Coverage Report

Created: 2025-11-16 06:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl35/ssl/t1_lib.c
Line
Count
Source
1
/*
2
 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <ctype.h>
13
#include <openssl/objects.h>
14
#include <openssl/evp.h>
15
#include <openssl/hmac.h>
16
#include <openssl/core_names.h>
17
#include <openssl/ocsp.h>
18
#include <openssl/conf.h>
19
#include <openssl/x509v3.h>
20
#include <openssl/dh.h>
21
#include <openssl/bn.h>
22
#include <openssl/provider.h>
23
#include <openssl/param_build.h>
24
#include "internal/nelem.h"
25
#include "internal/sizes.h"
26
#include "internal/tlsgroups.h"
27
#include "internal/ssl_unwrap.h"
28
#include "ssl_local.h"
29
#include "quic/quic_local.h"
30
#include <openssl/ct.h>
31
32
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
33
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
34
35
SSL3_ENC_METHOD const TLSv1_enc_data = {
36
    tls1_setup_key_block,
37
    tls1_generate_master_secret,
38
    tls1_change_cipher_state,
39
    tls1_final_finish_mac,
40
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42
    tls1_alert_code,
43
    tls1_export_keying_material,
44
    0,
45
    ssl3_set_handshake_header,
46
    tls_close_construct_packet,
47
    ssl3_handshake_write
48
};
49
50
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51
    tls1_setup_key_block,
52
    tls1_generate_master_secret,
53
    tls1_change_cipher_state,
54
    tls1_final_finish_mac,
55
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57
    tls1_alert_code,
58
    tls1_export_keying_material,
59
    0,
60
    ssl3_set_handshake_header,
61
    tls_close_construct_packet,
62
    ssl3_handshake_write
63
};
64
65
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66
    tls1_setup_key_block,
67
    tls1_generate_master_secret,
68
    tls1_change_cipher_state,
69
    tls1_final_finish_mac,
70
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
71
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
72
    tls1_alert_code,
73
    tls1_export_keying_material,
74
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
75
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
76
    ssl3_set_handshake_header,
77
    tls_close_construct_packet,
78
    ssl3_handshake_write
79
};
80
81
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
82
    tls13_setup_key_block,
83
    tls13_generate_master_secret,
84
    tls13_change_cipher_state,
85
    tls13_final_finish_mac,
86
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88
    tls13_alert_code,
89
    tls13_export_keying_material,
90
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91
    ssl3_set_handshake_header,
92
    tls_close_construct_packet,
93
    ssl3_handshake_write
94
};
95
96
OSSL_TIME tls1_default_timeout(void)
97
116k
{
98
    /*
99
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100
     * http, the cache would over fill
101
     */
102
116k
    return ossl_seconds2time(60 * 60 * 2);
103
116k
}
104
105
int tls1_new(SSL *s)
106
116k
{
107
116k
    if (!ssl3_new(s))
108
0
        return 0;
109
116k
    if (!s->method->ssl_clear(s))
110
0
        return 0;
111
112
116k
    return 1;
113
116k
}
114
115
void tls1_free(SSL *s)
116
41.2k
{
117
41.2k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
118
119
41.2k
    if (sc == NULL)
120
0
        return;
121
122
41.2k
    OPENSSL_free(sc->ext.session_ticket);
123
41.2k
    ssl3_free(s);
124
41.2k
}
125
126
int tls1_clear(SSL *s)
127
164k
{
128
164k
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
129
130
164k
    if (sc == NULL)
131
0
        return 0;
132
133
164k
    if (!ssl3_clear(s))
134
0
        return 0;
135
136
164k
    if (s->method->version == TLS_ANY_VERSION)
137
164k
        sc->version = TLS_MAX_VERSION_INTERNAL;
138
0
    else
139
0
        sc->version = s->method->version;
140
141
164k
    return 1;
142
164k
}
143
144
/* Legacy NID to group_id mapping. Only works for groups we know about */
145
static const struct {
146
    int nid;
147
    uint16_t group_id;
148
} nid_to_group[] = {
149
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
150
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
151
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
152
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
153
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
154
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
155
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
156
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
157
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
158
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
159
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
160
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
161
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
162
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
163
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
164
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
165
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
166
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
167
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
168
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
169
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
170
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
171
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
172
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
173
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
174
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
175
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
176
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
177
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
178
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
179
    {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
180
    {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
181
    {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
182
    {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
183
    {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
184
    {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
185
    {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
186
    {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
187
    {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
188
    {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
189
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
190
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
191
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
192
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
193
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
194
};
195
196
static const unsigned char ecformats_default[] = {
197
    TLSEXT_ECPOINTFORMAT_uncompressed,
198
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
199
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
200
};
201
202
/* Group list string of the built-in pseudo group DEFAULT */
203
#define DEFAULT_GROUP_NAME "DEFAULT"
204
#define TLS_DEFAULT_GROUP_LIST \
205
    "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
206
207
static const uint16_t suiteb_curves[] = {
208
    OSSL_TLS_GROUP_ID_secp256r1,
209
    OSSL_TLS_GROUP_ID_secp384r1,
210
};
211
212
/* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
213
#define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
214
#define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
215
216
struct provider_ctx_data_st {
217
    SSL_CTX *ctx;
218
    OSSL_PROVIDER *provider;
219
};
220
221
716k
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
222
static OSSL_CALLBACK add_provider_groups;
223
static int add_provider_groups(const OSSL_PARAM params[], void *data)
224
3.52M
{
225
3.52M
    struct provider_ctx_data_st *pgd = data;
226
3.52M
    SSL_CTX *ctx = pgd->ctx;
227
3.52M
    const OSSL_PARAM *p;
228
3.52M
    TLS_GROUP_INFO *ginf = NULL;
229
3.52M
    EVP_KEYMGMT *keymgmt;
230
3.52M
    unsigned int gid;
231
3.52M
    unsigned int is_kem = 0;
232
3.52M
    int ret = 0;
233
234
3.52M
    if (ctx->group_list_max_len == ctx->group_list_len) {
235
358k
        TLS_GROUP_INFO *tmp = NULL;
236
237
358k
        if (ctx->group_list_max_len == 0)
238
59.6k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
239
358k
                                 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
240
298k
        else
241
298k
            tmp = OPENSSL_realloc(ctx->group_list,
242
358k
                                  (ctx->group_list_max_len
243
358k
                                   + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
244
358k
                                  * sizeof(TLS_GROUP_INFO));
245
358k
        if (tmp == NULL)
246
0
            return 0;
247
358k
        ctx->group_list = tmp;
248
358k
        memset(tmp + ctx->group_list_max_len,
249
358k
               0,
250
358k
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251
358k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
252
358k
    }
253
254
3.52M
    ginf = &ctx->group_list[ctx->group_list_len];
255
256
3.52M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
257
3.52M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
258
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
259
0
        goto err;
260
0
    }
261
3.52M
    ginf->tlsname = OPENSSL_strdup(p->data);
262
3.52M
    if (ginf->tlsname == NULL)
263
0
        goto err;
264
265
3.52M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
266
3.52M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
267
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
268
0
        goto err;
269
0
    }
270
3.52M
    ginf->realname = OPENSSL_strdup(p->data);
271
3.52M
    if (ginf->realname == NULL)
272
0
        goto err;
273
274
3.52M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
275
3.52M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
276
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
277
0
        goto err;
278
0
    }
279
3.52M
    ginf->group_id = (uint16_t)gid;
280
281
3.52M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
282
3.52M
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
283
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
284
0
        goto err;
285
0
    }
286
3.52M
    ginf->algorithm = OPENSSL_strdup(p->data);
287
3.52M
    if (ginf->algorithm == NULL)
288
0
        goto err;
289
290
3.52M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
291
3.52M
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
292
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
293
0
        goto err;
294
0
    }
295
296
3.52M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
297
3.52M
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
298
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
299
0
        goto err;
300
0
    }
301
3.52M
    ginf->is_kem = 1 & is_kem;
302
303
3.52M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
304
3.52M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
305
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
306
0
        goto err;
307
0
    }
308
309
3.52M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
310
3.52M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
311
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
312
0
        goto err;
313
0
    }
314
315
3.52M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
316
3.52M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
317
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
318
0
        goto err;
319
0
    }
320
321
3.52M
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
322
3.52M
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
323
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
324
0
        goto err;
325
0
    }
326
    /*
327
     * Now check that the algorithm is actually usable for our property query
328
     * string. Regardless of the result we still return success because we have
329
     * successfully processed this group, even though we may decide not to use
330
     * it.
331
     */
332
3.52M
    ret = 1;
333
3.52M
    ERR_set_mark();
334
3.52M
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
335
3.52M
    if (keymgmt != NULL) {
336
        /* We have successfully fetched the algorithm, we can use the group. */
337
3.52M
        ctx->group_list_len++;
338
3.52M
        ginf = NULL;
339
3.52M
        EVP_KEYMGMT_free(keymgmt);
340
3.52M
    }
341
3.52M
    ERR_pop_to_mark();
342
3.52M
 err:
343
3.52M
    if (ginf != NULL) {
344
0
        OPENSSL_free(ginf->tlsname);
345
0
        OPENSSL_free(ginf->realname);
346
0
        OPENSSL_free(ginf->algorithm);
347
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
348
0
    }
349
3.52M
    return ret;
350
3.52M
}
351
352
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
353
302k
{
354
302k
    struct provider_ctx_data_st pgd;
355
356
302k
    pgd.ctx = vctx;
357
302k
    pgd.provider = provider;
358
302k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
359
302k
                                          add_provider_groups, &pgd);
360
302k
}
361
362
int ssl_load_groups(SSL_CTX *ctx)
363
59.6k
{
364
59.6k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
365
0
        return 0;
366
367
59.6k
    return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
368
59.6k
}
369
370
static const char *inferred_keytype(const TLS_SIGALG_INFO *sinf)
371
358k
{
372
358k
    return (sinf->keytype != NULL
373
358k
            ? sinf->keytype
374
358k
            : (sinf->sig_name != NULL
375
358k
               ? sinf->sig_name
376
358k
               : sinf->sigalg_name));
377
358k
}
378
379
119k
#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10
380
static OSSL_CALLBACK add_provider_sigalgs;
381
static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
382
179k
{
383
179k
    struct provider_ctx_data_st *pgd = data;
384
179k
    SSL_CTX *ctx = pgd->ctx;
385
179k
    OSSL_PROVIDER *provider = pgd->provider;
386
179k
    const OSSL_PARAM *p;
387
179k
    TLS_SIGALG_INFO *sinf = NULL;
388
179k
    EVP_KEYMGMT *keymgmt;
389
179k
    const char *keytype;
390
179k
    unsigned int code_point = 0;
391
179k
    int ret = 0;
392
393
179k
    if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
394
59.6k
        TLS_SIGALG_INFO *tmp = NULL;
395
396
59.6k
        if (ctx->sigalg_list_max_len == 0)
397
59.6k
            tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
398
59.6k
                                 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
399
0
        else
400
0
            tmp = OPENSSL_realloc(ctx->sigalg_list,
401
59.6k
                                  (ctx->sigalg_list_max_len
402
59.6k
                                   + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
403
59.6k
                                  * sizeof(TLS_SIGALG_INFO));
404
59.6k
        if (tmp == NULL)
405
0
            return 0;
406
59.6k
        ctx->sigalg_list = tmp;
407
59.6k
        memset(tmp + ctx->sigalg_list_max_len, 0,
408
59.6k
               sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
409
59.6k
        ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
410
59.6k
    }
411
412
179k
    sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
413
414
    /* First, mandatory parameters */
415
179k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
416
179k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
417
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
418
0
        goto err;
419
0
    }
420
179k
    OPENSSL_free(sinf->sigalg_name);
421
179k
    sinf->sigalg_name = OPENSSL_strdup(p->data);
422
179k
    if (sinf->sigalg_name == NULL)
423
0
        goto err;
424
425
179k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
426
179k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
427
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
428
0
        goto err;
429
0
    }
430
179k
    OPENSSL_free(sinf->name);
431
179k
    sinf->name = OPENSSL_strdup(p->data);
432
179k
    if (sinf->name == NULL)
433
0
        goto err;
434
435
179k
    p = OSSL_PARAM_locate_const(params,
436
179k
                                OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
437
179k
    if (p == NULL
438
179k
        || !OSSL_PARAM_get_uint(p, &code_point)
439
179k
        || code_point > UINT16_MAX) {
440
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
441
0
        goto err;
442
0
    }
443
179k
    sinf->code_point = (uint16_t)code_point;
444
445
179k
    p = OSSL_PARAM_locate_const(params,
446
179k
                                OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
447
179k
    if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
448
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
449
0
        goto err;
450
0
    }
451
452
    /* Now, optional parameters */
453
179k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
454
179k
    if (p == NULL) {
455
0
        sinf->sigalg_oid = NULL;
456
179k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
457
0
        goto err;
458
179k
    } else {
459
179k
        OPENSSL_free(sinf->sigalg_oid);
460
179k
        sinf->sigalg_oid = OPENSSL_strdup(p->data);
461
179k
        if (sinf->sigalg_oid == NULL)
462
0
            goto err;
463
179k
    }
464
465
179k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
466
179k
    if (p == NULL) {
467
179k
        sinf->sig_name = NULL;
468
179k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
469
0
        goto err;
470
0
    } else {
471
0
        OPENSSL_free(sinf->sig_name);
472
0
        sinf->sig_name = OPENSSL_strdup(p->data);
473
0
        if (sinf->sig_name == NULL)
474
0
            goto err;
475
0
    }
476
477
179k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
478
179k
    if (p == NULL) {
479
179k
        sinf->sig_oid = NULL;
480
179k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
481
0
        goto err;
482
0
    } else {
483
0
        OPENSSL_free(sinf->sig_oid);
484
0
        sinf->sig_oid = OPENSSL_strdup(p->data);
485
0
        if (sinf->sig_oid == NULL)
486
0
            goto err;
487
0
    }
488
489
179k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
490
179k
    if (p == NULL) {
491
179k
        sinf->hash_name = NULL;
492
179k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
493
0
        goto err;
494
0
    } else {
495
0
        OPENSSL_free(sinf->hash_name);
496
0
        sinf->hash_name = OPENSSL_strdup(p->data);
497
0
        if (sinf->hash_name == NULL)
498
0
            goto err;
499
0
    }
500
501
179k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
502
179k
    if (p == NULL) {
503
179k
        sinf->hash_oid = NULL;
504
179k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
505
0
        goto err;
506
0
    } else {
507
0
        OPENSSL_free(sinf->hash_oid);
508
0
        sinf->hash_oid = OPENSSL_strdup(p->data);
509
0
        if (sinf->hash_oid == NULL)
510
0
            goto err;
511
0
    }
512
513
179k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
514
179k
    if (p == NULL) {
515
179k
        sinf->keytype = NULL;
516
179k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
517
0
        goto err;
518
0
    } else {
519
0
        OPENSSL_free(sinf->keytype);
520
0
        sinf->keytype = OPENSSL_strdup(p->data);
521
0
        if (sinf->keytype == NULL)
522
0
            goto err;
523
0
    }
524
525
179k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
526
179k
    if (p == NULL) {
527
179k
        sinf->keytype_oid = NULL;
528
179k
    } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
529
0
        goto err;
530
0
    } else {
531
0
        OPENSSL_free(sinf->keytype_oid);
532
0
        sinf->keytype_oid = OPENSSL_strdup(p->data);
533
0
        if (sinf->keytype_oid == NULL)
534
0
            goto err;
535
0
    }
536
537
    /* Optional, not documented prior to 3.5 */
538
179k
    sinf->mindtls = sinf->maxdtls = -1;
539
179k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
540
179k
    if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
541
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
542
0
        goto err;
543
0
    }
544
179k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
545
179k
    if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
546
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
547
0
        goto err;
548
0
    }
549
    /* DTLS version numbers grow downward */
550
179k
    if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) &&
551
0
        ((sinf->maxdtls > sinf->mindtls))) {
552
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
553
0
        goto err;
554
0
    }
555
    /* No provider sigalgs are supported in DTLS, reset after checking. */
556
179k
    sinf->mindtls = sinf->maxdtls = -1;
557
558
    /* The remaining parameters below are mandatory again */
559
179k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
560
179k
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
561
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
562
0
        goto err;
563
0
    }
564
179k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
565
179k
    if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
566
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
567
0
        goto err;
568
0
    }
569
179k
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
570
0
        ((sinf->maxtls < sinf->mintls))) {
571
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
572
0
        goto err;
573
0
    }
574
179k
    if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
575
179k
        ((sinf->mintls > TLS1_3_VERSION)))
576
0
        sinf->mintls = sinf->maxtls = -1;
577
179k
    if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
578
0
        ((sinf->maxtls < TLS1_3_VERSION)))
579
0
        sinf->mintls = sinf->maxtls = -1;
580
581
    /* Ignore unusable sigalgs */
582
179k
    if (sinf->mintls == -1 && sinf->mindtls == -1) {
583
0
        ret = 1;
584
0
        goto err;
585
0
    }
586
587
    /*
588
     * Now check that the algorithm is actually usable for our property query
589
     * string. Regardless of the result we still return success because we have
590
     * successfully processed this signature, even though we may decide not to
591
     * use it.
592
     */
593
179k
    ret = 1;
594
179k
    ERR_set_mark();
595
179k
    keytype = inferred_keytype(sinf);
596
179k
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
597
179k
    if (keymgmt != NULL) {
598
        /*
599
         * We have successfully fetched the algorithm - however if the provider
600
         * doesn't match this one then we ignore it.
601
         *
602
         * Note: We're cheating a little here. Technically if the same algorithm
603
         * is available from more than one provider then it is undefined which
604
         * implementation you will get back. Theoretically this could be
605
         * different every time...we assume here that you'll always get the
606
         * same one back if you repeat the exact same fetch. Is this a reasonable
607
         * assumption to make (in which case perhaps we should document this
608
         * behaviour)?
609
         */
610
179k
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
611
            /*
612
             * We have a match - so we could use this signature;
613
             * Check proper object registration first, though.
614
             * Don't care about return value as this may have been
615
             * done within providers or previous calls to
616
             * add_provider_sigalgs.
617
             */
618
179k
            OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
619
            /* sanity check: Without successful registration don't use alg */
620
179k
            if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
621
179k
                (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
622
0
                    ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
623
0
                    goto err;
624
0
            }
625
179k
            if (sinf->sig_name != NULL)
626
0
                OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
627
179k
            if (sinf->keytype != NULL)
628
0
                OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
629
179k
            if (sinf->hash_name != NULL)
630
0
                OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
631
179k
            OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
632
179k
                          (sinf->hash_name != NULL
633
179k
                           ? OBJ_txt2nid(sinf->hash_name)
634
179k
                           : NID_undef),
635
179k
                          OBJ_txt2nid(keytype));
636
179k
            ctx->sigalg_list_len++;
637
179k
            sinf = NULL;
638
179k
        }
639
179k
        EVP_KEYMGMT_free(keymgmt);
640
179k
    }
641
179k
    ERR_pop_to_mark();
642
179k
 err:
643
179k
    if (sinf != NULL) {
644
0
        OPENSSL_free(sinf->name);
645
0
        sinf->name = NULL;
646
0
        OPENSSL_free(sinf->sigalg_name);
647
0
        sinf->sigalg_name = NULL;
648
0
        OPENSSL_free(sinf->sigalg_oid);
649
0
        sinf->sigalg_oid = NULL;
650
0
        OPENSSL_free(sinf->sig_name);
651
0
        sinf->sig_name = NULL;
652
0
        OPENSSL_free(sinf->sig_oid);
653
0
        sinf->sig_oid = NULL;
654
0
        OPENSSL_free(sinf->hash_name);
655
0
        sinf->hash_name = NULL;
656
0
        OPENSSL_free(sinf->hash_oid);
657
0
        sinf->hash_oid = NULL;
658
0
        OPENSSL_free(sinf->keytype);
659
0
        sinf->keytype = NULL;
660
0
        OPENSSL_free(sinf->keytype_oid);
661
0
        sinf->keytype_oid = NULL;
662
0
    }
663
179k
    return ret;
664
179k
}
665
666
static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
667
281k
{
668
281k
    struct provider_ctx_data_st pgd;
669
670
281k
    pgd.ctx = vctx;
671
281k
    pgd.provider = provider;
672
281k
    OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
673
281k
                                   add_provider_sigalgs, &pgd);
674
    /*
675
     * Always OK, even if provider doesn't support the capability:
676
     * Reconsider testing retval when legacy sigalgs are also loaded this way.
677
     */
678
281k
    return 1;
679
281k
}
680
681
int ssl_load_sigalgs(SSL_CTX *ctx)
682
140k
{
683
140k
    size_t i;
684
140k
    SSL_CERT_LOOKUP lu;
685
686
140k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
687
0
        return 0;
688
689
    /* now populate ctx->ssl_cert_info */
690
140k
    if (ctx->sigalg_list_len > 0) {
691
59.6k
        OPENSSL_free(ctx->ssl_cert_info);
692
59.6k
        ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
693
59.6k
        if (ctx->ssl_cert_info == NULL)
694
0
            return 0;
695
238k
        for(i = 0; i < ctx->sigalg_list_len; i++) {
696
179k
            const char *keytype = inferred_keytype(&ctx->sigalg_list[i]);
697
179k
            ctx->ssl_cert_info[i].pkey_nid = OBJ_txt2nid(keytype);
698
179k
            ctx->ssl_cert_info[i].amask = SSL_aANY;
699
179k
        }
700
59.6k
    }
701
702
    /*
703
     * For now, leave it at this: legacy sigalgs stay in their own
704
     * data structures until "legacy cleanup" occurs.
