Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl30/crypto/ec/ecp_nistp521.c
Line
Count
Source
1
/*
2
 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
#error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    { 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
        0xff, 0xff },
77
    { 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
        0xff, 0xfc },
86
    { 0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
        0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
        0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
        0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
        0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
        0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
        0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
        0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
        0x3f, 0x00 },
95
    { 0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
        0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
        0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
        0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
        0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
        0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
        0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
        0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
        0xbd, 0x66 },
104
    { 0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
        0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
        0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
        0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
        0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
        0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
        0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
        0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
        0x66, 0x50 }
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
97.6M
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
5.17k
{
145
5.17k
    out[0] = (*((limb *)&in[0])) & bottom58bits;
146
5.17k
    out[1] = (*((limb_aX *)&in[7]) >> 2) & bottom58bits;
147
5.17k
    out[2] = (*((limb_aX *)&in[14]) >> 4) & bottom58bits;
148
5.17k
    out[3] = (*((limb_aX *)&in[21]) >> 6) & bottom58bits;
149
5.17k
    out[4] = (*((limb_aX *)&in[29])) & bottom58bits;
150
5.17k
    out[5] = (*((limb_aX *)&in[36]) >> 2) & bottom58bits;
151
5.17k
    out[6] = (*((limb_aX *)&in[43]) >> 4) & bottom58bits;
152
5.17k
    out[7] = (*((limb_aX *)&in[50]) >> 6) & bottom58bits;
153
5.17k
    out[8] = (*((limb_aX *)&in[58])) & bottom57bits;
154
5.17k
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
11.4k
{
162
11.4k
    memset(out, 0, 66);
163
11.4k
    (*((limb *)&out[0])) = in[0];
164
11.4k
    (*((limb_aX *)&out[7])) |= in[1] << 2;
165
11.4k
    (*((limb_aX *)&out[14])) |= in[2] << 4;
166
11.4k
    (*((limb_aX *)&out[21])) |= in[3] << 6;
167
11.4k
    (*((limb_aX *)&out[29])) = in[4];
168
11.4k
    (*((limb_aX *)&out[36])) |= in[5] << 2;
169
11.4k
    (*((limb_aX *)&out[43])) |= in[6] << 4;
170
11.4k
    (*((limb_aX *)&out[50])) |= in[7] << 6;
171
11.4k
    (*((limb_aX *)&out[58])) = in[8];
172
11.4k
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
5.17k
{
177
5.17k
    felem_bytearray b_out;
178
5.17k
    int num_bytes;
179
180
5.17k
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
5.17k
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
5.17k
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
5.17k
    bin66_to_felem(out, b_out);
190
5.17k
    return 1;
191
5.17k
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
11.4k
{
196
11.4k
    felem_bytearray b_out;
197
11.4k
    felem_to_bin66(b_out, in);
198
11.4k
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
11.4k
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
3.10M
{
221
3.10M
    out[0] = in[0];
222
3.10M
    out[1] = in[1];
223
3.10M
    out[2] = in[2];
224
3.10M
    out[3] = in[3];
225
3.10M
    out[4] = in[4];
226
3.10M
    out[5] = in[5];
227
3.10M
    out[6] = in[6];
228
3.10M
    out[7] = in[7];
229
3.10M
    out[8] = in[8];
230
3.10M
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
769k
{
235
769k
    out[0] += in[0];
236
769k
    out[1] += in[1];
237
769k
    out[2] += in[2];
238
769k
    out[3] += in[3];
239
769k
    out[4] += in[4];
240
769k
    out[5] += in[5];
241
769k
    out[6] += in[6];
242
769k
    out[7] += in[7];
243
769k
    out[8] += in[8];
244
769k
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
7.89M
{
249
7.89M
    out[0] = in[0] * scalar;
250
7.89M
    out[1] = in[1] * scalar;
251
7.89M
    out[2] = in[2] * scalar;
252
7.89M
    out[3] = in[3] * scalar;
253
7.89M
    out[4] = in[4] * scalar;
254
7.89M
    out[5] = in[5] * scalar;
255
7.89M
    out[6] = in[6] * scalar;
256
7.89M
    out[7] = in[7] * scalar;
257
7.89M
    out[8] = in[8] * scalar;
258
7.89M
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
1.32M
{
263
1.32M
    out[0] *= scalar;
264
1.32M
    out[1] *= scalar;
265
1.32M
    out[2] *= scalar;
266
1.32M
    out[3] *= scalar;
267
1.32M
    out[4] *= scalar;
268
1.32M
    out[5] *= scalar;
269
1.32M
    out[6] *= scalar;
270
1.32M
    out[7] *= scalar;
271
1.32M
    out[8] *= scalar;
272
1.32M
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
441k
{
277
441k
    out[0] *= scalar;
278
441k
    out[1] *= scalar;
279
441k
    out[2] *= scalar;
280
441k
    out[3] *= scalar;
281
441k
    out[4] *= scalar;
282
441k
    out[5] *= scalar;
283
441k
    out[6] *= scalar;
284
441k
    out[7] *= scalar;
285
441k
    out[8] *= scalar;
286
441k
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
16.0k
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
16.0k
    static const limb two62m3 = (((limb)1) << 62) - (((limb)1) << 5);
299
16.0k
    static const limb two62m2 = (((limb)1) << 62) - (((limb)1) << 4);
300
301
16.0k
    out[0] = two62m3 - in[0];
302
16.0k
    out[1] = two62m2 - in[1];
303
16.0k
    out[2] = two62m2 - in[2];
304
16.0k
    out[3] = two62m2 - in[3];
305
16.0k
    out[4] = two62m2 - in[4];
306
16.0k
    out[5] = two62m2 - in[5];
307
16.0k
    out[6] = two62m2 - in[6];
308
16.0k
    out[7] = two62m2 - in[7];
309
16.0k
    out[8] = two62m2 - in[8];
310
16.0k
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
692k
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
692k
    static const limb two62m3 = (((limb)1) << 62) - (((limb)1) << 5);
325
692k
    static const limb two62m2 = (((limb)1) << 62) - (((limb)1) << 4);
326
327
692k
    out[0] += two62m3 - in[0];
328
692k
    out[1] += two62m2 - in[1];
329
692k
    out[2] += two62m2 - in[2];
330
692k
    out[3] += two62m2 - in[3];
331
692k
    out[4] += two62m2 - in[4];
332
692k
    out[5] += two62m2 - in[5];
333
692k
    out[6] += two62m2 - in[6];
334
692k
    out[7] += two62m2 - in[7];
335
692k
    out[8] += two62m2 - in[8];
336
692k
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
1.29M
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
1.29M
    static const limb two63m6 = (((limb)1) << 63) - (((limb)1) << 6);
356
1.29M
    static const limb two63m5 = (((limb)1) << 63) - (((limb)1) << 5);
357
358
1.29M
    out[0] += two63m6 - in[0];
359
1.29M
    out[1] += two63m5 - in[1];
360
1.29M
    out[2] += two63m5 - in[2];
361
1.29M
    out[3] += two63m5 - in[3];
362
1.29M
    out[4] += two63m5 - in[4];
363
1.29M
    out[5] += two63m5 - in[5];
364
1.29M
    out[6] += two63m5 - in[6];
365
1.29M
    out[7] += two63m5 - in[7];
366
1.29M
    out[8] += two63m5 - in[8];
367
1.29M
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
441k
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
441k
    static const uint128_t two127m70 = (((uint128_t)1) << 127) - (((uint128_t)1) << 70);
382
441k
    static const uint128_t two127m69 = (((uint128_t)1) << 127) - (((uint128_t)1) << 69);
383
384
441k
    out[0] += (two127m70 - in[0]);
385
441k
    out[1] += (two127m69 - in[1]);
386
441k
    out[2] += (two127m69 - in[2]);
387
441k
    out[3] += (two127m69 - in[3]);
388
441k
    out[4] += (two127m69 - in[4]);
389
441k
    out[5] += (two127m69 - in[5]);
390
441k
    out[6] += (two127m69 - in[6]);
391
441k
    out[7] += (two127m69 - in[7]);
392
441k
    out[8] += (two127m69 - in[8]);
393
441k
}
394
395
/*-
396
 * felem_square sets |out| = |in|^2
397
 * On entry:
398
 *   in[i] < 2^62
399
 * On exit:
400
 *   out[i] < 17 * max(in[i]) * max(in[i])
401
 */
402
static void felem_square_ref(largefelem out, const felem in)
403
2.68M
{
404
2.68M
    felem inx2, inx4;
405
2.68M
    felem_scalar(inx2, in, 2);
406
2.68M
    felem_scalar(inx4, in, 4);
407
408
    /*-
409
     * We have many cases were we want to do
410
     *   in[x] * in[y] +
411
     *   in[y] * in[x]
412
     * This is obviously just
413
     *   2 * in[x] * in[y]
414
     * However, rather than do the doubling on the 128 bit result, we
415
     * double one of the inputs to the multiplication by reading from
416
     * |inx2|
417
     */
418
419
2.68M
    out[0] = ((uint128_t)in[0]) * in[0];
420
2.68M
    out[1] = ((uint128_t)in[0]) * inx2[1];
421
2.68M
    out[2] = ((uint128_t)in[0]) * inx2[2] + ((uint128_t)in[1]) * in[1];
422
2.68M
    out[3] = ((uint128_t)in[0]) * inx2[3] + ((uint128_t)in[1]) * inx2[2];
423
2.68M
    out[4] = ((uint128_t)in[0]) * inx2[4] + ((uint128_t)in[1]) * inx2[3] + ((uint128_t)in[2]) * in[2];
424
2.68M
    out[5] = ((uint128_t)in[0]) * inx2[5] + ((uint128_t)in[1]) * inx2[4] + ((uint128_t)in[2]) * inx2[3];
425
2.68M
    out[6] = ((uint128_t)in[0]) * inx2[6] + ((uint128_t)in[1]) * inx2[5] + ((uint128_t)in[2]) * inx2[4] + ((uint128_t)in[3]) * in[3];
426
2.68M
    out[7] = ((uint128_t)in[0]) * inx2[7] + ((uint128_t)in[1]) * inx2[6] + ((uint128_t)in[2]) * inx2[5] + ((uint128_t)in[3]) * inx2[4];
427
2.68M
    out[8] = ((uint128_t)in[0]) * inx2[8] + ((uint128_t)in[1]) * inx2[7] + ((uint128_t)in[2]) * inx2[6] + ((uint128_t)in[3]) * inx2[5] + ((uint128_t)in[4]) * in[4];
428
429
    /*
430
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
431
     * They correspond to locations one bit up from the limbs produced above
432
     * so we would have to multiply by two to align them. Again, rather than
433
     * operate on the 128-bit result, we double one of the inputs to the
434
     * multiplication. If we want to double for both this reason, and the
435
     * reason above, then we end up multiplying by four.
