3742
 * "Usable" includes a check for presence as well as applying
3743
 * the signature_algorithm_cert restrictions sent by the peer (if any).
3744
 * Returns false if no usable certificate is found.
3745
 */
3746
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
3747
50.5k
{
3748
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3749
50.5k
    if (idx == -1)
3750
7.30k
        idx = sig->sig_idx;
3751
50.5k
    if (!ssl_has_cert(s, idx))
3752
348
        return 0;
3753
3754
50.1k
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3755
50.1k
                             s->cert->pkeys[idx].privatekey);
3756
50.5k
}
3757
3758
/*
3759
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3760
 * specified signature scheme |sig|, or false otherwise.
3761
 */
3762
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
3763
                          EVP_PKEY *pkey)
3764
0
{
3765
0
    size_t idx;
3766
3767
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
3768
0
        return 0;
3769
3770
    /* Check the key is consistent with the sig alg */
3771
0
    if ((int)idx != sig->sig_idx)
3772
0
        return 0;
3773
3774
0
    return check_cert_usable(s, sig, x, pkey);
3775
0
}
3776
3777
/*
3778
 * Find a signature scheme that works with the supplied certificate |x| and key
3779
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3780
 * available certs/keys to find one that works.
3781
 */
3782
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
3783
                                         EVP_PKEY *pkey)
3784
2.41k
{
3785
2.41k
    const SIGALG_LOOKUP *lu = NULL;
3786
2.41k
    size_t i;
3787
2.41k
    int curve = -1;
3788
2.41k
    EVP_PKEY *tmppkey;
3789
2.41k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3790
3791
    /* Look for a shared sigalgs matching possible certificates */
3792
7.57k
    for (i = 0; i < s->shared_sigalgslen; i++) {
3793
7.46k
        lu = s->shared_sigalgs[i];
3794
3795
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3796
7.46k
        if (lu->hash == NID_sha1
3797
6.46k
            || lu->hash == NID_sha224
3798
6.20k
            || lu->sig == EVP_PKEY_DSA
3799
6.20k
            || lu->sig == EVP_PKEY_RSA)
3800
2.57k
            continue;
3801
        /* Check that we have a cert, and signature_algorithms_cert */
3802
4.89k
        if (!tls1_lookup_md(sctx, lu, NULL))
3803
0
            continue;
3804
4.89k
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3805
4.61k
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3806
277
            continue;
3807
3808
4.61k
        tmppkey = (pkey != NULL) ? pkey
3809
4.61k
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
3810
3811
4.61k
        if (lu->sig == EVP_PKEY_EC) {
3812
4.34k
            if (curve == -1)
3813
2.22k
                curve = ssl_get_EC_curve_nid(tmppkey);
3814
4.34k
            if (lu->curve != NID_undef && curve != lu->curve)
3815
2.31k
                continue;
3816
4.34k
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3817
            /* validate that key is large enough for the signature algorithm */
3818
272
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
3819
0
                continue;
3820
272
        }
3821
2.30k
        break;
3822
4.61k
    }
3823
3824
2.41k
    if (i == s->shared_sigalgslen)
3825
112
        return NULL;
3826
3827
2.30k
    return lu;
3828
2.41k
}
3829
3830
/*
3831
 * Choose an appropriate signature algorithm based on available certificates
3832
 * Sets chosen certificate and signature algorithm.
3833
 *
3834
 * For servers if we fail to find a required certificate it is a fatal error,
3835
 * an appropriate error code is set and a TLS alert is sent.
3836
 *
3837
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3838
 * a fatal error: we will either try another certificate or not present one
3839
 * to the server. In this case no error is set.