705
     */
706
707
140k
    return 1;
708
140k
}
709
710
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
711
477k
{
712
477k
    size_t i;
713
714
2.68M
    for (i = 0; i < ctx->group_list_len; i++) {
715
2.68M
        if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
716
2.20M
                || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
717
477k
            return ctx->group_list[i].group_id;
718
2.68M
    }
719
720
0
    return 0;
721
477k
}
722
723
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
724
3.02M
{
725
3.02M
    size_t i;
726
727
86.9M
    for (i = 0; i < ctx->group_list_len; i++) {
728
86.9M
        if (ctx->group_list[i].group_id == group_id)
729
3.02M
            return &ctx->group_list[i];
730
86.9M
    }
731
732
0
    return NULL;
733
3.02M
}
734
735
const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
736
0
{
737
0
    const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
738
739
0
    if (tls_group_info == NULL)
740
0
        return NULL;
741
742
0
    return tls_group_info->tlsname;
743
0
}
744
745
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
746
1.35M
{
747
1.35M
    size_t i;
748
749
1.35M
    if (group_id == 0)
750
0
        return NID_undef;
751
752
    /*
753
     * Return well known Group NIDs - for backwards compatibility. This won't
754
     * work for groups we don't know about.
755
     */
756
43.3M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
757
43.3M
    {
758
43.3M
        if (nid_to_group[i].group_id == group_id)
759
1.29M
            return nid_to_group[i].nid;
760
43.3M
    }
761
64.5k
    if (!include_unknown)
762
64.5k
        return NID_undef;
763
0
    return TLSEXT_nid_unknown | (int)group_id;
764
64.5k
}
765
766
uint16_t tls1_nid2group_id(int nid)
767
24.8k
{
768
24.8k
    size_t i;
769
770
    /*
771
     * Return well known Group ids - for backwards compatibility. This won't
772
     * work for groups we don't know about.
773
     */
774
572k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
775
571k
    {
776
571k
        if (nid_to_group[i].nid == nid)
777
24.8k
            return nid_to_group[i].group_id;
778
571k
    }
779
780
6
    return 0;
781
24.8k
}
782
783
/*
784
 * Set *pgroups to the supported groups list and *pgroupslen to
785
 * the number of groups supported.
786
 */
787
void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
788
                               size_t *pgroupslen)
789
449k
{
790
449k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
791
792
    /* For Suite B mode only include P-256, P-384 */
793
449k
    switch (tls1_suiteb(s)) {
794
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
795
0
        *pgroups = suiteb_curves;
796
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
797
0
        break;
798
799
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
800
0
        *pgroups = suiteb_curves;
801
0
        *pgroupslen = 1;
802
0
        break;
803
804
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
805
0
        *pgroups = suiteb_curves + 1;
806
0
        *pgroupslen = 1;
807
0
        break;
808
809
449k
    default:
810
449k
        if (s->ext.supportedgroups == NULL) {
811
299k
            *pgroups = sctx->ext.supportedgroups;
812
299k
            *pgroupslen = sctx->ext.supportedgroups_len;
813
299k
        } else {
814
150k
            *pgroups = s->ext.supportedgroups;
815
150k
            *pgroupslen = s->ext.supportedgroups_len;
816
150k
        }
817
449k
        break;
818
449k
    }
819
449k
}
820
821
/*
822
 * Some comments for the function below:
823
 * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
824
 * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
825
 * eligible group from the legacy list. Therefore, we provide the entire list of supported
826
 * groups in this case.
827
 *
828
 * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
829
 * but the groupID to 0.
830
 * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
831
 * the "list of requested key share groups" is used, or the "list of supported groups" in
832
 * combination with setting add_only_one = 1 is applied.
833
 */
834
void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
835
                                        size_t *pgroupslen)
836
31.7k
{
837
31.7k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
838
839
31.7k
    if (s->ext.supportedgroups == NULL) {
840
0
        *pgroups = sctx->ext.supportedgroups;
841
0
        *pgroupslen = sctx->ext.supportedgroups_len;
842
31.7k
    } else {
843
31.7k
        *pgroups = s->ext.keyshares;
844
31.7k
        *pgroupslen = s->ext.keyshares_len;
845
31.7k
    }
846
31.7k
}
847
848
void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
849
                           size_t *ptupleslen)
850
1.46k
{
851
1.46k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
852
853
1.46k
    if (s->ext.supportedgroups == NULL) {
854
0
        *ptuples = sctx->ext.tuples;
855
0
        *ptupleslen = sctx->ext.tuples_len;
856
1.46k
    } else {
857
1.46k
        *ptuples = s->ext.tuples;
858
1.46k
        *ptupleslen = s->ext.tuples_len;
859
1.46k
    }
860
1.46k
}
861
862
int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
863
                    int minversion, int maxversion,
864
                    int isec, int *okfortls13)
865
1.15M
{
866
1.15M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
867
1.15M
                                                       group_id);
868
1.15M
    int ret;
869
1.15M
    int group_minversion, group_maxversion;
870
871
1.15M
    if (okfortls13 != NULL)
872
785k
        *okfortls13 = 0;
873
874
1.15M
    if (ginfo == NULL)
875
0
        return 0;
876
877
1.15M
    group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
878
1.15M
    group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
879
880
1.15M
    if (group_minversion < 0 || group_maxversion < 0)
881
110k
        return 0;
882
1.04M
    if (group_maxversion == 0)
883
1.04M
        ret = 1;
884
0
    else
885
0
        ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
886
1.04M
    if (group_minversion > 0)
887
1.04M
        ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
888
889
1.04M
    if (!SSL_CONNECTION_IS_DTLS(s)) {
890
895k
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
891
582k
            *okfortls13 = (group_maxversion == 0)
892
0
                          || (group_maxversion >= TLS1_3_VERSION);
893
895k
    }
894
1.04M
    ret &= !isec
895
240k
           || strcmp(ginfo->algorithm, "EC") == 0
896
239k
           || strcmp(ginfo->algorithm, "X25519") == 0
897
64.8k
           || strcmp(ginfo->algorithm, "X448") == 0;
898
899
1.04M
    return ret;
900
1.15M
}
901
902
/* See if group is allowed by security callback */
903
int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
904
1.35M
{
905
1.35M
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
906
1.35M
                                                       group);
907
1.35M
    unsigned char gtmp[2];
908
909
1.35M
    if (ginfo == NULL)
910
0
        return 0;
911
912
1.35M
    gtmp[0] = group >> 8;
913
1.35M
    gtmp[1] = group & 0xff;
914
1.35M
    return ssl_security(s, op, ginfo->secbits,
915
1.35M
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
916
1.35M
}
917
918
/* Return 1 if "id" is in "list" */
919
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
920
90.7k
{
921
90.7k
    size_t i;
922
618k
    for (i = 0; i < listlen; i++)
923
568k
        if (list[i] == id)
924
41.0k
            return 1;
925
49.7k
    return 0;
926
90.7k
}
927
928
typedef struct {
929
    TLS_GROUP_INFO *grp;
930
    size_t ix;
931
} TLS_GROUP_IX;
932
933
DEFINE_STACK_OF(TLS_GROUP_IX)
934
935
static void free_wrapper(TLS_GROUP_IX *a)
936
0
{
937
0
    OPENSSL_free(a);
938
0
}
939
940
static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
941
                            const TLS_GROUP_IX *const *b)
942
0
{
943
0
    int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
944
0
    int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
945
0
    int ixcmpab = (*a)->ix < (*b)->ix;
946
0
    int ixcmpba = (*b)->ix < (*a)->ix;
947
948
    /* Ascending by group id */
949
0
    if (idcmpab != idcmpba)
950
0
        return (idcmpba - idcmpab);
951
    /* Ascending by original appearance index */
952
0
    return ixcmpba - ixcmpab;
953
0
}
954
955
int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
956
                                 TLS_GROUP_INFO *grps, size_t num, long all,
957
                                 STACK_OF(OPENSSL_CSTRING) *out)
958
0
{
959
0
    STACK_OF(TLS_GROUP_IX) *collect = NULL;
960
0
    TLS_GROUP_IX *gix;
961
0
    uint16_t id = 0;
962
0
    int ret = 0;
963
0
    size_t ix;
964
965
0
    if (grps == NULL || out == NULL)
966
0
        return 0;
967
0
    if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
968
0
        return 0;
969
0
    for (ix = 0; ix < num; ++ix, ++grps) {
970
0
        if (grps->mintls > 0 && max_proto_version > 0
971
0
             && grps->mintls > max_proto_version)
972
0
            continue;
973
0
        if (grps->maxtls > 0 && min_proto_version > 0
974
0
            && grps->maxtls < min_proto_version)
975
0
            continue;
976
977
0
        if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
978
0
            goto end;
979
0
        gix->grp = grps;
980
0
        gix->ix = ix;
981
0
        if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
982
0
            OPENSSL_free(gix);
983
0
            goto end;
984
0
        }
985
0
    }
986
987
0
    sk_TLS_GROUP_IX_sort(collect);
988
0
    num = sk_TLS_GROUP_IX_num(collect);
989
0
    for (ix = 0; ix < num; ++ix) {
990
0
        gix = sk_TLS_GROUP_IX_value(collect, ix);
991
0
        if (!all && gix->grp->group_id == id)
992
0
            continue;
993
0
        id = gix->grp->group_id;
994
0
        if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
995
0
            goto end;
996
0
    }
997
0
    ret = 1;
998
999
0
 end:
1000
0
    sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
1001
0
    return ret;
1002
0
}
1003
1004
/*-
1005
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
1006
 * if there is no match.
1007
 * For nmatch == -1, return number of matches
1008
 * For nmatch == -2, return the id of the group to use for
1009
 * a tmp key, or 0 if there is no match.
1010
 */
1011
uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
1012
34.5k
{
1013
34.5k
    const uint16_t *pref, *supp;
1014
34.5k
    size_t num_pref, num_supp, i;
1015
34.5k
    int k;
1016
34.5k
    SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
1017
1018
    /* Can't do anything on client side */
1019
34.5k
    if (s->server == 0)
1020
0
        return 0;
1021
34.5k
    if (nmatch == -2) {
1022
8.45k
        if (tls1_suiteb(s)) {
1023
            /*
1024
             * For Suite B ciphersuite determines curve: we already know
1025
             * these are acceptable due to previous checks.
1026
             */
1027
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
1028
1029
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1030
0
                return OSSL_TLS_GROUP_ID_secp256r1;
1031
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1032
0
                return OSSL_TLS_GROUP_ID_secp384r1;
1033
            /* Should never happen */
1034
0
            return 0;
1035
0
        }
1036
        /* If not Suite B just return first preference shared curve */
1037
8.45k
        nmatch = 0;
1038
8.45k
    }
1039
    /*
1040
     * If server preference set, our groups are the preference order
1041
     * otherwise peer decides.
1042
     */
1043
34.5k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
1044
0
        tls1_get_supported_groups(s, &pref, &num_pref);
1045
0
        tls1_get_peer_groups(s, &supp, &num_supp);
1046
34.5k
    } else {
1047
34.5k
        tls1_get_peer_groups(s, &pref, &num_pref);
1048
34.5k
        tls1_get_supported_groups(s, &supp, &num_supp);
1049
34.5k
    }
1050
1051
71.8k
    for (k = 0, i = 0; i < num_pref; i++) {
1052
54.6k
        uint16_t id = pref[i];
1053
54.6k
        const TLS_GROUP_INFO *inf;
1054
54.6k
        int minversion, maxversion;
1055
1056
54.6k
        if (!tls1_in_list(id, supp, num_supp)
1057
21.1k
                || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
1058
33.4k
            continue;
1059
21.1k
        inf = tls1_group_id_lookup(ctx, id);
1060
21.1k
        if (!ossl_assert(inf != NULL))
1061
0
            return 0;
1062
1063
21.1k
        minversion = SSL_CONNECTION_IS_DTLS(s)
1064
21.1k
                         ? inf->mindtls : inf->mintls;
1065
21.1k
        maxversion = SSL_CONNECTION_IS_DTLS(s)
1066
21.1k
                         ? inf->maxdtls : inf->maxtls;
1067
21.1k
        if (maxversion == -1)
1068
1.68k
            continue;
1069
19.4k
        if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
1070
17.2k
            || (maxversion != 0
1071
0
                && ssl_version_cmp(s, s->version, maxversion) > 0))
1072
2.12k
            continue;
1073
1074
17.2k
        if (nmatch == k)
1075
17.2k
            return id;
1076
0
         k++;
1077
0
    }
1078
17.2k
    if (nmatch == -1)
1079
0
        return k;
1080
    /* Out of range (nmatch > k). */
1081
17.2k
    return 0;
1082
17.2k
}
1083
1084
int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
1085
                    uint16_t **ksext, size_t *ksextlen,
1086
                    size_t **tplext, size_t *tplextlen,
1087
                    int *groups, size_t ngroups)
1088
0
{
1089
0
    uint16_t *glist = NULL, *kslist = NULL;
1090
0
    size_t *tpllist = NULL;
1091
0
    size_t i;
1092
    /*
1093
     * Bitmap of groups included to detect duplicates: two variables are added
1094
     * to detect duplicates as some values are more than 32.
1095
     */
1096
0
    unsigned long *dup_list = NULL;
1097
0
    unsigned long dup_list_egrp = 0;
1098
0
    unsigned long dup_list_dhgrp = 0;
1099
1100
0
    if (ngroups == 0) {
1101
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1102
0
        return 0;
1103
0
    }
1104
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1105
0
        goto err;
1106
0
    if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL)
1107
0
        goto err;
1108
0
    if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL)
1109
0
        goto err;
1110
0
    for (i = 0; i < ngroups; i++) {
1111
0
        unsigned long idmask;
1112
0
        uint16_t id;
1113
0
        id = tls1_nid2group_id(groups[i]);
1114
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1115
0
            goto err;
1116
0
        idmask = 1L << (id & 0x00FF);
1117
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1118
0
        if (!id || ((*dup_list) & idmask))
1119
0
            goto err;
1120
0
        *dup_list |= idmask;
1121
0
        glist[i] = id;
1122
0
    }
1123
0
    OPENSSL_free(*grpext);
1124
0
    OPENSSL_free(*ksext);
1125
0
    OPENSSL_free(*tplext);
1126
0
    *grpext = glist;
1127
0
    *grpextlen = ngroups;
1128
0
    kslist[0] = glist[0];
1129
0
    *ksext = kslist;
1130
0
    *ksextlen = 1;
1131
0
    tpllist[0] = ngroups;
1132
0
    *tplext = tpllist;
1133
0
    *tplextlen = 1;
1134
0
    return 1;
1135
0
err:
1136
0
    OPENSSL_free(glist);
1137
0
    OPENSSL_free(kslist);
1138
0
    OPENSSL_free(tpllist);
1139
0
    return 0;
1140
0
}
1141
1142
/*
1143
 * Definition of DEFAULT[_XYZ] pseudo group names.
1144
 * A pseudo group name is actually a full list of groups, including prefixes
1145
 * and or tuple delimiters. It can be hierarchically defined (for potential future use).
1146
 * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
1147
 * groups not backed by a provider will always silently be ignored, even without '?' prefix
1148
 */
1149
typedef struct {
1150
    const char *list_name; /* The name of this pseudo group */
1151
    const char *group_string; /* The group string of this pseudo group */
1152
} default_group_string_st;    /* (can include '?', '*'. '-', '/' as needed) */
1153
1154
/* Built-in pseudo group-names must start with a (D or d) */
1155
static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
1156
1157
/* The list of all built-in pseudo-group-name structures */
1158
static const default_group_string_st default_group_strings[] = {
1159
    {DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST},
1160
    {SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST}
1161
};
1162
1163
/*
1164
 * Some GOST names are not resolved by tls1_group_name2id,
1165
 * hence we'll check for those manually
1166
 */
1167
typedef struct {
1168
    const char *group_name;
1169
    uint16_t groupID;
1170
} name2id_st;
1171
static const name2id_st name2id_arr[] = {
1172
    {"GC256A", OSSL_TLS_GROUP_ID_gc256A },
1173
    {"GC256B", OSSL_TLS_GROUP_ID_gc256B },
1174
    {"GC256C", OSSL_TLS_GROUP_ID_gc256C },
1175
    {"GC256D", OSSL_TLS_GROUP_ID_gc256D },
1176
    {"GC512A", OSSL_TLS_GROUP_ID_gc512A },
1177
    {"GC512B", OSSL_TLS_GROUP_ID_gc512B },
1178
    {"GC512C", OSSL_TLS_GROUP_ID_gc512C },
1179
};
1180
1181
/*
1182
 * Group list management:
1183
 * We establish three lists along with their related size counters:
1184
 * 1) List of (unique) groups
1185
 * 2) List of number of groups per group-priority-tuple
1186
 * 3) List of (unique) key share groups
1187
 */
1188
179k
#define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
1189
#define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
1190
1191
/*
1192
 * Preparation of the prefix used to indicate the desire to send a key share,
1193
 * the characters used as separators between groups or tuples of groups, the
1194
 * character to indicate that an unknown group should be ignored, and the
1195
 * character to indicate that a group should be deleted from a list
1196
 */
1197
#ifndef TUPLE_DELIMITER_CHARACTER
1198
/* The prefix characters to indicate group tuple boundaries */
1199
59.6k
# define TUPLE_DELIMITER_CHARACTER '/'
1200
#endif
1201
#ifndef GROUP_DELIMITER_CHARACTER
1202
/* The prefix characters to indicate group tuple boundaries */
1203
238k
# define GROUP_DELIMITER_CHARACTER ':'
1204
#endif
1205
#ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
1206
/* The prefix character to ignore unknown groups */
1207
477k
# define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
1208
#endif
1209
#ifndef KEY_SHARE_INDICATOR_CHARACTER
1210
/* The prefix character to trigger a key share addition */
1211
119k
# define KEY_SHARE_INDICATOR_CHARACTER '*'
1212
#endif
1213
#ifndef REMOVE_GROUP_INDICATOR_CHARACTER
1214
/* The prefix character to trigger a key share removal */
1215
0
# define REMOVE_GROUP_INDICATOR_CHARACTER '-'
1216
#endif
1217
static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER,
1218
                                GROUP_DELIMITER_CHARACTER,
1219
                                IGNORE_UNKNOWN_GROUP_CHARACTER,
1220
                                KEY_SHARE_INDICATOR_CHARACTER,
1221
                                REMOVE_GROUP_INDICATOR_CHARACTER,
1222
                                '\0'};
1223
1224
/*
1225
 * High-level description of how group strings are analyzed:
1226
 * A first call back function (tuple_cb) is used to process group tuples, and a
1227
 * second callback function (gid_cb) is used to process the groups inside a tuple.
1228
 * Those callback functions are (indirectly) called by CONF_parse_list with
1229
 * different separators (nominally ':' or '/'), a variable based on gid_cb_st
1230
 * is used to keep track of the parsing results between the various calls
1231
 */
1232
1233
typedef struct {
1234
    SSL_CTX *ctx;
1235
    /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
1236
    size_t gidmax; /* The memory allocation chunk size for the group IDs */
1237
    size_t gidcnt; /* Number of groups */
1238
    uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
1239
    size_t tplmax; /* The memory allocation chunk size for the tuple counters */
1240
    size_t tplcnt; /* Number of tuples */
1241
    size_t *tuplcnt_arr; /* The number of groups inside a tuple */
1242
    size_t ksidmax; /* The memory allocation chunk size */
1243
    size_t ksidcnt; /* Number of key shares */
1244
    uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
1245
    /* Variable to keep state between execution of callback or helper functions */
1246
    size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
1247
    int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
1248
} gid_cb_st;
1249
1250
/* Forward declaration of tuple callback function */
1251
static int tuple_cb(const char *tuple, int len, void *arg);
1252
1253
/*
1254
 * Extract and process the individual groups (and their prefixes if present)
1255
 * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
1256
 * and must be appended by a \0 if used as \0-terminated string
1257
 */
1258
static int gid_cb(const char *elem, int len, void *arg)
1259
477k
{
1260
477k
    gid_cb_st *garg = arg;
1261
477k
    size_t i, j, k;
1262
477k
    uint16_t gid = 0;
1263
477k
    int found_group = 0;
1264
477k
    char etmp[GROUP_NAME_BUFFER_LENGTH];
1265
477k
    int retval = 1; /* We assume success */
1266
477k
    char *current_prefix;
1267
477k
    int ignore_unknown = 0;
1268
477k
    int add_keyshare = 0;
1269
477k
    int remove_group = 0;
1270
477k
    size_t restored_prefix_index = 0;
1271
477k
    char *restored_default_group_string;
1272
477k
    int continue_while_loop = 1;
1273
1274
    /* Sanity checks */
1275
477k
    if (garg == NULL || elem == NULL || len <= 0) {
1276
0
        ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1277
0
        return 0;
1278
0
    }
1279
1280
    /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
1281
1.07M
    while (continue_while_loop && len > 0
1282
1.07M
           && ((current_prefix = strchr(prefixes, elem[0])) != NULL
1283
596k
               || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
1284
1285
596k
        switch (*current_prefix) {
1286
0
        case TUPLE_DELIMITER_CHARACTER:
1287
            /* tuple delimiter not allowed here -> syntax error */
1288
0
            return -1;
1289
0
            break;
1290
0
        case GROUP_DELIMITER_CHARACTER:
1291
0
            return -1; /* Not a valid prefix for a single group name-> syntax error */
1292
0
            break;
1293
119k
        case KEY_SHARE_INDICATOR_CHARACTER:
1294
119k
            if (add_keyshare)
1295
0
                return -1; /* Only single key share prefix allowed -> syntax error */
1296
119k
            add_keyshare = 1;
1297
119k
            ++elem;
1298
119k
            --len;
1299
119k
            break;
1300
0
        case REMOVE_GROUP_INDICATOR_CHARACTER:
1301
0
            if (remove_group)
1302
0
                return -1; /* Only single remove group prefix allowed -> syntax error */
1303
0
            remove_group = 1;
1304
0
            ++elem;
1305
0
            --len;
1306
0
            break;
1307
477k
        case IGNORE_UNKNOWN_GROUP_CHARACTER:
1308
477k
            if (ignore_unknown)
1309
0
                return -1; /* Only single ? allowed -> syntax error */
1310
477k
            ignore_unknown = 1;
1311
477k
            ++elem;
1312
477k
            --len;
1313
477k
            break;
1314
0
        default:
1315
            /*
1316
             * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
1317
             * list of groups) should be added
1318
             */
1319
0
            for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
1320
0
                if ((size_t)len == (strlen(default_group_strings[i].list_name))
1321
0
                    && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
1322
                    /*
1323
                     * We're asked to insert an entire list of groups from a
1324
                     * DEFAULT[_XYZ] 'pseudo group' which we do by
1325
                     * recursively calling this function (indirectly via
1326
                     * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
1327
                     * group string like a tuple which is appended to the current tuple
1328
                     * rather then starting a new tuple. Variable tuple_mode is the flag which
1329
                     * controls append tuple vs start new tuple.