436
     */
437
438
    /* 9 */
439
2.68M
    out[0] += ((uint128_t)in[1]) * inx4[8] + ((uint128_t)in[2]) * inx4[7] + ((uint128_t)in[3]) * inx4[6] + ((uint128_t)in[4]) * inx4[5];
440
441
    /* 10 */
442
2.68M
    out[1] += ((uint128_t)in[2]) * inx4[8] + ((uint128_t)in[3]) * inx4[7] + ((uint128_t)in[4]) * inx4[6] + ((uint128_t)in[5]) * inx2[5];
443
444
    /* 11 */
445
2.68M
    out[2] += ((uint128_t)in[3]) * inx4[8] + ((uint128_t)in[4]) * inx4[7] + ((uint128_t)in[5]) * inx4[6];
446
447
    /* 12 */
448
2.68M
    out[3] += ((uint128_t)in[4]) * inx4[8] + ((uint128_t)in[5]) * inx4[7] + ((uint128_t)in[6]) * inx2[6];
449
450
    /* 13 */
451
2.68M
    out[4] += ((uint128_t)in[5]) * inx4[8] + ((uint128_t)in[6]) * inx4[7];
452
453
    /* 14 */
454
2.68M
    out[5] += ((uint128_t)in[6]) * inx4[8] + ((uint128_t)in[7]) * inx2[7];
455
456
    /* 15 */
457
2.68M
    out[6] += ((uint128_t)in[7]) * inx4[8];
458
459
    /* 16 */
460
2.68M
    out[7] += ((uint128_t)in[8]) * inx2[8];
461
2.68M
}
462
463
/*-
464
 * felem_mul sets |out| = |in1| * |in2|
465
 * On entry:
466
 *   in1[i] < 2^64
467
 *   in2[i] < 2^63
468
 * On exit:
469
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
470
 */
471
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
472
2.35M
{
473
2.35M
    felem in2x2;
474
2.35M
    felem_scalar(in2x2, in2, 2);
475
476
2.35M
    out[0] = ((uint128_t)in1[0]) * in2[0];
477
478
2.35M
    out[1] = ((uint128_t)in1[0]) * in2[1] + ((uint128_t)in1[1]) * in2[0];
479
480
2.35M
    out[2] = ((uint128_t)in1[0]) * in2[2] + ((uint128_t)in1[1]) * in2[1] + ((uint128_t)in1[2]) * in2[0];
481
482
2.35M
    out[3] = ((uint128_t)in1[0]) * in2[3] + ((uint128_t)in1[1]) * in2[2] + ((uint128_t)in1[2]) * in2[1] + ((uint128_t)in1[3]) * in2[0];
483
484
2.35M
    out[4] = ((uint128_t)in1[0]) * in2[4] + ((uint128_t)in1[1]) * in2[3] + ((uint128_t)in1[2]) * in2[2] + ((uint128_t)in1[3]) * in2[1] + ((uint128_t)in1[4]) * in2[0];
485
486
2.35M
    out[5] = ((uint128_t)in1[0]) * in2[5] + ((uint128_t)in1[1]) * in2[4] + ((uint128_t)in1[2]) * in2[3] + ((uint128_t)in1[3]) * in2[2] + ((uint128_t)in1[4]) * in2[1] + ((uint128_t)in1[5]) * in2[0];
487
488
2.35M
    out[6] = ((uint128_t)in1[0]) * in2[6] + ((uint128_t)in1[1]) * in2[5] + ((uint128_t)in1[2]) * in2[4] + ((uint128_t)in1[3]) * in2[3] + ((uint128_t)in1[4]) * in2[2] + ((uint128_t)in1[5]) * in2[1] + ((uint128_t)in1[6]) * in2[0];
489
490
2.35M
    out[7] = ((uint128_t)in1[0]) * in2[7] + ((uint128_t)in1[1]) * in2[6] + ((uint128_t)in1[2]) * in2[5] + ((uint128_t)in1[3]) * in2[4] + ((uint128_t)in1[4]) * in2[3] + ((uint128_t)in1[5]) * in2[2] + ((uint128_t)in1[6]) * in2[1] + ((uint128_t)in1[7]) * in2[0];
491
492
2.35M
    out[8] = ((uint128_t)in1[0]) * in2[8] + ((uint128_t)in1[1]) * in2[7] + ((uint128_t)in1[2]) * in2[6] + ((uint128_t)in1[3]) * in2[5] + ((uint128_t)in1[4]) * in2[4] + ((uint128_t)in1[5]) * in2[3] + ((uint128_t)in1[6]) * in2[2] + ((uint128_t)in1[7]) * in2[1] + ((uint128_t)in1[8]) * in2[0];
493
494
    /* See comment in felem_square about the use of in2x2 here */
495
496
2.35M
    out[0] += ((uint128_t)in1[1]) * in2x2[8] + ((uint128_t)in1[2]) * in2x2[7] + ((uint128_t)in1[3]) * in2x2[6] + ((uint128_t)in1[4]) * in2x2[5] + ((uint128_t)in1[5]) * in2x2[4] + ((uint128_t)in1[6]) * in2x2[3] + ((uint128_t)in1[7]) * in2x2[2] + ((uint128_t)in1[8]) * in2x2[1];
497
498
2.35M
    out[1] += ((uint128_t)in1[2]) * in2x2[8] + ((uint128_t)in1[3]) * in2x2[7] + ((uint128_t)in1[4]) * in2x2[6] + ((uint128_t)in1[5]) * in2x2[5] + ((uint128_t)in1[6]) * in2x2[4] + ((uint128_t)in1[7]) * in2x2[3] + ((uint128_t)in1[8]) * in2x2[2];
499
500
2.35M
    out[2] += ((uint128_t)in1[3]) * in2x2[8] + ((uint128_t)in1[4]) * in2x2[7] + ((uint128_t)in1[5]) * in2x2[6] + ((uint128_t)in1[6]) * in2x2[5] + ((uint128_t)in1[7]) * in2x2[4] + ((uint128_t)in1[8]) * in2x2[3];
501
502
2.35M
    out[3] += ((uint128_t)in1[4]) * in2x2[8] + ((uint128_t)in1[5]) * in2x2[7] + ((uint128_t)in1[6]) * in2x2[6] + ((uint128_t)in1[7]) * in2x2[5] + ((uint128_t)in1[8]) * in2x2[4];
503
504
2.35M
    out[4] += ((uint128_t)in1[5]) * in2x2[8] + ((uint128_t)in1[6]) * in2x2[7] + ((uint128_t)in1[7]) * in2x2[6] + ((uint128_t)in1[8]) * in2x2[5];
505
506
2.35M
    out[5] += ((uint128_t)in1[6]) * in2x2[8] + ((uint128_t)in1[7]) * in2x2[7] + ((uint128_t)in1[8]) * in2x2[6];
507
508
2.35M
    out[6] += ((uint128_t)in1[7]) * in2x2[8] + ((uint128_t)in1[8]) * in2x2[7];
509
510
2.35M
    out[7] += ((uint128_t)in1[8]) * in2x2[8];
511
2.35M
}
512
513
static const limb bottom52bits = 0xfffffffffffff;
514
515
/*-
516
 * felem_reduce converts a largefelem to an felem.