3840
 */
3841
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
3842
13.9k
{
3843
13.9k
    const SIGALG_LOOKUP *lu = NULL;
3844
13.9k
    int sig_idx = -1;
3845
3846
13.9k
    s->s3.tmp.cert = NULL;
3847
13.9k
    s->s3.tmp.sigalg = NULL;
3848
3849
13.9k
    if (SSL_CONNECTION_IS_TLS13(s)) {
3850
1.74k
        lu = find_sig_alg(s, NULL, NULL);
3851
1.74k
        if (lu == NULL) {
3852
83
            if (!fatalerrs)
3853
0
                return 1;
3854
83
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3855
83
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3856
83
            return 0;
3857
83
        }
3858
12.1k
    } else {
3859
        /* If ciphersuite doesn't require a cert nothing to do */
3860
12.1k
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3861
1.14k
            return 1;
3862
11.0k
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3863
15
                return 1;
3864
3865
11.0k
        if (SSL_USE_SIGALGS(s)) {
3866
8.81k
            size_t i;
3867
8.81k
            if (s->s3.tmp.peer_sigalgs != NULL) {
3868
1.69k
                int curve = -1;
3869
1.69k
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3870
3871
                /* For Suite B need to match signature algorithm to curve */
3872
1.69k
                if (tls1_suiteb(s))
3873
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3874
0
                                                 .privatekey);
3875
3876
                /*
3877
                 * Find highest preference signature algorithm matching
3878
                 * cert type
3879
                 */
3880
17.8k
                for (i = 0; i < s->shared_sigalgslen; i++) {
3881
17.3k
                    lu = s->shared_sigalgs[i];
3882
3883
17.3k
                    if (s->server) {
3884
17.3k
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3885
5.21k
                            continue;
3886
17.3k
                    } else {
3887
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
3888
3889
0
                        sig_idx = lu->sig_idx;
3890
0
                        if (cc_idx != sig_idx)
3891
0
                            continue;
3892
0
                    }
3893
                    /* Check that we have a cert, and sig_algs_cert */
3894
12.1k
                    if (!has_usable_cert(s, lu, sig_idx))
3895
10.9k
                        continue;
3896
1.16k
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
3897
                        /* validate that key is large enough for the signature algorithm */
3898
318
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3899
3900
318
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
3901
0
                            continue;
3902
318
                    }
3903
1.16k
                    if (curve == -1 || lu->curve == curve)
3904
1.16k
                        break;
3905
1.16k
                }
3906
1.69k
#ifndef OPENSSL_NO_GOST
3907
                /*
3908
                 * Some Windows-based implementations do not send GOST algorithms indication
3909
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3910
                 * we have to assume GOST support.
3911
                 */
3912
1.69k
                if (i == s->shared_sigalgslen
3913
526
                    && (s->s3.tmp.new_cipher->algorithm_auth
3914
526
                        & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
3915
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3916
0
                    if (!fatalerrs)
3917
0
                      return 1;
3918
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3919
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3920
0
                    return 0;
3921
0
                  } else {
3922
0
                    i = 0;
3923
0
                    sig_idx = lu->sig_idx;
3924
0
                  }
3925
0
                }
3926
1.69k
#endif
3927
1.69k
                if (i == s->shared_sigalgslen) {
3928
526
                    if (!fatalerrs)
3929
0
                        return 1;
3930
526
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3931
526
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3932
526
                    return 0;
3933
526
                }
3934
7.11k
            } else {
3935
                /*
3936
                 * If we have no sigalg use defaults
3937
                 */
3938
7.11k
                const uint16_t *sent_sigs;
3939
7.11k
                size_t sent_sigslen;
3940
3941
7.11k
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3942
0
                    if (!fatalerrs)
3943
0
                        return 1;
3944
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3945
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3946
0
                    return 0;
3947
0
                }
3948
3949
                /* Check signature matches a type we sent */
3950
7.11k
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3951
147k
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3952
147k
                    if (lu->sigalg == *sent_sigs
3953
7.11k
                            && has_usable_cert(s, lu, lu->sig_idx))
3954
7.11k
                        break;
3955
147k
                }
3956
7.11k
                if (i == sent_sigslen) {
3957
0
                    if (!fatalerrs)
3958
0
                        return 1;
3959
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3960
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
3961
0
                    return 0;
3962
0
                }
3963
7.11k
            }
3964
8.81k
        } else {
3965
2.19k
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3966
0
                if (!fatalerrs)
3967
0
                    return 1;
3968
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3969
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3970
0
                return 0;
3971
0
            }
3972
2.19k
        }
3973
11.0k
    }
3974
12.1k
    if (sig_idx == -1)
3975
10.9k
        sig_idx = lu->sig_idx;
3976
12.1k
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3977
12.1k
    s->cert->key = s->s3.tmp.cert;
3978
12.1k
    s->s3.tmp.sigalg = lu;
3979
12.1k
    return 1;
3980
13.9k
}
3981
3982
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3983
0
{
3984
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3985
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3986
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3987
0
        return 0;
3988
0
    }
3989
3990
0
    ctx->ext.max_fragment_len_mode = mode;
3991
0
    return 1;
3992
0
}
3993
3994
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3995
0
{
3996
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
3997
3998
0
    if (sc == NULL
3999
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4000
0
        return 0;
4001
4002
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4003
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4004
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4005
0
        return 0;
4006
0
    }
4007
4008
0
    sc->ext.max_fragment_len_mode = mode;
4009
0
    return 1;
4010
0
}
4011
4012
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4013
0
{
4014
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4015
0
        return TLSEXT_max_fragment_length_DISABLED;
4016
0
    return session->ext.max_fragment_len_mode;
4017
0
}
4018
4019
/*
4020
 * Helper functions for HMAC access with legacy support included.