1330
                     */
1331
1332
0
                    if (ignore_unknown || remove_group)
1333
0
                        return -1; /* removal or ignore not allowed here -> syntax error */
1334
1335
                    /*
1336
                     * First, we restore any keyshare prefix in a new zero-terminated string
1337
                     * (if not already present)
1338
                     */
1339
0
                    restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ +
1340
0
                                                                    strlen(default_group_strings[i].group_string) +
1341
0
                                                                    1 /* \0 */) * sizeof(char));
1342
0
                    if (restored_default_group_string == NULL)
1343
0
                        return 0;
1344
0
                    if (add_keyshare
1345
                        /* Remark: we tolerate a duplicated keyshare indicator here */
1346
0
                        && default_group_strings[i].group_string[0]
1347
0
                        != KEY_SHARE_INDICATOR_CHARACTER)
1348
0
                        restored_default_group_string[restored_prefix_index++] =
1349
0
                            KEY_SHARE_INDICATOR_CHARACTER;
1350
1351
0
                    memcpy(restored_default_group_string + restored_prefix_index,
1352
0
                           default_group_strings[i].group_string,
1353
0
                           strlen(default_group_strings[i].group_string));
1354
0
                    restored_default_group_string[strlen(default_group_strings[i].group_string) +
1355
0
                                                  restored_prefix_index] = '\0';
1356
                    /* We execute the recursive call */
1357
0
                    garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
1358
                    /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
1359
0
                    garg->tuple_mode = 0;
1360
                    /* We use the tuple_cb callback to process the pseudo group tuple */
1361
0
                    retval = CONF_parse_list(restored_default_group_string,
1362
0
                                             TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
1363
0
                    garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
1364
0
                    garg->ignore_unknown_default = 0; /* reset to original value */
1365
                    /* We don't need the \0-terminated string anymore */
1366
0
                    OPENSSL_free(restored_default_group_string);
1367
1368
0
                    return retval;
1369
0
                }
1370
0
            }
1371
            /*
1372
             * If we reached this point, a group name started with a 'd' or 'D', but no request
1373
             * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
1374
             * name can continue as usual (= the while loop checking prefixes can end)
1375
             */
1376
0
            continue_while_loop = 0;
1377
0
            break;
1378
596k
        }
1379
596k
    }
1380
1381
477k
    if (len == 0)
1382
0
        return -1; /* Seems we have prefxes without a group name -> syntax error */
1383
1384
477k
    if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
1385
0
        ignore_unknown = 1;
1386
1387
    /* Memory management in case more groups are present compared to initial allocation */
1388
477k
    if (garg->gidcnt == garg->gidmax) {
1389
0
        uint16_t *tmp =
1390
0
            OPENSSL_realloc(garg->gid_arr,
1391
0
                            (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1392
1393
0
        if (tmp == NULL)
1394
0
            return 0;
1395
1396
0
        garg->gidmax += GROUPLIST_INCREMENT;
1397
0
        garg->gid_arr = tmp;
1398
0
    }
1399
    /* Memory management for key share groups */
1400
477k
    if (garg->ksidcnt == garg->ksidmax) {
1401
0
        uint16_t *tmp =
1402
0
            OPENSSL_realloc(garg->ksid_arr,
1403
0
                            (garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr));
1404
1405
0
        if (tmp == NULL)
1406
0
            return 0;
1407
0
        garg->ksidmax += GROUPLIST_INCREMENT;
1408
0
        garg->ksid_arr = tmp;
1409
0
    }
1410
1411
477k
    if (len > (int)(sizeof(etmp) - 1))
1412
0
        return -1; /* group name to long  -> syntax error */
1413
1414
    /*
1415
     * Prepare addition or removal of a single group by converting
1416
     * a group name into its groupID equivalent
1417
     */
1418
1419
    /* Create a \0-terminated string and get the gid for this group if possible */
1420
477k
    memcpy(etmp, elem, len);
1421
477k
    etmp[len] = 0;
1422
1423
    /* Get the groupID */
1424
477k
    gid = tls1_group_name2id(garg->ctx, etmp);
1425
    /*
1426
     * Handle the case where no valid groupID was returned
1427
     * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
1428
     */
1429
477k
    if (gid == 0) {
1430
        /* Is it one of the GOST groups ? */
1431
0
        for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
1432
0
            if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
1433
0
                gid = name2id_arr[i].groupID;
1434
0
                break;
1435
0
            }
1436
0
        }
1437
0
        if (gid == 0) { /* still not found */
1438
            /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
1439
0
            retval = ignore_unknown;
1440
0
            goto done;
1441
0
        }
1442
0
    }
1443
1444
    /* Make sure that at least one provider is supporting this groupID */
1445
477k
    found_group = 0;
1446
2.68M
    for (j = 0; j < garg->ctx->group_list_len; j++)
1447
2.68M
        if (garg->ctx->group_list[j].group_id == gid) {
1448
477k
            found_group = 1;
1449
477k
            break;
1450
477k
        }
1451
1452
    /*
1453
     * No provider supports this group - ignore if
1454
     * ignore_unknown; trigger error otherwise
1455
     */
1456
477k
    if (found_group == 0) {
1457
0
        retval = ignore_unknown;
1458
0
        goto done;
1459
0
    }
1460
    /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
1461
477k
    if (remove_group) {
1462
        /* Is the current group specified anywhere in the entire list so far? */
1463
0
        found_group = 0;
1464
0
        for (i = 0; i < garg->gidcnt; i++)
1465
0
            if (garg->gid_arr[i] == gid) {
1466
0
                found_group = 1;
1467
0
                break;
1468
0
            }
1469
        /* The group to remove is at position i in the list of (zero indexed) groups */
1470
0
        if (found_group) {
1471
            /* We remove that group from its position (which is at i)... */
1472
0
            for (j = i; j < (garg->gidcnt - 1); j++)
1473
0
                garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
1474
0
            garg->gidcnt--; /* ..and update the book keeping for the number of groups */
1475
1476
            /*
1477
             * We also must update the number of groups either in a previous tuple (which we
1478
             * must identify and check whether it becomes empty due to the deletion) or in
1479
             * the current tuple, pending where the deleted group resides
1480
             */
1481
0
            k = 0;
1482
0
            for (j = 0; j < garg->tplcnt; j++) {
1483
0
                k += garg->tuplcnt_arr[j];
1484
                /* Remark: i is zero-indexed, k is one-indexed */
1485
0
                if (k > i) { /* remove from one of the previous tuples */
1486
0
                    garg->tuplcnt_arr[j]--;
1487
0
                    break; /* We took care not to have group duplicates, hence we can stop here */
1488
0
                }
1489
0
            }
1490
0
            if (k <= i) /* remove from current tuple */
1491
0
                garg->tuplcnt_arr[j]--;
1492
1493
            /* We also remove the group from the list of keyshares (if present) */
1494
0
            found_group = 0;
1495
0
            for (i = 0; i < garg->ksidcnt; i++)
1496
0
                if (garg->ksid_arr[i] == gid) {
1497
0
                    found_group = 1;
1498
0
                    break;
1499
0
                }
1500
0
            if (found_group) {
1501
                /* Found, hence we remove that keyshare from its position (which is at i)... */
1502
0
                for (j = i; j < (garg->ksidcnt - 1); j++)
1503
0
                    garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
1504
                /* ... and update the book keeping */
1505
0
                garg->ksidcnt--;
1506
0
            }
1507
0
        }
1508
477k
    } else { /* Processing addition of a single new group */
1509
1510
        /* Check for duplicates */
1511
2.14M
        for (i = 0; i < garg->gidcnt; i++)
1512
1.67M
            if (garg->gid_arr[i] == gid) {
1513
                /* Duplicate group anywhere in the list of groups - ignore */
1514
0
                goto done;
1515
0
            }
1516
1517
        /* Add the current group to the 'flat' list of groups */
1518
477k
        garg->gid_arr[garg->gidcnt++] = gid;
1519
        /* and update the book keeping for the number of groups in current tuple */
1520
477k
        garg->tuplcnt_arr[garg->tplcnt]++;
1521
1522
        /* We memorize if needed that we want to add a key share for the current group */
1523
477k
        if (add_keyshare)
1524
119k
            garg->ksid_arr[garg->ksidcnt++] = gid;
1525
477k
    }
1526
1527
477k
done:
1528
477k
    return retval;
1529
477k
}
1530
1531
/* Extract and process a tuple of groups */
1532
static int tuple_cb(const char *tuple, int len, void *arg)
1533
238k
{
1534
238k
    gid_cb_st *garg = arg;
1535
238k
    int retval = 1; /* We assume success */
1536
238k
    char *restored_tuple_string;
1537
1538
    /* Sanity checks */
1539
238k
    if (garg == NULL || tuple == NULL || len <= 0) {
1540
0
        ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1541
0
        return 0;
1542
0
    }
1543
1544
    /* Memory management for tuples */
1545
238k
    if (garg->tplcnt == garg->tplmax) {
1546
0
        size_t *tmp =
1547
0
            OPENSSL_realloc(garg->tuplcnt_arr,
1548
0
                            (garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr));
1549
1550
0
        if (tmp == NULL)
1551
0
            return 0;
1552
0
        garg->tplmax += GROUPLIST_INCREMENT;
1553
0
        garg->tuplcnt_arr = tmp;
1554
0
    }
1555
1556
    /* Convert to \0-terminated string */
1557
238k
    restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char));
1558
238k
    if (restored_tuple_string == NULL)
1559
0
        return 0;
1560
238k
    memcpy(restored_tuple_string, tuple, len);
1561
238k
    restored_tuple_string[len] = '\0';
1562
1563
    /* Analyze group list of this tuple */
1564
238k
    retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
1565
1566
    /* We don't need the \o-terminated string anymore */
1567
238k
    OPENSSL_free(restored_tuple_string);
1568
1569
238k
    if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
1570
238k
        if (garg->tuple_mode) {
1571
            /* We 'close' the tuple */
1572
238k
            garg->tplcnt++;
1573
238k
            garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
1574
238k
            garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
1575
238k
        }
1576
238k
    }
1577
1578
238k
    return retval;
1579
238k
}
1580
1581
/*
1582
 * Set groups and prepare generation of keyshares based on a string of groupnames,
1583
 * names separated by the group or the tuple delimiter, with per-group prefixes to
1584
 * (1) add a key share for this group, (2) ignore the group if unkown to the current
1585
 * context, (3) delete a previous occurrence of the group in the current tuple.
1586
 *
1587
 * The list parsing is done in two hierachical steps: The top-level step extracts the
1588
 * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
1589
 * parse and process the groups inside a tuple
1590
 */
1591
int tls1_set_groups_list(SSL_CTX *ctx,
1592
                         uint16_t **grpext, size_t *grpextlen,
1593
                         uint16_t **ksext, size_t *ksextlen,
1594
                         size_t **tplext, size_t *tplextlen,
1595
                         const char *str)
1596
59.6k
{
1597
59.6k
    size_t i = 0, j;
1598
59.6k
    int ret = 0, parse_ret = 0;
1599
59.6k
    gid_cb_st gcb;
1600
1601
    /* Sanity check */
1602
59.6k
    if (ctx == NULL) {
1603
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1604
0
        return 0;
1605
0
    }
1606
1607
59.6k
    memset(&gcb, 0, sizeof(gcb));
1608
59.6k
    gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
1609
59.6k
    gcb.ignore_unknown_default = 0;
1610
59.6k
    gcb.gidmax = GROUPLIST_INCREMENT;
1611
59.6k
    gcb.tplmax = GROUPLIST_INCREMENT;
1612
59.6k
    gcb.ksidmax = GROUPLIST_INCREMENT;
1613
59.6k
    gcb.ctx = ctx;
1614
1615
    /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
1616
59.6k
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1617
59.6k
    if (gcb.gid_arr == NULL)
1618
0
        goto end;
1619
59.6k
    gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr));
1620
59.6k
    if (gcb.tuplcnt_arr == NULL)
1621
0
        goto end;
1622
59.6k
    gcb.tuplcnt_arr[0] = 0;
1623
59.6k
    gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr));
1624
59.6k
    if (gcb.ksid_arr == NULL)
1625
0
        goto end;
1626
1627
59.6k
    while (str[0] != '\0' && isspace((unsigned char)*str))
1628
0
        str++;
1629
59.6k
    if (str[0] == '\0')
1630
0
        goto empty_list;
1631
1632
    /*
1633
     * Start the (potentially recursive) tuple processing by calling CONF_parse_list
1634
     * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
1635
     */
1636
59.6k
    parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
1637
1638
59.6k
    if (parse_ret == 0)
1639
0
        goto end;
1640
59.6k
    if (parse_ret == -1) {
1641
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1642
0
                       "Syntax error in '%s'", str);
1643
0
        goto end;
1644
0
    }
1645
1646
    /*
1647
     * We check whether a tuple was completly emptied by using "-" prefix
1648
     * excessively, in which case we remove the tuple
1649
     */
1650
298k
    for (i = j = 0; j < gcb.tplcnt; j++) {
1651
238k
        if (gcb.tuplcnt_arr[j] == 0)
1652
0
            continue;
1653
        /* If there's a gap, move to first unfilled slot */
1654
238k
        if (j == i)
1655
238k
            ++i;
1656
0
        else
1657
0
            gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
1658
238k
    }
1659
59.6k
    gcb.tplcnt = i;
1660
1661
59.6k
    if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
1662
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1663
0
                       "To many keyshares requested in '%s' (max = %d)",
1664
0
                       str, OPENSSL_CLIENT_MAX_KEY_SHARES);
1665
0
        goto end;
1666
0
    }
1667
1668
    /*
1669
     * For backward compatibility we let the rest of the code know that a key share
1670
     * for the first valid group should be added if no "*" prefix was used anywhere
1671
     */
1672
59.6k
    if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
1673
        /*
1674
         * No key share group prefix character was used, hence we indicate that a single
1675
         * key share should be sent and flag that it should come from the supported_groups list
1676
         */
1677
0
        gcb.ksidcnt = 1;
1678
0
        gcb.ksid_arr[0] = 0;
1679
0
    }
1680
1681
59.6k
 empty_list:
1682
    /*
1683
     * A call to tls1_set_groups_list with any of the args (other than ctx) set
1684
     * to NULL only does a syntax check, hence we're done here and report success
1685
     */
1686
59.6k
    if (grpext == NULL || ksext == NULL || tplext == NULL ||
1687
59.6k
        grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
1688
0
        ret = 1;
1689
0
        goto end;
1690
0
    }
1691
1692
    /*
1693
     * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
1694
     * can just go ahead and set the results (after diposing the existing)
1695
     */
1696
59.6k
    OPENSSL_free(*grpext);
1697
59.6k
    *grpext = gcb.gid_arr;
1698
59.6k
    *grpextlen = gcb.gidcnt;
1699
59.6k
    OPENSSL_free(*ksext);
1700
59.6k
    *ksext = gcb.ksid_arr;
1701
59.6k
    *ksextlen = gcb.ksidcnt;
1702
59.6k
    OPENSSL_free(*tplext);
1703
59.6k
    *tplext = gcb.tuplcnt_arr;
1704
59.6k
    *tplextlen = gcb.tplcnt;
1705
1706
59.6k
    return 1;
1707
1708
0
 end:
1709
0
    OPENSSL_free(gcb.gid_arr);
1710
0
    OPENSSL_free(gcb.tuplcnt_arr);
1711
0
    OPENSSL_free(gcb.ksid_arr);
1712
0
    return ret;
1713
59.6k
}
1714
1715
/* Check a group id matches preferences */
1716
int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1717
                        int check_own_groups)
1718
33.0k
    {
1719
33.0k
    const uint16_t *groups;
1720
33.0k
    size_t groups_len;
1721
1722
33.0k
    if (group_id == 0)
1723
16
        return 0;
1724
1725
    /* Check for Suite B compliance */
1726
33.0k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1727
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
1728
1729
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1730
0
            if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1731
0
                return 0;
1732
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1733
0
            if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1734
0
                return 0;
1735
0
        } else {
1736
            /* Should never happen */
1737
0
            return 0;
1738
0
        }
1739
0
    }
1740
1741
33.0k
    if (check_own_groups) {
1742
        /* Check group is one of our preferences */
1743
8.61k
        tls1_get_supported_groups(s, &groups, &groups_len);
1744
8.61k
        if (!tls1_in_list(group_id, groups, groups_len))
1745
143
            return 0;
1746
8.61k
    }
1747
1748
32.8k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1749
0
        return 0;
1750
1751
    /* For clients, nothing more to check */
1752
32.8k
    if (!s->server)
1753
8.47k
        return 1;
1754
1755
    /* Check group is one of peers preferences */
1756
24.4k
    tls1_get_peer_groups(s, &groups, &groups_len);
1757
1758
    /*
1759
     * RFC 4492 does not require the supported elliptic curves extension
1760
     * so if it is not sent we can just choose any curve.
1761
     * It is invalid to send an empty list in the supported groups
1762
     * extension, so groups_len == 0 always means no extension.
1763
     */
1764
24.4k
    if (groups_len == 0)
1765
12.1k
            return 1;
1766
12.2k
    return tls1_in_list(group_id, groups, groups_len);
1767
24.4k
}
1768
1769
void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1770
                         size_t *num_formats)
1771
93.0k
{
1772
    /*
1773
     * If we have a custom point format list use it otherwise use default
1774
     */
1775
93.0k
    if (s->ext.ecpointformats) {
1776
0
        *pformats = s->ext.ecpointformats;
1777
0
        *num_formats = s->ext.ecpointformats_len;
1778
93.0k
    } else {
1779
93.0k
        *pformats = ecformats_default;
1780
        /* For Suite B we don't support char2 fields */
1781
93.0k
        if (tls1_suiteb(s))
1782
0
            *num_formats = sizeof(ecformats_default) - 1;
1783
93.0k
        else
1784
93.0k
            *num_formats = sizeof(ecformats_default);
1785
93.0k
    }
1786
93.0k
}
1787
1788
/* Check a key is compatible with compression extension */
1789
static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1790
25.7k
{
1791
25.7k
    unsigned char comp_id;
1792
25.7k
    size_t i;
1793
25.7k
    int point_conv;
1794
1795
    /* If not an EC key nothing to check */
1796
25.7k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1797
0
        return 1;
1798
1799
1800
    /* Get required compression id */
1801
25.7k
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1802
25.7k
    if (point_conv == 0)
1803
0
        return 0;
1804
25.7k
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1805
25.6k
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1806
25.6k
    } else if (SSL_CONNECTION_IS_TLS13(s)) {
1807
        /*
1808
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
1809
         * this check.
1810
         */
1811
0
        return 1;
1812
96
    } else {
1813
96
        int field_type = EVP_PKEY_get_field_type(pkey);
1814
1815
96
        if (field_type == NID_X9_62_prime_field)
1816
90
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1817
6
        else if (field_type == NID_X9_62_characteristic_two_field)
1818
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1819
6
        else
1820
6
            return 0;
1821
96
    }
1822
    /*
1823
     * If point formats extension present check it, otherwise everything is
1824
     * supported (see RFC4492).
1825
     */
1826
25.7k
    if (s->ext.peer_ecpointformats == NULL)
1827
20.2k
        return 1;
1828
1829
9.53k
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1830
8.61k
        if (s->ext.peer_ecpointformats[i] == comp_id)
1831
4.62k
            return 1;
1832
8.61k
    }
1833
915
    return 0;
1834
5.53k
}
1835
1836
/* Return group id of a key */
1837
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1838
24.8k
{
1839
24.8k
    int curve_nid = ssl_get_EC_curve_nid(pkey);
1840
1841
24.8k
    if (curve_nid == NID_undef)
1842
0
        return 0;
1843
24.8k
    return tls1_nid2group_id(curve_nid);
1844
24.8k
}
1845
1846
/*
1847
 * Check cert parameters compatible with extensions: currently just checks EC
1848
 * certificates have compatible curves and compression.