517
 * On entry:
518
 *   in[i] < 2^128
519
 * On exit:
520
 *   out[i] < 2^59 + 2^14
521
 */
522
static void felem_reduce(felem out, const largefelem in)
523
4.59M
{
524
4.59M
    u64 overflow1, overflow2;
525
526
4.59M
    out[0] = ((limb)in[0]) & bottom58bits;
527
4.59M
    out[1] = ((limb)in[1]) & bottom58bits;
528
4.59M
    out[2] = ((limb)in[2]) & bottom58bits;
529
4.59M
    out[3] = ((limb)in[3]) & bottom58bits;
530
4.59M
    out[4] = ((limb)in[4]) & bottom58bits;
531
4.59M
    out[5] = ((limb)in[5]) & bottom58bits;
532
4.59M
    out[6] = ((limb)in[6]) & bottom58bits;
533
4.59M
    out[7] = ((limb)in[7]) & bottom58bits;
534
4.59M
    out[8] = ((limb)in[8]) & bottom58bits;
535
536
    /* out[i] < 2^58 */
537
538
4.59M
    out[1] += ((limb)in[0]) >> 58;
539
4.59M
    out[1] += (((limb)(in[0] >> 64)) & bottom52bits) << 6;
540
    /*-
541
     * out[1] < 2^58 + 2^6 + 2^58
542
     *        = 2^59 + 2^6
543
     */
544
4.59M
    out[2] += ((limb)(in[0] >> 64)) >> 52;
545
546
4.59M
    out[2] += ((limb)in[1]) >> 58;
547
4.59M
    out[2] += (((limb)(in[1] >> 64)) & bottom52bits) << 6;
548
4.59M
    out[3] += ((limb)(in[1] >> 64)) >> 52;
549
550
4.59M
    out[3] += ((limb)in[2]) >> 58;
551
4.59M
    out[3] += (((limb)(in[2] >> 64)) & bottom52bits) << 6;
552
4.59M
    out[4] += ((limb)(in[2] >> 64)) >> 52;
553
554
4.59M
    out[4] += ((limb)in[3]) >> 58;
555
4.59M
    out[4] += (((limb)(in[3] >> 64)) & bottom52bits) << 6;
556
4.59M
    out[5] += ((limb)(in[3] >> 64)) >> 52;
557
558
4.59M
    out[5] += ((limb)in[4]) >> 58;
559
4.59M
    out[5] += (((limb)(in[4] >> 64)) & bottom52bits) << 6;
560
4.59M
    out[6] += ((limb)(in[4] >> 64)) >> 52;
561
562
4.59M
    out[6] += ((limb)in[5]) >> 58;
563
4.59M
    out[6] += (((limb)(in[5] >> 64)) & bottom52bits) << 6;
564
4.59M
    out[7] += ((limb)(in[5] >> 64)) >> 52;
565
566
4.59M
    out[7] += ((limb)in[6]) >> 58;
567
4.59M
    out[7] += (((limb)(in[6] >> 64)) & bottom52bits) << 6;
568
4.59M
    out[8] += ((limb)(in[6] >> 64)) >> 52;
569
570
4.59M
    out[8] += ((limb)in[7]) >> 58;
571
4.59M
    out[8] += (((limb)(in[7] >> 64)) & bottom52bits) << 6;
572
    /*-
573
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
574
     *            < 2^59 + 2^13
575
     */
576
4.59M
    overflow1 = ((limb)(in[7] >> 64)) >> 52;
577
578
4.59M
    overflow1 += ((limb)in[8]) >> 58;
579
4.59M
    overflow1 += (((limb)(in[8] >> 64)) & bottom52bits) << 6;
580
4.59M
    overflow2 = ((limb)(in[8] >> 64)) >> 52;
581
582
4.59M
    overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */
583
4.59M
    overflow2 <<= 1; /* overflow2 < 2^13 */
584
585
4.59M
    out[0] += overflow1; /* out[0] < 2^60 */
586
4.59M
    out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */
587
588
4.59M
    out[1] += out[0] >> 58;
589
4.59M
    out[0] &= bottom58bits;
590
    /*-
591
     * out[0] < 2^58
592
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
593
     *        < 2^59 + 2^14
594
     */
595
4.59M
}
596
597
#if defined(ECP_NISTP521_ASM)
598
void felem_square_wrapper(largefelem out, const felem in);
599
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
600
601
static void (*felem_square_p)(largefelem out, const felem in) = felem_square_wrapper;
602
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) = felem_mul_wrapper;
603
604
void p521_felem_square(largefelem out, const felem in);
605
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
606
607
#if defined(_ARCH_PPC64)
608
#include "crypto/ppc_arch.h"
609
#endif
610
611
void felem_select(void)
612
{
613
#if defined(_ARCH_PPC64)
614
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
615
        felem_square_p = p521_felem_square;
616
        felem_mul_p = p521_felem_mul;
617
618
        return;
619
    }
620
#endif
621
622
    /* Default */
623
    felem_square_p = felem_square_ref;
624
    felem_mul_p = felem_mul_ref;
625
}
626
627
void felem_square_wrapper(largefelem out, const felem in)
628
{
629
    felem_select();
630
    felem_square_p(out, in);
631
}
632
633
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
634
{
635
    felem_select();
636
    felem_mul_p(out, in1, in2);
637
}
638
639
#define felem_square felem_square_p
640
#define felem_mul felem_mul_p
641
#else
642
2.68M
#define felem_square felem_square_ref
643
2.35M
#define felem_mul felem_mul_ref
644
#endif
645
646
static void felem_square_reduce(felem out, const felem in)
647
0
{
648
0
    largefelem tmp;
649
0
    felem_square(tmp, in);
650
0
    felem_reduce(out, tmp);
651
0
}
652
653
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
654
0
{
655
0
    largefelem tmp;
656
0
    felem_mul(tmp, in1, in2);
657
0
    felem_reduce(out, tmp);
658
0
}
659
660
/*-
661
 * felem_inv calculates |out| = |in|^{-1}
662
 *
663
 * Based on Fermat's Little Theorem:
664
 *   a^p = a (mod p)
665
 *   a^{p-1} = 1 (mod p)
666
 *   a^{p-2} = a^{-1} (mod p)
667
 */
668
static void felem_inv(felem out, const felem in)
669
1.57k
{
670
1.57k
    felem ftmp, ftmp2, ftmp3, ftmp4;
671
1.57k
    largefelem tmp;
672
1.57k
    unsigned i;
673
674
1.57k
    felem_square(tmp, in);
675
1.57k
    felem_reduce(ftmp, tmp); /* 2^1 */
676
1.57k
    felem_mul(tmp, in, ftmp);
677
1.57k
    felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
678
1.57k
    felem_assign(ftmp2, ftmp);
679
1.57k
    felem_square(tmp, ftmp);
680
1.57k
    felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
681
1.57k
    felem_mul(tmp, in, ftmp);
682
1.57k
    felem_reduce(ftmp, tmp); /* 2^3 - 2^0 */
683
1.57k
    felem_square(tmp, ftmp);
684
1.57k
    felem_reduce(ftmp, tmp); /* 2^4 - 2^1 */
685
686
1.57k
    felem_square(tmp, ftmp2);
687
1.57k
    felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */
688
1.57k
    felem_square(tmp, ftmp3);
689
1.57k
    felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */
690
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
691
1.57k
    felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */
692
693
1.57k
    felem_assign(ftmp2, ftmp3);
694
1.57k
    felem_square(tmp, ftmp3);
695
1.57k
    felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */
696
1.57k
    felem_square(tmp, ftmp3);
697
1.57k
    felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */
698
1.57k
    felem_square(tmp, ftmp3);
699
1.57k
    felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */
700
1.57k
    felem_square(tmp, ftmp3);
701
1.57k
    felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */
702
1.57k
    felem_assign(ftmp4, ftmp3);
703
1.57k
    felem_mul(tmp, ftmp3, ftmp);
704
1.57k
    felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */
705
1.57k
    felem_square(tmp, ftmp4);
706
1.57k
    felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */
707
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
708
1.57k
    felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */
709
1.57k
    felem_assign(ftmp2, ftmp3);
710
711
14.1k
    for (i = 0; i < 8; i++) {
712
12.5k
        felem_square(tmp, ftmp3);
713
12.5k
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
714
12.5k
    }
715
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
716
1.57k
    felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */
717
1.57k
    felem_assign(ftmp2, ftmp3);
718
719
26.7k
    for (i = 0; i < 16; i++) {
720
25.1k
        felem_square(tmp, ftmp3);
721
25.1k
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
722
25.1k
    }
723
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
724
1.57k
    felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */
725
1.57k
    felem_assign(ftmp2, ftmp3);
726
727
51.8k
    for (i = 0; i < 32; i++) {
728
50.3k
        felem_square(tmp, ftmp3);
729
50.3k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
730
50.3k
    }
731
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
732
1.57k
    felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */
733
1.57k
    felem_assign(ftmp2, ftmp3);
734
735
102k
    for (i = 0; i < 64; i++) {
736
100k
        felem_square(tmp, ftmp3);
737
100k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
738
100k
    }
739
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
740
1.57k
    felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */
741
1.57k
    felem_assign(ftmp2, ftmp3);
742
743
202k
    for (i = 0; i < 128; i++) {
744
201k
        felem_square(tmp, ftmp3);
745
201k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
746
201k
    }
747
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
748
1.57k
    felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */
749
1.57k
    felem_assign(ftmp2, ftmp3);
750
751
404k
    for (i = 0; i < 256; i++) {
752
402k
        felem_square(tmp, ftmp3);
753
402k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
754
402k
    }
755
1.57k
    felem_mul(tmp, ftmp3, ftmp2);
756
1.57k
    felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */
757
758
15.7k
    for (i = 0; i < 9; i++) {
759
14.1k
        felem_square(tmp, ftmp3);
760
14.1k
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
761
14.1k
    }
762
1.57k
    felem_mul(tmp, ftmp3, ftmp4);
763
1.57k
    felem_reduce(ftmp3, tmp); /* 2^512 - 2^2 */
764
1.57k
    felem_mul(tmp, ftmp3, in);
765
1.57k
    felem_reduce(out, tmp); /* 2^512 - 3 */
766
1.57k
}
767
768
/* This is 2^521-1, expressed as an felem */
769
static const felem kPrime = {
770
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
771
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
772
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
773
};
774
775
/*-
776
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
777
 * otherwise.
