Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl30/crypto/ec/ecp_nistp256.c
Line
Count
Source
1
/*
2
 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/opensslconf.h>
41
42
#include <stdint.h>
43
#include <string.h>
44
#include <openssl/err.h>
45
#include "ec_local.h"
46
47
#include "internal/numbers.h"
48
49
#ifndef INT128_MAX
50
#error "Your compiler doesn't appear to support 128-bit integer types"
51
#endif
52
53
typedef uint8_t u8;
54
typedef uint32_t u32;
55
typedef uint64_t u64;
56
57
/*
58
 * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
59
 * can serialize an element of this field into 32 bytes. We call this an
60
 * felem_bytearray.
61
 */
62
63
typedef u8 felem_bytearray[32];
64
65
/*
66
 * These are the parameters of P256, taken from FIPS 186-3, page 86. These
67
 * values are big-endian.
68
 */
69
static const felem_bytearray nistp256_curve_params[5] = {
70
    { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
71
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
72
        0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
73
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
74
    { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
75
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
76
        0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
77
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc },
78
    { 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, /* b */
79
        0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
80
        0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
81
        0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b },
82
    { 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
83
        0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
84
        0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
85
        0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96 },
86
    { 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
87
        0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
88
        0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
89
        0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5 }
90
};
91
92
/*-
93
 * The representation of field elements.
94
 * ------------------------------------
95
 *
96
 * We represent field elements with either four 128-bit values, eight 128-bit
97
 * values, or four 64-bit values. The field element represented is:
98
 *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192  (mod p)
99
 * or:
100
 *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512  (mod p)
101
 *
102
 * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
103
 * apart, but are 128-bits wide, the most significant bits of each limb overlap
104
 * with the least significant bits of the next.
105
 *
106
 * A field element with four limbs is an 'felem'. One with eight limbs is a
107
 * 'longfelem'
108
 *
109
 * A field element with four, 64-bit values is called a 'smallfelem'. Small
110
 * values are used as intermediate values before multiplication.
111
 */
112
113
0
#define NLIMBS 4
114
115
typedef uint128_t limb;
116
typedef limb felem[NLIMBS];
117
typedef limb longfelem[NLIMBS * 2];
118
typedef u64 smallfelem[NLIMBS];
119
120
/* This is the value of the prime as four 64-bit words, little-endian. */
121
static const u64 kPrime[4] = { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul };
122
static const u64 bottom63bits = 0x7ffffffffffffffful;
123
124
/*
125
 * bin32_to_felem takes a little-endian byte array and converts it into felem
126
 * form. This assumes that the CPU is little-endian.
127
 */
128
static void bin32_to_felem(felem out, const u8 in[32])
129
0
{
130
0
    out[0] = *((u64 *)&in[0]);
131
0
    out[1] = *((u64 *)&in[8]);
132
0
    out[2] = *((u64 *)&in[16]);
133
0
    out[3] = *((u64 *)&in[24]);
134
0
}
135
136
/*
137
 * smallfelem_to_bin32 takes a smallfelem and serializes into a little
138
 * endian, 32 byte array. This assumes that the CPU is little-endian.
139
 */
140
static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
141
0
{
142
0
    *((u64 *)&out[0]) = in[0];
143
0
    *((u64 *)&out[8]) = in[1];
144
0
    *((u64 *)&out[16]) = in[2];
145
0
    *((u64 *)&out[24]) = in[3];
146
0
}
147
148
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
149
static int BN_to_felem(felem out, const BIGNUM *bn)
150
0
{
151
0
    felem_bytearray b_out;
152
0
    int num_bytes;
153
154
0
    if (BN_is_negative(bn)) {
155
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
156
0
        return 0;
157
0
    }
158
0
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
159
0
    if (num_bytes < 0) {
160
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
161
0
        return 0;
162
0
    }
163
0
    bin32_to_felem(out, b_out);
164
0
    return 1;
165
0
}
166
167
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
168
static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
169
0
{
170
0
    felem_bytearray b_out;
171
0
    smallfelem_to_bin32(b_out, in);
172
0
    return BN_lebin2bn(b_out, sizeof(b_out), out);
173
0
}
174
175
/*-
176
 * Field operations
177
 * ----------------
178
 */
179
180
static void smallfelem_one(smallfelem out)
181
0
{
182
0
    out[0] = 1;
183
0
    out[1] = 0;
184
0
    out[2] = 0;
185
0
    out[3] = 0;
186
0
}
187
188
static void smallfelem_assign(smallfelem out, const smallfelem in)
189
0
{
190
0
    out[0] = in[0];
191
0
    out[1] = in[1];
192
0
    out[2] = in[2];
193
0
    out[3] = in[3];
194
0
}
195
196
static void felem_assign(felem out, const felem in)
197
0
{
198
0
    out[0] = in[0];
199
0
    out[1] = in[1];
200
0
    out[2] = in[2];
201
0
    out[3] = in[3];
202
0
}
203
204
/* felem_sum sets out = out + in. */
205
static void felem_sum(felem out, const felem in)
206
0
{
207
0
    out[0] += in[0];
208
0
    out[1] += in[1];
209
0
    out[2] += in[2];
210
0
    out[3] += in[3];
211
0
}
212
213
/* felem_small_sum sets out = out + in. */
214
static void felem_small_sum(felem out, const smallfelem in)
215
0
{
216
0
    out[0] += in[0];
217
0
    out[1] += in[1];
218
0
    out[2] += in[2];
219
0
    out[3] += in[3];
220
0
}
221
222
/* felem_scalar sets out = out * scalar */
223
static void felem_scalar(felem out, const u64 scalar)
224
0
{
225
0
    out[0] *= scalar;
226
0
    out[1] *= scalar;
227
0
    out[2] *= scalar;
228
0
    out[3] *= scalar;
229
0
}
230
231
/* longfelem_scalar sets out = out * scalar */
232
static void longfelem_scalar(longfelem out, const u64 scalar)
233
0
{
234
0
    out[0] *= scalar;
235
0
    out[1] *= scalar;
236
0
    out[2] *= scalar;
237
0
    out[3] *= scalar;
238
0
    out[4] *= scalar;
239
0
    out[5] *= scalar;
240
0
    out[6] *= scalar;
241
0
    out[7] *= scalar;
242
0
}
243
244
#define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
245
#define two105 (((limb)1) << 105)
246
#define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
247
248
/* zero105 is 0 mod p */
249
static const felem zero105 = { two105m41m9, two105, two105m41p9, two105m41p9 };
250
251
/*-
252
 * smallfelem_neg sets |out| to |-small|
253
 * On exit:
254
 *   out[i] < out[i] + 2^105
255
 */
256
static void smallfelem_neg(felem out, const smallfelem small)
257
0
{
258
    /* In order to prevent underflow, we subtract from 0 mod p. */
259
0
    out[0] = zero105[0] - small[0];
260
0
    out[1] = zero105[1] - small[1];
261
0
    out[2] = zero105[2] - small[2];
262
0
    out[3] = zero105[3] - small[3];
263
0
}
264
265
/*-
266
 * felem_diff subtracts |in| from |out|
267
 * On entry:
268
 *   in[i] < 2^104
269
 * On exit:
270
 *   out[i] < out[i] + 2^105
271
 */
272
static void felem_diff(felem out, const felem in)
273
0
{
274
    /*
275
     * In order to prevent underflow, we add 0 mod p before subtracting.
276
     */
277
0
    out[0] += zero105[0];
278
0
    out[1] += zero105[1];
279
0
    out[2] += zero105[2];
280
0
    out[3] += zero105[3];
281
282
0
    out[0] -= in[0];
283
0
    out[1] -= in[1];
284
0
    out[2] -= in[2];
285
0
    out[3] -= in[3];
286
0
}
287
288
#define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
289
#define two107 (((limb)1) << 107)
290
#define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
291
292
/* zero107 is 0 mod p */
293
static const felem zero107 = { two107m43m11, two107, two107m43p11, two107m43p11 };
294
295
/*-
296
 * An alternative felem_diff for larger inputs |in|
297
 * felem_diff_zero107 subtracts |in| from |out|
298
 * On entry:
299
 *   in[i] < 2^106
300
 * On exit:
301
 *   out[i] < out[i] + 2^107
302
 */
303
static void felem_diff_zero107(felem out, const felem in)
304
0
{
305
    /*
306
     * In order to prevent underflow, we add 0 mod p before subtracting.
307
     */
308
0
    out[0] += zero107[0];
309
0
    out[1] += zero107[1];
310
0
    out[2] += zero107[2];
311
0
    out[3] += zero107[3];
312
313
0
    out[0] -= in[0];
314
0
    out[1] -= in[1];
315
0
    out[2] -= in[2];
316
0
    out[3] -= in[3];
317
0
}
318
319
/*-
320
 * longfelem_diff subtracts |in| from |out|
321
 * On entry:
322
 *   in[i] < 7*2^67
323
 * On exit:
324
 *   out[i] < out[i] + 2^70 + 2^40
325
 */
326
static void longfelem_diff(longfelem out, const longfelem in)
327
0
{
328
0
    static const limb two70m8p6 = (((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6);
329
0
    static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40);
330
0
    static const limb two70 = (((limb)1) << 70);
331
0
    static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) - (((limb)1) << 38) + (((limb)1) << 6);
332
0
    static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6);
333
334
    /* add 0 mod p to avoid underflow */
335
0
    out[0] += two70m8p6;
336
0
    out[1] += two70p40;
337
0
    out[2] += two70;
338
0
    out[3] += two70m40m38p6;
339
0
    out[4] += two70m6;
340
0
    out[5] += two70m6;
341
0
    out[6] += two70m6;
342
0
    out[7] += two70m6;
343
344
    /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
345
0
    out[0] -= in[0];
346
0
    out[1] -= in[1];
347
0
    out[2] -= in[2];
348
0
    out[3] -= in[3];
349
0
    out[4] -= in[4];
350
0
    out[5] -= in[5];
351
0
    out[6] -= in[6];
352
0
    out[7] -= in[7];
353
0
}
354
355
#define two64m0 (((limb)1) << 64) - 1
356
#define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
357
#define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
358
#define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
359
360
/* zero110 is 0 mod p */
361
static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
362
363
/*-
364
 * felem_shrink converts an felem into a smallfelem. The result isn't quite
365
 * minimal as the value may be greater than p.
366
 *
367
 * On entry:
368
 *   in[i] < 2^109
369
 * On exit:
370
 *   out[i] < 2^64
371
 */
372
static void felem_shrink(smallfelem out, const felem in)
373
0
{
374
0
    felem tmp;
375
0
    u64 a, b, mask;
376
0
    u64 high, low;
377
0
    static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
378
379
    /* Carry 2->3 */
380
0
    tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
381
    /* tmp[3] < 2^110 */
382
383
0
    tmp[2] = zero110[2] + (u64)in[2];
384
0
    tmp[0] = zero110[0] + in[0];
385
0
    tmp[1] = zero110[1] + in[1];
386
    /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
387
388
    /*
389
     * We perform two partial reductions where we eliminate the high-word of
390
     * tmp[3]. We don't update the other words till the end.