1849
 */
1850
static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1851
75.9k
{
1852
75.9k
    uint16_t group_id;
1853
75.9k
    EVP_PKEY *pkey;
1854
75.9k
    pkey = X509_get0_pubkey(x);
1855
75.9k
    if (pkey == NULL)
1856
0
        return 0;
1857
    /* If not EC nothing to do */
1858
75.9k
    if (!EVP_PKEY_is_a(pkey, "EC"))
1859
50.6k
        return 1;
1860
    /* Check compression */
1861
25.3k
    if (!tls1_check_pkey_comp(s, pkey))
1862
888
        return 0;
1863
24.4k
    group_id = tls1_get_group_id(pkey);
1864
    /*
1865
     * For a server we allow the certificate to not be in our list of supported
1866
     * groups.
1867
     */
1868
24.4k
    if (!tls1_check_group_id(s, group_id, !s->server))
1869
6.49k
        return 0;
1870
    /*
1871
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1872
     * SHA384+P-384.
1873
     */
1874
17.9k
    if (check_ee_md && tls1_suiteb(s)) {
1875
0
        int check_md;
1876
0
        size_t i;
1877
1878
        /* Check to see we have necessary signing algorithm */
1879
0
        if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1880
0
            check_md = NID_ecdsa_with_SHA256;
1881
0
        else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1882
0
            check_md = NID_ecdsa_with_SHA384;
1883
0
        else
1884
0
            return 0;           /* Should never happen */
1885
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
1886
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
1887
0
                return 1;
1888
0
        }
1889
0
        return 0;
1890
0
    }
1891
17.9k
    return 1;
1892
17.9k
}
1893
1894
/*
1895
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1896
 * @s: SSL connection
1897
 * @cid: Cipher ID we're considering using
1898
 *
1899
 * Checks that the kECDHE cipher suite we're considering using
1900
 * is compatible with the client extensions.
1901
 *
1902
 * Returns 0 when the cipher can't be used or 1 when it can.
1903
 */
1904
int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1905
32.0k
{
1906
    /* If not Suite B just need a shared group */
1907
32.0k
    if (!tls1_suiteb(s))
1908
32.0k
        return tls1_shared_group(s, 0) != 0;
1909
    /*
1910
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1911
     * curves permitted.
1912
     */
1913
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1914
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1915
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1916
0
        return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1917
1918
0
    return 0;
1919
0
}
1920
1921
/* Default sigalg schemes */
1922
static const uint16_t tls12_sigalgs[] = {
1923
    TLSEXT_SIGALG_mldsa65,
1924
    TLSEXT_SIGALG_mldsa87,
1925
    TLSEXT_SIGALG_mldsa44,
1926
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1927
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1928
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1929
    TLSEXT_SIGALG_ed25519,
1930
    TLSEXT_SIGALG_ed448,
1931
    TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1932
    TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1933
    TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1934
1935
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
1936
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
1937
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
1938
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1939
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1940
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1941
1942
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
1943
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
1944
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1945
1946
    TLSEXT_SIGALG_ecdsa_sha224,
1947
    TLSEXT_SIGALG_ecdsa_sha1,
1948
1949
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1950
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1951
1952
    TLSEXT_SIGALG_dsa_sha224,
1953
    TLSEXT_SIGALG_dsa_sha1,
1954
1955
    TLSEXT_SIGALG_dsa_sha256,
1956
    TLSEXT_SIGALG_dsa_sha384,
1957
    TLSEXT_SIGALG_dsa_sha512,
1958
1959
#ifndef OPENSSL_NO_GOST
1960
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1961
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1962
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1963
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1964
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1965
#endif
1966
};
1967
1968
1969
static const uint16_t suiteb_sigalgs[] = {
1970
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1971
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1972
};
1973
1974
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1975
    {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
1976
     "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1977
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1978
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
1979
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1980
    {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
1981
     "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1982
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1983
     NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
1984
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1985
    {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
1986
     "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1987
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1988
     NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
1989
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1990
1991
    {TLSEXT_SIGALG_ed25519_name,
1992
     NULL, TLSEXT_SIGALG_ed25519,
1993
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1994
     NID_undef, NID_undef, 1, 0,
1995
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1996
    {TLSEXT_SIGALG_ed448_name,
1997
     NULL, TLSEXT_SIGALG_ed448,
1998
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1999
     NID_undef, NID_undef, 1, 0,
2000
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2001
2002
    {TLSEXT_SIGALG_ecdsa_sha224_name,
2003
     "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
2004
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2005
     NID_ecdsa_with_SHA224, NID_undef, 1, 0,
2006
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2007
    {TLSEXT_SIGALG_ecdsa_sha1_name,
2008
     "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
2009
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2010
     NID_ecdsa_with_SHA1, NID_undef, 1, 0,
2011
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2012
2013
    {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
2014
     TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
2015
     TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
2016
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2017
     NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
2018
     TLS1_3_VERSION, 0, -1, -1},
2019
    {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
2020
     TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
2021
     TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
2022
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2023
     NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
2024
     TLS1_3_VERSION, 0, -1, -1},
2025
    {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
2026
     TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
2027
     TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
2028
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2029
     NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
2030
     TLS1_3_VERSION, 0, -1, -1},
2031
2032
    {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
2033
     "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
2034
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2035
     NID_undef, NID_undef, 1, 0,
2036
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2037
    {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
2038
     "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
2039
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2040
     NID_undef, NID_undef, 1, 0,
2041
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2042
    {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
2043
     "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
2044
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2045
     NID_undef, NID_undef, 1, 0,
2046
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2047
2048
    {TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
2049
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
2050
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2051
     NID_undef, NID_undef, 1, 0,
2052
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2053
    {TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
2054
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
2055
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2056
     NID_undef, NID_undef, 1, 0,
2057
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2058
    {TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
2059
     NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
2060
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2061
     NID_undef, NID_undef, 1, 0,
2062
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2063
2064
    {TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
2065
     "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
2066
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2067
     NID_sha256WithRSAEncryption, NID_undef, 1, 0,
2068
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2069
    {TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
2070
     "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
2071
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2072
     NID_sha384WithRSAEncryption, NID_undef, 1, 0,
2073
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2074
    {TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
2075
     "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
2076
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2077
     NID_sha512WithRSAEncryption, NID_undef, 1, 0,
2078
     TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2079
2080
    {TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
2081
     "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
2082
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2083
     NID_sha224WithRSAEncryption, NID_undef, 1, 0,
2084
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2085
    {TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
2086
     "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
2087
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2088
     NID_sha1WithRSAEncryption, NID_undef, 1, 0,
2089
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2090
2091
    {TLSEXT_SIGALG_dsa_sha256_name,
2092
     "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
2093
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2094
     NID_dsa_with_SHA256, NID_undef, 1, 0,
2095
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2096
    {TLSEXT_SIGALG_dsa_sha384_name,
2097
     "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
2098
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2099
     NID_undef, NID_undef, 1, 0,
2100
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2101
    {TLSEXT_SIGALG_dsa_sha512_name,
2102
     "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
2103
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2104
     NID_undef, NID_undef, 1, 0,
2105
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2106
    {TLSEXT_SIGALG_dsa_sha224_name,
2107
     "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
2108
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2109
     NID_undef, NID_undef, 1, 0,
2110
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2111
    {TLSEXT_SIGALG_dsa_sha1_name,
2112
     "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
2113
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2114
     NID_dsaWithSHA1, NID_undef, 1, 0,
2115
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2116
2117
#ifndef OPENSSL_NO_GOST
2118
    {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2119
     TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2120
     TLSEXT_SIGALG_gostr34102012_256_intrinsic,
2121
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2122
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2123
     NID_undef, NID_undef, 1, 0,
2124
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2125
    {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2126
     TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2127
     TLSEXT_SIGALG_gostr34102012_512_intrinsic,
2128
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2129
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2130
     NID_undef, NID_undef, 1, 0,
2131
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2132
2133
    {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
2134
     NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
2135
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2136
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2137
     NID_undef, NID_undef, 1, 0,
2138
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2139
    {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
2140
     NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
2141
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2142
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2143
     NID_undef, NID_undef, 1, 0,
2144
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2145
    {TLSEXT_SIGALG_gostr34102001_gostr3411_name,
2146
     NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
2147
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
2148
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
2149
     NID_undef, NID_undef, 1, 0,
2150
     TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2151
#endif
2152
};
2153
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
2154
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
2155
    "rsa_pkcs1_md5_sha1", NULL, 0,
2156
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
2157
     EVP_PKEY_RSA, SSL_PKEY_RSA,
2158
     NID_undef, NID_undef, 1, 0,
2159
     TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
2160
};
2161
2162
/*
2163
 * Default signature algorithm values used if signature algorithms not present.
2164
 * From RFC5246. Note: order must match certificate index order.
2165
 */
2166
static const uint16_t tls_default_sigalg[] = {
2167
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
2168
    0, /* SSL_PKEY_RSA_PSS_SIGN */
2169
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
2170
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
2171
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
2172
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
2173
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
2174
    0, /* SSL_PKEY_ED25519 */
2175
    0, /* SSL_PKEY_ED448 */
2176
};
2177
2178
int ssl_setup_sigalgs(SSL_CTX *ctx)
2179
59.6k
{
2180
59.6k
    size_t i, cache_idx, sigalgs_len, enabled;
2181
59.6k
    const SIGALG_LOOKUP *lu;
2182
59.6k
    SIGALG_LOOKUP *cache = NULL;
2183
59.6k
    uint16_t *tls12_sigalgs_list = NULL;
2184
59.6k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
2185
59.6k
    int istls;
2186
59.6k
    int ret = 0;
2187
2188
59.6k
    if (ctx == NULL)
2189
0
        goto err;
2190
2191
59.6k
    istls = !SSL_CTX_IS_DTLS(ctx);
2192
2193
59.6k
    sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
2194
2195
59.6k
    cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
2196
59.6k
    if (cache == NULL || tmpkey == NULL)
2197
0
        goto err;
2198
2199
59.6k
    tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len);
2200
59.6k
    if (tls12_sigalgs_list == NULL)
2201
0
        goto err;
2202
2203
59.6k
    ERR_set_mark();
2204
    /* First fill cache and tls12_sigalgs list from legacy algorithm list */
2205
59.6k
    for (i = 0, lu = sigalg_lookup_tbl;
2206
1.90M
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2207
1.85M
        EVP_PKEY_CTX *pctx;
2208
2209
1.85M
        cache[i] = *lu;
2210
2211
        /*
2212
         * Check hash is available.
2213
         * This test is not perfect. A provider could have support
2214
         * for a signature scheme, but not a particular hash. However the hash
2215
         * could be available from some other loaded provider. In that case it
2216
         * could be that the signature is available, and the hash is available
2217
         * independently - but not as a combination. We ignore this for now.
2218
         */
2219
1.85M
        if (lu->hash != NID_undef
2220
1.73M
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
2221
298k
            cache[i].available = 0;
2222
298k
            continue;
2223
298k
        }
2224
2225
1.55M
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2226
0
            cache[i].available = 0;
2227
0
            continue;
2228
0
        }
2229
1.55M
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
2230
        /* If unable to create pctx we assume the sig algorithm is unavailable */
2231
1.55M
        if (pctx == NULL)
2232
0
            cache[i].available = 0;
2233
1.55M
        EVP_PKEY_CTX_free(pctx);
2234
1.55M
    }
2235
2236
    /* Now complete cache and tls12_sigalgs list with provider sig information */
2237
59.6k
    cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
2238
238k
    for (i = 0; i < ctx->sigalg_list_len; i++) {
2239
179k
        TLS_SIGALG_INFO si = ctx->sigalg_list[i];
2240
179k
        cache[cache_idx].name = si.name;
2241
179k
        cache[cache_idx].name12 = si.sigalg_name;
2242
179k
        cache[cache_idx].sigalg = si.code_point;
2243
179k
        tls12_sigalgs_list[cache_idx] = si.code_point;
2244
179k
        cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
2245
179k
        cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
2246
179k
        cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
2247
179k
        cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
2248
179k
        cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
2249
179k
        cache[cache_idx].curve = NID_undef;
2250
179k
        cache[cache_idx].mintls = TLS1_3_VERSION;
2251
179k
        cache[cache_idx].maxtls = TLS1_3_VERSION;
2252
179k
        cache[cache_idx].mindtls = -1;
2253
179k
        cache[cache_idx].maxdtls = -1;
2254
        /* Compatibility with TLS 1.3 is checked on load */
2255
179k
        cache[cache_idx].available = istls;
2256
179k
        cache[cache_idx].advertise = 0;
2257
179k
        cache_idx++;
2258
179k
    }
2259
59.6k
    ERR_pop_to_mark();
2260
2261
59.6k
    enabled = 0;
2262
2.08M
    for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
2263
2.02M
        SIGALG_LOOKUP *ent = cache;
2264
2.02M
        size_t j;
2265
2266
35.5M
        for (j = 0; j < sigalgs_len; ent++, j++) {
2267
35.5M
            if (ent->sigalg != tls12_sigalgs[i])
2268
33.4M
                continue;
2269
            /* Dedup by marking cache entry as default enabled. */
2270
2.02M
            if (ent->available && !ent->advertise) {
2271
1.67M
                ent->advertise = 1;
2272
1.67M
                tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
2273
1.67M
            }
2274
2.02M
            break;
2275
35.5M
        }
2276
2.02M
    }
2277
2278
    /* Append any provider sigalgs not yet handled */
2279
238k
    for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
2280
179k
        SIGALG_LOOKUP *ent = &cache[i];
2281
2282
179k
        if (ent->available && !ent->advertise)
2283
0
            tls12_sigalgs_list[enabled++] = ent->sigalg;
2284
179k
    }
2285
2286
59.6k
    ctx->sigalg_lookup_cache = cache;
2287
59.6k
    ctx->sigalg_lookup_cache_len = sigalgs_len;
2288
59.6k
    ctx->tls12_sigalgs = tls12_sigalgs_list;
2289
59.6k
    ctx->tls12_sigalgs_len = enabled;
2290
59.6k
    cache = NULL;
2291
59.6k
    tls12_sigalgs_list = NULL;
2292
2293
59.6k
    ret = 1;
2294
59.6k
 err:
2295
59.6k
    OPENSSL_free(cache);
2296
59.6k
    OPENSSL_free(tls12_sigalgs_list);
2297
59.6k
    EVP_PKEY_free(tmpkey);
2298
59.6k
    return ret;
2299
59.6k
}
2300
2301
0
#define SIGLEN_BUF_INCREMENT 100
2302
2303
char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
2304
0
{
2305
0
    size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
2306
0
    const SIGALG_LOOKUP *lu;
2307
0
    EVP_PKEY *tmpkey = EVP_PKEY_new();
2308
0
    char *retval = OPENSSL_malloc(maxretlen);
2309
2310
0
    if (retval == NULL)
2311
0
        return NULL;
2312
2313
    /* ensure retval string is NUL terminated */
2314
0
    retval[0] = (char)0;
2315
2316
0
    for (i = 0, lu = sigalg_lookup_tbl;
2317
0
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2318
0
        EVP_PKEY_CTX *pctx;
2319
0
        int enabled = 1;
2320
2321
0
        ERR_set_mark();
2322
        /* Check hash is available in some provider. */
2323
0
        if (lu->hash != NID_undef) {
2324
0
            EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
2325
2326
            /* If unable to create we assume the hash algorithm is unavailable */
2327
0
            if (hash == NULL) {
2328
0
                enabled = 0;
2329
0
                ERR_pop_to_mark();
2330
0
                continue;
2331
0
            }
2332
0
            EVP_MD_free(hash);
2333
0
        }
2334
2335
0
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2336
0
            enabled = 0;
2337
0
            ERR_pop_to_mark();
2338
0
            continue;
2339
0
        }
2340
0
        pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
2341
        /* If unable to create pctx we assume the sig algorithm is unavailable */
2342
0
        if (pctx == NULL)
2343
0
            enabled = 0;
2344
0
        ERR_pop_to_mark();
2345
0
        EVP_PKEY_CTX_free(pctx);
2346
2347
0
        if (enabled) {
2348
0
            const char *sa = lu->name;
2349
2350
0
            if (sa != NULL) {
2351
0
                if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
2352
0
                    char *tmp;
2353
2354
0
                    maxretlen += SIGLEN_BUF_INCREMENT;
2355
0
                    tmp = OPENSSL_realloc(retval, maxretlen);
2356
0
                    if (tmp == NULL) {
2357
0
                        OPENSSL_free(retval);
2358
0
                        return NULL;
2359
0
                    }
2360
0
                    retval = tmp;
2361
0
                }
2362
0
                if (strlen(retval) > 0)
2363
0
                    OPENSSL_strlcat(retval, ":", maxretlen);
2364
0
                OPENSSL_strlcat(retval, sa, maxretlen);
2365
0
            } else {
2366
                /* lu->name must not be NULL */
2367
0
                ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
2368
0
            }
2369
0
        }
2370
0
    }
2371
2372
0
    EVP_PKEY_free(tmpkey);
2373
0
    return retval;
2374
0
}
2375
2376
/* Lookup TLS signature algorithm */
2377
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
2378
                                               uint16_t sigalg)
2379
14.0M
{
2380
14.0M
    size_t i;
2381
14.0M
    const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
2382
2383
225M
    for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
2384
225M
        if (lu->sigalg == sigalg) {
2385
13.6M
            if (!lu->available)
2386
1.43M
                return NULL;
2387
12.1M
            return lu;
2388
13.6M
        }
2389
225M
    }
2390
379k
    return NULL;
2391
14.0M
}
2392
2393
/* Lookup hash: return 0 if invalid or not enabled */
2394
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
2395
3.82M
{
2396
3.82M
    const EVP_MD *md;
2397
2398
3.82M
    if (lu == NULL)
2399
0
        return 0;
2400
    /* lu->hash == NID_undef means no associated digest */
2401
3.82M
    if (lu->hash == NID_undef) {
2402
334k
        md = NULL;
2403
3.48M
    } else {
2404
3.48M
        md = ssl_md(ctx, lu->hash_idx);
2405
3.48M
        if (md == NULL)
2406
0
            return 0;
2407
3.48M
    }
2408
3.82M
    if (pmd)
2409
3.73M
        *pmd = md;
2410
3.82M
    return 1;
2411
3.82M
}
2412
2413
/*
2414
 * Check if key is large enough to generate RSA-PSS signature.
2415
 *
2416
 * The key must greater than or equal to 2 * hash length + 2.
2417
 * SHA512 has a hash length of 64 bytes, which is incompatible
2418
 * with a 128 byte (1024 bit) key.
2419
 */
2420
940
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
2421
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
2422
                                      const SIGALG_LOOKUP *lu)
2423
940
{
2424
940
    const EVP_MD *md;
2425
2426
940
    if (pkey == NULL)
2427
0
        return 0;
2428
940
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
2429
0
        return 0;
2430
940
    if (EVP_MD_get_size(md) <= 0)
2431
0
        return 0;
2432
940
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
2433
0
        return 0;
2434
940
    return 1;
2435
940
}
2436
2437
/*
2438
 * Returns a signature algorithm when the peer did not send a list of supported
2439
 * signature algorithms. The signature algorithm is fixed for the certificate
2440
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
2441
 * certificate type from |s| will be used.
2442
 * Returns the signature algorithm to use, or NULL on error.
2443
 */
2444
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
2445
                                                   int idx)
2446
234k
{
2447
234k
    if (idx == -1) {
2448
18.1k
        if (s->server) {
2449
18.1k
            size_t i;
2450
2451
            /* Work out index corresponding to ciphersuite */
2452
25.5k
            for (i = 0; i < s->ssl_pkey_num; i++) {
2453
25.5k
                const SSL_CERT_LOOKUP *clu
2454
25.5k
                    = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
2455
2456
25.5k
                if (clu == NULL)
2457
0
                    continue;
2458
25.5k
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
2459
18.1k
                    idx = i;
2460
18.1k
                    break;
2461
18.1k
                }
2462
25.5k
            }
2463
2464
            /*
2465
             * Some GOST ciphersuites allow more than one signature algorithms
2466
             * */
2467
18.1k
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
2468
0
                int real_idx;
2469
2470
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
2471
0
                     real_idx--) {
2472
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
2473
0
                        idx = real_idx;
2474
0
                        break;
2475
0
                    }
2476
0
                }
2477
0
            }
2478
            /*
2479
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
2480
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
2481
             */
2482
18.1k
            else if (idx == SSL_PKEY_GOST12_256) {
2483
0
                int real_idx;
2484
2485
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
2486
0
                     real_idx--) {
2487
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
2488
0
                         idx = real_idx;
2489
0
                         break;
2490
0
                     }
2491
0
                }
2492
0
            }
2493
18.1k
        } else {
2494
0
            idx = s->cert->key - s->cert->pkeys;
2495
0
        }
2496
18.1k
    }
2497
234k
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
2498
24.8k
        return NULL;
2499
2500
210k
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
2501
201k
        const SIGALG_LOOKUP *lu =
2502
201k
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
2503
201k
                               tls_default_sigalg[idx]);
2504
2505
201k
        if (lu == NULL)
2506
126k
            return NULL;
2507
75.0k
        if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
2508
0
            return NULL;
2509
75.0k
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2510
0
            return NULL;
2511
75.0k
        return lu;
2512
75.0k
    }
2513
8.14k
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
2514
0
        return NULL;
2515
8.14k
    return &legacy_rsa_sigalg;
2516
8.14k
}
2517
/* Set peer sigalg based key type */
2518
int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
2519
1.60k
{
2520
1.60k
    size_t idx;
2521
1.60k
    const SIGALG_LOOKUP *lu;
2522
2523
1.60k
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
2524
0
        return 0;
2525
1.60k
    lu = tls1_get_legacy_sigalg(s, idx);
2526
1.60k
    if (lu == NULL)
2527
7
        return 0;
2528
1.59k
    s->s3.tmp.peer_sigalg = lu;
2529
1.59k
    return 1;
2530
1.60k
}
2531
2532
size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
2533
507k
{
2534
    /*
2535
     * If Suite B mode use Suite B sigalgs only, ignore any other
2536
     * preferences.