778
 * On entry:
779
 *   in[i] < 2^59 + 2^14
780
 */
781
static limb felem_is_zero(const felem in)
782
762k
{
783
762k
    felem ftmp;
784
762k
    limb is_zero, is_p;
785
762k
    felem_assign(ftmp, in);
786
787
762k
    ftmp[0] += ftmp[8] >> 57;
788
762k
    ftmp[8] &= bottom57bits;
789
    /* ftmp[8] < 2^57 */
790
762k
    ftmp[1] += ftmp[0] >> 58;
791
762k
    ftmp[0] &= bottom58bits;
792
762k
    ftmp[2] += ftmp[1] >> 58;
793
762k
    ftmp[1] &= bottom58bits;
794
762k
    ftmp[3] += ftmp[2] >> 58;
795
762k
    ftmp[2] &= bottom58bits;
796
762k
    ftmp[4] += ftmp[3] >> 58;
797
762k
    ftmp[3] &= bottom58bits;
798
762k
    ftmp[5] += ftmp[4] >> 58;
799
762k
    ftmp[4] &= bottom58bits;
800
762k
    ftmp[6] += ftmp[5] >> 58;
801
762k
    ftmp[5] &= bottom58bits;
802
762k
    ftmp[7] += ftmp[6] >> 58;
803
762k
    ftmp[6] &= bottom58bits;
804
762k
    ftmp[8] += ftmp[7] >> 58;
805
762k
    ftmp[7] &= bottom58bits;
806
    /* ftmp[8] < 2^57 + 4 */
807
808
    /*
809
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
810
     * than our bound for ftmp[8]. Therefore we only have to check if the
811
     * zero is zero or 2^521-1.
812
     */
813
814
762k
    is_zero = 0;
815
762k
    is_zero |= ftmp[0];
816
762k
    is_zero |= ftmp[1];
817
762k
    is_zero |= ftmp[2];
818
762k
    is_zero |= ftmp[3];
819
762k
    is_zero |= ftmp[4];
820
762k
    is_zero |= ftmp[5];
821
762k
    is_zero |= ftmp[6];
822
762k
    is_zero |= ftmp[7];
823
762k
    is_zero |= ftmp[8];
824
825
762k
    is_zero--;
826
    /*
827
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
828
     * can be set is if is_zero was 0 before the decrement.
829
     */
830
762k
    is_zero = 0 - (is_zero >> 63);
831
832
762k
    is_p = ftmp[0] ^ kPrime[0];
833
762k
    is_p |= ftmp[1] ^ kPrime[1];
834
762k
    is_p |= ftmp[2] ^ kPrime[2];
835
762k
    is_p |= ftmp[3] ^ kPrime[3];
836
762k
    is_p |= ftmp[4] ^ kPrime[4];
837
762k
    is_p |= ftmp[5] ^ kPrime[5];
838
762k
    is_p |= ftmp[6] ^ kPrime[6];
839
762k
    is_p |= ftmp[7] ^ kPrime[7];
840
762k
    is_p |= ftmp[8] ^ kPrime[8];
841
842
762k
    is_p--;
843
762k
    is_p = 0 - (is_p >> 63);
844
845
762k
    is_zero |= is_p;
846
762k
    return is_zero;
847
762k
}
848
849
static int felem_is_zero_int(const void *in)
850
0
{
851
0
    return (int)(felem_is_zero(in) & ((limb)1));
852
0
}
853
854
/*-
855
 * felem_contract converts |in| to its unique, minimal representation.
856
 * On entry:
857
 *   in[i] < 2^59 + 2^14
858
 */
859
static void felem_contract(felem out, const felem in)
860
7.53k
{
861
7.53k
    limb is_p, is_greater, sign;
862
7.53k
    static const limb two58 = ((limb)1) << 58;
863
864
7.53k
    felem_assign(out, in);
865
866
7.53k
    out[0] += out[8] >> 57;
867
7.53k
    out[8] &= bottom57bits;
868
    /* out[8] < 2^57 */
869
7.53k
    out[1] += out[0] >> 58;
870
7.53k
    out[0] &= bottom58bits;
871
7.53k
    out[2] += out[1] >> 58;
872
7.53k
    out[1] &= bottom58bits;
873
7.53k
    out[3] += out[2] >> 58;
874
7.53k
    out[2] &= bottom58bits;
875
7.53k
    out[4] += out[3] >> 58;
876
7.53k
    out[3] &= bottom58bits;
877
7.53k
    out[5] += out[4] >> 58;
878
7.53k
    out[4] &= bottom58bits;
879
7.53k
    out[6] += out[5] >> 58;
880
7.53k
    out[5] &= bottom58bits;
881
7.53k
    out[7] += out[6] >> 58;
882
7.53k
    out[6] &= bottom58bits;
883
7.53k
    out[8] += out[7] >> 58;
884
7.53k
    out[7] &= bottom58bits;
885
    /* out[8] < 2^57 + 4 */
886
887
    /*
888
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
889
     * out. See the comments in felem_is_zero regarding why we don't test for
890
     * other multiples of the prime.