391
     */
392
0
    a = tmp[3] >> 64; /* a < 2^46 */
393
0
    tmp[3] = (u64)tmp[3];
394
0
    tmp[3] -= a;
395
0
    tmp[3] += ((limb)a) << 32;
396
    /* tmp[3] < 2^79 */
397
398
0
    b = a;
399
0
    a = tmp[3] >> 64; /* a < 2^15 */
400
0
    b += a; /* b < 2^46 + 2^15 < 2^47 */
401
0
    tmp[3] = (u64)tmp[3];
402
0
    tmp[3] -= a;
403
0
    tmp[3] += ((limb)a) << 32;
404
    /* tmp[3] < 2^64 + 2^47 */
405
406
    /*
407
     * This adjusts the other two words to complete the two partial
408
     * reductions.
409
     */
410
0
    tmp[0] += b;
411
0
    tmp[1] -= (((limb)b) << 32);
412
413
    /*
414
     * In order to make space in tmp[3] for the carry from 2 -> 3, we
415
     * conditionally subtract kPrime if tmp[3] is large enough.
416
     */
417
0
    high = (u64)(tmp[3] >> 64);
418
    /* As tmp[3] < 2^65, high is either 1 or 0 */
419
0
    high = 0 - high;
420
    /*-
421
     * high is:
422
     *   all ones   if the high word of tmp[3] is 1
423
     *   all zeros  if the high word of tmp[3] if 0
424
     */
425
0
    low = (u64)tmp[3];
426
0
    mask = 0 - (low >> 63);
427
    /*-
428
     * mask is:
429
     *   all ones   if the MSB of low is 1
430
     *   all zeros  if the MSB of low if 0
431
     */
432
0
    low &= bottom63bits;
433
0
    low -= kPrime3Test;
434
    /* if low was greater than kPrime3Test then the MSB is zero */
435
0
    low = ~low;
436
0
    low = 0 - (low >> 63);
437
    /*-
438
     * low is:
439
     *   all ones   if low was > kPrime3Test
440
     *   all zeros  if low was <= kPrime3Test
441
     */
442
0
    mask = (mask & low) | high;
443
0
    tmp[0] -= mask & kPrime[0];
444
0
    tmp[1] -= mask & kPrime[1];
445
    /* kPrime[2] is zero, so omitted */
446
0
    tmp[3] -= mask & kPrime[3];
447
    /* tmp[3] < 2**64 - 2**32 + 1 */
448
449
0
    tmp[1] += ((u64)(tmp[0] >> 64));
450
0
    tmp[0] = (u64)tmp[0];
451
0
    tmp[2] += ((u64)(tmp[1] >> 64));
452
0
    tmp[1] = (u64)tmp[1];
453
0
    tmp[3] += ((u64)(tmp[2] >> 64));
454
0
    tmp[2] = (u64)tmp[2];
455
    /* tmp[i] < 2^64 */
456
457
0
    out[0] = tmp[0];
458
0
    out[1] = tmp[1];
459
0
    out[2] = tmp[2];
460
0
    out[3] = tmp[3];
461
0
}
462
463
/* smallfelem_expand converts a smallfelem to an felem */
464
static void smallfelem_expand(felem out, const smallfelem in)
465
0
{
466
0
    out[0] = in[0];
467
0
    out[1] = in[1];
468
0
    out[2] = in[2];
469
0
    out[3] = in[3];
470
0
}
471
472
/*-
473
 * smallfelem_square sets |out| = |small|^2
474
 * On entry:
475
 *   small[i] < 2^64
476
 * On exit:
477
 *   out[i] < 7 * 2^64 < 2^67
478
 */
479
static void smallfelem_square(longfelem out, const smallfelem small)
480
0
{
481
0
    limb a;
482
0
    u64 high, low;
483
484
0
    a = ((uint128_t)small[0]) * small[0];
485
0
    low = a;
486
0
    high = a >> 64;
487
0
    out[0] = low;
488
0
    out[1] = high;
489
490
0
    a = ((uint128_t)small[0]) * small[1];
491
0
    low = a;
492
0
    high = a >> 64;
493
0
    out[1] += low;
494
0
    out[1] += low;
495
0
    out[2] = high;
496
497
0
    a = ((uint128_t)small[0]) * small[2];
498
0
    low = a;
499
0
    high = a >> 64;
500
0
    out[2] += low;
501
0
    out[2] *= 2;
502
0
    out[3] = high;
503
504
0
    a = ((uint128_t)small[0]) * small[3];
505
0
    low = a;
506
0
    high = a >> 64;
507
0
    out[3] += low;
508
0
    out[4] = high;
509
510
0
    a = ((uint128_t)small[1]) * small[2];
511
0
    low = a;
512
0
    high = a >> 64;
513
0
    out[3] += low;
514
0
    out[3] *= 2;
515
0
    out[4] += high;
516
517
0
    a = ((uint128_t)small[1]) * small[1];
518
0
    low = a;
519
0
    high = a >> 64;
520
0
    out[2] += low;
521
0
    out[3] += high;
522
523
0
    a = ((uint128_t)small[1]) * small[3];
524
0
    low = a;
525
0
    high = a >> 64;
526
0
    out[4] += low;
527
0
    out[4] *= 2;
528
0
    out[5] = high;
529
530
0
    a = ((uint128_t)small[2]) * small[3];
531
0
    low = a;
532
0
    high = a >> 64;
533
0
    out[5] += low;
534
0
    out[5] *= 2;
535
0
    out[6] = high;
536
0
    out[6] += high;
537
538
0
    a = ((uint128_t)small[2]) * small[2];
539
0
    low = a;
540
0
    high = a >> 64;
541
0
    out[4] += low;
542
0
    out[5] += high;
543
544
0
    a = ((uint128_t)small[3]) * small[3];
545
0
    low = a;
546
0
    high = a >> 64;
547
0
    out[6] += low;
548
0
    out[7] = high;
549
0
}
550
551
/*-
552
 * felem_square sets |out| = |in|^2
553
 * On entry:
554
 *   in[i] < 2^109
555
 * On exit:
556
 *   out[i] < 7 * 2^64 < 2^67
557
 */
558
static void felem_square(longfelem out, const felem in)
559
0
{
560
0
    u64 small[4];
561
0
    felem_shrink(small, in);
562
0
    smallfelem_square(out, small);
563
0
}
564
565
/*-
566
 * smallfelem_mul sets |out| = |small1| * |small2|
567
 * On entry:
568
 *   small1[i] < 2^64
569
 *   small2[i] < 2^64
570
 * On exit:
571
 *   out[i] < 7 * 2^64 < 2^67
572
 */
573
static void smallfelem_mul(longfelem out, const smallfelem small1,
574
    const smallfelem small2)
575
0
{
576
0
    limb a;
577
0
    u64 high, low;
578
579
0
    a = ((uint128_t)small1[0]) * small2[0];
580
0
    low = a;
581
0
    high = a >> 64;
582
0
    out[0] = low;
583
0
    out[1] = high;
584
585
0
    a = ((uint128_t)small1[0]) * small2[1];
586
0
    low = a;
587
0
    high = a >> 64;
588
0
    out[1] += low;
589
0
    out[2] = high;
590
591
0
    a = ((uint128_t)small1[1]) * small2[0];
592
0
    low = a;
593
0
    high = a >> 64;
594
0
    out[1] += low;
595
0
    out[2] += high;
596
597
0
    a = ((uint128_t)small1[0]) * small2[2];
598
0
    low = a;
599
0
    high = a >> 64;
600
0
    out[2] += low;
601
0
    out[3] = high;
602
603
0
    a = ((uint128_t)small1[1]) * small2[1];
604
0
    low = a;
605
0
    high = a >> 64;
606
0
    out[2] += low;
607
0
    out[3] += high;
608
609
0
    a = ((uint128_t)small1[2]) * small2[0];
610
0
    low = a;
611
0
    high = a >> 64;
612
0
    out[2] += low;
613
0
    out[3] += high;
614
615
0
    a = ((uint128_t)small1[0]) * small2[3];
616
0
    low = a;
617
0
    high = a >> 64;
618
0
    out[3] += low;
619
0
    out[4] = high;
620
621
0
    a = ((uint128_t)small1[1]) * small2[2];
622
0
    low = a;
623
0
    high = a >> 64;
624
0
    out[3] += low;
625
0
    out[4] += high;
626
627
0
    a = ((uint128_t)small1[2]) * small2[1];
628
0
    low = a;
629
0
    high = a >> 64;
630
0
    out[3] += low;
631
0
    out[4] += high;
632
633
0
    a = ((uint128_t)small1[3]) * small2[0];
634
0
    low = a;
635
0
    high = a >> 64;
636
0
    out[3] += low;
637
0
    out[4] += high;
638
639
0
    a = ((uint128_t)small1[1]) * small2[3];
640
0
    low = a;
641
0
    high = a >> 64;
642
0
    out[4] += low;
643
0
    out[5] = high;
644
645
0
    a = ((uint128_t)small1[2]) * small2[2];
646
0
    low = a;
647
0
    high = a >> 64;
648
0
    out[4] += low;
649
0
    out[5] += high;
650
651
0
    a = ((uint128_t)small1[3]) * small2[1];
652
0
    low = a;
653
0
    high = a >> 64;
654
0
    out[4] += low;
655
0
    out[5] += high;
656
657
0
    a = ((uint128_t)small1[2]) * small2[3];
658
0
    low = a;
659
0
    high = a >> 64;
660
0
    out[5] += low;
661
0
    out[6] = high;
662
663
0
    a = ((uint128_t)small1[3]) * small2[2];
664
0
    low = a;
665
0
    high = a >> 64;
666
0
    out[5] += low;
667
0
    out[6] += high;
668
669
0
    a = ((uint128_t)small1[3]) * small2[3];
670
0
    low = a;
671
0
    high = a >> 64;
672
0
    out[6] += low;
673
0
    out[7] = high;
674
0
}
675
676
/*-
677
 * felem_mul sets |out| = |in1| * |in2|
678
 * On entry:
679
 *   in1[i] < 2^109
680
 *   in2[i] < 2^109
681
 * On exit:
682
 *   out[i] < 7 * 2^64 < 2^67
683
 */
684
static void felem_mul(longfelem out, const felem in1, const felem in2)
685
0
{
686
0
    smallfelem small1, small2;
687
0
    felem_shrink(small1, in1);
688
0
    felem_shrink(small2, in2);
689
0
    smallfelem_mul(out, small1, small2);
690
0
}
691
692
/*-
693
 * felem_small_mul sets |out| = |small1| * |in2|
694
 * On entry:
695
 *   small1[i] < 2^64
696
 *   in2[i] < 2^109
697
 * On exit:
698
 *   out[i] < 7 * 2^64 < 2^67
699
 */
700
static void felem_small_mul(longfelem out, const smallfelem small1,
701
    const felem in2)
702
0
{
703
0
    smallfelem small2;
704
0
    felem_shrink(small2, in2);
705
0
    smallfelem_mul(out, small1, small2);
706
0
}
707
708
#define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
709
#define two100 (((limb)1) << 100)
710
#define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
711
/* zero100 is 0 mod p */
712
static const felem zero100 = { two100m36m4, two100, two100m36p4, two100m36p4 };
713
714
/*-
715
 * Internal function for the different flavours of felem_reduce.