2537
     */
2538
507k
    switch (tls1_suiteb(s)) {
2539
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
2540
0
        *psigs = suiteb_sigalgs;
2541
0
        return OSSL_NELEM(suiteb_sigalgs);
2542
2543
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
2544
0
        *psigs = suiteb_sigalgs;
2545
0
        return 1;
2546
2547
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
2548
0
        *psigs = suiteb_sigalgs + 1;
2549
0
        return 1;
2550
507k
    }
2551
    /*
2552
     *  We use client_sigalgs (if not NULL) if we're a server
2553
     *  and sending a certificate request or if we're a client and
2554
     *  determining which shared algorithm to use.
2555
     */
2556
507k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
2557
0
        *psigs = s->cert->client_sigalgs;
2558
0
        return s->cert->client_sigalgslen;
2559
507k
    } else if (s->cert->conf_sigalgs) {
2560
0
        *psigs = s->cert->conf_sigalgs;
2561
0
        return s->cert->conf_sigalgslen;
2562
507k
    } else {
2563
507k
        *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2564
507k
        return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2565
507k
    }
2566
507k
}
2567
2568
/*
2569
 * Called by servers only. Checks that we have a sig alg that supports the
2570
 * specified EC curve.
2571
 */
2572
int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
2573
0
{
2574
0
   const uint16_t *sigs;
2575
0
   size_t siglen, i;
2576
2577
0
    if (s->cert->conf_sigalgs) {
2578
0
        sigs = s->cert->conf_sigalgs;
2579
0
        siglen = s->cert->conf_sigalgslen;
2580
0
    } else {
2581
0
        sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2582
0
        siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2583
0
    }
2584
2585
0
    for (i = 0; i < siglen; i++) {
2586
0
        const SIGALG_LOOKUP *lu =
2587
0
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
2588
2589
0
        if (lu == NULL)
2590
0
            continue;
2591
0
        if (lu->sig == EVP_PKEY_EC
2592
0
                && lu->curve != NID_undef
2593
0
                && curve == lu->curve)
2594
0
            return 1;
2595
0
    }
2596
2597
0
    return 0;
2598
0
}
2599
2600
/*
2601
 * Return the number of security bits for the signature algorithm, or 0 on
2602
 * error.
2603
 */
2604
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
2605
2.19M
{
2606
2.19M
    const EVP_MD *md = NULL;
2607
2.19M
    int secbits = 0;
2608
2609
2.19M
    if (!tls1_lookup_md(ctx, lu, &md))
2610
0
        return 0;
2611
2.19M
    if (md != NULL)
2612
1.95M
    {
2613
1.95M
        int md_type = EVP_MD_get_type(md);
2614
2615
        /* Security bits: half digest bits */
2616
1.95M
        secbits = EVP_MD_get_size(md) * 4;
2617
1.95M
        if (secbits <= 0)
2618
0
            return 0;
2619
        /*
2620
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
2621
         * they're no longer accepted at security level 1. The real values don't
2622
         * really matter as long as they're lower than 80, which is our
2623
         * security level 1.
2624
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
2625
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
2626
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
2627
         * puts a chosen-prefix attack for MD5 at 2^39.
2628
         */
2629
1.95M
        if (md_type == NID_sha1)
2630
186k
            secbits = 64;
2631
1.77M
        else if (md_type == NID_md5_sha1)
2632
5.17k
            secbits = 67;
2633
1.76M
        else if (md_type == NID_md5)
2634
0
            secbits = 39;
2635
1.95M
    } else {
2636
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
2637
235k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
2638
65.7k
            secbits = 128;
2639
169k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
2640
73.8k
            secbits = 224;
2641
235k
    }
2642
    /*
2643
     * For provider-based sigalgs we have secbits information available
2644
     * in the (provider-loaded) sigalg_list structure
2645
     */
2646
2.19M
    if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2647
95.5k
               && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2648
95.5k
        secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2649
95.5k
    }
2650
2.19M
    return secbits;
2651
2.19M
}
2652
2653
static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
2654
1.23M
{
2655
1.23M
    int minversion, maxversion;
2656
1.23M
    int minproto, maxproto;
2657
2658
1.23M
    if (!lu->available)
2659
0
        return 0;
2660
2661
1.23M
    if (SSL_CONNECTION_IS_DTLS(sc)) {
2662
287k
        if (sc->ssl.method->version == DTLS_ANY_VERSION) {
2663
279k
            minproto = sc->min_proto_version;
2664
279k
            maxproto = sc->max_proto_version;
2665
279k
        } else {
2666
7.65k
            maxproto = minproto = sc->version;
2667
7.65k
        }
2668
287k
        minversion = lu->mindtls;
2669
287k
        maxversion = lu->maxdtls;
2670
946k
    } else {
2671
946k
        if (sc->ssl.method->version == TLS_ANY_VERSION) {
2672
919k
            minproto = sc->min_proto_version;
2673
919k
            maxproto = sc->max_proto_version;
2674
919k
        } else {
2675
27.0k
            maxproto = minproto = sc->version;
2676
27.0k
        }
2677
946k
        minversion = lu->mintls;
2678
946k
        maxversion = lu->maxtls;
2679
946k
    }
2680
1.23M
    if (minversion == -1 || maxversion == -1
2681
1.20M
        || (minversion != 0 && maxproto != 0
2682
34.4k
            && ssl_version_cmp(sc, minversion, maxproto) > 0)
2683
1.19M
        || (maxversion != 0 && minproto != 0
2684
235k
            && ssl_version_cmp(sc, maxversion, minproto) < 0)
2685
1.02M
        || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
2686
203k
        return 0;
2687
1.02M
    return 1;
2688
1.23M
}
2689
2690
/*
2691
 * Check signature algorithm is consistent with sent supported signature
2692
 * algorithms and if so set relevant digest and signature scheme in
2693
 * s.
2694
 */
2695
int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2696
7.73k
{
2697
7.73k
    const uint16_t *sent_sigs;
2698
7.73k
    const EVP_MD *md = NULL;
2699
7.73k
    char sigalgstr[2];
2700
7.73k
    size_t sent_sigslen, i, cidx;
2701
7.73k
    int pkeyid = -1;
2702
7.73k
    const SIGALG_LOOKUP *lu;
2703
7.73k
    int secbits = 0;
2704
2705
7.73k
    pkeyid = EVP_PKEY_get_id(pkey);
2706
2707
7.73k
    if (SSL_CONNECTION_IS_TLS13(s)) {
2708
        /* Disallow DSA for TLS 1.3 */
2709
5.92k
        if (pkeyid == EVP_PKEY_DSA) {
2710
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2711
0
            return 0;
2712
0
        }
2713
        /* Only allow PSS for TLS 1.3 */
2714
5.92k
        if (pkeyid == EVP_PKEY_RSA)
2715
5.91k
            pkeyid = EVP_PKEY_RSA_PSS;
2716
5.92k
    }
2717
2718
    /* Is this code point available and compatible with the protocol */
2719
7.73k
    lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
2720
7.73k
    if (lu == NULL || !tls_sigalg_compat(s, lu)) {
2721
77
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2722
77
        return 0;
2723
77
    }
2724
2725
    /* If we don't know the pkey nid yet go and find it */
2726
7.66k
    if (pkeyid == EVP_PKEY_KEYMGMT) {
2727
0
        const SSL_CERT_LOOKUP *scl =
2728
0
            ssl_cert_lookup_by_pkey(pkey, NULL, SSL_CONNECTION_GET_CTX(s));
2729
2730
0
        if (scl == NULL) {
2731
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2732
0
            return 0;
2733
0
        }
2734
0
        pkeyid = scl->pkey_nid;
2735
0
    }
2736
2737
    /* Should never happen */
2738
7.66k
    if (pkeyid == -1) {
2739
0
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2740
0
        return -1;
2741
0
    }
2742
2743
    /*
2744
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2745
     * is consistent with signature: RSA keys can be used for RSA-PSS
2746
     */
2747
7.66k
    if ((SSL_CONNECTION_IS_TLS13(s)
2748
5.90k
            && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2749
7.66k
        || (pkeyid != lu->sig
2750
335
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2751
21
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2752
21
        return 0;
2753
21
    }
2754
    /* Check the sigalg is consistent with the key OID */
2755
7.64k
    if (!ssl_cert_lookup_by_nid(
2756
7.64k
                 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2757
7.64k
                 &cidx, SSL_CONNECTION_GET_CTX(s))
2758
7.64k
            || lu->sig_idx != (int)cidx) {
2759
6
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2760
6
        return 0;
2761
6
    }
2762
2763
7.63k
    if (pkeyid == EVP_PKEY_EC) {
2764
2765
        /* Check point compression is permitted */
2766
120
        if (!tls1_check_pkey_comp(s, pkey)) {
2767
8
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2768
8
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
2769
8
            return 0;
2770
8
        }
2771
2772
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2773
112
        if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2774
0
            int curve = ssl_get_EC_curve_nid(pkey);
2775
2776
0
            if (lu->curve != NID_undef && curve != lu->curve) {
2777
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2778
0
                return 0;
2779
0
            }
2780
0
        }
2781
112
        if (!SSL_CONNECTION_IS_TLS13(s)) {
2782
            /* Check curve matches extensions */
2783
112
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2784
4
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2785
4
                return 0;
2786
4
            }
2787
108
            if (tls1_suiteb(s)) {
2788
                /* Check sigalg matches a permissible Suite B value */
2789
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2790
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2791
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2792
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
2793
0
                    return 0;
2794
0
                }
2795
0
            }
2796
108
        }
2797
7.51k
    } else if (tls1_suiteb(s)) {
2798
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2799
0
        return 0;
2800
0
    }
2801
2802
    /* Check signature matches a type we sent */
2803
7.62k
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2804
126k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2805
126k
        if (sig == *sent_sigs)
2806
7.62k
            break;
2807
126k
    }
2808
    /* Allow fallback to SHA1 if not strict mode */
2809
7.62k
    if (i == sent_sigslen && (lu->hash != NID_sha1
2810
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2811
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2812
0
        return 0;
2813
0
    }
2814
7.62k
    if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2815
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2816
0
        return 0;
2817
0
    }
2818
    /*
2819
     * Make sure security callback allows algorithm. For historical
2820
     * reasons we have to pass the sigalg as a two byte char array.
2821
     */
2822
7.62k
    sigalgstr[0] = (sig >> 8) & 0xff;
2823
7.62k
    sigalgstr[1] = sig & 0xff;
2824
7.62k
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2825
7.62k
    if (secbits == 0 ||
2826
7.62k
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
2827
7.62k
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
2828
7.62k
                      (void *)sigalgstr)) {
2829
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2830
0
        return 0;
2831
0
    }
2832
    /* Store the sigalg the peer uses */
2833
7.62k
    s->s3.tmp.peer_sigalg = lu;
2834
7.62k
    return 1;
2835
7.62k
}
2836
2837
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2838
0
{
2839
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2840
2841
0
    if (sc == NULL)
2842
0
        return 0;
2843
2844
0
    if (sc->s3.tmp.peer_sigalg == NULL)
2845
0
        return 0;
2846
0
    *pnid = sc->s3.tmp.peer_sigalg->sig;
2847
0
    return 1;
2848
0
}
2849
2850
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2851
0
{
2852
0
    const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2853
2854
0
    if (sc == NULL)
2855
0
        return 0;
2856
2857
0
    if (sc->s3.tmp.sigalg == NULL)
2858
0
        return 0;
2859
0
    *pnid = sc->s3.tmp.sigalg->sig;
2860
0
    return 1;
2861
0
}
2862
2863
/*
2864
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2865
 * supported, doesn't appear in supported signature algorithms, isn't supported
2866
 * by the enabled protocol versions or by the security level.
2867
 *
2868
 * This function should only be used for checking which ciphers are supported
2869
 * by the client.
2870
 *
2871
 * Call ssl_cipher_disabled() to check that it's enabled or not.
2872
 */
2873
int ssl_set_client_disabled(SSL_CONNECTION *s)
2874
334k
{
2875
334k
    s->s3.tmp.mask_a = 0;
2876
334k
    s->s3.tmp.mask_k = 0;
2877
334k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2878
334k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2879
334k
                                &s->s3.tmp.max_ver, NULL) != 0)
2880
0
        return 0;
2881
334k
#ifndef OPENSSL_NO_PSK
2882
    /* with PSK there must be client callback set */
2883
334k
    if (!s->psk_client_callback) {
2884
334k
        s->s3.tmp.mask_a |= SSL_aPSK;
2885
334k
        s->s3.tmp.mask_k |= SSL_PSK;
2886
334k
    }
2887
334k
#endif                          /* OPENSSL_NO_PSK */
2888
334k
#ifndef OPENSSL_NO_SRP
2889
334k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2890
334k
        s->s3.tmp.mask_a |= SSL_aSRP;
2891
334k
        s->s3.tmp.mask_k |= SSL_kSRP;
2892
334k
    }
2893
334k
#endif
2894
334k
    return 1;
2895
334k
}
2896
2897
/*
2898
 * ssl_cipher_disabled - check that a cipher is disabled or not
2899
 * @s: SSL connection that you want to use the cipher on
2900
 * @c: cipher to check
2901
 * @op: Security check that you want to do
2902
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2903
 *
2904
 * Returns 1 when it's disabled, 0 when enabled.
2905
 */
2906
int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2907
                        int op, int ecdhe)
2908
25.2M
{
2909
25.2M
    int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2910
25.2M
    int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2911
2912
25.2M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
2913
14.6M
        || c->algorithm_auth & s->s3.tmp.mask_a)
2914
10.5M
        return 1;
2915
14.6M
    if (s->s3.tmp.max_ver == 0)
2916
0
        return 1;
2917
2918
14.6M
    if (SSL_IS_QUIC_INT_HANDSHAKE(s))
2919
        /* For QUIC, only allow these ciphersuites. */
2920
372k
        switch (SSL_CIPHER_get_id(c)) {
2921
118k
        case TLS1_3_CK_AES_128_GCM_SHA256:
2922
253k
        case TLS1_3_CK_AES_256_GCM_SHA384:
2923
372k
        case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2924
372k
            break;
2925
26
        default:
2926
26
            return 1;
2927
372k
        }
2928
2929
    /*
2930
     * For historical reasons we will allow ECHDE to be selected by a server
2931
     * in SSLv3 if we are a client
2932
     */
2933
14.6M
    if (minversion == TLS1_VERSION
2934
950k
            && ecdhe
2935
4.14k
            && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2936
4.13k
        minversion = SSL3_VERSION;
2937
2938
14.6M
    if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2939
14.3M
        || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2940
359k
        return 1;
2941
2942
14.3M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2943
14.6M
}
2944
2945
int tls_use_ticket(SSL_CONNECTION *s)
2946
152k
{
2947
152k
    if ((s->options & SSL_OP_NO_TICKET))
2948
0
        return 0;
2949
152k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2950
152k
}
2951
2952
int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2953
26.1k
{
2954
26.1k
    size_t i;
2955
2956
    /* Clear any shared signature algorithms */
2957
26.1k
    OPENSSL_free(s->shared_sigalgs);
2958
26.1k
    s->shared_sigalgs = NULL;
2959
26.1k
    s->shared_sigalgslen = 0;
2960
2961
    /* Clear certificate validity flags */
2962
26.1k
    if (s->s3.tmp.valid_flags)
2963
110
        memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2964
26.0k
    else
2965
26.0k
        s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2966
26.1k
    if (s->s3.tmp.valid_flags == NULL)
2967
0
        return 0;
2968
    /*
2969
     * If peer sent no signature algorithms check to see if we support
2970
     * the default algorithm for each certificate type
2971
     */
2972
26.1k
    if (s->s3.tmp.peer_cert_sigalgs == NULL
2973
25.4k
            && s->s3.tmp.peer_sigalgs == NULL) {
2974
19.2k
        const uint16_t *sent_sigs;
2975
19.2k
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2976
2977
217k
        for (i = 0; i < s->ssl_pkey_num; i++) {
2978
198k
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2979
198k
            size_t j;
2980
2981
198k
            if (lu == NULL)
2982
140k
                continue;
2983
            /* Check default matches a type we sent */
2984
1.29M
            for (j = 0; j < sent_sigslen; j++) {
2985
1.28M
                if (lu->sigalg == sent_sigs[j]) {
2986
53.3k
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2987
53.3k
                        break;
2988
53.3k
                }
2989
1.28M
            }
2990
57.7k
        }
2991
19.2k
        return 1;
2992
19.2k
    }
2993
2994
6.93k
    if (!tls1_process_sigalgs(s)) {
2995
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2996
0
        return 0;
2997
0
    }
2998
6.93k
    if (s->shared_sigalgs != NULL)
2999
6.83k
        return 1;
3000
3001
    /* Fatal error if no shared signature algorithms */
3002
6.93k
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3003
103
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
3004
103
    return 0;
3005
6.93k
}
3006
3007
/*-
3008
 * Gets the ticket information supplied by the client if any.
3009
 *
3010
 *   hello: The parsed ClientHello data
3011
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
3012
 *       point to the resulting session.
3013
 */
3014
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
3015
                                             CLIENTHELLO_MSG *hello,
3016
                                             SSL_SESSION **ret)
3017
25.9k
{
3018
25.9k
    size_t size;
3019
25.9k
    RAW_EXTENSION *ticketext;
3020
3021
25.9k
    *ret = NULL;
3022
25.9k
    s->ext.ticket_expected = 0;
3023
3024
    /*
3025
     * If tickets disabled or not supported by the protocol version
3026
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
3027
     * resumption.
3028
     */
3029
25.9k
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
3030
0
        return SSL_TICKET_NONE;
3031
3032
25.9k
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
3033
25.9k
    if (!ticketext->present)
3034
20.0k
        return SSL_TICKET_NONE;
3035
3036
5.91k
    size = PACKET_remaining(&ticketext->data);
3037
3038
5.91k
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
3039
5.91k
                              hello->session_id, hello->session_id_len, ret);
3040
25.9k
}
3041
3042
/*-
3043
 * tls_decrypt_ticket attempts to decrypt a session ticket.
3044
 *
3045
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
3046
 * expecting a pre-shared key ciphersuite, in which case we have no use for
3047
 * session tickets and one will never be decrypted, nor will
3048
 * s->ext.ticket_expected be set to 1.
3049
 *
3050
 * Side effects:
3051
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
3052
 *   a new session ticket to the client because the client indicated support
3053
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3054
 *   a session ticket or we couldn't use the one it gave us, or if
3055
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
3056
 *   Otherwise, s->ext.ticket_expected is set to 0.
3057
 *
3058
 *   etick: points to the body of the session ticket extension.
3059
 *   eticklen: the length of the session tickets extension.
3060
 *   sess_id: points at the session ID.
3061
 *   sesslen: the length of the session ID.
3062
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
3063
 *       point to the resulting session.
3064
 */
3065
SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
3066
                                     const unsigned char *etick,
3067
                                     size_t eticklen,
3068
                                     const unsigned char *sess_id,
3069
                                     size_t sesslen, SSL_SESSION **psess)
3070
6.81k
{
3071
6.81k
    SSL_SESSION *sess = NULL;
3072
6.81k
    unsigned char *sdec;
3073
6.81k
    const unsigned char *p;
3074
6.81k
    int slen, ivlen, renew_ticket = 0, declen;
3075
6.81k
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
3076
6.81k
    size_t mlen;
3077
6.81k
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3078
6.81k
    SSL_HMAC *hctx = NULL;
3079
6.81k
    EVP_CIPHER_CTX *ctx = NULL;
3080
6.81k
    SSL_CTX *tctx = s->session_ctx;
3081
6.81k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3082
3083
6.81k
    if (eticklen == 0) {
3084
        /*
3085
         * The client will accept a ticket but doesn't currently have
3086
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
3087
         */
3088
3.82k
        ret = SSL_TICKET_EMPTY;
3089
3.82k
        goto end;
3090
3.82k
    }
3091
2.98k
    if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
3092
        /*
3093
         * Indicate that the ticket couldn't be decrypted rather than
3094
         * generating the session from ticket now, trigger
3095
         * abbreviated handshake based on external mechanism to
3096
         * calculate the master secret later.