891
     */
892
893
    /*
894
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
895
     */
896
897
7.53k
    is_p = out[0] ^ kPrime[0];
898
7.53k
    is_p |= out[1] ^ kPrime[1];
899
7.53k
    is_p |= out[2] ^ kPrime[2];
900
7.53k
    is_p |= out[3] ^ kPrime[3];
901
7.53k
    is_p |= out[4] ^ kPrime[4];
902
7.53k
    is_p |= out[5] ^ kPrime[5];
903
7.53k
    is_p |= out[6] ^ kPrime[6];
904
7.53k
    is_p |= out[7] ^ kPrime[7];
905
7.53k
    is_p |= out[8] ^ kPrime[8];
906
907
7.53k
    is_p--;
908
7.53k
    is_p &= is_p << 32;
909
7.53k
    is_p &= is_p << 16;
910
7.53k
    is_p &= is_p << 8;
911
7.53k
    is_p &= is_p << 4;
912
7.53k
    is_p &= is_p << 2;
913
7.53k
    is_p &= is_p << 1;
914
7.53k
    is_p = 0 - (is_p >> 63);
915
7.53k
    is_p = ~is_p;
916
917
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
918
919
7.53k
    out[0] &= is_p;
920
7.53k
    out[1] &= is_p;
921
7.53k
    out[2] &= is_p;
922
7.53k
    out[3] &= is_p;
923
7.53k
    out[4] &= is_p;
924
7.53k
    out[5] &= is_p;
925
7.53k
    out[6] &= is_p;
926
7.53k
    out[7] &= is_p;
927
7.53k
    out[8] &= is_p;
928
929
    /*
930
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
931
     * 57 is greater than zero as (2^521-1) + x >= 2^522
932
     */
933
7.53k
    is_greater = out[8] >> 57;
934
7.53k
    is_greater |= is_greater << 32;
935
7.53k
    is_greater |= is_greater << 16;
936
7.53k
    is_greater |= is_greater << 8;
937
7.53k
    is_greater |= is_greater << 4;
938
7.53k
    is_greater |= is_greater << 2;
939
7.53k
    is_greater |= is_greater << 1;
940
7.53k
    is_greater = 0 - (is_greater >> 63);
941
942
7.53k
    out[0] -= kPrime[0] & is_greater;
943
7.53k
    out[1] -= kPrime[1] & is_greater;
944
7.53k
    out[2] -= kPrime[2] & is_greater;
945
7.53k
    out[3] -= kPrime[3] & is_greater;
946
7.53k
    out[4] -= kPrime[4] & is_greater;
947
7.53k
    out[5] -= kPrime[5] & is_greater;
948
7.53k
    out[6] -= kPrime[6] & is_greater;
949
7.53k
    out[7] -= kPrime[7] & is_greater;
950
7.53k
    out[8] -= kPrime[8] & is_greater;
951
952
    /* Eliminate negative coefficients */
953
7.53k
    sign = -(out[0] >> 63);
954
7.53k
    out[0] += (two58 & sign);
955
7.53k
    out[1] -= (1 & sign);
956
7.53k
    sign = -(out[1] >> 63);
957
7.53k
    out[1] += (two58 & sign);
958
7.53k
    out[2] -= (1 & sign);
959
7.53k
    sign = -(out[2] >> 63);
960
7.53k
    out[2] += (two58 & sign);
961
7.53k
    out[3] -= (1 & sign);
962
7.53k
    sign = -(out[3] >> 63);
963
7.53k
    out[3] += (two58 & sign);
964
7.53k
    out[4] -= (1 & sign);
965
7.53k
    sign = -(out[4] >> 63);
966
7.53k
    out[4] += (two58 & sign);
967
7.53k
    out[5] -= (1 & sign);
968
7.53k
    sign = -(out[0] >> 63);
969
7.53k
    out[5] += (two58 & sign);
970
7.53k
    out[6] -= (1 & sign);
971
7.53k
    sign = -(out[6] >> 63);
972
7.53k
    out[6] += (two58 & sign);
973
7.53k
    out[7] -= (1 & sign);
974
7.53k
    sign = -(out[7] >> 63);
975
7.53k
    out[7] += (two58 & sign);
976
7.53k
    out[8] -= (1 & sign);
977
7.53k
    sign = -(out[5] >> 63);
978
7.53k
    out[5] += (two58 & sign);
979
7.53k
    out[6] -= (1 & sign);
980
7.53k
    sign = -(out[6] >> 63);
981
7.53k
    out[6] += (two58 & sign);
982
7.53k
    out[7] -= (1 & sign);
983
7.53k
    sign = -(out[7] >> 63);
984
7.53k
    out[7] += (two58 & sign);
985
7.53k
    out[8] -= (1 & sign);
986
7.53k
}
987
988
/*-
989
 * Group operations
990
 * ----------------
991
 *
992
 * Building on top of the field operations we have the operations on the
993
 * elliptic curve group itself. Points on the curve are represented in Jacobian
994
 * coordinates */
995
996
/*-
997
 * point_double calculates 2*(x_in, y_in, z_in)
998
 *
999
 * The method is taken from:
1000
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1001
 *
1002
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1003
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1004
static void
1005
point_double(felem x_out, felem y_out, felem z_out,
1006
    const felem x_in, const felem y_in, const felem z_in)
1007
250k
{
1008
250k
    largefelem tmp, tmp2;
1009
250k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1010
1011
250k
    felem_assign(ftmp, x_in);
1012
250k
    felem_assign(ftmp2, x_in);
1013
1014
    /* delta = z^2 */
1015
250k
    felem_square(tmp, z_in);
1016
250k
    felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */
1017
1018
    /* gamma = y^2 */
1019
250k
    felem_square(tmp, y_in);
1020
250k
    felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */
1021
1022
    /* beta = x*gamma */
1023
250k
    felem_mul(tmp, x_in, gamma);
1024
250k
    felem_reduce(beta, tmp); /* beta[i] < 2^59 + 2^14 */
1025
1026
    /* alpha = 3*(x-delta)*(x+delta) */
1027
250k
    felem_diff64(ftmp, delta);
1028
    /* ftmp[i] < 2^61 */
1029
250k
    felem_sum64(ftmp2, delta);
1030
    /* ftmp2[i] < 2^60 + 2^15 */
1031
250k
    felem_scalar64(ftmp2, 3);
1032
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1033
250k
    felem_mul(tmp, ftmp, ftmp2);
1034
    /*-
1035
     * tmp[i] < 17(3*2^121 + 3*2^76)
1036
     *        = 61*2^121 + 61*2^76
1037
     *        < 64*2^121 + 64*2^76
1038
     *        = 2^127 + 2^82
1039
     *        < 2^128
1040
     */
1041
250k
    felem_reduce(alpha, tmp);
1042
1043
    /* x' = alpha^2 - 8*beta */
1044
250k
    felem_square(tmp, alpha);
1045
    /*
1046
     * tmp[i] < 17*2^120 < 2^125
1047
     */
1048
250k
    felem_assign(ftmp, beta);
1049
250k
    felem_scalar64(ftmp, 8);
1050
    /* ftmp[i] < 2^62 + 2^17 */
1051
250k
    felem_diff_128_64(tmp, ftmp);
1052
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1053
250k
    felem_reduce(x_out, tmp);
1054
1055
    /* z' = (y + z)^2 - gamma - delta */
1056
250k
    felem_sum64(delta, gamma);
1057
    /* delta[i] < 2^60 + 2^15 */
1058
250k
    felem_assign(ftmp, y_in);
1059
250k
    felem_sum64(ftmp, z_in);
1060
    /* ftmp[i] < 2^60 + 2^15 */
1061
250k
    felem_square(tmp, ftmp);
1062
    /*
1063
     * tmp[i] < 17(2^122) < 2^127
1064
     */
1065
250k
    felem_diff_128_64(tmp, delta);
1066
    /* tmp[i] < 2^127 + 2^63 */
1067
250k
    felem_reduce(z_out, tmp);
1068
1069
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1070
250k
    felem_scalar64(beta, 4);
1071
    /* beta[i] < 2^61 + 2^16 */
1072
250k
    felem_diff64(beta, x_out);
1073
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1074
250k
    felem_mul(tmp, alpha, beta);
1075
    /*-
1076
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1077
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1078
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1079
     *        < 2^128
1080
     */
1081
250k
    felem_square(tmp2, gamma);
1082
    /*-
1083
     * tmp2[i] < 17*(2^59 + 2^14)^2
1084
     *         = 17*(2^118 + 2^74 + 2^28)
1085
     */
1086
250k
    felem_scalar128(tmp2, 8);
1087
    /*-
1088
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1089
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1090
     *         < 2^126
1091
     */
1092
250k
    felem_diff128(tmp, tmp2);
1093
    /*-
1094
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1095
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1096
     *          2^74 + 2^69 + 2^34 + 2^30
1097
     *        < 2^128
1098
     */
1099
250k
    felem_reduce(y_out, tmp);
1100
250k
}
1101
1102
/* copy_conditional copies in to out iff mask is all ones. */
1103
static void copy_conditional(felem out, const felem in, limb mask)
1104
1.16M
{
1105
1.16M
    unsigned i;
1106
11.6M
    for (i = 0; i < NLIMBS; ++i) {
1107
10.4M
        const limb tmp = mask & (in[i] ^ out[i]);
1108
10.4M
        out[i] ^= tmp;
1109
10.4M
    }
1110
1.16M
}
1111
1112
/*-
1113
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1114
 *
1115
 * The method is taken from
1116
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1117
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1118
 *
1119
 * This function includes a branch for checking whether the two input points
1120
 * are equal (while not equal to the point at infinity). See comment below
1121
 * on constant-time.