716
 * felem_reduce_ reduces the higher coefficients in[4]-in[7].
717
 * On entry:
718
 *   out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
719
 *   out[1] >= in[7] + 2^32*in[4]
720
 *   out[2] >= in[5] + 2^32*in[5]
721
 *   out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
722
 * On exit:
723
 *   out[0] <= out[0] + in[4] + 2^32*in[5]
724
 *   out[1] <= out[1] + in[5] + 2^33*in[6]
725
 *   out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
726
 *   out[3] <= out[3] + 2^32*in[4] + 3*in[7]
727
 */
728
static void felem_reduce_(felem out, const longfelem in)
729
0
{
730
0
    int128_t c;
731
    /* combine common terms from below */
732
0
    c = in[4] + (in[5] << 32);
733
0
    out[0] += c;
734
0
    out[3] -= c;
735
736
0
    c = in[5] - in[7];
737
0
    out[1] += c;
738
0
    out[2] -= c;
739
740
    /* the remaining terms */
741
    /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
742
0
    out[1] -= (in[4] << 32);
743
0
    out[3] += (in[4] << 32);
744
745
    /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
746
0
    out[2] -= (in[5] << 32);
747
748
    /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
749
0
    out[0] -= in[6];
750
0
    out[0] -= (in[6] << 32);
751
0
    out[1] += (in[6] << 33);
752
0
    out[2] += (in[6] * 2);
753
0
    out[3] -= (in[6] << 32);
754
755
    /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
756
0
    out[0] -= in[7];
757
0
    out[0] -= (in[7] << 32);
758
0
    out[2] += (in[7] << 33);
759
0
    out[3] += (in[7] * 3);
760
0
}
761
762
/*-
763
 * felem_reduce converts a longfelem into an felem.
764
 * To be called directly after felem_square or felem_mul.
765
 * On entry:
766
 *   in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
767
 *   in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
768
 * On exit:
769
 *   out[i] < 2^101
770
 */
771
static void felem_reduce(felem out, const longfelem in)
772
0
{
773
0
    out[0] = zero100[0] + in[0];
774
0
    out[1] = zero100[1] + in[1];
775
0
    out[2] = zero100[2] + in[2];
776
0
    out[3] = zero100[3] + in[3];
777
778
0
    felem_reduce_(out, in);
779
780
    /*-
781
     * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
782
     * out[1] > 2^100 - 2^64 - 7*2^96 > 0
783
     * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
784
     * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
785
     *
786
     * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
787
     * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
788
     * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
789
     * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
790
     */
791
0
}
792
793
/*-
794
 * felem_reduce_zero105 converts a larger longfelem into an felem.
795
 * On entry:
796
 *   in[0] < 2^71
797
 * On exit:
798
 *   out[i] < 2^106
799
 */
800
static void felem_reduce_zero105(felem out, const longfelem in)
801
0
{
802
0
    out[0] = zero105[0] + in[0];
803
0
    out[1] = zero105[1] + in[1];
804
0
    out[2] = zero105[2] + in[2];
805
0
    out[3] = zero105[3] + in[3];
806
807
0
    felem_reduce_(out, in);
808
809
    /*-
810
     * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
811
     * out[1] > 2^105 - 2^71 - 2^103 > 0
812
     * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
813
     * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
814
     *
815
     * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
816
     * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
817
     * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
818
     * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
819
     */
820
0
}
821
822
/*
823
 * subtract_u64 sets *result = *result - v and *carry to one if the
824
 * subtraction underflowed.
825
 */
826
static void subtract_u64(u64 *result, u64 *carry, u64 v)
827
0
{
828
0
    uint128_t r = *result;
829
0
    r -= v;
830
0
    *carry = (r >> 64) & 1;
831
0
    *result = (u64)r;
832
0
}
833
834
/*
835
 * felem_contract converts |in| to its unique, minimal representation. On
836
 * entry: in[i] < 2^109
837
 */
838
static void felem_contract(smallfelem out, const felem in)
839
0
{
840
0
    unsigned i;
841
0
    u64 all_equal_so_far = 0, result = 0, carry;
842
843
0
    felem_shrink(out, in);
844
    /* small is minimal except that the value might be > p */
845
846
0
    all_equal_so_far--;
847
    /*
848
     * We are doing a constant time test if out >= kPrime. We need to compare
849
     * each u64, from most-significant to least significant. For each one, if
850
     * all words so far have been equal (m is all ones) then a non-equal
851
     * result is the answer. Otherwise we continue.
852
     */
853
0
    for (i = 3; i < 4; i--) {
854
0
        u64 equal;
855
0
        uint128_t a = ((uint128_t)kPrime[i]) - out[i];
856
        /*
857
         * if out[i] > kPrime[i] then a will underflow and the high 64-bits
858
         * will all be set.
859
         */
860
0
        result |= all_equal_so_far & ((u64)(a >> 64));
861
862
        /*
863
         * if kPrime[i] == out[i] then |equal| will be all zeros and the
864
         * decrement will make it all ones.
865
         */
866
0
        equal = kPrime[i] ^ out[i];
867
0
        equal--;
868
0
        equal &= equal << 32;
869
0
        equal &= equal << 16;
870
0
        equal &= equal << 8;
871
0
        equal &= equal << 4;
872
0
        equal &= equal << 2;
873
0
        equal &= equal << 1;
874
0
        equal = 0 - (equal >> 63);
875
876
0
        all_equal_so_far &= equal;
877
0
    }
878
879
    /*
880
     * if all_equal_so_far is still all ones then the two values are equal
881
     * and so out >= kPrime is true.
882
     */
883
0
    result |= all_equal_so_far;
884
885
    /* if out >= kPrime then we subtract kPrime. */
886
0
    subtract_u64(&out[0], &carry, result & kPrime[0]);
887
0
    subtract_u64(&out[1], &carry, carry);
888
0
    subtract_u64(&out[2], &carry, carry);
889
0
    subtract_u64(&out[3], &carry, carry);
890
891
0
    subtract_u64(&out[1], &carry, result & kPrime[1]);
892
0
    subtract_u64(&out[2], &carry, carry);
893
0
    subtract_u64(&out[3], &carry, carry);
894
895
0
    subtract_u64(&out[2], &carry, result & kPrime[2]);
896
0
    subtract_u64(&out[3], &carry, carry);
897
898
0
    subtract_u64(&out[3], &carry, result & kPrime[3]);
899
0
}
900
901
static void smallfelem_square_contract(smallfelem out, const smallfelem in)
902
0
{
903
0
    longfelem longtmp;
904
0
    felem tmp;
905
906
0
    smallfelem_square(longtmp, in);
907
0
    felem_reduce(tmp, longtmp);
908
0
    felem_contract(out, tmp);
909
0
}
910
911
static void smallfelem_mul_contract(smallfelem out, const smallfelem in1,
912
    const smallfelem in2)
913
0
{
914
0
    longfelem longtmp;
915
0
    felem tmp;
916
917
0
    smallfelem_mul(longtmp, in1, in2);
918
0
    felem_reduce(tmp, longtmp);
919
0
    felem_contract(out, tmp);
920
0
}
921
922
/*-
923
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
924
 * otherwise.
925
 * On entry:
926
 *   small[i] < 2^64
927
 */
928
static limb smallfelem_is_zero(const smallfelem small)
929
0
{
930
0
    limb result;
931
0
    u64 is_p;
932
933
0
    u64 is_zero = small[0] | small[1] | small[2] | small[3];
934
0
    is_zero--;
935
0
    is_zero &= is_zero << 32;
936
0
    is_zero &= is_zero << 16;
937
0
    is_zero &= is_zero << 8;
938
0
    is_zero &= is_zero << 4;
939
0
    is_zero &= is_zero << 2;
940
0
    is_zero &= is_zero << 1;
941
0
    is_zero = 0 - (is_zero >> 63);
942
943
0
    is_p = (small[0] ^ kPrime[0]) | (small[1] ^ kPrime[1]) | (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
944
0
    is_p--;
945
0
    is_p &= is_p << 32;
946
0
    is_p &= is_p << 16;
947
0
    is_p &= is_p << 8;
948
0
    is_p &= is_p << 4;
949
0
    is_p &= is_p << 2;
950
0
    is_p &= is_p << 1;
951
0
    is_p = 0 - (is_p >> 63);
952
953
0
    is_zero |= is_p;
954
955
0
    result = is_zero;
956
0
    result |= ((limb)is_zero) << 64;
957
0
    return result;
958
0
}
959
960
static int smallfelem_is_zero_int(const void *small)
961
0
{
962
0
    return (int)(smallfelem_is_zero(small) & ((limb)1));
963
0
}
964
965
/*-
966
 * felem_inv calculates |out| = |in|^{-1}
967
 *
968
 * Based on Fermat's Little Theorem:
969
 *   a^p = a (mod p)
970
 *   a^{p-1} = 1 (mod p)
971
 *   a^{p-2} = a^{-1} (mod p)
972
 */
973
static void felem_inv(felem out, const felem in)
974
0
{
975
0
    felem ftmp, ftmp2;
976
    /* each e_I will hold |in|^{2^I - 1} */
977
0
    felem e2, e4, e8, e16, e32, e64;
978
0
    longfelem tmp;
979
0
    unsigned i;
980
981
0
    felem_square(tmp, in);
982
0
    felem_reduce(ftmp, tmp); /* 2^1 */
983
0
    felem_mul(tmp, in, ftmp);
984
0
    felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
985
0
    felem_assign(e2, ftmp);
986
0
    felem_square(tmp, ftmp);
987
0
    felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
988
0
    felem_square(tmp, ftmp);
989
0
    felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */
990
0
    felem_mul(tmp, ftmp, e2);
991
0
    felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */
992
0
    felem_assign(e4, ftmp);
993
0
    felem_square(tmp, ftmp);
994
0
    felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */
995
0
    felem_square(tmp, ftmp);
996
0
    felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */
997
0
    felem_square(tmp, ftmp);
998
0
    felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */
999
0
    felem_square(tmp, ftmp);
1000
0
    felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */
1001
0
    felem_mul(tmp, ftmp, e4);
1002
0
    felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */
1003
0
    felem_assign(e8, ftmp);
1004
0
    for (i = 0; i < 8; i++) {
1005
0
        felem_square(tmp, ftmp);
1006
0
        felem_reduce(ftmp, tmp);
1007
0
    } /* 2^16 - 2^8 */
1008
0
    felem_mul(tmp, ftmp, e8);
1009
0
    felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */
1010
0
    felem_assign(e16, ftmp);
1011
0
    for (i = 0; i < 16; i++) {
1012
0
        felem_square(tmp, ftmp);
1013
0
        felem_reduce(ftmp, tmp);
1014
0
    } /* 2^32 - 2^16 */
1015
0
    felem_mul(tmp, ftmp, e16);
1016
0
    felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */
1017
0
    felem_assign(e32, ftmp);
1018
0
    for (i = 0; i < 32; i++) {
1019
0
        felem_square(tmp, ftmp);
1020
0
        felem_reduce(ftmp, tmp);
1021
0
    } /* 2^64 - 2^32 */
1022
0
    felem_assign(e64, ftmp);
1023
0
    felem_mul(tmp, ftmp, in);
1024
0
    felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */
1025
0
    for (i = 0; i < 192; i++) {
1026
0
        felem_square(tmp, ftmp);
1027
0
        felem_reduce(ftmp, tmp);
1028
0
    } /* 2^256 - 2^224 + 2^192 */
1029
1030
0
    felem_mul(tmp, e64, e32);
1031
0
    felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */
1032
0
    for (i = 0; i < 16; i++) {
1033
0
        felem_square(tmp, ftmp2);
1034
0
        felem_reduce(ftmp2, tmp);
1035
0
    } /* 2^80 - 2^16 */
1036
0
    felem_mul(tmp, ftmp2, e16);
1037
0
    felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */
1038
0
    for (i = 0; i < 8; i++) {
1039
0
        felem_square(tmp, ftmp2);
1040
0
        felem_reduce(ftmp2, tmp);
1041
0
    } /* 2^88 - 2^8 */
1042
0
    felem_mul(tmp, ftmp2, e8);
1043
0
    felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */
1044
0
    for (i = 0; i < 4; i++) {
1045
0
        felem_square(tmp, ftmp2);
1046
0
        felem_reduce(ftmp2, tmp);
1047
0
    } /* 2^92 - 2^4 */
1048
0
    felem_mul(tmp, ftmp2, e4);
1049
0
    felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */
1050
0
    felem_square(tmp, ftmp2);
1051
0
    felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */
1052
0
    felem_square(tmp, ftmp2);
1053
0
    felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */
1054
0
    felem_mul(tmp, ftmp2, e2);
1055
0
    felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */
1056
0
    felem_square(tmp, ftmp2);
1057
0
    felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */
1058
0
    felem_square(tmp, ftmp2);
1059
0
    felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */
1060
0
    felem_mul(tmp, ftmp2, in);
1061
0
    felem_reduce(ftmp2, tmp); /* 2^96 - 3 */
1062
1063
0
    felem_mul(tmp, ftmp2, ftmp);
1064
0
    felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
1065
0
}
1066
1067
static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
1068
0
{
1069
0
    felem tmp;
1070
1071
0
    smallfelem_expand(tmp, in);
1072
0
    felem_inv(tmp, tmp);
1073
0
    felem_contract(out, tmp);
1074
0
}
1075
1076
/*-
1077
 * Group operations
1078
 * ----------------
1079
 *
1080
 * Building on top of the field operations we have the operations on the
1081
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1082
 * coordinates
1083
 */
1084
1085
/*-
1086
 * point_double calculates 2*(x_in, y_in, z_in)
1087
 *
1088
 * The method is taken from:
1089
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1090
 *
1091
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1092
 * while x_out == y_in is not (maybe this works, but it's not tested).