3097
         */
3098
0
        ret = SSL_TICKET_NO_DECRYPT;
3099
0
        goto end;
3100
0
    }
3101
3102
    /* Need at least keyname + iv */
3103
2.98k
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
3104
1.09k
        ret = SSL_TICKET_NO_DECRYPT;
3105
1.09k
        goto end;
3106
1.09k
    }
3107
3108
    /* Initialize session ticket encryption and HMAC contexts */
3109
1.89k
    hctx = ssl_hmac_new(tctx);
3110
1.89k
    if (hctx == NULL) {
3111
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
3112
0
        goto end;
3113
0
    }
3114
1.89k
    ctx = EVP_CIPHER_CTX_new();
3115
1.89k
    if (ctx == NULL) {
3116
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
3117
0
        goto end;
3118
0
    }
3119
1.89k
#ifndef OPENSSL_NO_DEPRECATED_3_0
3120
1.89k
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
3121
#else
3122
    if (tctx->ext.ticket_key_evp_cb != NULL)
3123
#endif
3124
0
    {
3125
0
        unsigned char *nctick = (unsigned char *)etick;
3126
0
        int rv = 0;
3127
3128
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
3129
0
            rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
3130
0
                                             nctick,
3131
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
3132
0
                                             ctx,
3133
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
3134
0
                                             0);
3135
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3136
0
        else if (tctx->ext.ticket_key_cb != NULL)
3137
            /* if 0 is returned, write an empty ticket */
3138
0
            rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
3139
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
3140
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
3141
0
#endif
3142
0
        if (rv < 0) {
3143
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3144
0
            goto end;
3145
0
        }
3146
0
        if (rv == 0) {
3147
0
            ret = SSL_TICKET_NO_DECRYPT;
3148
0
            goto end;
3149
0
        }
3150
0
        if (rv == 2)
3151
0
            renew_ticket = 1;
3152
1.89k
    } else {
3153
1.89k
        EVP_CIPHER *aes256cbc = NULL;
3154
3155
        /* Check key name matches */
3156
1.89k
        if (memcmp(etick, tctx->ext.tick_key_name,
3157
1.89k
                   TLSEXT_KEYNAME_LENGTH) != 0) {
3158
569
            ret = SSL_TICKET_NO_DECRYPT;
3159
569
            goto end;
3160
569
        }
3161
3162
1.32k
        aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
3163
1.32k
                                     sctx->propq);
3164
1.32k
        if (aes256cbc == NULL
3165
1.32k
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
3166
1.32k
                             sizeof(tctx->ext.secure->tick_hmac_key),
3167
1.32k
                             "SHA256") <= 0
3168
1.32k
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
3169
1.32k
                                  tctx->ext.secure->tick_aes_key,
3170
1.32k
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
3171
0
            EVP_CIPHER_free(aes256cbc);
3172
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3173
0
            goto end;
3174
0
        }
3175
1.32k
        EVP_CIPHER_free(aes256cbc);
3176
1.32k
        if (SSL_CONNECTION_IS_TLS13(s))
3177
573
            renew_ticket = 1;
3178
1.32k
    }
3179
    /*
3180
     * Attempt to process session ticket, first conduct sanity and integrity
3181
     * checks on ticket.
3182
     */
3183
1.32k
    mlen = ssl_hmac_size(hctx);
3184
1.32k
    if (mlen == 0) {
3185
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3186
0
        goto end;
3187
0
    }
3188
3189
1.32k
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
3190
1.32k
    if (ivlen < 0) {
3191
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3192
0
        goto end;
3193
0
    }
3194
3195
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
3196
1.32k
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
3197
155
        ret = SSL_TICKET_NO_DECRYPT;
3198
155
        goto end;
3199
155
    }
3200
1.17k
    eticklen -= mlen;
3201
    /* Check HMAC of encrypted ticket */
3202
1.17k
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
3203
1.17k
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
3204
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3205
0
        goto end;
3206
0
    }
3207
3208
1.17k
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3209
200
        ret = SSL_TICKET_NO_DECRYPT;
3210
200
        goto end;
3211
200
    }
3212
    /* Attempt to decrypt session data */
3213
    /* Move p after IV to start of encrypted ticket, update length */
3214
972
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
3215
972
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
3216
972
    sdec = OPENSSL_malloc(eticklen);
3217
972
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
3218
972
                                          (int)eticklen) <= 0) {
3219
0
        OPENSSL_free(sdec);
3220
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
3221
0
        goto end;
3222
0
    }
3223
972
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
3224
76
        OPENSSL_free(sdec);
3225
76
        ret = SSL_TICKET_NO_DECRYPT;
3226
76
        goto end;
3227
76
    }
3228
896
    slen += declen;
3229
896
    p = sdec;
3230
3231
896
    sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
3232
896
    slen -= p - sdec;
3233
896
    OPENSSL_free(sdec);
3234
896
    if (sess) {
3235
        /* Some additional consistency checks */
3236
728
        if (slen != 0) {
3237
12
            SSL_SESSION_free(sess);
3238
12
            sess = NULL;
3239
12
            ret = SSL_TICKET_NO_DECRYPT;
3240
12
            goto end;
3241
12
        }
3242
        /*
3243
         * The session ID, if non-empty, is used by some clients to detect
3244
         * that the ticket has been accepted. So we copy it to the session
3245
         * structure. If it is empty set length to zero as required by
3246
         * standard.
3247
         */
3248
716
        if (sesslen) {
3249
274
            memcpy(sess->session_id, sess_id, sesslen);
3250
274
            sess->session_id_length = sesslen;
3251
274
        }
3252
716
        if (renew_ticket)
3253
422
            ret = SSL_TICKET_SUCCESS_RENEW;
3254
294
        else
3255
294
            ret = SSL_TICKET_SUCCESS;
3256
716
        goto end;
3257
728
    }
3258
168
    ERR_clear_error();
3259
    /*
3260
     * For session parse failure, indicate that we need to send a new ticket.
3261
     */
3262
168
    ret = SSL_TICKET_NO_DECRYPT;
3263
3264
6.81k
 end:
3265
6.81k
    EVP_CIPHER_CTX_free(ctx);
3266
6.81k
    ssl_hmac_free(hctx);
3267
3268
    /*
3269
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
3270
     * detected above. The callback is responsible for checking |ret| before it
3271
     * performs any action
3272
     */
3273
6.81k
    if (s->session_ctx->decrypt_ticket_cb != NULL
3274
0
            && (ret == SSL_TICKET_EMPTY
3275
0
                || ret == SSL_TICKET_NO_DECRYPT
3276
0
                || ret == SSL_TICKET_SUCCESS
3277
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
3278
0
        size_t keyname_len = eticklen;
3279
0
        int retcb;
3280
3281
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
3282
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
3283
0
        retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
3284
0
                                                  sess, etick, keyname_len,
3285
0
                                                  ret,
3286
0
                                                  s->session_ctx->ticket_cb_data);
3287
0
        switch (retcb) {
3288
0
        case SSL_TICKET_RETURN_ABORT:
3289
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3290
0
            break;
3291
3292
0
        case SSL_TICKET_RETURN_IGNORE:
3293
0
            ret = SSL_TICKET_NONE;
3294
0
            SSL_SESSION_free(sess);
3295
0
            sess = NULL;
3296
0
            break;
3297
3298
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
3299
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
3300
0
                ret = SSL_TICKET_NO_DECRYPT;
3301
            /* else the value of |ret| will already do the right thing */
3302
0
            SSL_SESSION_free(sess);
3303
0
            sess = NULL;
3304
0
            break;
3305
3306
0
        case SSL_TICKET_RETURN_USE:
3307
0
        case SSL_TICKET_RETURN_USE_RENEW:
3308
0
            if (ret != SSL_TICKET_SUCCESS
3309
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
3310
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
3311
0
            else if (retcb == SSL_TICKET_RETURN_USE)
3312
0
                ret = SSL_TICKET_SUCCESS;
3313
0
            else
3314
0
                ret = SSL_TICKET_SUCCESS_RENEW;
3315
0
            break;
3316
3317
0
        default:
3318
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
3319
0
        }
3320
0
    }
3321
3322
6.81k
    if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
3323
6.81k
        switch (ret) {
3324
2.27k
        case SSL_TICKET_NO_DECRYPT:
3325
2.69k
        case SSL_TICKET_SUCCESS_RENEW:
3326
6.51k
        case SSL_TICKET_EMPTY:
3327
6.51k
            s->ext.ticket_expected = 1;
3328
6.81k
        }
3329
6.81k
    }
3330
3331
6.81k
    *psess = sess;
3332
3333
6.81k
    return ret;
3334
6.81k
}
3335
3336
/* Check to see if a signature algorithm is allowed */
3337
static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
3338
                                const SIGALG_LOOKUP *lu)
3339
4.45M
{
3340
4.45M
    unsigned char sigalgstr[2];
3341
4.45M
    int secbits;
3342
3343
4.45M
    if (lu == NULL || !lu->available)
3344
0
        return 0;
3345
    /* DSA is not allowed in TLS 1.3 */
3346
4.45M
    if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
3347
8.28k
        return 0;
3348
    /*
3349
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
3350
     * spec
3351
     */
3352
4.44M
    if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
3353
3.47M
        && s->s3.tmp.min_ver >= TLS1_3_VERSION
3354
1.89M
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
3355
1.17M
            || lu->hash_idx == SSL_MD_MD5_IDX
3356
1.17M
            || lu->hash_idx == SSL_MD_SHA224_IDX))
3357
781k
        return 0;
3358
3359
    /* See if public key algorithm allowed */
3360
3.66M
    if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
3361
0
        return 0;
3362
3363
3.66M
    if (lu->sig == NID_id_GostR3410_2012_256
3364
3.66M
            || lu->sig == NID_id_GostR3410_2012_512
3365
3.66M
            || lu->sig == NID_id_GostR3410_2001) {
3366
        /* We never allow GOST sig algs on the server with TLSv1.3 */
3367
0
        if (s->server && SSL_CONNECTION_IS_TLS13(s))
3368
0
            return 0;
3369
0
        if (!s->server
3370
0
                && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
3371
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
3372
0
            int i, num;
3373
0
            STACK_OF(SSL_CIPHER) *sk;
3374
3375
            /*
3376
             * We're a client that could negotiate TLSv1.3. We only allow GOST
3377
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
3378
             * ciphersuites enabled.
3379
             */
3380
3381
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
3382
0
                return 0;
3383
3384
0
            sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
3385
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
3386
0
            for (i = 0; i < num; i++) {
3387
0
                const SSL_CIPHER *c;
3388
3389
0
                c = sk_SSL_CIPHER_value(sk, i);
3390
                /* Skip disabled ciphers */
3391
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
3392
0
                    continue;
3393
3394
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
3395
0
                    break;
3396
0
            }
3397
0
            if (i == num)
3398
0
                return 0;
3399
0
        }
3400
0
    }
3401
3402
    /* Finally see if security callback allows it */
3403
3.66M
    secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
3404
3.66M
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
3405
3.66M
    sigalgstr[1] = lu->sigalg & 0xff;
3406
3.66M
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
3407
3.66M
}
3408
3409
/*
3410
 * Get a mask of disabled public key algorithms based on supported signature
3411
 * algorithms. For example if no signature algorithm supports RSA then RSA is
3412
 * disabled.
3413
 */
3414
3415
void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
3416
334k
{
3417
334k
    const uint16_t *sigalgs;
3418
334k
    size_t i, sigalgslen;
3419
334k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
3420
    /*
3421
     * Go through all signature algorithms seeing if we support any
3422
     * in disabled_mask.
3423
     */
3424
334k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
3425
10.2M
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
3426
9.93M
        const SIGALG_LOOKUP *lu =
3427
9.93M
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
3428
9.93M
        const SSL_CERT_LOOKUP *clu;
3429
3430
9.93M
        if (lu == NULL)
3431
1.02M
            continue;
3432
3433
8.91M
        clu = ssl_cert_lookup_by_idx(lu->sig_idx,
3434
8.91M
                                     SSL_CONNECTION_GET_CTX(s));
3435
8.91M
        if (clu == NULL)
3436
0
                continue;
3437
3438
        /* If algorithm is disabled see if we can enable it */
3439
8.91M
        if ((clu->amask & disabled_mask) != 0
3440
1.40M
                && tls12_sigalg_allowed(s, op, lu))
3441
901k
            disabled_mask &= ~clu->amask;
3442
8.91M
    }
3443
334k
    *pmask_a |= disabled_mask;
3444
334k
}
3445
3446
int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
3447
                       const uint16_t *psig, size_t psiglen)
3448
110k
{
3449
110k
    size_t i;
3450
110k
    int rv = 0;
3451
3452
3.40M
    for (i = 0; i < psiglen; i++, psig++) {
3453
3.29M
        const SIGALG_LOOKUP *lu =
3454
3.29M
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
3455
3456
3.29M
        if (lu == NULL || !tls_sigalg_compat(s, lu))
3457
823k
            continue;
3458
2.46M
        if (!WPACKET_put_bytes_u16(pkt, *psig))
3459
0
            return 0;
3460
        /*
3461
         * If TLS 1.3 must have at least one valid TLS 1.3 message
3462
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
3463
         */
3464
2.46M
        if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
3465
0
            || (lu->sig != EVP_PKEY_RSA
3466
0
                && lu->hash != NID_sha1
3467
0
                && lu->hash != NID_sha224)))
3468
110k
            rv = 1;
3469
2.46M
    }
3470
110k
    if (rv == 0)
3471
110k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3472
110k
    return rv;
3473
110k
}
3474
3475
/* Given preference and allowed sigalgs set shared sigalgs */
3476
static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
3477
                                   const SIGALG_LOOKUP **shsig,
3478
                                   const uint16_t *pref, size_t preflen,
3479
                                   const uint16_t *allow, size_t allowlen)
3480
17.0k
{
3481
17.0k
    const uint16_t *ptmp, *atmp;
3482
17.0k
    size_t i, j, nmatch = 0;
3483
458k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
3484
441k
        const SIGALG_LOOKUP *lu =
3485
441k
            tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
3486
3487
        /* Skip disabled hashes or signature algorithms */
3488
441k
        if (lu == NULL
3489
195k
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
3490
254k
            continue;
3491
2.89M
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
3492
2.89M
            if (*ptmp == *atmp) {
3493
187k
                nmatch++;
3494
187k
                if (shsig)
3495
93.7k
                    *shsig++ = lu;
3496
187k
                break;
3497
187k
            }
3498
2.89M
        }
3499
187k
    }
3500
17.0k
    return nmatch;
3501
17.0k
}
3502
3503
/* Set shared signature algorithms for SSL structures */
3504
static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
3505
8.60k
{
3506
8.60k
    const uint16_t *pref, *allow, *conf;
3507
8.60k
    size_t preflen, allowlen, conflen;
3508
8.60k
    size_t nmatch;
3509
8.60k
    const SIGALG_LOOKUP **salgs = NULL;
3510
8.60k
    CERT *c = s->cert;
3511
8.60k
    unsigned int is_suiteb = tls1_suiteb(s);
3512
3513
8.60k
    OPENSSL_free(s->shared_sigalgs);
3514
8.60k
    s->shared_sigalgs = NULL;
3515
8.60k
    s->shared_sigalgslen = 0;
3516
    /* If client use client signature algorithms if not NULL */
3517
8.60k
    if (!s->server && c->client_sigalgs && !is_suiteb) {
3518
0
        conf = c->client_sigalgs;
3519
0
        conflen = c->client_sigalgslen;
3520
8.60k
    } else if (c->conf_sigalgs && !is_suiteb) {
3521
0
        conf = c->conf_sigalgs;
3522
0
        conflen = c->conf_sigalgslen;
3523
0
    } else
3524
8.60k
        conflen = tls12_get_psigalgs(s, 0, &conf);
3525
8.60k
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
3526
0
        pref = conf;
3527
0
        preflen = conflen;
3528
0
        allow = s->s3.tmp.peer_sigalgs;
3529
0
        allowlen = s->s3.tmp.peer_sigalgslen;
3530
8.60k
    } else {
3531
8.60k
        allow = conf;
3532
8.60k
        allowlen = conflen;
3533
8.60k
        pref = s->s3.tmp.peer_sigalgs;
3534
8.60k
        preflen = s->s3.tmp.peer_sigalgslen;
3535
8.60k
    }
3536
8.60k
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3537
8.60k
    if (nmatch) {
3538
8.40k
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
3539
0
            return 0;
3540
8.40k
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3541
8.40k
    } else {
3542
201
        salgs = NULL;
3543
201
    }
3544
8.60k
    s->shared_sigalgs = salgs;
3545
8.60k
    s->shared_sigalgslen = nmatch;
3546
8.60k
    return 1;
3547
8.60k
}
3548
3549
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
3550
27.9k
{
3551
27.9k
    unsigned int stmp;
3552
27.9k
    size_t size, i;
3553
27.9k
    uint16_t *buf;
3554
3555
27.9k
    size = PACKET_remaining(pkt);
3556
3557
    /* Invalid data length */
3558
27.9k
    if (size == 0 || (size & 1) != 0)
3559
64
        return 0;
3560
3561
27.8k
    size >>= 1;
3562
3563
27.8k
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
3564
0
        return 0;
3565
318k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
3566
290k
        buf[i] = stmp;
3567
3568
27.8k
    if (i != size) {
3569
0
        OPENSSL_free(buf);
3570
0
        return 0;
3571
0
    }
3572
3573
27.8k
    OPENSSL_free(*pdest);
3574
27.8k
    *pdest = buf;
3575
27.8k
    *pdestlen = size;
3576
3577
27.8k
    return 1;
3578
27.8k
}
3579
3580
int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
3581
10.5k
{
3582
    /* Extension ignored for inappropriate versions */
3583
10.5k
    if (!SSL_USE_SIGALGS(s))
3584
287
        return 1;
3585
    /* Should never happen */
3586
10.3k
    if (s->cert == NULL)
3587
0
        return 0;
3588
3589
10.3k
    if (cert)
3590
1.01k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
3591
1.01k
                             &s->s3.tmp.peer_cert_sigalgslen);
3592
9.28k
    else
3593
9.28k
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
3594
9.28k
                             &s->s3.tmp.peer_sigalgslen);
3595
3596
10.3k
}
3597
3598
/* Set preferred digest for each key type */
3599
3600
int tls1_process_sigalgs(SSL_CONNECTION *s)
3601
8.60k
{
3602
8.60k
    size_t i;
3603
8.60k
    uint32_t *pvalid = s->s3.tmp.valid_flags;
3604
3605
8.60k
    if (!tls1_set_shared_sigalgs(s))
3606
0
        return 0;
3607
3608
96.8k
    for (i = 0; i < s->ssl_pkey_num; i++)
3609
88.2k
        pvalid[i] = 0;
3610
3611
102k
    for (i = 0; i < s->shared_sigalgslen; i++) {
3612
93.7k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
3613
93.7k
        int idx = sigptr->sig_idx;
3614
3615
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
3616
93.7k
        if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
3617
2.44k
            continue;
3618
        /* If not disabled indicate we can explicitly sign */
3619
91.3k
        if (pvalid[idx] == 0
3620
15.8k
            && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
3621
15.8k
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3622
91.3k
    }
3623
8.60k
    return 1;
3624
8.60k
}
3625
3626
int SSL_get_sigalgs(SSL *s, int idx,
3627
                    int *psign, int *phash, int *psignhash,
3628
                    unsigned char *rsig, unsigned char *rhash)
3629
0
{
3630
0
    uint16_t *psig;
3631
0
    size_t numsigalgs;
3632
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3633
3634
0
    if (sc == NULL)
3635
0
        return 0;
3636
3637
0
    psig = sc->s3.tmp.peer_sigalgs;
3638
0
    numsigalgs = sc->s3.tmp.peer_sigalgslen;
3639
3640
0
    if (psig == NULL || numsigalgs > INT_MAX)
3641
0
        return 0;
3642
0
    if (idx >= 0) {
3643
0
        const SIGALG_LOOKUP *lu;
3644
3645
0
        if (idx >= (int)numsigalgs)
3646
0
            return 0;
3647
0
        psig += idx;
3648
0
        if (rhash != NULL)
3649
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
3650
0
        if (rsig != NULL)
3651
0
            *rsig = (unsigned char)(*psig & 0xff);
3652
0
        lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
3653
0
        if (psign != NULL)
3654
0
            *psign = lu != NULL ? lu->sig : NID_undef;
3655
0
        if (phash != NULL)
3656
0
            *phash = lu != NULL ? lu->hash : NID_undef;
3657
0
        if (psignhash != NULL)
3658
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
3659
0
    }
3660
0
    return (int)numsigalgs;
3661
0
}
3662
3663
int SSL_get_shared_sigalgs(SSL *s, int idx,
3664
                           int *psign, int *phash, int *psignhash,
3665
                           unsigned char *rsig, unsigned char *rhash)
3666
0
{
3667
0
    const SIGALG_LOOKUP *shsigalgs;
3668
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3669
3670
0
    if (sc == NULL)
3671
0
        return 0;
3672
3673
0
    if (sc->shared_sigalgs == NULL
3674
0
        || idx < 0
3675
0
        || idx >= (int)sc->shared_sigalgslen
3676
0
        || sc->shared_sigalgslen > INT_MAX)
3677
0
        return 0;
3678
0
    shsigalgs = sc->shared_sigalgs[idx];
3679
0
    if (phash != NULL)
3680
0
        *phash = shsigalgs->hash;
3681
0
    if (psign != NULL)
3682
0
        *psign = shsigalgs->sig;
3683
0
    if (psignhash != NULL)
3684
0
        *psignhash = shsigalgs->sigandhash;
3685
0
    if (rsig != NULL)
3686
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
3687
0
    if (rhash != NULL)
3688
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
3689
0
    return (int)sc->shared_sigalgslen;
3690
0
}
3691
3692
/* Maximum possible number of unique entries in sigalgs array */
3693
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
3694
3695
typedef struct {
3696
    size_t sigalgcnt;
3697
    /* TLSEXT_SIGALG_XXX values */
3698
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
3699
    SSL_CTX *ctx;
3700
} sig_cb_st;
3701
3702
static void get_sigorhash(int *psig, int *phash, const char *str)
3703
0
{
3704
0
    if (OPENSSL_strcasecmp(str, "RSA") == 0) {
3705
0
        *psig = EVP_PKEY_RSA;
3706
0
    } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
3707
0
               || OPENSSL_strcasecmp(str, "PSS") == 0) {
3708
0
        *psig = EVP_PKEY_RSA_PSS;
3709
0
    } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
3710
0
        *psig = EVP_PKEY_DSA;
3711
0
    } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
3712
0
        *psig = EVP_PKEY_EC;
3713
0
    } else {
3714
0
        *phash = OBJ_sn2nid(str);
3715
0
        if (*phash == NID_undef)
3716
0
            *phash = OBJ_ln2nid(str);
3717
0
    }
3718
0
}
3719
/* Maximum length of a signature algorithm string component */
3720
#define TLS_MAX_SIGSTRING_LEN   40
3721
3722
static int sig_cb(const char *elem, int len, void *arg)
3723
0
{
3724
0
    sig_cb_st *sarg = arg;
3725
0
    size_t i = 0;
3726
0
    const SIGALG_LOOKUP *s;
3727
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3728
0
    const char *iana, *alias;
3729
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
3730
0
    int ignore_unknown = 0;
3731
3732
0
    if (elem == NULL)
3733
0
        return 0;
3734
0
    if (elem[0] == '?') {
3735
0
        ignore_unknown = 1;
3736
0
        ++elem;
3737
0
        --len;
3738
0
    }
3739
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3740
0
        return 0;
3741
0
    if (len > (int)(sizeof(etmp) - 1))
3742
0
        return 0;
3743
0
    memcpy(etmp, elem, len);
3744
0
    etmp[len] = 0;
3745
0
    p = strchr(etmp, '+');
3746
    /*
3747
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3748
     * if there's no '+' in the provided name, look for the new-style combined
3749
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3750
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3751
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
3752
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
3753
     * in the table.