1122
 */
1123
static void point_add(felem x3, felem y3, felem z3,
1124
    const felem x1, const felem y1, const felem z1,
1125
    const int mixed, const felem x2, const felem y2,
1126
    const felem z2)
1127
190k
{
1128
190k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1129
190k
    largefelem tmp, tmp2;
1130
190k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1131
190k
    limb points_equal;
1132
1133
190k
    z1_is_zero = felem_is_zero(z1);
1134
190k
    z2_is_zero = felem_is_zero(z2);
1135
1136
    /* ftmp = z1z1 = z1**2 */
1137
190k
    felem_square(tmp, z1);
1138
190k
    felem_reduce(ftmp, tmp);
1139
1140
190k
    if (!mixed) {
1141
        /* ftmp2 = z2z2 = z2**2 */
1142
16.9k
        felem_square(tmp, z2);
1143
16.9k
        felem_reduce(ftmp2, tmp);
1144
1145
        /* u1 = ftmp3 = x1*z2z2 */
1146
16.9k
        felem_mul(tmp, x1, ftmp2);
1147
16.9k
        felem_reduce(ftmp3, tmp);
1148
1149
        /* ftmp5 = z1 + z2 */
1150
16.9k
        felem_assign(ftmp5, z1);
1151
16.9k
        felem_sum64(ftmp5, z2);
1152
        /* ftmp5[i] < 2^61 */
1153
1154
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1155
16.9k
        felem_square(tmp, ftmp5);
1156
        /* tmp[i] < 17*2^122 */
1157
16.9k
        felem_diff_128_64(tmp, ftmp);
1158
        /* tmp[i] < 17*2^122 + 2^63 */
1159
16.9k
        felem_diff_128_64(tmp, ftmp2);
1160
        /* tmp[i] < 17*2^122 + 2^64 */
1161
16.9k
        felem_reduce(ftmp5, tmp);
1162
1163
        /* ftmp2 = z2 * z2z2 */
1164
16.9k
        felem_mul(tmp, ftmp2, z2);
1165
16.9k
        felem_reduce(ftmp2, tmp);
1166
1167
        /* s1 = ftmp6 = y1 * z2**3 */
1168
16.9k
        felem_mul(tmp, y1, ftmp2);
1169
16.9k
        felem_reduce(ftmp6, tmp);
1170
173k
    } else {
1171
        /*
1172
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1173
         */
1174
1175
        /* u1 = ftmp3 = x1*z2z2 */
1176
173k
        felem_assign(ftmp3, x1);
1177
1178
        /* ftmp5 = 2*z1z2 */
1179
173k
        felem_scalar(ftmp5, z1, 2);
1180
1181
        /* s1 = ftmp6 = y1 * z2**3 */
1182
173k
        felem_assign(ftmp6, y1);
1183
173k
    }
1184
1185
    /* u2 = x2*z1z1 */
1186
190k
    felem_mul(tmp, x2, ftmp);
1187
    /* tmp[i] < 17*2^120 */
1188
1189
    /* h = ftmp4 = u2 - u1 */
1190
190k
    felem_diff_128_64(tmp, ftmp3);
1191
    /* tmp[i] < 17*2^120 + 2^63 */
1192
190k
    felem_reduce(ftmp4, tmp);
1193
1194
190k
    x_equal = felem_is_zero(ftmp4);
1195
1196
    /* z_out = ftmp5 * h */
1197
190k
    felem_mul(tmp, ftmp5, ftmp4);
1198
190k
    felem_reduce(z_out, tmp);
1199
1200
    /* ftmp = z1 * z1z1 */
1201
190k
    felem_mul(tmp, ftmp, z1);
1202
190k
    felem_reduce(ftmp, tmp);
1203
1204
    /* s2 = tmp = y2 * z1**3 */
1205
190k
    felem_mul(tmp, y2, ftmp);
1206
    /* tmp[i] < 17*2^120 */
1207
1208
    /* r = ftmp5 = (s2 - s1)*2 */
1209
190k
    felem_diff_128_64(tmp, ftmp6);
1210
    /* tmp[i] < 17*2^120 + 2^63 */
1211
190k
    felem_reduce(ftmp5, tmp);
1212
190k
    y_equal = felem_is_zero(ftmp5);
1213
190k
    felem_scalar64(ftmp5, 2);
1214
    /* ftmp5[i] < 2^61 */
1215
1216
    /*
1217
     * The formulae are incorrect if the points are equal, in affine coordinates
1218
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1219
     * happens.
1220
     *
1221
     * We use bitwise operations to avoid potential side-channels introduced by
1222
     * the short-circuiting behaviour of boolean operators.
1223
     *
1224
     * The special case of either point being the point at infinity (z1 and/or
1225
     * z2 are zero), is handled separately later on in this function, so we
1226
     * avoid jumping to point_double here in those special cases.
1227
     *
1228
     * Notice the comment below on the implications of this branching for timing
1229
     * leaks and why it is considered practically irrelevant.
1230
     */
1231
190k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1232
1233
190k
    if (points_equal) {
1234
        /*
1235
         * This is obviously not constant-time but it will almost-never happen
1236
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1237
         * where the intermediate value gets very close to the group order.
1238
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1239
         * for the scalar, it's possible for the intermediate value to be a small
1240
         * negative multiple of the base point, and for the final signed digit
1241
         * to be the same value. We believe that this only occurs for the scalar
1242
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1243
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1244
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1245
         * the final digit is also -9G. Since this only happens for a single
1246
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1247
         * check whether a secret scalar was that exact value, can already do
1248
         * so.)
1249
         */
1250
0
        point_double(x3, y3, z3, x1, y1, z1);
1251
0
        return;
1252
0
    }
1253
1254
    /* I = ftmp = (2h)**2 */
1255
190k
    felem_assign(ftmp, ftmp4);
1256
190k
    felem_scalar64(ftmp, 2);
1257
    /* ftmp[i] < 2^61 */
1258
190k
    felem_square(tmp, ftmp);
1259
    /* tmp[i] < 17*2^122 */
1260
190k
    felem_reduce(ftmp, tmp);
1261
1262
    /* J = ftmp2 = h * I */
1263
190k
    felem_mul(tmp, ftmp4, ftmp);
1264
190k
    felem_reduce(ftmp2, tmp);
1265
1266
    /* V = ftmp4 = U1 * I */
1267
190k
    felem_mul(tmp, ftmp3, ftmp);
1268
190k
    felem_reduce(ftmp4, tmp);
1269
1270
    /* x_out = r**2 - J - 2V */
1271
190k
    felem_square(tmp, ftmp5);
1272
    /* tmp[i] < 17*2^122 */
1273
190k
    felem_diff_128_64(tmp, ftmp2);
1274
    /* tmp[i] < 17*2^122 + 2^63 */
1275
190k
    felem_assign(ftmp3, ftmp4);
1276
190k
    felem_scalar64(ftmp4, 2);
1277
    /* ftmp4[i] < 2^61 */
1278
190k
    felem_diff_128_64(tmp, ftmp4);
1279
    /* tmp[i] < 17*2^122 + 2^64 */
1280
190k
    felem_reduce(x_out, tmp);
1281
1282
    /* y_out = r(V-x_out) - 2 * s1 * J */
1283
190k
    felem_diff64(ftmp3, x_out);
1284
    /*
1285
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1286
     */
1287
190k
    felem_mul(tmp, ftmp5, ftmp3);
1288
    /* tmp[i] < 17*2^122 */
1289
190k
    felem_mul(tmp2, ftmp6, ftmp2);
1290
    /* tmp2[i] < 17*2^120 */
1291
190k
    felem_scalar128(tmp2, 2);
1292
    /* tmp2[i] < 17*2^121 */
1293
190k
    felem_diff128(tmp, tmp2);
1294
    /*-
1295
     * tmp[i] < 2^127 - 2^69 + 17*2^122
1296
     *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1297
     *        < 2^127
1298
     */
1299
190k
    felem_reduce(y_out, tmp);
1300
1301
190k
    copy_conditional(x_out, x2, z1_is_zero);
1302
190k
    copy_conditional(x_out, x1, z2_is_zero);
1303
190k
    copy_conditional(y_out, y2, z1_is_zero);
1304
190k
    copy_conditional(y_out, y1, z2_is_zero);
1305
190k
    copy_conditional(z_out, z2, z1_is_zero);
1306
190k
    copy_conditional(z_out, z1, z2_is_zero);
1307
190k
    felem_assign(x3, x_out);
1308
190k
    felem_assign(y3, y_out);
1309
190k
    felem_assign(z3, z_out);
1310
190k
}
1311
1312
/*-
1313
 * Base point pre computation
1314
 * --------------------------
1315
 *
1316
 * Two different sorts of precomputed tables are used in the following code.
1317
 * Each contain various points on the curve, where each point is three field
1318
 * elements (x, y, z).
1319
 *
1320
 * For the base point table, z is usually 1 (0 for the point at infinity).
1321
 * This table has 16 elements:
1322
 * index | bits    | point
1323
 * ------+---------+------------------------------
1324
 *     0 | 0 0 0 0 | 0G
1325
 *     1 | 0 0 0 1 | 1G
1326
 *     2 | 0 0 1 0 | 2^130G
1327
 *     3 | 0 0 1 1 | (2^130 + 1)G
1328
 *     4 | 0 1 0 0 | 2^260G
1329
 *     5 | 0 1 0 1 | (2^260 + 1)G
1330
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1331
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1332
 *     8 | 1 0 0 0 | 2^390G
1333
 *     9 | 1 0 0 1 | (2^390 + 1)G
1334
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1335
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1336
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1337
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1338
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1339
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1340
 *
1341
 * The reason for this is so that we can clock bits into four different
1342
 * locations when doing simple scalar multiplies against the base point.