1093
 */
1094
static void
1095
point_double(felem x_out, felem y_out, felem z_out,
1096
    const felem x_in, const felem y_in, const felem z_in)
1097
0
{
1098
0
    longfelem tmp, tmp2;
1099
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1100
0
    smallfelem small1, small2;
1101
1102
0
    felem_assign(ftmp, x_in);
1103
    /* ftmp[i] < 2^106 */
1104
0
    felem_assign(ftmp2, x_in);
1105
    /* ftmp2[i] < 2^106 */
1106
1107
    /* delta = z^2 */
1108
0
    felem_square(tmp, z_in);
1109
0
    felem_reduce(delta, tmp);
1110
    /* delta[i] < 2^101 */
1111
1112
    /* gamma = y^2 */
1113
0
    felem_square(tmp, y_in);
1114
0
    felem_reduce(gamma, tmp);
1115
    /* gamma[i] < 2^101 */
1116
0
    felem_shrink(small1, gamma);
1117
1118
    /* beta = x*gamma */
1119
0
    felem_small_mul(tmp, small1, x_in);
1120
0
    felem_reduce(beta, tmp);
1121
    /* beta[i] < 2^101 */
1122
1123
    /* alpha = 3*(x-delta)*(x+delta) */
1124
0
    felem_diff(ftmp, delta);
1125
    /* ftmp[i] < 2^105 + 2^106 < 2^107 */
1126
0
    felem_sum(ftmp2, delta);
1127
    /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
1128
0
    felem_scalar(ftmp2, 3);
1129
    /* ftmp2[i] < 3 * 2^107 < 2^109 */
1130
0
    felem_mul(tmp, ftmp, ftmp2);
1131
0
    felem_reduce(alpha, tmp);
1132
    /* alpha[i] < 2^101 */
1133
0
    felem_shrink(small2, alpha);
1134
1135
    /* x' = alpha^2 - 8*beta */
1136
0
    smallfelem_square(tmp, small2);
1137
0
    felem_reduce(x_out, tmp);
1138
0
    felem_assign(ftmp, beta);
1139
0
    felem_scalar(ftmp, 8);
1140
    /* ftmp[i] < 8 * 2^101 = 2^104 */
1141
0
    felem_diff(x_out, ftmp);
1142
    /* x_out[i] < 2^105 + 2^101 < 2^106 */
1143
1144
    /* z' = (y + z)^2 - gamma - delta */
1145
0
    felem_sum(delta, gamma);
1146
    /* delta[i] < 2^101 + 2^101 = 2^102 */
1147
0
    felem_assign(ftmp, y_in);
1148
0
    felem_sum(ftmp, z_in);
1149
    /* ftmp[i] < 2^106 + 2^106 = 2^107 */
1150
0
    felem_square(tmp, ftmp);
1151
0
    felem_reduce(z_out, tmp);
1152
0
    felem_diff(z_out, delta);
1153
    /* z_out[i] < 2^105 + 2^101 < 2^106 */
1154
1155
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1156
0
    felem_scalar(beta, 4);
1157
    /* beta[i] < 4 * 2^101 = 2^103 */
1158
0
    felem_diff_zero107(beta, x_out);
1159
    /* beta[i] < 2^107 + 2^103 < 2^108 */
1160
0
    felem_small_mul(tmp, small2, beta);
1161
    /* tmp[i] < 7 * 2^64 < 2^67 */
1162
0
    smallfelem_square(tmp2, small1);
1163
    /* tmp2[i] < 7 * 2^64 */
1164
0
    longfelem_scalar(tmp2, 8);
1165
    /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
1166
0
    longfelem_diff(tmp, tmp2);
1167
    /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1168
0
    felem_reduce_zero105(y_out, tmp);
1169
    /* y_out[i] < 2^106 */
1170
0
}
1171
1172
/*
1173
 * point_double_small is the same as point_double, except that it operates on
1174
 * smallfelems
1175
 */
1176
static void
1177
point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
1178
    const smallfelem x_in, const smallfelem y_in,
1179
    const smallfelem z_in)
1180
0
{
1181
0
    felem felem_x_out, felem_y_out, felem_z_out;
1182
0
    felem felem_x_in, felem_y_in, felem_z_in;
1183
1184
0
    smallfelem_expand(felem_x_in, x_in);
1185
0
    smallfelem_expand(felem_y_in, y_in);
1186
0
    smallfelem_expand(felem_z_in, z_in);
1187
0
    point_double(felem_x_out, felem_y_out, felem_z_out,
1188
0
        felem_x_in, felem_y_in, felem_z_in);
1189
0
    felem_shrink(x_out, felem_x_out);
1190
0
    felem_shrink(y_out, felem_y_out);
1191
0
    felem_shrink(z_out, felem_z_out);
1192
0
}
1193
1194
/* copy_conditional copies in to out iff mask is all ones. */
1195
static void copy_conditional(felem out, const felem in, limb mask)
1196
0
{
1197
0
    unsigned i;
1198
0
    for (i = 0; i < NLIMBS; ++i) {
1199
0
        const limb tmp = mask & (in[i] ^ out[i]);
1200
0
        out[i] ^= tmp;
1201
0
    }
1202
0
}
1203
1204
/* copy_small_conditional copies in to out iff mask is all ones. */
1205
static void copy_small_conditional(felem out, const smallfelem in, limb mask)
1206
0
{
1207
0
    unsigned i;
1208
0
    const u64 mask64 = mask;
1209
0
    for (i = 0; i < NLIMBS; ++i) {
1210
0
        out[i] = ((limb)(in[i] & mask64)) | (out[i] & ~mask);
1211
0
    }
1212
0
}
1213
1214
/*-
1215
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1216
 *
1217
 * The method is taken from:
1218
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1219
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1220
 *
1221
 * This function includes a branch for checking whether the two input points
1222
 * are equal, (while not equal to the point at infinity). This case never
1223
 * happens during single point multiplication, so there is no timing leak for
1224
 * ECDH or ECDSA signing.