3754
     */
3755
0
    if (p == NULL) {
3756
0
        if (sarg->ctx != NULL) {
3757
0
            for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3758
0
                iana = sarg->ctx->sigalg_lookup_cache[i].name;
3759
0
                alias = sarg->ctx->sigalg_lookup_cache[i].name12;
3760
0
                if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3761
0
                    || OPENSSL_strcasecmp(etmp, iana) == 0) {
3762
                    /* Ignore known, but unavailable sigalgs. */
3763
0
                    if (!sarg->ctx->sigalg_lookup_cache[i].available)
3764
0
                        return 1;
3765
0
                    sarg->sigalgs[sarg->sigalgcnt++] =
3766
0
                        sarg->ctx->sigalg_lookup_cache[i].sigalg;
3767
0
                    goto found;
3768
0
                }
3769
0
            }
3770
0
        } else {
3771
            /* Syntax checks use the built-in sigalgs */
3772
0
            for (i = 0, s = sigalg_lookup_tbl;
3773
0
                 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3774
0
                iana = s->name;
3775
0
                alias = s->name12;
3776
0
                if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3777
0
                    || OPENSSL_strcasecmp(etmp, iana) == 0) {
3778
0
                    sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3779
0
                    goto found;
3780
0
                }
3781
0
            }
3782
0
        }
3783
0
    } else {
3784
0
        *p = 0;
3785
0
        p++;
3786
0
        if (*p == 0)
3787
0
            return 0;
3788
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
3789
0
        get_sigorhash(&sig_alg, &hash_alg, p);
3790
0
        if (sig_alg != NID_undef && hash_alg != NID_undef) {
3791
0
            if (sarg->ctx != NULL) {
3792
0
                for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3793
0
                    s = &sarg->ctx->sigalg_lookup_cache[i];
3794
0
                    if (s->hash == hash_alg && s->sig == sig_alg) {
3795
                        /* Ignore known, but unavailable sigalgs. */
3796
0
                        if (!sarg->ctx->sigalg_lookup_cache[i].available)
3797
0
                            return 1;
3798
0
                        sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3799
0
                        goto found;
3800
0
                    }
3801
0
                }
3802
0
            } else {
3803
0
                for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
3804
0
                    s = &sigalg_lookup_tbl[i];
3805
0
                    if (s->hash == hash_alg && s->sig == sig_alg) {
3806
0
                        sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3807
0
                        goto found;
3808
0
                    }
3809
0
                }
3810
0
            }
3811
0
        }
3812
0
    }
3813
    /* Ignore unknown algorithms if ignore_unknown */
3814
0
    return ignore_unknown;
3815
3816
0
 found:
3817
    /* Ignore duplicates */
3818
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3819
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3820
0
            sarg->sigalgcnt--;
3821
0
            return 1;
3822
0
        }
3823
0
    }
3824
0
    return 1;
3825
0
}
3826
3827
/*
3828
 * Set supported signature algorithms based on a colon separated list of the
3829
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3830
 */
3831
int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3832
0
{
3833
0
    sig_cb_st sig;
3834
0
    sig.sigalgcnt = 0;
3835
3836
0
    if (ctx != NULL)
3837
0
        sig.ctx = ctx;
3838
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3839
0
        return 0;
3840
0
    if (sig.sigalgcnt == 0) {
3841
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3842
0
                       "No valid signature algorithms in '%s'", str);
3843
0
        return 0;
3844
0
    }
3845
0
    if (c == NULL)
3846
0
        return 1;
3847
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3848
0
}
3849
3850
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3851
                     int client)
3852
0
{
3853
0
    uint16_t *sigalgs;
3854
3855
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3856
0
        return 0;
3857
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3858
3859
0
    if (client) {
3860
0
        OPENSSL_free(c->client_sigalgs);
3861
0
        c->client_sigalgs = sigalgs;
3862
0
        c->client_sigalgslen = salglen;
3863
0
    } else {
3864
0
        OPENSSL_free(c->conf_sigalgs);
3865
0
        c->conf_sigalgs = sigalgs;
3866
0
        c->conf_sigalgslen = salglen;
3867
0
    }
3868
3869
0
    return 1;
3870
0
}
3871
3872
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3873
0
{
3874
0
    uint16_t *sigalgs, *sptr;
3875
0
    size_t i;
3876
3877
0
    if (salglen & 1)
3878
0
        return 0;
3879
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3880
0
        return 0;
3881
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3882
0
        size_t j;
3883
0
        const SIGALG_LOOKUP *curr;
3884
0
        int md_id = *psig_nids++;
3885
0
        int sig_id = *psig_nids++;
3886
3887
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3888
0
             j++, curr++) {
3889
0
            if (curr->hash == md_id && curr->sig == sig_id) {
3890
0
                *sptr++ = curr->sigalg;
3891
0
                break;
3892
0
            }
3893
0
        }
3894
3895
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
3896
0
            goto err;
3897
0
    }
3898
3899
0
    if (client) {
3900
0
        OPENSSL_free(c->client_sigalgs);
3901
0
        c->client_sigalgs = sigalgs;
3902
0
        c->client_sigalgslen = salglen / 2;
3903
0
    } else {
3904
0
        OPENSSL_free(c->conf_sigalgs);
3905
0
        c->conf_sigalgs = sigalgs;
3906
0
        c->conf_sigalgslen = salglen / 2;
3907
0
    }
3908
3909
0
    return 1;
3910
3911
0
 err:
3912
0
    OPENSSL_free(sigalgs);
3913
0
    return 0;
3914
0
}
3915
3916
static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3917
0
{
3918
0
    int sig_nid, use_pc_sigalgs = 0;
3919
0
    size_t i;
3920
0
    const SIGALG_LOOKUP *sigalg;
3921
0
    size_t sigalgslen;
3922
3923
    /*-
3924
     * RFC 8446, section 4.2.3:
3925
     *
3926
     * The signatures on certificates that are self-signed or certificates
3927
     * that are trust anchors are not validated, since they begin a
3928
     * certification path (see [RFC5280], Section 3.2).  A certificate that
3929
     * begins a certification path MAY use a signature algorithm that is not
3930
     * advertised as being supported in the "signature_algorithms"
3931
     * extension.
3932
     */
3933
0
    if (default_nid == -1 || X509_self_signed(x, 0))
3934
0
        return 1;
3935
0
    sig_nid = X509_get_signature_nid(x);
3936
0
    if (default_nid)
3937
0
        return sig_nid == default_nid ? 1 : 0;
3938
3939
0
    if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3940
        /*
3941
         * If we're in TLSv1.3 then we only get here if we're checking the
3942
         * chain. If the peer has specified peer_cert_sigalgs then we use them
3943
         * otherwise we default to normal sigalgs.
3944
         */
3945
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3946
0
        use_pc_sigalgs = 1;
3947
0
    } else {
3948
0
        sigalgslen = s->shared_sigalgslen;
3949
0
    }
3950
0
    for (i = 0; i < sigalgslen; i++) {
3951
0
        int mdnid, pknid;
3952
3953
0
        sigalg = use_pc_sigalgs
3954
0
                 ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
3955
0
                                      s->s3.tmp.peer_cert_sigalgs[i])
3956
0
                 : s->shared_sigalgs[i];
3957
0
        if (sigalg == NULL)
3958
0
            continue;
3959
0
        if (sig_nid == sigalg->sigandhash)
3960
0
            return 1;
3961
0
        if (sigalg->sig != EVP_PKEY_RSA_PSS)
3962
0
            continue;
3963
        /*
3964
         * Accept RSA PKCS#1 signatures in certificates when the signature
3965
         * algorithms include RSA-PSS with a matching digest algorithm.
3966
         *
3967
         * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
3968
         * points, and we're doing strict checking of the certificate chain (in
3969
         * a cert_cb via SSL_check_chain()) we may then reject RSA signed
3970
         * certificates in the chain, but the TLS requirement on PSS should not
3971
         * extend to certificates.  Though the peer can in fact list the legacy
3972
         * sigalgs for just this purpose, it is not likely that a better chain
3973
         * signed with RSA-PSS is available.
3974
         */
3975
0
        if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
3976
0
            continue;
3977
0
        if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
3978
0
            return 1;
3979
0
    }
3980
0
    return 0;
3981
0
}
3982
3983
/* Check to see if a certificate issuer name matches list of CA names */
3984
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3985
0
{
3986
0
    const X509_NAME *nm;
3987
0
    int i;
3988
0
    nm = X509_get_issuer_name(x);
3989
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
3990
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3991
0
            return 1;
3992
0
    }
3993
0
    return 0;
3994
0
}
3995
3996
/*
3997
 * Check certificate chain is consistent with TLS extensions and is usable by
3998
 * server. This servers two purposes: it allows users to check chains before
3999
 * passing them to the server and it allows the server to check chains before
4000
 * attempting to use them.
4001
 */
4002
4003
/* Flags which need to be set for a certificate when strict mode not set */
4004
4005
#define CERT_PKEY_VALID_FLAGS \
4006
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
4007
/* Strict mode flags */
4008
#define CERT_PKEY_STRICT_FLAGS \
4009
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
4010
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
4011
4012
int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
4013
                     STACK_OF(X509) *chain, int idx)
4014
207k
{
4015
207k
    int i;
4016
207k
    int rv = 0;
4017
207k
    int check_flags = 0, strict_mode;
4018
207k
    CERT_PKEY *cpk = NULL;
4019
207k
    CERT *c = s->cert;
4020
207k
    uint32_t *pvalid;
4021
207k
    unsigned int suiteb_flags = tls1_suiteb(s);
4022
4023
    /*
4024
     * Meaning of idx:
4025
     * idx == -1 means SSL_check_chain() invocation
4026
     * idx == -2 means checking client certificate chains
4027
     * idx >= 0 means checking SSL_PKEY index
4028
     *
4029
     * For RPK, where there may be no cert, we ignore -1
4030
     */
4031
207k
    if (idx != -1) {
4032
207k
        if (idx == -2) {
4033
0
            cpk = c->key;
4034
0
            idx = (int)(cpk - c->pkeys);
4035
0
        } else
4036
207k
            cpk = c->pkeys + idx;
4037
207k
        pvalid = s->s3.tmp.valid_flags + idx;
4038
207k
        x = cpk->x509;
4039
207k
        pk = cpk->privatekey;
4040
207k
        chain = cpk->chain;
4041
207k
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4042
207k
        if (tls12_rpk_and_privkey(s, idx)) {
4043
0
            if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
4044
0
                return 0;
4045
0
            *pvalid = rv = CERT_PKEY_RPK;
4046
0
            return rv;
4047
0
        }
4048
        /* If no cert or key, forget it */
4049
207k
        if (x == NULL || pk == NULL)
4050
138k
            goto end;
4051
207k
    } else {
4052
0
        size_t certidx;
4053
4054
0
        if (x == NULL || pk == NULL)
4055
0
            return 0;
4056
4057
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx,
4058
0
                                    SSL_CONNECTION_GET_CTX(s)) == NULL)
4059
0
            return 0;
4060
0
        idx = certidx;
4061
0
        pvalid = s->s3.tmp.valid_flags + idx;
4062
4063
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4064
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
4065
0
        else
4066
0
            check_flags = CERT_PKEY_VALID_FLAGS;
4067
0
        strict_mode = 1;
4068
0
    }
4069
4070
69.0k
    if (suiteb_flags) {
4071
0
        int ok;
4072
0
        if (check_flags)
4073
0
            check_flags |= CERT_PKEY_SUITEB;
4074
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4075
0
        if (ok == X509_V_OK)
4076
0
            rv |= CERT_PKEY_SUITEB;
4077
0
        else if (!check_flags)
4078
0
            goto end;
4079
0
    }
4080
4081
    /*
4082
     * Check all signature algorithms are consistent with signature
4083
     * algorithms extension if TLS 1.2 or later and strict mode.
4084
     */
4085
69.0k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
4086
32.2k
        && strict_mode) {
4087
0
        int default_nid;
4088
0
        int rsign = 0;
4089
4090
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
4091
0
                || s->s3.tmp.peer_sigalgs != NULL) {
4092
0
            default_nid = 0;
4093
        /* If no sigalgs extension use defaults from RFC5246 */
4094
0
        } else {
4095
0
            switch (idx) {
4096
0
            case SSL_PKEY_RSA:
4097
0
                rsign = EVP_PKEY_RSA;
4098
0
                default_nid = NID_sha1WithRSAEncryption;
4099
0
                break;
4100
4101
0
            case SSL_PKEY_DSA_SIGN:
4102
0
                rsign = EVP_PKEY_DSA;
4103
0
                default_nid = NID_dsaWithSHA1;
4104
0
                break;
4105
4106
0
            case SSL_PKEY_ECC:
4107
0
                rsign = EVP_PKEY_EC;
4108
0
                default_nid = NID_ecdsa_with_SHA1;
4109
0
                break;
4110
4111
0
            case SSL_PKEY_GOST01:
4112
0
                rsign = NID_id_GostR3410_2001;
4113
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
4114
0
                break;
4115
4116
0
            case SSL_PKEY_GOST12_256:
4117
0
                rsign = NID_id_GostR3410_2012_256;
4118
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
4119
0
                break;
4120
4121
0
            case SSL_PKEY_GOST12_512:
4122
0
                rsign = NID_id_GostR3410_2012_512;
4123
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
4124
0
                break;
4125
4126
0
            default:
4127
0
                default_nid = -1;
4128
0
                break;
4129
0
            }
4130
0
        }
4131
        /*
4132
         * If peer sent no signature algorithms extension and we have set
4133
         * preferred signature algorithms check we support sha1.
4134
         */
4135
0
        if (default_nid > 0 && c->conf_sigalgs) {
4136
0
            size_t j;
4137
0
            const uint16_t *p = c->conf_sigalgs;
4138
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
4139
0
                const SIGALG_LOOKUP *lu =
4140
0
                    tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
4141
4142
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
4143
0
                    break;
4144
0
            }
4145
0
            if (j == c->conf_sigalgslen) {
4146
0
                if (check_flags)
4147
0
                    goto skip_sigs;
4148
0
                else
4149
0
                    goto end;
4150
0
            }
4151
0
        }
4152
        /* Check signature algorithm of each cert in chain */
4153
0
        if (SSL_CONNECTION_IS_TLS13(s)) {
4154
            /*
4155
             * We only get here if the application has called SSL_check_chain(),
4156
             * so check_flags is always set.
4157
             */
4158
0
            if (find_sig_alg(s, x, pk) != NULL)
4159
0
                rv |= CERT_PKEY_EE_SIGNATURE;
4160
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
4161
0
            if (!check_flags)
4162
0
                goto end;
4163
0
        } else
4164
0
            rv |= CERT_PKEY_EE_SIGNATURE;
4165
0
        rv |= CERT_PKEY_CA_SIGNATURE;
4166
0
        for (i = 0; i < sk_X509_num(chain); i++) {
4167
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
4168
0
                if (check_flags) {
4169
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
4170
0
                    break;
4171
0
                } else
4172
0
                    goto end;
4173
0
            }
4174
0
        }
4175
0
    }
4176
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4177
69.0k
    else if (check_flags)
4178
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4179
69.0k
 skip_sigs:
4180
    /* Check cert parameters are consistent */
4181
69.0k
    if (tls1_check_cert_param(s, x, 1))
4182
62.3k
        rv |= CERT_PKEY_EE_PARAM;
4183
6.75k
    else if (!check_flags)
4184
6.75k
        goto end;
4185
62.3k
    if (!s->server)
4186
0
        rv |= CERT_PKEY_CA_PARAM;
4187
    /* In strict mode check rest of chain too */
4188
62.3k
    else if (strict_mode) {
4189
0
        rv |= CERT_PKEY_CA_PARAM;
4190
0
        for (i = 0; i < sk_X509_num(chain); i++) {
4191
0
            X509 *ca = sk_X509_value(chain, i);
4192
0
            if (!tls1_check_cert_param(s, ca, 0)) {
4193
0
                if (check_flags) {
4194
0
                    rv &= ~CERT_PKEY_CA_PARAM;
4195
0
                    break;
4196
0
                } else
4197
0
                    goto end;
4198
0
            }
4199
0
        }
4200
0
    }
4201
62.3k
    if (!s->server && strict_mode) {
4202
0
        STACK_OF(X509_NAME) *ca_dn;
4203
0
        int check_type = 0;
4204
4205
0
        if (EVP_PKEY_is_a(pk, "RSA"))
4206
0
            check_type = TLS_CT_RSA_SIGN;
4207
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
4208
0
            check_type = TLS_CT_DSS_SIGN;
4209
0
        else if (EVP_PKEY_is_a(pk, "EC"))
4210
0
            check_type = TLS_CT_ECDSA_SIGN;
4211
4212
0
        if (check_type) {
4213
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
4214
0
            size_t j;
4215
4216
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
4217
0
                if (*ctypes == check_type) {
4218
0
                    rv |= CERT_PKEY_CERT_TYPE;
4219
0
                    break;
4220
0
                }
4221
0
            }
4222
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4223
0
                goto end;
4224
0
        } else {
4225
0
            rv |= CERT_PKEY_CERT_TYPE;
4226
0
        }
4227
4228
0
        ca_dn = s->s3.tmp.peer_ca_names;
4229
4230
0
        if (ca_dn == NULL
4231
0
            || sk_X509_NAME_num(ca_dn) == 0
4232
0
            || ssl_check_ca_name(ca_dn, x))
4233
0
            rv |= CERT_PKEY_ISSUER_NAME;
4234
0
        else
4235
0
            for (i = 0; i < sk_X509_num(chain); i++) {
4236
0
                X509 *xtmp = sk_X509_value(chain, i);
4237
4238
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
4239
0
                    rv |= CERT_PKEY_ISSUER_NAME;
4240
0
                    break;
4241
0
                }
4242
0
            }
4243
4244
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4245
0
            goto end;
4246
0
    } else
4247
62.3k
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4248
4249
62.3k
    if (!check_flags || (rv & check_flags) == check_flags)
4250
62.3k
        rv |= CERT_PKEY_VALID;
4251
4252
207k
 end:
4253
4254
207k
    if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
4255
96.6k
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
4256
110k
    else
4257
110k
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4258
4259
    /*
4260
     * When checking a CERT_PKEY structure all flags are irrelevant if the
4261
     * chain is invalid.