1343
 *
1344
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1345
1346
/* gmul is the table of precomputed base points */
1347
static const felem gmul[16][3] = {
1348
    { { 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1349
        { 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1350
        { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
1351
    { { 0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1352
          0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1353
          0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404 },
1354
        { 0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1355
            0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1356
            0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b },
1357
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1358
    { { 0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1359
          0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1360
          0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5 },
1361
        { 0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1362
            0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1363
            0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7 },
1364
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1365
    { { 0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1366
          0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1367
          0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9 },
1368
        { 0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1369
            0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1370
            0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe },
1371
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1372
    { { 0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1373
          0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1374
          0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065 },
1375
        { 0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1376
            0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1377
            0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524 },
1378
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1379
    { { 0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1380
          0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1381
          0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe },
1382
        { 0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1383
            0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1384
            0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7 },
1385
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1386
    { { 0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1387
          0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1388
          0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256 },
1389
        { 0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1390
            0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1391
            0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd },
1392
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1393
    { { 0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1394
          0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1395
          0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23 },
1396
        { 0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1397
            0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1398
            0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e },
1399
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1400
    { { 0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1401
          0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1402
          0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5 },
1403
        { 0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1404
            0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1405
            0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242 },
1406
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1407
    { { 0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1408
          0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1409
          0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203 },
1410
        { 0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1411
            0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1412
            0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f },
1413
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1414
    { { 0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1415
          0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1416
          0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a },
1417
        { 0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1418
            0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1419
            0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a },
1420
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1421
    { { 0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1422
          0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1423
          0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b },
1424
        { 0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1425
            0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1426
            0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f },
1427
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1428
    { { 0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1429
          0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1430
          0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf },
1431
        { 0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1432
            0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1433
            0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d },
1434
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1435
    { { 0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1436
          0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1437
          0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684 },
1438
        { 0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1439
            0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1440
            0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81 },
1441
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1442
    { { 0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1443
          0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1444
          0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d },
1445
        { 0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1446
            0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1447
            0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42 },
1448
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } },
1449
    { { 0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1450
          0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1451
          0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f },
1452
        { 0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1453
            0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1454
            0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055 },
1455
        { 1, 0, 0, 0, 0, 0, 0, 0, 0 } }
1456
};
1457
1458
/*
1459
 * select_point selects the |idx|th point from a precomputation table and
1460
 * copies it to out.
1461
 */
1462
/* pre_comp below is of the size provided in |size| */
1463
static void select_point(const limb idx, unsigned int size,
1464
    const felem pre_comp[][3], felem out[3])
1465
191k
{
1466
191k
    unsigned i, j;
1467
191k
    limb *outlimbs = &out[0][0];
1468
1469
191k
    memset(out, 0, sizeof(*out) * 3);
1470
1471
3.26M
    for (i = 0; i < size; i++) {
1472
3.07M
        const limb *inlimbs = &pre_comp[i][0][0];
1473
3.07M
        limb mask = i ^ idx;
1474
3.07M
        mask |= mask >> 4;
1475
3.07M
        mask |= mask >> 2;
1476
3.07M
        mask |= mask >> 1;
1477
3.07M
        mask &= 1;
1478
3.07M
        mask--;
1479
86.0M
        for (j = 0; j < NLIMBS * 3; j++)
1480
82.9M
            outlimbs[j] |= inlimbs[j] & mask;
1481
3.07M
    }
1482
191k
}
1483
1484
/* get_bit returns the |i|th bit in |in| */
1485
static char get_bit(const felem_bytearray in, int i)
1486
792k
{
1487
792k
    if (i < 0)
1488
153
        return 0;
1489
792k
    return (in[i >> 3] >> (i & 7)) & 1;
1490
792k
}
1491
1492
/*
1493
 * Interleaved point multiplication using precomputed point multiples: The
1494
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1495
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1496
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1497
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1498
 */
1499
static void batch_mul(felem x_out, felem y_out, felem z_out,
1500
    const felem_bytearray scalars[],
1501
    const unsigned num_points, const u8 *g_scalar,
1502
    const int mixed, const felem pre_comp[][17][3],
1503
    const felem g_pre_comp[16][3])
1504
1.46k
{
1505
1.46k
    int i, skip;
1506
1.46k
    unsigned num, gen_mul = (g_scalar != NULL);
1507
1.46k
    felem nq[3], tmp[4];
1508
1.46k
    limb bits;
1509
1.46k
    u8 sign, digit;
1510
1511
    /* set nq to the point at infinity */
1512
1.46k
    memset(nq, 0, sizeof(nq));
1513
1514
    /*
1515
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1516
     * of the generator (last quarter of rounds) and additions of other
1517
     * points multiples (every 5th round).
1518
     */
1519
1.46k
    skip = 1; /* save two point operations in the first
1520
               * round */
1521
252k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1522
        /* double */
1523
251k
        if (!skip)
1524
249k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1525
1526
        /* add multiples of the generator */
1527
251k
        if (gen_mul && (i <= 130)) {
1528
175k
            bits = get_bit(g_scalar, i + 390) << 3;
1529
175k
            if (i < 130) {
1530
173k
                bits |= get_bit(g_scalar, i + 260) << 2;
1531
173k
                bits |= get_bit(g_scalar, i + 130) << 1;
1532
173k
                bits |= get_bit(g_scalar, i);
1533
173k
            }
1534
            /* select the point to add, in constant time */
1535
175k
            select_point(bits, 16, g_pre_comp, tmp);
1536
175k
            if (!skip) {
1537
                /* The 1 argument below is for "mixed" */
1538
173k
                point_add(nq[0], nq[1], nq[2],
1539
173k
                    nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1540
173k
            } else {
1541
1.30k
                memcpy(nq, tmp, 3 * sizeof(felem));
1542
1.30k
                skip = 0;
1543
1.30k
            }
1544
175k
        }
1545
1546
        /* do other additions every 5 doublings */
1547
251k
        if (num_points && (i % 5 == 0)) {
1548
            /* loop over all scalars */