1225
 */
1226
static void point_add(felem x3, felem y3, felem z3,
1227
    const felem x1, const felem y1, const felem z1,
1228
    const int mixed, const smallfelem x2,
1229
    const smallfelem y2, const smallfelem z2)
1230
0
{
1231
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1232
0
    longfelem tmp, tmp2;
1233
0
    smallfelem small1, small2, small3, small4, small5;
1234
0
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1235
0
    limb points_equal;
1236
1237
0
    felem_shrink(small3, z1);
1238
1239
0
    z1_is_zero = smallfelem_is_zero(small3);
1240
0
    z2_is_zero = smallfelem_is_zero(z2);
1241
1242
    /* ftmp = z1z1 = z1**2 */
1243
0
    smallfelem_square(tmp, small3);
1244
0
    felem_reduce(ftmp, tmp);
1245
    /* ftmp[i] < 2^101 */
1246
0
    felem_shrink(small1, ftmp);
1247
1248
0
    if (!mixed) {
1249
        /* ftmp2 = z2z2 = z2**2 */
1250
0
        smallfelem_square(tmp, z2);
1251
0
        felem_reduce(ftmp2, tmp);
1252
        /* ftmp2[i] < 2^101 */
1253
0
        felem_shrink(small2, ftmp2);
1254
1255
0
        felem_shrink(small5, x1);
1256
1257
        /* u1 = ftmp3 = x1*z2z2 */
1258
0
        smallfelem_mul(tmp, small5, small2);
1259
0
        felem_reduce(ftmp3, tmp);
1260
        /* ftmp3[i] < 2^101 */
1261
1262
        /* ftmp5 = z1 + z2 */
1263
0
        felem_assign(ftmp5, z1);
1264
0
        felem_small_sum(ftmp5, z2);
1265
        /* ftmp5[i] < 2^107 */
1266
1267
        /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
1268
0
        felem_square(tmp, ftmp5);
1269
0
        felem_reduce(ftmp5, tmp);
1270
        /* ftmp2 = z2z2 + z1z1 */
1271
0
        felem_sum(ftmp2, ftmp);
1272
        /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
1273
0
        felem_diff(ftmp5, ftmp2);
1274
        /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
1275
1276
        /* ftmp2 = z2 * z2z2 */
1277
0
        smallfelem_mul(tmp, small2, z2);
1278
0
        felem_reduce(ftmp2, tmp);
1279
1280
        /* s1 = ftmp2 = y1 * z2**3 */
1281
0
        felem_mul(tmp, y1, ftmp2);
1282
0
        felem_reduce(ftmp6, tmp);
1283
        /* ftmp6[i] < 2^101 */
1284
0
    } else {
1285
        /*
1286
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1287
         */
1288
1289
        /* u1 = ftmp3 = x1*z2z2 */
1290
0
        felem_assign(ftmp3, x1);
1291
        /* ftmp3[i] < 2^106 */
1292
1293
        /* ftmp5 = 2z1z2 */
1294
0
        felem_assign(ftmp5, z1);
1295
0
        felem_scalar(ftmp5, 2);
1296
        /* ftmp5[i] < 2*2^106 = 2^107 */
1297
1298
        /* s1 = ftmp2 = y1 * z2**3 */
1299
0
        felem_assign(ftmp6, y1);
1300
        /* ftmp6[i] < 2^106 */
1301
0
    }
1302
1303
    /* u2 = x2*z1z1 */
1304
0
    smallfelem_mul(tmp, x2, small1);
1305
0
    felem_reduce(ftmp4, tmp);
1306
1307
    /* h = ftmp4 = u2 - u1 */
1308
0
    felem_diff_zero107(ftmp4, ftmp3);
1309
    /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
1310
0
    felem_shrink(small4, ftmp4);
1311
1312
0
    x_equal = smallfelem_is_zero(small4);
1313
1314
    /* z_out = ftmp5 * h */
1315
0
    felem_small_mul(tmp, small4, ftmp5);
1316
0
    felem_reduce(z_out, tmp);
1317
    /* z_out[i] < 2^101 */
1318
1319
    /* ftmp = z1 * z1z1 */
1320
0
    smallfelem_mul(tmp, small1, small3);
1321
0
    felem_reduce(ftmp, tmp);
1322
1323
    /* s2 = tmp = y2 * z1**3 */
1324
0
    felem_small_mul(tmp, y2, ftmp);
1325
0
    felem_reduce(ftmp5, tmp);
1326
1327
    /* r = ftmp5 = (s2 - s1)*2 */
1328
0
    felem_diff_zero107(ftmp5, ftmp6);
1329
    /* ftmp5[i] < 2^107 + 2^107 = 2^108 */
1330
0
    felem_scalar(ftmp5, 2);
1331
    /* ftmp5[i] < 2^109 */
1332
0
    felem_shrink(small1, ftmp5);
1333
0
    y_equal = smallfelem_is_zero(small1);
1334
1335
    /*
1336
     * The formulae are incorrect if the points are equal, in affine coordinates
1337
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1338
     * happens.
1339
     *
1340
     * We use bitwise operations to avoid potential side-channels introduced by
1341
     * the short-circuiting behaviour of boolean operators.
1342
     *
1343
     * The special case of either point being the point at infinity (z1 and/or
1344
     * z2 are zero), is handled separately later on in this function, so we
1345
     * avoid jumping to point_double here in those special cases.
1346
     */
1347
0
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1348
1349
0
    if (points_equal) {
1350
        /*
1351
         * This is obviously not constant-time but, as mentioned before, this
1352
         * case never happens during single point multiplication, so there is no
1353
         * timing leak for ECDH or ECDSA signing.
1354
         */
1355
0
        point_double(x3, y3, z3, x1, y1, z1);
1356
0
        return;
1357
0
    }
1358
1359
    /* I = ftmp = (2h)**2 */
1360
0
    felem_assign(ftmp, ftmp4);
1361
0
    felem_scalar(ftmp, 2);
1362
    /* ftmp[i] < 2*2^108 = 2^109 */
1363
0
    felem_square(tmp, ftmp);
1364
0
    felem_reduce(ftmp, tmp);
1365
1366
    /* J = ftmp2 = h * I */
1367
0
    felem_mul(tmp, ftmp4, ftmp);
1368
0
    felem_reduce(ftmp2, tmp);
1369
1370
    /* V = ftmp4 = U1 * I */
1371
0
    felem_mul(tmp, ftmp3, ftmp);
1372
0
    felem_reduce(ftmp4, tmp);
1373
1374
    /* x_out = r**2 - J - 2V */
1375
0
    smallfelem_square(tmp, small1);
1376
0
    felem_reduce(x_out, tmp);
1377
0
    felem_assign(ftmp3, ftmp4);
1378
0
    felem_scalar(ftmp4, 2);
1379
0
    felem_sum(ftmp4, ftmp2);
1380
    /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
1381
0
    felem_diff(x_out, ftmp4);
1382
    /* x_out[i] < 2^105 + 2^101 */
1383
1384
    /* y_out = r(V-x_out) - 2 * s1 * J */
1385
0
    felem_diff_zero107(ftmp3, x_out);
1386
    /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
1387
0
    felem_small_mul(tmp, small1, ftmp3);
1388
0
    felem_mul(tmp2, ftmp6, ftmp2);
1389
0
    longfelem_scalar(tmp2, 2);
1390
    /* tmp2[i] < 2*2^67 = 2^68 */
1391
0
    longfelem_diff(tmp, tmp2);
1392
    /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1393
0
    felem_reduce_zero105(y_out, tmp);
1394
    /* y_out[i] < 2^106 */
1395
1396
0
    copy_small_conditional(x_out, x2, z1_is_zero);
1397
0
    copy_conditional(x_out, x1, z2_is_zero);
1398
0
    copy_small_conditional(y_out, y2, z1_is_zero);
1399
0
    copy_conditional(y_out, y1, z2_is_zero);
1400
0
    copy_small_conditional(z_out, z2, z1_is_zero);
1401
0
    copy_conditional(z_out, z1, z2_is_zero);
1402
0
    felem_assign(x3, x_out);
1403
0
    felem_assign(y3, y_out);
1404
0
    felem_assign(z3, z_out);
1405
0
}
1406
1407
/*
1408
 * point_add_small is the same as point_add, except that it operates on
1409
 * smallfelems
1410
 */
1411
static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
1412
    smallfelem x1, smallfelem y1, smallfelem z1,
1413
    smallfelem x2, smallfelem y2, smallfelem z2)
1414
0
{
1415
0
    felem felem_x3, felem_y3, felem_z3;
1416
0
    felem felem_x1, felem_y1, felem_z1;
1417
0
    smallfelem_expand(felem_x1, x1);
1418
0
    smallfelem_expand(felem_y1, y1);
1419
0
    smallfelem_expand(felem_z1, z1);
1420
0
    point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0,
1421
0
        x2, y2, z2);
1422
0
    felem_shrink(x3, felem_x3);
1423
0
    felem_shrink(y3, felem_y3);
1424
0
    felem_shrink(z3, felem_z3);
1425
0
}
1426
1427
/*-
1428
 * Base point pre computation
1429
 * --------------------------
1430
 *
1431
 * Two different sorts of precomputed tables are used in the following code.
1432
 * Each contain various points on the curve, where each point is three field
1433
 * elements (x, y, z).
1434
 *
1435
 * For the base point table, z is usually 1 (0 for the point at infinity).
1436
 * This table has 2 * 16 elements, starting with the following:
1437
 * index | bits    | point
1438
 * ------+---------+------------------------------
1439
 *     0 | 0 0 0 0 | 0G
1440
 *     1 | 0 0 0 1 | 1G
1441
 *     2 | 0 0 1 0 | 2^64G
1442
 *     3 | 0 0 1 1 | (2^64 + 1)G
1443
 *     4 | 0 1 0 0 | 2^128G
1444
 *     5 | 0 1 0 1 | (2^128 + 1)G
1445
 *     6 | 0 1 1 0 | (2^128 + 2^64)G
1446
 *     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
1447
 *     8 | 1 0 0 0 | 2^192G
1448
 *     9 | 1 0 0 1 | (2^192 + 1)G
1449
 *    10 | 1 0 1 0 | (2^192 + 2^64)G
1450
 *    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
1451
 *    12 | 1 1 0 0 | (2^192 + 2^128)G
1452
 *    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
1453
 *    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
1454
 *    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
1455
 * followed by a copy of this with each element multiplied by 2^32.
1456
 *
1457
 * The reason for this is so that we can clock bits into four different
1458
 * locations when doing simple scalar multiplies against the base point,
1459
 * and then another four locations using the second 16 elements.