4262
     */
4263
207k
    if (!check_flags) {
4264
207k
        if (rv & CERT_PKEY_VALID) {
4265
62.3k
            *pvalid = rv;
4266
144k
        } else {
4267
            /* Preserve sign and explicit sign flag, clear rest */
4268
144k
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4269
144k
            return 0;
4270
144k
        }
4271
207k
    }
4272
62.3k
    return rv;
4273
207k
}
4274
4275
/* Set validity of certificates in an SSL structure */
4276
void tls1_set_cert_validity(SSL_CONNECTION *s)
4277
25.3k
{
4278
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
4279
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
4280
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4281
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4282
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
4283
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
4284
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
4285
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
4286
25.3k
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
4287
25.3k
}
4288
4289
/* User level utility function to check a chain is suitable */
4290
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4291
0
{
4292
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
4293
4294
0
    if (sc == NULL)
4295
0
        return 0;
4296
4297
0
    return tls1_check_chain(sc, x, pk, chain, -1);
4298
0
}
4299
4300
EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
4301
0
{
4302
0
    EVP_PKEY *dhp = NULL;
4303
0
    BIGNUM *p;
4304
0
    int dh_secbits = 80, sec_level_bits;
4305
0
    EVP_PKEY_CTX *pctx = NULL;
4306
0
    OSSL_PARAM_BLD *tmpl = NULL;
4307
0
    OSSL_PARAM *params = NULL;
4308
0
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4309
4310
0
    if (s->cert->dh_tmp_auto != 2) {
4311
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
4312
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
4313
0
                dh_secbits = 128;
4314
0
            else
4315
0
                dh_secbits = 80;
4316
0
        } else {
4317
0
            if (s->s3.tmp.cert == NULL)
4318
0
                return NULL;
4319
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
4320
0
        }
4321
0
    }
4322
4323
    /* Do not pick a prime that is too weak for the current security level */
4324
0
    sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
4325
0
                                                 NULL, NULL);
4326
0
    if (dh_secbits < sec_level_bits)
4327
0
        dh_secbits = sec_level_bits;
4328
4329
0
    if (dh_secbits >= 192)
4330
0
        p = BN_get_rfc3526_prime_8192(NULL);
4331
0
    else if (dh_secbits >= 152)
4332
0
        p = BN_get_rfc3526_prime_4096(NULL);
4333
0
    else if (dh_secbits >= 128)
4334
0
        p = BN_get_rfc3526_prime_3072(NULL);
4335
0
    else if (dh_secbits >= 112)
4336
0
        p = BN_get_rfc3526_prime_2048(NULL);
4337
0
    else
4338
0
        p = BN_get_rfc2409_prime_1024(NULL);
4339
0
    if (p == NULL)
4340
0
        goto err;
4341
4342
0
    pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
4343
0
    if (pctx == NULL
4344
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
4345
0
        goto err;
4346
4347
0
    tmpl = OSSL_PARAM_BLD_new();
4348
0
    if (tmpl == NULL
4349
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
4350
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
4351
0
        goto err;
4352
4353
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
4354
0
    if (params == NULL
4355
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
4356
0
        goto err;
4357
4358
0
err:
4359
0
    OSSL_PARAM_free(params);
4360
0
    OSSL_PARAM_BLD_free(tmpl);
4361
0
    EVP_PKEY_CTX_free(pctx);
4362
0
    BN_free(p);
4363
0
    return dhp;
4364
0
}
4365
4366
static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4367
                                 int op)
4368
144k
{
4369
144k
    int secbits = -1;
4370
144k
    EVP_PKEY *pkey = X509_get0_pubkey(x);
4371
4372
144k
    if (pkey) {
4373
        /*
4374
         * If no parameters this will return -1 and fail using the default
4375
         * security callback for any non-zero security level. This will
4376
         * reject keys which omit parameters but this only affects DSA and
4377
         * omission of parameters is never (?) done in practice.
4378
         */
4379
144k
        secbits = EVP_PKEY_get_security_bits(pkey);
4380
144k
    }
4381
144k
    if (s != NULL)
4382
21.5k
        return ssl_security(s, op, secbits, 0, x);
4383
122k
    else
4384
122k
        return ssl_ctx_security(ctx, op, secbits, 0, x);
4385
144k
}
4386
4387
static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4388
                                 int op)
4389
144k
{
4390
    /* Lookup signature algorithm digest */
4391
144k
    int secbits, nid, pknid;
4392
4393
    /* Don't check signature if self signed */
4394
144k
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
4395
144k
        return 1;
4396
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
4397
0
        secbits = -1;
4398
    /* If digest NID not defined use signature NID */
4399
0
    if (nid == NID_undef)
4400
0
        nid = pknid;
4401
0
    if (s != NULL)
4402
0
        return ssl_security(s, op, secbits, nid, x);
4403
0
    else
4404
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
4405
0
}
4406
4407
int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
4408
                      int is_ee)
4409
160k
{
4410
160k
    if (vfy)
4411
0
        vfy = SSL_SECOP_PEER;
4412
160k
    if (is_ee) {
4413
160k
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4414
0
            return SSL_R_EE_KEY_TOO_SMALL;
4415
160k
    } else {
4416
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4417
0
            return SSL_R_CA_KEY_TOO_SMALL;
4418
0
    }
4419
160k
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4420
0
        return SSL_R_CA_MD_TOO_WEAK;
4421
160k
    return 1;
4422
160k
}
4423
4424
/*
4425
 * Check security of a chain, if |sk| includes the end entity certificate then
4426
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
4427
 * one to the peer. Return values: 1 if ok otherwise error code to use
4428
 */
4429
4430
int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
4431
                            X509 *x, int vfy)
4432
23.7k
{
4433
23.7k
    int rv, start_idx, i;
4434
4435
23.7k
    if (x == NULL) {
4436
23.7k
        x = sk_X509_value(sk, 0);
4437
23.7k
        if (x == NULL)
4438
0
            return ERR_R_INTERNAL_ERROR;
4439
23.7k
        start_idx = 1;
4440
23.7k
    } else
4441
0
        start_idx = 0;
4442
4443
23.7k
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
4444
23.7k
    if (rv != 1)
4445
0
        return rv;
4446
4447
23.7k
    for (i = start_idx; i < sk_X509_num(sk); i++) {
4448
0
        x = sk_X509_value(sk, i);
4449
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
4450
0
        if (rv != 1)
4451
0
            return rv;
4452
0
    }
4453
23.7k
    return 1;
4454
23.7k
}
4455
4456
/*
4457
 * For TLS 1.2 servers check if we have a certificate which can be used
4458
 * with the signature algorithm "lu" and return index of certificate.
4459
 */
4460
4461
static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
4462
                                     const SIGALG_LOOKUP *lu)
4463
32.2k
{
4464
32.2k
    int sig_idx = lu->sig_idx;
4465
32.2k
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
4466
32.2k
                                                        SSL_CONNECTION_GET_CTX(s));
4467
4468
    /* If not recognised or not supported by cipher mask it is not suitable */
4469
32.2k
    if (clu == NULL
4470
32.2k
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
4471
23.0k
            || (clu->pkey_nid == EVP_PKEY_RSA_PSS
4472
1.76k
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
4473
10.1k
        return -1;
4474
4475
    /* If doing RPK, the CERT_PKEY won't be "valid" */
4476
22.0k
    if (tls12_rpk_and_privkey(s, sig_idx))
4477
0
        return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
4478
4479
22.0k
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
4480
22.0k
}
4481
4482
/*
4483
 * Checks the given cert against signature_algorithm_cert restrictions sent by
4484
 * the peer (if any) as well as whether the hash from the sigalg is usable with
4485
 * the key.
4486
 * Returns true if the cert is usable and false otherwise.
4487
 */
4488
static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
4489
                             X509 *x, EVP_PKEY *pkey)
4490
50.1k
{
4491
50.1k
    const SIGALG_LOOKUP *lu;
4492
50.1k
    int mdnid, pknid, supported;
4493
50.1k
    size_t i;
4494
50.1k
    const char *mdname = NULL;
4495
50.1k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4496
4497
    /*
4498
     * If the given EVP_PKEY cannot support signing with this digest,
4499
     * the answer is simply 'no'.
4500
     */
4501
50.1k
    if (sig->hash != NID_undef)
4502
50.1k
        mdname = OBJ_nid2sn(sig->hash);
4503
50.1k
    supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
4504
50.1k
                                                    mdname,
4505
50.1k
                                                    sctx->propq);
4506
50.1k
    if (supported <= 0)
4507
0
        return 0;
4508
4509
    /*
4510
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
4511
     * on the sigalg with which the certificate was signed (by its issuer).
4512
     */
4513
50.1k
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
4514
26.4k
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
4515
0
            return 0;
4516
139k
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
4517
113k
            lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
4518
113k
                                    s->s3.tmp.peer_cert_sigalgs[i]);
4519
113k
            if (lu == NULL)
4520
82.5k
                continue;
4521
4522
            /*
4523
             * This does not differentiate between the
4524
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
4525
             * have a chain here that lets us look at the key OID in the
4526
             * signing certificate.
4527
             */
4528
30.5k
            if (mdnid == lu->hash && pknid == lu->sig)
4529
55
                return 1;
4530
30.5k
        }
4531
26.3k
        return 0;
4532
26.4k
    }
4533
4534
    /*
4535
     * Without signat_algorithms_cert, any certificate for which we have
4536
     * a viable public key is permitted.
4537
     */
4538
23.7k
    return 1;
4539
50.1k
}
4540
4541
/*
4542
 * Returns true if |s| has a usable certificate configured for use
4543
 * with signature scheme |sig|.
4544
 * "Usable" includes a check for presence as well as applying
4545
 * the signature_algorithm_cert restrictions sent by the peer (if any).
4546
 * Returns false if no usable certificate is found.
4547
 */
4548
static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
4549
50.5k
{
4550
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
4551
50.5k
    if (idx == -1)
4552
7.30k
        idx = sig->sig_idx;
4553
50.5k
    if (!ssl_has_cert(s, idx))
4554
348
        return 0;
4555
4556
50.1k
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
4557
50.1k
                             s->cert->pkeys[idx].privatekey);
4558
50.5k
}
4559
4560
/*
4561
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
4562
 * specified signature scheme |sig|, or false otherwise.
4563
 */
4564
static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
4565
                          EVP_PKEY *pkey)
4566
0
{
4567
0
    size_t idx;
4568
4569
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
4570
0
        return 0;
4571
4572
    /* Check the key is consistent with the sig alg */
4573
0
    if ((int)idx != sig->sig_idx)
4574
0
        return 0;
4575
4576
0
    return check_cert_usable(s, sig, x, pkey);
4577
0
}
4578
4579
/*
4580
 * Find a signature scheme that works with the supplied certificate |x| and key
4581
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
4582
 * available certs/keys to find one that works.
4583
 */
4584
static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
4585
                                         EVP_PKEY *pkey)
4586
1.31k
{
4587
1.31k
    const SIGALG_LOOKUP *lu = NULL;
4588
1.31k
    size_t i;
4589
1.31k
    int curve = -1;
4590
1.31k
    EVP_PKEY *tmppkey;
4591
1.31k
    SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4592
4593
    /* Look for a shared sigalgs matching possible certificates */
4594
3.61k
    for (i = 0; i < s->shared_sigalgslen; i++) {
4595
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
4596
3.54k
        lu = s->shared_sigalgs[i];
4597
3.54k
        if (lu->hash == NID_sha1
4598
3.07k
            || lu->hash == NID_sha224
4599
2.93k
            || lu->sig == EVP_PKEY_DSA
4600
2.93k
            || lu->sig == EVP_PKEY_RSA
4601
2.41k
            || !tls_sigalg_compat(s, lu))
4602
1.13k
            continue;
4603
4604
        /* Check that we have a cert, and signature_algorithms_cert */
4605
2.41k
        if (!tls1_lookup_md(sctx, lu, NULL))
4606
0
            continue;
4607
2.41k
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
4608
2.31k
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
4609
96
            continue;
4610
4611
2.31k
        tmppkey = (pkey != NULL) ? pkey
4612
2.31k
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
4613
4614
2.31k
        if (lu->sig == EVP_PKEY_EC) {
4615
1.95k
            if (curve == -1)
4616
993
                curve = ssl_get_EC_curve_nid(tmppkey);
4617
1.95k
            if (lu->curve != NID_undef && curve != lu->curve)
4618
1.06k
                continue;
4619
1.95k
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
4620
            /* validate that key is large enough for the signature algorithm */
4621
365
            if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
4622
0
                continue;
4623
365
        }
4624
1.25k
        break;
4625
2.31k
    }
4626
4627
1.31k
    if (i == s->shared_sigalgslen)
4628
62
        return NULL;
4629
4630
1.25k
    return lu;
4631
1.31k
}
4632
4633
/*
4634
 * Choose an appropriate signature algorithm based on available certificates
4635
 * Sets chosen certificate and signature algorithm.
4636
 *
4637
 * For servers if we fail to find a required certificate it is a fatal error,
4638
 * an appropriate error code is set and a TLS alert is sent.
4639
 *
4640
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
4641
 * a fatal error: we will either try another certificate or not present one
4642
 * to the server. In this case no error is set.
4643
 */
4644
int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
4645
11.0k
{
4646
11.0k
    const SIGALG_LOOKUP *lu = NULL;
4647
11.0k
    int sig_idx = -1;
4648
4649
11.0k
    s->s3.tmp.cert = NULL;
4650
11.0k
    s->s3.tmp.sigalg = NULL;
4651
4652
11.0k
    if (SSL_CONNECTION_IS_TLS13(s)) {
4653
1.31k
        lu = find_sig_alg(s, NULL, NULL);
4654
1.31k
        if (lu == NULL) {
4655
62
            if (!fatalerrs)
4656
0
                return 1;
4657
62
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4658
62
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4659
62
            return 0;
4660
62
        }
4661
9.75k
    } else {
4662
        /* If ciphersuite doesn't require a cert nothing to do */
4663
9.75k
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
4664
544
            return 1;
4665
9.20k
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
4666
19
                return 1;
4667
4668
9.18k
        if (SSL_USE_SIGALGS(s)) {
4669
7.52k
            size_t i;
4670
7.52k
            if (s->s3.tmp.peer_sigalgs != NULL) {
4671
1.85k
                int curve = -1;
4672
1.85k
                SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4673
4674
                /* For Suite B need to match signature algorithm to curve */
4675
1.85k
                if (tls1_suiteb(s))
4676
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
4677
0
                                                 .privatekey);
4678
4679
                /*
4680
                 * Find highest preference signature algorithm matching
4681
                 * cert type
4682
                 */
4683
15.5k
                for (i = 0; i < s->shared_sigalgslen; i++) {
4684
                    /* Check the sigalg version bounds */
4685
15.0k
                    lu = s->shared_sigalgs[i];
4686
15.0k
                    if (!tls_sigalg_compat(s, lu))
4687
92
                        continue;
4688
14.9k
                    if (s->server) {
4689
14.9k
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
4690
5.94k
                            continue;
4691
14.9k
                    } else {
4692
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
4693
4694
0
                        sig_idx = lu->sig_idx;
4695
0
                        if (cc_idx != sig_idx)
4696
0
                            continue;
4697
0
                    }
4698
                    /* Check that we have a cert, and sig_algs_cert */
4699
8.99k
                    if (!has_usable_cert(s, lu, sig_idx))
4700
7.60k
                        continue;
4701
1.39k
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
4702
                        /* validate that key is large enough for the signature algorithm */
4703
396
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
4704
4705
396
                        if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
4706
0
                            continue;
4707
396
                    }
4708
1.39k
                    if (curve == -1 || lu->curve == curve)
4709
1.39k
                        break;
4710
1.39k
                }
4711
1.85k
#ifndef OPENSSL_NO_GOST
4712
                /*
4713
                 * Some Windows-based implementations do not send GOST algorithms indication
4714
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
4715
                 * we have to assume GOST support.
4716
                 */
4717
1.85k
                if (i == s->shared_sigalgslen
4718
464
                    && (s->s3.tmp.new_cipher->algorithm_auth
4719
464
                        & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
4720
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4721
0
                    if (!fatalerrs)
4722
0
                      return 1;
4723
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4724
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4725
0
                    return 0;
4726
0
                  } else {
4727
0
                    i = 0;
4728
0
                    sig_idx = lu->sig_idx;
4729
0
                  }
4730
0
                }
4731
1.85k
#endif
4732
1.85k
                if (i == s->shared_sigalgslen) {
4733
464
                    if (!fatalerrs)
4734
0
                        return 1;
4735
464
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4736
464
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4737
464
                    return 0;
4738
464
                }
4739
5.66k
            } else {
4740
                /*
4741
                 * If we have no sigalg use defaults
4742
                 */
4743
5.66k
                const uint16_t *sent_sigs;
4744
5.66k
                size_t sent_sigslen;
4745
4746
5.66k
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4747
0
                    if (!fatalerrs)
4748
0
                        return 1;
4749
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4750
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4751
0
                    return 0;
4752
0
                }
4753
4754
                /* Check signature matches a type we sent */
4755
5.66k
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4756
126k
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4757
126k
                    if (lu->sigalg == *sent_sigs
4758
5.66k
                            && has_usable_cert(s, lu, lu->sig_idx))
4759
5.66k
                        break;
4760
126k
                }
4761
5.66k
                if (i == sent_sigslen) {
4762
0
                    if (!fatalerrs)
4763
0
                        return 1;
4764
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4765
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
4766
0
                    return 0;
4767
0
                }
4768
5.66k
            }
4769
7.52k
        } else {
4770
1.66k
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4771
0
                if (!fatalerrs)
4772
0
                    return 1;
4773
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4774
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4775
0
                return 0;
4776
0
            }
4777
1.66k
        }
4778
9.18k
    }
4779
9.97k
    if (sig_idx == -1)
4780
8.57k
        sig_idx = lu->sig_idx;
4781
9.97k
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4782
9.97k
    s->cert->key = s->s3.tmp.cert;
4783
9.97k
    s->s3.tmp.sigalg = lu;
4784
9.97k
    return 1;
4785
11.0k
}
4786
4787
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4788
0
{
4789
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4790
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4791
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4792
0
        return 0;
4793
0
    }
4794
4795
0
    ctx->ext.max_fragment_len_mode = mode;
4796
0
    return 1;
4797
0
}
4798
4799
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4800
0
{
4801
0
    SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4802
4803
0
    if (sc == NULL
4804
0
        || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4805
0
        return 0;
4806
4807
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
4808
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4809
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4810
0
        return 0;
4811
0
    }
4812
4813
0
    sc->ext.max_fragment_len_mode = mode;
4814
0
    return 1;
4815
0
}
4816
4817
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4818
0
{
4819
0
    if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4820
0
        return TLSEXT_max_fragment_length_DISABLED;
4821
0
    return session->ext.max_fragment_len_mode;
4822
0
}
4823
4824
/*
4825
 * Helper functions for HMAC access with legacy support included.
4826
 */
4827
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4828
2.00k
{
4829
2.00k
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4830
2.00k
    EVP_MAC *mac = NULL;
4831
4832
2.00k
    if (ret == NULL)
4833
0
        return NULL;
4834
2.00k
#ifndef OPENSSL_NO_DEPRECATED_3_0
4835
2.00k
    if (ctx->ext.ticket_key_evp_cb == NULL
4836
2.00k
            && ctx->ext.ticket_key_cb != NULL) {
4837
0
        if (!ssl_hmac_old_new(ret))
4838
0
            goto err;
4839
0
        return ret;
4840
0
    }
4841
2.00k
#endif
4842
2.00k
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4843
2.00k
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4844
0
        goto err;
4845
2.00k
    EVP_MAC_free(mac);
4846
2.00k
    return ret;
4847
0
 err:
4848
0
    EVP_MAC_CTX_free(ret->ctx);
4849
0
    EVP_MAC_free(mac);
4850
0
    OPENSSL_free(ret);
4851
0
    return NULL;
4852
2.00k
}
4853
4854
void ssl_hmac_free(SSL_HMAC *ctx)
4855
6.92k
{
4856
6.92k
    if (ctx != NULL) {
4857
2.00k
        EVP_MAC_CTX_free(ctx->ctx);
4858
2.00k
#ifndef OPENSSL_NO_DEPRECATED_3_0
4859
2.00k
        ssl_hmac_old_free(ctx);
4860
2.00k
#endif
4861
2.00k
        OPENSSL_free(ctx);
4862
2.00k
    }
4863
6.92k
}
4864
4865
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4866
0
{
4867
0
    return ctx->ctx;
4868
0
}
4869
4870
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4871
1.44k
{
4872
1.44k
    OSSL_PARAM params[2], *p = params;
4873
4874
1.44k
    if (ctx->ctx != NULL) {
4875
1.44k
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4876
1.44k
        *p = OSSL_PARAM_construct_end();
4877
1.44k
        if (EVP_MAC_init(ctx->ctx, key, len, params))
4878
1.44k
            return 1;
4879
1.44k
    }
4880
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4881
0
    if (ctx->old_ctx != NULL)
4882
0
        return ssl_hmac_old_init(ctx, key, len, md);
4883
0
#endif
4884
0
    return 0;
4885
0
}
4886
4887
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4888
1.28k
{
4889
1.28k
    if (ctx->ctx != NULL)
4890
1.28k
        return EVP_MAC_update(ctx->ctx, data, len);
4891
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4892
0
    if (ctx->old_ctx != NULL)
4893
0
        return ssl_hmac_old_update(ctx, data, len);
4894
0
#endif
4895
0
    return 0;
4896
0
}
4897
4898
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4899
                   size_t max_size)
4900
1.28k
{
4901
1.28k
    if (ctx->ctx != NULL)
4902
1.28k
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
4903
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4904
0
    if (ctx->old_ctx != NULL)
4905
0
        return ssl_hmac_old_final(ctx, md, len);
4906
0
#endif
4907
0
    return 0;
4908
0
}
4909
4910
size_t ssl_hmac_size(const SSL_HMAC *ctx)
4911
1.32k
{
4912
1.32k
    if (ctx->ctx != NULL)
4913
1.32k
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4914
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
4915
0
    if (ctx->old_ctx != NULL)
4916
0
        return ssl_hmac_old_size(ctx);
4917
0
#endif
4918
0
    return 0;
4919
0
}
4920
4921
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4922
28.0k
{
4923
28.0k
    char gname[OSSL_MAX_NAME_SIZE];
4924
4925
28.0k
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4926
28.0k
        return OBJ_txt2nid(gname);
4927
4928
0
    return NID_undef;
4929
28.0k
}
4930
4931
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4932
                                     const unsigned char *enckey,
4933
                                     size_t enckeylen)
4934
27.9k
{
4935
27.9k
    if (EVP_PKEY_is_a(pkey, "DH")) {
4936
149
        int bits = EVP_PKEY_get_bits(pkey);
4937
4938
149
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
4939
            /* the encoded key must be padded to the length of the p */
4940
13
            return 0;
4941
27.8k
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
4942
196
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4943
188
            || enckey[0] != 0x04)
4944
47
            return 0;
4945
196
    }
4946
4947
27.9k
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4948
27.9k
}