4021
 */
4022
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4023
2.00k
{
4024
2.00k
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4025
2.00k
    EVP_MAC *mac = NULL;
4026
4027
2.00k
    if (ret == NULL)
4028
0
        return NULL;
4029
2.00k
#ifndef OPENSSL_NO_DEPRECATED_3_0
4030
2.00k
    if (ctx->ext.ticket_key_evp_cb == NULL
4031
2.00k
            && ctx->ext.ticket_key_cb != NULL) {
4032
0
        if (!ssl_hmac_old_new(ret))
4033
0
            goto err;
4034
0
        return ret;
4035
0
    }
4036
2.00k
#endif
4037
2.00k
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4038
2.00k
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4039
0
        goto err;
4040
2.00k
    EVP_MAC_free(mac);
4041
2.00k
    return ret;
4042
0
 err:
4043
0
    EVP_MAC_CTX_free(ret->ctx);
4044
0
    EVP_MAC_free(mac);
4045
0
    OPENSSL_free(ret);
4046
0
    return NULL;
4047
2.00k
}
4048
4049
void ssl_hmac_free(SSL_HMAC *ctx)
4050
6.92k
{
4051
6.92k
    if (ctx != NULL) {
4052
2.00k
        EVP_MAC_CTX_free(ctx->ctx);
4053
2.00k
#ifndef OPENSSL_NO_DEPRECATED_3_0
4054
2.00k
        ssl_hmac_old_free(ctx);
4055
2.00k
#endif
4056
2.00k
        OPENSSL_free(ctx);
4057
2.00k
    }
4058
6.92k
}
4059
4060
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4061
0
{
4062
0
    return ctx->ctx;
4063
0
}
4064
4065
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4066
1.44k
{
4067
1.44k
    OSSL_PARAM params[2], *p = params;
4068
4069
1.44k
    if (ctx->ctx != NULL) {
4070
1.44k
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4071
1.44k
        *p = OSSL_PARAM_construct_end();
4072
1.44k
        if (EVP_MAC_init(ctx->ctx, key, len, params))
4073
1.44k
            return 1;
4074
1.44k
    }
4075
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4076
0
    if (ctx->old_ctx != NULL)
4077
0
        return ssl_hmac_old_init(ctx, key, len, md);
4078
0
#endif
4079
0
    return 0;
4080
0
}
4081
4082
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4083
1.28k
{
4084
1.28k
    if (ctx->ctx != NULL)
4085
1.28k
        return EVP_MAC_update(ctx->ctx, data, len);
4086
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4087
0
    if (ctx->old_ctx != NULL)
4088
0
        return ssl_hmac_old_update(ctx, data, len);
4089
0
#endif
4090
0
    return 0;
4091
0
}
4092
4093
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4094
                   size_t max_size)
4095
1.28k
{
4096
1.28k
    if (ctx->ctx != NULL)
4097
1.28k
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
4098
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4099
0
    if (ctx->old_ctx != NULL)
4100
0
        return ssl_hmac_old_final(ctx, md, len);
4101
0
#endif
4102
0
    return 0;
4103
0
}
4104
4105
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4106
1.32k
{
4107
1.32k
    if (ctx->ctx != NULL)
4108
1.32k
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4109
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4110
0
    if (ctx->old_ctx != NULL)
4111
0
        return ssl_hmac_old_size(ctx);
4112
0
#endif
4113
0
    return 0;
4114
0
}
4115
4116
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4117
28.0k
{
4118
28.0k
    char gname[OSSL_MAX_NAME_SIZE];
4119
4120
28.0k
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4121
28.0k
        return OBJ_txt2nid(gname);
4122
4123
0
    return NID_undef;
4124
28.0k
}
4125
4126
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4127
                                     const unsigned char *enckey,
4128
                                     size_t enckeylen)
4129
27.9k
{
4130
27.9k
    if (EVP_PKEY_is_a(pkey, "DH")) {
4131
149
        int bits = EVP_PKEY_get_bits(pkey);
4132
4133
149
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4134
            /* the encoded key must be padded to the length of the p */
4135
13
            return 0;
4136
27.8k
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4137
196
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4138
188
            || enckey[0] != 0x04)
4139
47
            return 0;
4140
196
    }
4141
4142
27.9k
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4143
27.9k
}