1460
 *
1461
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1462
1463
/* gmul is the table of precomputed base points */
1464
static const smallfelem gmul[2][16][3] = {
1465
    { { { 0, 0, 0, 0 },
1466
          { 0, 0, 0, 0 },
1467
          { 0, 0, 0, 0 } },
1468
        { { 0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
1469
              0x6b17d1f2e12c4247 },
1470
            { 0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
1471
                0x4fe342e2fe1a7f9b },
1472
            { 1, 0, 0, 0 } },
1473
        { { 0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
1474
              0x0fa822bc2811aaa5 },
1475
            { 0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
1476
                0xbff44ae8f5dba80d },
1477
            { 1, 0, 0, 0 } },
1478
        { { 0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
1479
              0x300a4bbc89d6726f },
1480
            { 0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
1481
                0x72aac7e0d09b4644 },
1482
            { 1, 0, 0, 0 } },
1483
        { { 0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
1484
              0x447d739beedb5e67 },
1485
            { 0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
1486
                0x2d4825ab834131ee },
1487
            { 1, 0, 0, 0 } },
1488
        { { 0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
1489
              0xef9519328a9c72ff },
1490
            { 0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
1491
                0x611e9fc37dbb2c9b },
1492
            { 1, 0, 0, 0 } },
1493
        { { 0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
1494
              0x550663797b51f5d8 },
1495
            { 0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
1496
                0x157164848aecb851 },
1497
            { 1, 0, 0, 0 } },
1498
        { { 0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
1499
              0xeb5d7745b21141ea },
1500
            { 0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
1501
                0xeafd72ebdbecc17b },
1502
            { 1, 0, 0, 0 } },
1503
        { { 0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
1504
              0xa6d39677a7849276 },
1505
            { 0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
1506
                0x674f84749b0b8816 },
1507
            { 1, 0, 0, 0 } },
1508
        { { 0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
1509
              0x4e769e7672c9ddad },
1510
            { 0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
1511
                0x42b99082de830663 },
1512
            { 1, 0, 0, 0 } },
1513
        { { 0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
1514
              0x78878ef61c6ce04d },
1515
            { 0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
1516
                0xb6cb3f5d7b72c321 },
1517
            { 1, 0, 0, 0 } },
1518
        { { 0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
1519
              0x0c88bc4d716b1287 },
1520
            { 0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
1521
                0xdd5ddea3f3901dc6 },
1522
            { 1, 0, 0, 0 } },
1523
        { { 0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
1524
              0x68f344af6b317466 },
1525
            { 0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
1526
                0x31b9c405f8540a20 },
1527
            { 1, 0, 0, 0 } },
1528
        { { 0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
1529
              0x4052bf4b6f461db9 },
1530
            { 0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
1531
                0xfecf4d5190b0fc61 },
1532
            { 1, 0, 0, 0 } },
1533
        { { 0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
1534
              0x1eddbae2c802e41a },
1535
            { 0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
1536
                0x43104d86560ebcfc },
1537
            { 1, 0, 0, 0 } },
1538
        { { 0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
1539
              0xb48e26b484f7a21c },
1540
            { 0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
1541
                0xfac015404d4d3dab },
1542
            { 1, 0, 0, 0 } } },
1543
    { { { 0, 0, 0, 0 },
1544
          { 0, 0, 0, 0 },
1545
          { 0, 0, 0, 0 } },
1546
        { { 0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
1547
              0x7fe36b40af22af89 },
1548
            { 0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
1549
                0xe697d45825b63624 },
1550
            { 1, 0, 0, 0 } },
1551
        { { 0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
1552
              0x4a5b506612a677a6 },
1553
            { 0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
1554
                0xeb13461ceac089f1 },
1555
            { 1, 0, 0, 0 } },
1556
        { { 0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
1557
              0x0781b8291c6a220a },
1558
            { 0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
1559
                0x690cde8df0151593 },
1560
            { 1, 0, 0, 0 } },
1561
        { { 0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
1562
              0x8a535f566ec73617 },
1563
            { 0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
1564
                0x0455c08468b08bd7 },
1565
            { 1, 0, 0, 0 } },
1566
        { { 0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
1567
              0x06bada7ab77f8276 },
1568
            { 0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
1569
                0x5b476dfd0e6cb18a },
1570
            { 1, 0, 0, 0 } },
1571
        { { 0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
1572
              0x3e29864e8a2ec908 },
1573
            { 0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
1574
                0x239b90ea3dc31e7e },
1575
            { 1, 0, 0, 0 } },
1576
        { { 0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
1577
              0x820f4dd949f72ff7 },
1578
            { 0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
1579
                0x140406ec783a05ec },
1580
            { 1, 0, 0, 0 } },
1581
        { { 0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
1582
              0x68f6b8542783dfee },
1583
            { 0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
1584
                0xcbe1feba92e40ce6 },
1585
            { 1, 0, 0, 0 } },
1586
        { { 0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
1587
              0xd0b2f94d2f420109 },
1588
            { 0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
1589
                0x971459828b0719e5 },
1590
            { 1, 0, 0, 0 } },
1591
        { { 0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
1592
              0x961610004a866aba },
1593
            { 0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
1594
                0x7acb9fadcee75e44 },
1595
            { 1, 0, 0, 0 } },
1596
        { { 0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
1597
              0x24eb9acca333bf5b },
1598
            { 0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
1599
                0x69f891c5acd079cc },
1600
            { 1, 0, 0, 0 } },
1601
        { { 0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
1602
              0xe51f547c5972a107 },
1603
            { 0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
1604
                0x1c309a2b25bb1387 },
1605
            { 1, 0, 0, 0 } },
1606
        { { 0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
1607
              0x20b87b8aa2c4e503 },
1608
            { 0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
1609
                0xf5c6fa49919776be },
1610
            { 1, 0, 0, 0 } },
1611
        { { 0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
1612
              0x1ed7d1b9332010b9 },
1613
            { 0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
1614
                0x3a2b03f03217257a },
1615
            { 1, 0, 0, 0 } },
1616
        { { 0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
1617
              0x15fee545c78dd9f6 },
1618
            { 0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
1619
                0x4ab5b6b2b8753f81 },
1620
            { 1, 0, 0, 0 } } }
1621
};
1622
1623
/*
1624
 * select_point selects the |idx|th point from a precomputation table and
1625
 * copies it to out.
1626
 */
1627
static void select_point(const u64 idx, unsigned int size,
1628
    const smallfelem pre_comp[16][3], smallfelem out[3])
1629
0
{
1630
0
    unsigned i, j;
1631
0
    u64 *outlimbs = &out[0][0];
1632
1633
0
    memset(out, 0, sizeof(*out) * 3);
1634
1635
0
    for (i = 0; i < size; i++) {
1636
0
        const u64 *inlimbs = (u64 *)&pre_comp[i][0][0];
1637
0
        u64 mask = i ^ idx;
1638
0
        mask |= mask >> 4;
1639
0
        mask |= mask >> 2;
1640
0
        mask |= mask >> 1;
1641
0
        mask &= 1;
1642
0
        mask--;
1643
0
        for (j = 0; j < NLIMBS * 3; j++)
1644
0
            outlimbs[j] |= inlimbs[j] & mask;
1645
0
    }
1646
0
}
1647
1648
/* get_bit returns the |i|th bit in |in| */
1649
static char get_bit(const felem_bytearray in, int i)
1650
0
{
1651
0
    if ((i < 0) || (i >= 256))
1652
0
        return 0;
1653
0
    return (in[i >> 3] >> (i & 7)) & 1;
1654
0
}
1655
1656
/*
1657
 * Interleaved point multiplication using precomputed point multiples: The
1658
 * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars
1659
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1660
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1661
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1662
 */
1663
static void batch_mul(felem x_out, felem y_out, felem z_out,
1664
    const felem_bytearray scalars[],
1665
    const unsigned num_points, const u8 *g_scalar,
1666
    const int mixed, const smallfelem pre_comp[][17][3],
1667
    const smallfelem g_pre_comp[2][16][3])
1668
0
{
1669
0
    int i, skip;
1670
0
    unsigned num, gen_mul = (g_scalar != NULL);
1671
0
    felem nq[3], ftmp;
1672
0
    smallfelem tmp[3];
1673
0
    u64 bits;
1674
0
    u8 sign, digit;
1675
1676
    /* set nq to the point at infinity */
1677
0
    memset(nq, 0, sizeof(nq));
1678
1679
    /*
1680
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1681
     * of the generator (two in each of the last 32 rounds) and additions of
1682
     * other points multiples (every 5th round).
1683
     */
1684
0
    skip = 1; /* save two point operations in the first
1685
               * round */
1686
0
    for (i = (num_points ? 255 : 31); i >= 0; --i) {
1687
        /* double */
1688
0
        if (!skip)
1689
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1690
1691
        /* add multiples of the generator */
1692
0
        if (gen_mul && (i <= 31)) {
1693
            /* first, look 32 bits upwards */
1694
0
            bits = get_bit(g_scalar, i + 224) << 3;
1695
0
            bits |= get_bit(g_scalar, i + 160) << 2;
1696
0
            bits |= get_bit(g_scalar, i + 96) << 1;
1697
0
            bits |= get_bit(g_scalar, i + 32);
1698
            /* select the point to add, in constant time */
1699
0
            select_point(bits, 16, g_pre_comp[1], tmp);
1700
1701
0
            if (!skip) {
1702
                /* Arg 1 below is for "mixed" */
1703
0
                point_add(nq[0], nq[1], nq[2],
1704
0
                    nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1705
0
            } else {
1706
0
                smallfelem_expand(nq[0], tmp[0]);
1707
0
                smallfelem_expand(nq[1], tmp[1]);
1708
0
                smallfelem_expand(nq[2], tmp[2]);
1709
0
                skip = 0;
1710
0
            }
1711
1712
            /* second, look at the current position */
1713
0
            bits = get_bit(g_scalar, i + 192) << 3;
1714
0
            bits |= get_bit(g_scalar, i + 128) << 2;
1715
0
            bits |= get_bit(g_scalar, i + 64) << 1;
1716
0
            bits |= get_bit(g_scalar, i);
1717
            /* select the point to add, in constant time */
1718
0
            select_point(bits, 16, g_pre_comp[0], tmp);
1719
            /* Arg 1 below is for "mixed" */
1720
0
            point_add(nq[0], nq[1], nq[2],
1721
0
                nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1722
0
        }
1723
1724
        /* do other additions every 5 doublings */
1725
0
        if (num_points && (i % 5 == 0)) {
1726
            /* loop over all scalars */
1727
0
            for (num = 0; num < num_points; ++num) {
1728
0
                bits = get_bit(scalars[num], i + 4) << 5;
1729
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1730
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1731
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1732
0
                bits |= get_bit(scalars[num], i) << 1;
1733
0
                bits |= get_bit(scalars[num], i - 1);
1734
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1735
1736
                /*
1737
                 * select the point to add or subtract, in constant time
1738
                 */
1739
0
                select_point(digit, 17, pre_comp[num], tmp);
1740
0
                smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative
1741
                                               * point */
1742
0
                copy_small_conditional(ftmp, tmp[1], (((limb)sign) - 1));
1743
0
                felem_contract(tmp[1], ftmp);
1744
1745
0
                if (!skip) {
1746
0
                    point_add(nq[0], nq[1], nq[2],
1747
0
                        nq[0], nq[1], nq[2],
1748
0
                        mixed, tmp[0], tmp[1], tmp[2]);
1749
0
                } else {
1750
0
                    smallfelem_expand(nq[0], tmp[0]);
1751
0
                    smallfelem_expand(nq[1], tmp[1]);
1752
0
                    smallfelem_expand(nq[2], tmp[2]);
1753
0
                    skip = 0;
1754
0
                }
1755
0
            }
1756
0
        }
1757
0
    }
1758
0
    felem_assign(x_out, nq[0]);
1759
0
    felem_assign(y_out, nq[1]);
1760
0
    felem_assign(z_out, nq[2]);
1761
0
}
1762
1763
/* Precomputation for the group generator. */
1764
struct nistp256_pre_comp_st {
1765
    smallfelem g_pre_comp[2][16][3];
1766
    CRYPTO_REF_COUNT references;
1767
    CRYPTO_RWLOCK *lock;
1768
};
1769
1770
const EC_METHOD *EC_GFp_nistp256_method(void)
1771
0
{
1772
0
    static const EC_METHOD ret = {
1773
0
        EC_FLAGS_DEFAULT_OCT,
1774
0
        NID_X9_62_prime_field,
1775
0
        ossl_ec_GFp_nistp256_group_init,
1776
0
        ossl_ec_GFp_simple_group_finish,
1777
0
        ossl_ec_GFp_simple_group_clear_finish,
1778
0
        ossl_ec_GFp_nist_group_copy,
1779
0
        ossl_ec_GFp_nistp256_group_set_curve,
1780
0
        ossl_ec_GFp_simple_group_get_curve,
1781
0
        ossl_ec_GFp_simple_group_get_degree,
1782
0
        ossl_ec_group_simple_order_bits,
1783
0
        ossl_ec_GFp_simple_group_check_discriminant,
1784
0
        ossl_ec_GFp_simple_point_init,
1785
0
        ossl_ec_GFp_simple_point_finish,
1786
0
        ossl_ec_GFp_simple_point_clear_finish,
1787
0
        ossl_ec_GFp_simple_point_copy,
1788
0
        ossl_ec_GFp_simple_point_set_to_infinity,
1789
0
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1790
0
        ossl_ec_GFp_nistp256_point_get_affine_coordinates,
1791
0
        0 /* point_set_compressed_coordinates */,
1792
0
        0 /* point2oct */,
1793
0
        0 /* oct2point */,
1794
0
        ossl_ec_GFp_simple_add,
1795
0
        ossl_ec_GFp_simple_dbl,
1796
0
        ossl_ec_GFp_simple_invert,
1797
0
        ossl_ec_GFp_simple_is_at_infinity,
1798
0
        ossl_ec_GFp_simple_is_on_curve,
1799
0
        ossl_ec_GFp_simple_cmp,
1800
0
        ossl_ec_GFp_simple_make_affine,
1801
0
        ossl_ec_GFp_simple_points_make_affine,
1802
0
        ossl_ec_GFp_nistp256_points_mul,
1803
0
        ossl_ec_GFp_nistp256_precompute_mult,
1804
0
        ossl_ec_GFp_nistp256_have_precompute_mult,
1805
0
        ossl_ec_GFp_nist_field_mul,
1806
0
        ossl_ec_GFp_nist_field_sqr,
1807
0
        0 /* field_div */,
1808
0
        ossl_ec_GFp_simple_field_inv,
1809
0
        0 /* field_encode */,
1810
0
        0 /* field_decode */,
1811
0
        0, /* field_set_to_one */
1812
0
        ossl_ec_key_simple_priv2oct,
1813
0
        ossl_ec_key_simple_oct2priv,
1814
0
        0, /* set private */
1815
0
        ossl_ec_key_simple_generate_key,
1816
0
        ossl_ec_key_simple_check_key,
1817
0
        ossl_ec_key_simple_generate_public_key,
1818
0
        0, /* keycopy */
1819
0
        0, /* keyfinish */
1820
0
        ossl_ecdh_simple_compute_key,
1821
0
        ossl_ecdsa_simple_sign_setup,
1822
0
        ossl_ecdsa_simple_sign_sig,
1823
0
        ossl_ecdsa_simple_verify_sig,
1824
0
        0, /* field_inverse_mod_ord */
1825
0
        0, /* blind_coordinates */
1826
0
        0, /* ladder_pre */
1827
0
        0, /* ladder_step */
1828
0
        0 /* ladder_post */
1829
0
    };
1830
1831
0
    return &ret;
1832
0
}
1833
1834
/******************************************************************************/
1835
/*
1836
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1837
 */
1838
1839
static NISTP256_PRE_COMP *nistp256_pre_comp_new(void)
1840
0
{
1841
0
    NISTP256_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1842
1843
0
    if (ret == NULL) {
1844
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1845
0
        return ret;
1846
0
    }
1847
1848
0
    ret->references = 1;
1849
1850
0
    ret->lock = CRYPTO_THREAD_lock_new();
1851
0
    if (ret->lock == NULL) {
1852
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1853
0
        OPENSSL_free(ret);
1854
0
        return NULL;
1855
0
    }
1856
0
    return ret;
1857
0
}
1858
1859
NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p)
1860
0
{
1861
0
    int i;
1862
0
    if (p != NULL)
1863
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1864
0
    return p;
1865
0
}
1866
1867
void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre)
1868
0
{
1869
0
    int i;
1870
1871
0
    if (pre == NULL)
1872
0
        return;
1873
1874
0
    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
1875
0
    REF_PRINT_COUNT("EC_nistp256", pre);
1876
0
    if (i > 0)
1877
0
        return;
1878
0
    REF_ASSERT_ISNT(i < 0);
1879
1880
0
    CRYPTO_THREAD_lock_free(pre->lock);
1881
0
    OPENSSL_free(pre);
1882
0
}
1883
1884
/******************************************************************************/
1885
/*
1886
 * OPENSSL EC_METHOD FUNCTIONS
1887
 */
1888
1889
int ossl_ec_GFp_nistp256_group_init(EC_GROUP *group)
1890
0
{
1891
0
    int ret;
1892
0
    ret = ossl_ec_GFp_simple_group_init(group);
1893
0
    group->a_is_minus3 = 1;
1894
0
    return ret;
1895
0
}
1896
1897
int ossl_ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1898
    const BIGNUM *a, const BIGNUM *b,
1899
    BN_CTX *ctx)
1900
0
{
1901
0
    int ret = 0;
1902
0
    BIGNUM *curve_p, *curve_a, *curve_b;
1903
0
#ifndef FIPS_MODULE
1904
0
    BN_CTX *new_ctx = NULL;
1905
1906
0
    if (ctx == NULL)
1907
0
        ctx = new_ctx = BN_CTX_new();
1908
0
#endif
1909
0
    if (ctx == NULL)
1910
0
        return 0;
1911
1912
0
    BN_CTX_start(ctx);
1913
0
    curve_p = BN_CTX_get(ctx);
1914
0
    curve_a = BN_CTX_get(ctx);
1915
0
    curve_b = BN_CTX_get(ctx);
1916
0
    if (curve_b == NULL)
1917
0
        goto err;
1918
0
    BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
1919
0
    BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
1920
0
    BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
1921
0
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1922
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1923
0
        goto err;
1924
0
    }
1925
0
    group->field_mod_func = BN_nist_mod_256;
1926
0
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1927
0
err:
1928
0
    BN_CTX_end(ctx);
1929
0
#ifndef FIPS_MODULE
1930
0
    BN_CTX_free(new_ctx);
1931
0
#endif
1932
0
    return ret;
1933
0
}
1934
1935
/*
1936
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1937
 * (X/Z^2, Y/Z^3)
1938
 */
1939
int ossl_ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
1940
    const EC_POINT *point,
1941
    BIGNUM *x, BIGNUM *y,
1942
    BN_CTX *ctx)
1943
0
{
1944
0
    felem z1, z2, x_in, y_in;
1945
0
    smallfelem x_out, y_out;
1946
0
    longfelem tmp;
1947
1948
0
    if (EC_POINT_is_at_infinity(group, point)) {
1949
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1950
0
        return 0;
1951
0
    }
1952
0
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || (!BN_to_felem(z1, point->Z)))
1953
0
        return 0;
1954
0
    felem_inv(z2, z1);
1955
0
    felem_square(tmp, z2);
1956
0
    felem_reduce(z1, tmp);
1957
0
    felem_mul(tmp, x_in, z1);
1958
0
    felem_reduce(x_in, tmp);
1959
0
    felem_contract(x_out, x_in);
1960
0
    if (x != NULL) {
1961
0
        if (!smallfelem_to_BN(x, x_out)) {
1962
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1963
0
            return 0;
1964
0
        }
1965
0
    }
1966
0
    felem_mul(tmp, z1, z2);
1967
0
    felem_reduce(z1, tmp);
1968
0
    felem_mul(tmp, y_in, z1);
1969
0
    felem_reduce(y_in, tmp);
1970
0
    felem_contract(y_out, y_in);
1971
0
    if (y != NULL) {
1972
0
        if (!smallfelem_to_BN(y, y_out)) {
1973
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1974
0
            return 0;
1975
0
        }
1976
0
    }
1977
0
    return 1;
1978
0
}
1979
1980
/* points below is of size |num|, and tmp_smallfelems is of size |num+1| */
1981
static void make_points_affine(size_t num, smallfelem points[][3],
1982
    smallfelem tmp_smallfelems[])
1983
0
{
1984
    /*
1985
     * Runs in constant time, unless an input is the point at infinity (which
1986
     * normally shouldn't happen).
1987
     */
1988
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1989
0
        points,
1990
0
        sizeof(smallfelem),
1991
0
        tmp_smallfelems,
1992
0
        (void (*)(void *))smallfelem_one,
1993
0
        smallfelem_is_zero_int,
1994
0
        (void (*)(void *, const void *))
1995
0
            smallfelem_assign,
1996
0
        (void (*)(void *, const void *))
1997
0
            smallfelem_square_contract,
1998
0
        (void (*)(void *, const void *,
1999
0
            const void *))
2000
0
            smallfelem_mul_contract,
2001
0
        (void (*)(void *, const void *))
2002
0
            smallfelem_inv_contract,
2003
        /* nothing to contract */
2004
0
        (void (*)(void *, const void *))
2005
0
            smallfelem_assign);
2006
0
}
2007
2008
/*
2009
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
2010
 * values Result is stored in r (r can equal one of the inputs).
2011
 */
2012
int ossl_ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
2013
    const BIGNUM *scalar, size_t num,
2014
    const EC_POINT *points[],
2015
    const BIGNUM *scalars[], BN_CTX *ctx)
2016
0
{
2017
0
    int ret = 0;
2018
0
    int j;
2019
0
    int mixed = 0;
2020
0
    BIGNUM *x, *y, *z, *tmp_scalar;
2021
0
    felem_bytearray g_secret;
2022
0
    felem_bytearray *secrets = NULL;
2023
0
    smallfelem(*pre_comp)[17][3] = NULL;
2024
0
    smallfelem *tmp_smallfelems = NULL;
2025
0
    unsigned i;
2026
0
    int num_bytes;
2027
0
    int have_pre_comp = 0;
2028
0
    size_t num_points = num;
2029
0
    smallfelem x_in, y_in, z_in;
2030
0
    felem x_out, y_out, z_out;
2031
0
    NISTP256_PRE_COMP *pre = NULL;
2032
0
    const smallfelem(*g_pre_comp)[16][3] = NULL;
2033
0
    EC_POINT *generator = NULL;
2034
0
    const EC_POINT *p = NULL;
2035
0
    const BIGNUM *p_scalar = NULL;
2036
2037
0
    BN_CTX_start(ctx);
2038
0
    x = BN_CTX_get(ctx);
2039
0
    y = BN_CTX_get(ctx);
2040
0
    z = BN_CTX_get(ctx);
2041
0
    tmp_scalar = BN_CTX_get(ctx);
2042
0
    if (tmp_scalar == NULL)
2043
0
        goto err;
2044
2045
0
    if (scalar != NULL) {
2046
0
        pre = group->pre_comp.nistp256;
2047
0
        if (pre)
2048
            /* we have precomputation, try to use it */
2049
0
            g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp;
2050
0
        else
2051
            /* try to use the standard precomputation */
2052
0
            g_pre_comp = &gmul[0];
2053
0
        generator = EC_POINT_new(group);
2054
0
        if (generator == NULL)
2055
0
            goto err;
2056
        /* get the generator from precomputation */
2057
0
        if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) || !smallfelem_to_BN(y, g_pre_comp[0][1][1]) || !smallfelem_to_BN(z, g_pre_comp[0][1][2])) {
2058
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2059
0
            goto err;
2060
0
        }
2061
0
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
2062
0
                generator,
2063
0
                x, y, z, ctx))
2064
0
            goto err;
2065
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
2066
            /* precomputation matches generator */
2067
0
            have_pre_comp = 1;
2068
0
        else
2069
            /*
2070
             * we don't have valid precomputation: treat the generator as a
2071
             * random point
2072
             */
2073
0
            num_points++;
2074
0
    }
2075
0
    if (num_points > 0) {
2076
0
        if (num_points >= 3) {
2077
            /*
2078
             * unless we precompute multiples for just one or two points,
2079
             * converting those into affine form is time well spent
2080
             */
2081
0
            mixed = 1;
2082
0
        }
2083
0
        secrets = OPENSSL_malloc(sizeof(*secrets) * num_points);
2084
0
        pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points);
2085
0
        if (mixed)
2086
0
            tmp_smallfelems = OPENSSL_malloc(sizeof(*tmp_smallfelems) * (num_points * 17 + 1));
2087
0
        if ((secrets == NULL) || (pre_comp == NULL)
2088
0
            || (mixed && (tmp_smallfelems == NULL))) {
2089
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
2090
0
            goto err;
2091
0
        }
2092
2093
        /*
2094
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2095
         * i.e., they contribute nothing to the linear combination
2096
         */
2097
0
        memset(secrets, 0, sizeof(*secrets) * num_points);
2098
0
        memset(pre_comp, 0, sizeof(*pre_comp) * num_points);
2099
0
        for (i = 0; i < num_points; ++i) {
2100
0
            if (i == num) {
2101
                /*
2102
                 * we didn't have a valid precomputation, so we pick the
2103
                 * generator
2104
                 */
2105
0
                p = EC_GROUP_get0_generator(group);
2106
0
                p_scalar = scalar;
2107
0
            } else {
2108
                /* the i^th point */
2109
0
                p = points[i];
2110
0
                p_scalar = scalars[i];
2111
0
            }
2112
0
            if ((p_scalar != NULL) && (p != NULL)) {
2113
                /* reduce scalar to 0 <= scalar < 2^256 */
2114
0
                if ((BN_num_bits(p_scalar) > 256)
2115
0
                    || (BN_is_negative(p_scalar))) {
2116
                    /*
2117
                     * this is an unusual input, and we don't guarantee
2118
                     * constant-timeness
2119
                     */
2120
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2121
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2122
0
                        goto err;
2123
0
                    }
2124
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2125
0
                        secrets[i], sizeof(secrets[i]));
2126
0
                } else {
2127
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
2128
0
                        secrets[i], sizeof(secrets[i]));
2129
0
                }
2130
0
                if (num_bytes < 0) {
2131
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2132
0
                    goto err;
2133
0
                }
2134
                /* precompute multiples */
2135
0
                if ((!BN_to_felem(x_out, p->X)) || (!BN_to_felem(y_out, p->Y)) || (!BN_to_felem(z_out, p->Z)))
2136
0
                    goto err;
2137
0
                felem_shrink(pre_comp[i][1][0], x_out);
2138
0
                felem_shrink(pre_comp[i][1][1], y_out);
2139
0
                felem_shrink(pre_comp[i][1][2], z_out);
2140
0
                for (j = 2; j <= 16; ++j) {
2141
0
                    if (j & 1) {
2142
0
                        point_add_small(pre_comp[i][j][0], pre_comp[i][j][1],
2143
0
                            pre_comp[i][j][2], pre_comp[i][1][0],
2144
0
                            pre_comp[i][1][1], pre_comp[i][1][2],
2145
0
                            pre_comp[i][j - 1][0],
2146
0
                            pre_comp[i][j - 1][1],
2147
0
                            pre_comp[i][j - 1][2]);
2148
0
                    } else {
2149
0
                        point_double_small(pre_comp[i][j][0],
2150
0
                            pre_comp[i][j][1],
2151
0
                            pre_comp[i][j][2],
2152
0
                            pre_comp[i][j / 2][0],
2153
0
                            pre_comp[i][j / 2][1],
2154
0
                            pre_comp[i][j / 2][2]);
2155
0
                    }
2156
0
                }
2157
0
            }
2158
0
        }
2159
0
        if (mixed)
2160
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
2161
0
    }
2162
2163
    /* the scalar for the generator */
2164
0
    if ((scalar != NULL) && (have_pre_comp)) {
2165
0
        memset(g_secret, 0, sizeof(g_secret));
2166
        /* reduce scalar to 0 <= scalar < 2^256 */
2167
0
        if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) {
2168
            /*
2169
             * this is an unusual input, and we don't guarantee
2170
             * constant-timeness
2171
             */
2172
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2173
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2174
0
                goto err;
2175
0
            }
2176
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2177
0
        } else {
2178
0
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2179
0
        }
2180
        /* do the multiplication with generator precomputation */
2181
0
        batch_mul(x_out, y_out, z_out,
2182
0
            (const felem_bytearray(*))secrets, num_points,
2183
0
            g_secret,
2184
0
            mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp);
2185
0
    } else {
2186
        /* do the multiplication without generator precomputation */
2187
0
        batch_mul(x_out, y_out, z_out,
2188
0
            (const felem_bytearray(*))secrets, num_points,
2189
0
            NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL);
2190
0
    }
2191
    /* reduce the output to its unique minimal representation */
2192
0
    felem_contract(x_in, x_out);
2193
0
    felem_contract(y_in, y_out);
2194
0
    felem_contract(z_in, z_out);
2195
0
    if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) || (!smallfelem_to_BN(z, z_in))) {
2196
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2197
0
        goto err;
2198
0
    }
2199
0
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2200
0
        ctx);
2201
2202
0
err:
2203
0
    BN_CTX_end(ctx);
2204
0
    EC_POINT_free(generator);
2205
0
    OPENSSL_free(secrets);
2206
0
    OPENSSL_free(pre_comp);
2207
0
    OPENSSL_free(tmp_smallfelems);
2208
0
    return ret;
2209
0
}
2210
2211
int ossl_ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2212
0
{
2213
0
    int ret = 0;
2214
0
    NISTP256_PRE_COMP *pre = NULL;
2215
0
    int i, j;
2216
0
    BIGNUM *x, *y;
2217
0
    EC_POINT *generator = NULL;
2218
0
    smallfelem tmp_smallfelems[32];
2219
0
    felem x_tmp, y_tmp, z_tmp;
2220
0
#ifndef FIPS_MODULE
2221
0
    BN_CTX *new_ctx = NULL;
2222
0
#endif
2223
2224
    /* throw away old precomputation */
2225
0
    EC_pre_comp_free(group);
2226
2227
0
#ifndef FIPS_MODULE
2228
0
    if (ctx == NULL)
2229
0
        ctx = new_ctx = BN_CTX_new();
2230
0
#endif
2231
0
    if (ctx == NULL)
2232
0
        return 0;
2233
2234
0
    BN_CTX_start(ctx);
2235
0
    x = BN_CTX_get(ctx);
2236
0
    y = BN_CTX_get(ctx);
2237
0
    if (y == NULL)
2238
0
        goto err;
2239
    /* get the generator */
2240
0
    if (group->generator == NULL)
2241
0
        goto err;
2242
0
    generator = EC_POINT_new(group);
2243
0
    if (generator == NULL)
2244
0
        goto err;
2245
0
    BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x);
2246
0
    BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y);
2247
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2248
0
        goto err;
2249
0
    if ((pre = nistp256_pre_comp_new()) == NULL)
2250
0
        goto err;
2251
    /*
2252
     * if the generator is the standard one, use built-in precomputation
2253
     */
2254
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2255
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2256
0
        goto done;
2257
0
    }
2258
0
    if ((!BN_to_felem(x_tmp, group->generator->X)) || (!BN_to_felem(y_tmp, group->generator->Y)) || (!BN_to_felem(z_tmp, group->generator->Z)))
2259
0
        goto err;
2260
0
    felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
2261
0
    felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
2262
0
    felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
2263
    /*
2264
     * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, 2^96*G,
2265
     * 2^160*G, 2^224*G for the second one
2266
     */
2267
0
    for (i = 1; i <= 8; i <<= 1) {
2268
0
        point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
2269
0
            pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
2270
0
            pre->g_pre_comp[0][i][1],
2271
0
            pre->g_pre_comp[0][i][2]);
2272
0
        for (j = 0; j < 31; ++j) {
2273
0
            point_double_small(pre->g_pre_comp[1][i][0],
2274
0
                pre->g_pre_comp[1][i][1],
2275
0
                pre->g_pre_comp[1][i][2],
2276
0
                pre->g_pre_comp[1][i][0],
2277
0
                pre->g_pre_comp[1][i][1],
2278
0
                pre->g_pre_comp[1][i][2]);
2279
0
        }
2280
0
        if (i == 8)
2281
0
            break;
2282
0
        point_double_small(pre->g_pre_comp[0][2 * i][0],
2283
0
            pre->g_pre_comp[0][2 * i][1],
2284
0
            pre->g_pre_comp[0][2 * i][2],
2285
0
            pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
2286
0
            pre->g_pre_comp[1][i][2]);
2287
0
        for (j = 0; j < 31; ++j) {
2288
0
            point_double_small(pre->g_pre_comp[0][2 * i][0],
2289
0
                pre->g_pre_comp[0][2 * i][1],
2290
0
                pre->g_pre_comp[0][2 * i][2],
2291
0
                pre->g_pre_comp[0][2 * i][0],
2292
0
                pre->g_pre_comp[0][2 * i][1],
2293
0
                pre->g_pre_comp[0][2 * i][2]);
2294
0
        }
2295
0
    }
2296
0
    for (i = 0; i < 2; i++) {
2297
        /* g_pre_comp[i][0] is the point at infinity */
2298
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
2299
        /* the remaining multiples */
2300
        /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
2301
0
        point_add_small(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
2302
0
            pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
2303
0
            pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
2304
0
            pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2305
0
            pre->g_pre_comp[i][2][2]);
2306
        /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
2307
0
        point_add_small(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
2308
0
            pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
2309
0
            pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2310
0
            pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2311
0
            pre->g_pre_comp[i][2][2]);
2312
        /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
2313
0
        point_add_small(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
2314
0
            pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
2315
0
            pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2316
0
            pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
2317
0
            pre->g_pre_comp[i][4][2]);
2318
        /*
2319
         * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G
2320
         */
2321
0
        point_add_small(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
2322
0
            pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
2323
0
            pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2324
0
            pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2325
0
            pre->g_pre_comp[i][2][2]);
2326
0
        for (j = 1; j < 8; ++j) {
2327
            /* odd multiples: add G resp. 2^32*G */
2328
0
            point_add_small(pre->g_pre_comp[i][2 * j + 1][0],
2329
0
                pre->g_pre_comp[i][2 * j + 1][1],
2330
0
                pre->g_pre_comp[i][2 * j + 1][2],
2331
0
                pre->g_pre_comp[i][2 * j][0],
2332
0
                pre->g_pre_comp[i][2 * j][1],
2333
0
                pre->g_pre_comp[i][2 * j][2],
2334
0
                pre->g_pre_comp[i][1][0],
2335
0
                pre->g_pre_comp[i][1][1],
2336
0
                pre->g_pre_comp[i][1][2]);
2337
0
        }
2338
0
    }
2339
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);
2340
2341
0
done:
2342
0
    SETPRECOMP(group, nistp256, pre);
2343
0
    pre = NULL;
2344
0
    ret = 1;
2345
2346
0
err:
2347
0
    BN_CTX_end(ctx);
2348
0
    EC_POINT_free(generator);
2349
0
#ifndef FIPS_MODULE
2350
0
    BN_CTX_free(new_ctx);
2351
0
#endif
2352
0
    EC_nistp256_pre_comp_free(pre);
2353
0
    return ret;
2354
0
}
2355
2356
int ossl_ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group)
2357
0
{
2358
    return HAVEPRECOMP(group, nistp256);
2359
0
}