1549
32.1k
            for (num = 0; num < num_points; ++num) {
1550
16.0k
                bits = get_bit(scalars[num], i + 4) << 5;
1551
16.0k
                bits |= get_bit(scalars[num], i + 3) << 4;
1552
16.0k
                bits |= get_bit(scalars[num], i + 2) << 3;
1553
16.0k
                bits |= get_bit(scalars[num], i + 1) << 2;
1554
16.0k
                bits |= get_bit(scalars[num], i) << 1;
1555
16.0k
                bits |= get_bit(scalars[num], i - 1);
1556
16.0k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1557
1558
                /*
1559
                 * select the point to add or subtract, in constant time
1560
                 */
1561
16.0k
                select_point(digit, 17, pre_comp[num], tmp);
1562
16.0k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1563
                                            * point */
1564
16.0k
                copy_conditional(tmp[1], tmp[3], (-(limb)sign));
1565
1566
16.0k
                if (!skip) {
1567
15.9k
                    point_add(nq[0], nq[1], nq[2],
1568
15.9k
                        nq[0], nq[1], nq[2],
1569
15.9k
                        mixed, tmp[0], tmp[1], tmp[2]);
1570
15.9k
                } else {
1571
153
                    memcpy(nq, tmp, 3 * sizeof(felem));
1572
153
                    skip = 0;
1573
153
                }
1574
16.0k
            }
1575
16.0k
        }
1576
251k
    }
1577
1.46k
    felem_assign(x_out, nq[0]);
1578
1.46k
    felem_assign(y_out, nq[1]);
1579
1.46k
    felem_assign(z_out, nq[2]);
1580
1.46k
}
1581
1582
/* Precomputation for the group generator. */
1583
struct nistp521_pre_comp_st {
1584
    felem g_pre_comp[16][3];
1585
    CRYPTO_REF_COUNT references;
1586
    CRYPTO_RWLOCK *lock;
1587
};
1588
1589
const EC_METHOD *EC_GFp_nistp521_method(void)
1590
42.7k
{
1591
42.7k
    static const EC_METHOD ret = {
1592
42.7k
        EC_FLAGS_DEFAULT_OCT,
1593
42.7k
        NID_X9_62_prime_field,
1594
42.7k
        ossl_ec_GFp_nistp521_group_init,
1595
42.7k
        ossl_ec_GFp_simple_group_finish,
1596
42.7k
        ossl_ec_GFp_simple_group_clear_finish,
1597
42.7k
        ossl_ec_GFp_nist_group_copy,
1598
42.7k
        ossl_ec_GFp_nistp521_group_set_curve,
1599
42.7k
        ossl_ec_GFp_simple_group_get_curve,
1600
42.7k
        ossl_ec_GFp_simple_group_get_degree,
1601
42.7k
        ossl_ec_group_simple_order_bits,
1602
42.7k
        ossl_ec_GFp_simple_group_check_discriminant,
1603
42.7k
        ossl_ec_GFp_simple_point_init,
1604
42.7k
        ossl_ec_GFp_simple_point_finish,
1605
42.7k
        ossl_ec_GFp_simple_point_clear_finish,
1606
42.7k
        ossl_ec_GFp_simple_point_copy,
1607
42.7k
        ossl_ec_GFp_simple_point_set_to_infinity,
1608
42.7k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1609
42.7k
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1610
42.7k
        0 /* point_set_compressed_coordinates */,
1611
42.7k
        0 /* point2oct */,
1612
42.7k
        0 /* oct2point */,
1613
42.7k
        ossl_ec_GFp_simple_add,
1614
42.7k
        ossl_ec_GFp_simple_dbl,
1615
42.7k
        ossl_ec_GFp_simple_invert,
1616
42.7k
        ossl_ec_GFp_simple_is_at_infinity,
1617
42.7k
        ossl_ec_GFp_simple_is_on_curve,
1618
42.7k
        ossl_ec_GFp_simple_cmp,
1619
42.7k
        ossl_ec_GFp_simple_make_affine,
1620
42.7k
        ossl_ec_GFp_simple_points_make_affine,
1621
42.7k
        ossl_ec_GFp_nistp521_points_mul,
1622
42.7k
        ossl_ec_GFp_nistp521_precompute_mult,
1623
42.7k
        ossl_ec_GFp_nistp521_have_precompute_mult,
1624
42.7k
        ossl_ec_GFp_nist_field_mul,
1625
42.7k
        ossl_ec_GFp_nist_field_sqr,
1626
42.7k
        0 /* field_div */,
1627
42.7k
        ossl_ec_GFp_simple_field_inv,
1628
42.7k
        0 /* field_encode */,
1629
42.7k
        0 /* field_decode */,
1630
42.7k
        0, /* field_set_to_one */
1631
42.7k
        ossl_ec_key_simple_priv2oct,
1632
42.7k
        ossl_ec_key_simple_oct2priv,
1633
42.7k
        0, /* set private */
1634
42.7k
        ossl_ec_key_simple_generate_key,
1635
42.7k
        ossl_ec_key_simple_check_key,
1636
42.7k
        ossl_ec_key_simple_generate_public_key,
1637
42.7k
        0, /* keycopy */
1638
42.7k
        0, /* keyfinish */
1639
42.7k
        ossl_ecdh_simple_compute_key,
1640
42.7k
        ossl_ecdsa_simple_sign_setup,
1641
42.7k
        ossl_ecdsa_simple_sign_sig,
1642
42.7k
        ossl_ecdsa_simple_verify_sig,
1643
42.7k
        0, /* field_inverse_mod_ord */
1644
42.7k
        0, /* blind_coordinates */
1645
42.7k
        0, /* ladder_pre */
1646
42.7k
        0, /* ladder_step */
1647
42.7k
        0 /* ladder_post */
1648
42.7k
    };
1649
1650
42.7k
    return &ret;
1651
42.7k
}
1652
1653
/******************************************************************************/
1654
/*
1655
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1656
 */
1657
1658
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1659
0
{
1660
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1661
1662
0
    if (ret == NULL) {
1663
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1664
0
        return ret;
1665
0
    }
1666
1667
0
    ret->references = 1;
1668
1669
0
    ret->lock = CRYPTO_THREAD_lock_new();
1670
0
    if (ret->lock == NULL) {
1671
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1672
0
        OPENSSL_free(ret);
1673
0
        return NULL;
1674
0
    }
1675
0
    return ret;
1676
0
}
1677
1678
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1679
0
{
1680
0
    int i;
1681
0
    if (p != NULL)
1682
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1683
0
    return p;
1684
0
}
1685
1686
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1687
0
{
1688
0
    int i;
1689
1690
0
    if (p == NULL)
1691
0
        return;
1692
1693
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1694
0
    REF_PRINT_COUNT("EC_nistp521", p);
1695
0
    if (i > 0)
1696
0
        return;
1697
0
    REF_ASSERT_ISNT(i < 0);
1698
1699
0
    CRYPTO_THREAD_lock_free(p->lock);
1700
0
    OPENSSL_free(p);
1701
0
}
1702
1703
/******************************************************************************/
1704
/*
1705
 * OPENSSL EC_METHOD FUNCTIONS
1706
 */
1707
1708
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1709
85.3k
{
1710
85.3k
    int ret;
1711
85.3k
    ret = ossl_ec_GFp_simple_group_init(group);
1712
85.3k
    group->a_is_minus3 = 1;
1713
85.3k
    return ret;
1714
85.3k
}
1715
1716
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1717
    const BIGNUM *a, const BIGNUM *b,
1718
    BN_CTX *ctx)
1719
42.7k
{
1720
42.7k
    int ret = 0;
1721
42.7k
    BIGNUM *curve_p, *curve_a, *curve_b;
1722
42.7k
#ifndef FIPS_MODULE
1723
42.7k
    BN_CTX *new_ctx = NULL;
1724
1725
42.7k
    if (ctx == NULL)
1726
0
        ctx = new_ctx = BN_CTX_new();
1727
42.7k
#endif
1728
42.7k
    if (ctx == NULL)
1729
0
        return 0;
1730
1731
42.7k
    BN_CTX_start(ctx);
1732
42.7k
    curve_p = BN_CTX_get(ctx);
1733
42.7k
    curve_a = BN_CTX_get(ctx);
1734
42.7k
    curve_b = BN_CTX_get(ctx);
1735
42.7k
    if (curve_b == NULL)
1736
0
        goto err;
1737
42.7k
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1738
42.7k
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1739
42.7k
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1740
42.7k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1741
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1742
0
        goto err;
1743
0
    }
1744
42.7k
    group->field_mod_func = BN_nist_mod_521;
1745
42.7k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1746
42.7k
err:
1747
42.7k
    BN_CTX_end(ctx);
1748
42.7k
#ifndef FIPS_MODULE
1749
42.7k
    BN_CTX_free(new_ctx);
1750
42.7k
#endif
1751
42.7k
    return ret;
1752
42.7k
}
1753
1754
/*
1755
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1756
 * (X/Z^2, Y/Z^3)
1757
 */
1758
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1759
    const EC_POINT *point,
1760
    BIGNUM *x, BIGNUM *y,
1761
    BN_CTX *ctx)
1762
1.57k
{
1763
1.57k
    felem z1, z2, x_in, y_in, x_out, y_out;
1764
1.57k
    largefelem tmp;
1765
1766
1.57k
    if (EC_POINT_is_at_infinity(group, point)) {
1767
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1768
0
        return 0;
1769
0
    }
1770
1.57k
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || (!BN_to_felem(z1, point->Z)))
1771
0
        return 0;
1772
1.57k
    felem_inv(z2, z1);
1773
1.57k
    felem_square(tmp, z2);
1774
1.57k
    felem_reduce(z1, tmp);
1775
1.57k
    felem_mul(tmp, x_in, z1);
1776
1.57k
    felem_reduce(x_in, tmp);
1777
1.57k
    felem_contract(x_out, x_in);
1778
1.57k
    if (x != NULL) {
1779
1.57k
        if (!felem_to_BN(x, x_out)) {
1780
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1781
0
            return 0;
1782
0
        }
1783
1.57k
    }
1784
1.57k
    felem_mul(tmp, z1, z2);
1785
1.57k
    felem_reduce(z1, tmp);
1786
1.57k
    felem_mul(tmp, y_in, z1);
1787
1.57k
    felem_reduce(y_in, tmp);
1788
1.57k
    felem_contract(y_out, y_in);
1789
1.57k
    if (y != NULL) {
1790
1.49k
        if (!felem_to_BN(y, y_out)) {
1791
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1792
0
            return 0;
1793
0
        }
1794
1.49k
    }
1795
1.57k
    return 1;
1796
1.57k
}
1797
1798
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1799
static void make_points_affine(size_t num, felem points[][3],
1800
    felem tmp_felems[])
1801
0
{
1802
    /*
1803
     * Runs in constant time, unless an input is the point at infinity (which
1804
     * normally shouldn't happen).
1805
     */
1806
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1807
0
        points,
1808
0
        sizeof(felem),
1809
0
        tmp_felems,
1810
0
        (void (*)(void *))felem_one,
1811
0
        felem_is_zero_int,
1812
0
        (void (*)(void *, const void *))
1813
0
            felem_assign,
1814
0
        (void (*)(void *, const void *))
1815
0
            felem_square_reduce,
1816
0
        (void (*)(void *,
1817
0
            const void
1818
0
                *,
1819
0
            const void
1820
0
                *))
1821
0
            felem_mul_reduce,
1822
0
        (void (*)(void *, const void *))
1823
0
            felem_inv,
1824
0
        (void (*)(void *, const void *))
1825
0
            felem_contract);
1826
0
}
1827
1828
/*
1829
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1830
 * values Result is stored in r (r can equal one of the inputs).
1831
 */
1832
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1833
    const BIGNUM *scalar, size_t num,
1834
    const EC_POINT *points[],
1835
    const BIGNUM *scalars[], BN_CTX *ctx)
1836
1.46k
{
1837
1.46k
    int ret = 0;
1838
1.46k
    int j;
1839
1.46k
    int mixed = 0;
1840
1.46k
    BIGNUM *x, *y, *z, *tmp_scalar;
1841
1.46k
    felem_bytearray g_secret;
1842
1.46k
    felem_bytearray *secrets = NULL;
1843
1.46k
    felem(*pre_comp)[17][3] = NULL;
1844
1.46k
    felem *tmp_felems = NULL;
1845
1.46k
    unsigned i;
1846
1.46k
    int num_bytes;
1847
1.46k
    int have_pre_comp = 0;
1848
1.46k
    size_t num_points = num;
1849
1.46k
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1850
1.46k
    NISTP521_PRE_COMP *pre = NULL;
1851
1.46k
    felem(*g_pre_comp)[3] = NULL;
1852
1.46k
    EC_POINT *generator = NULL;
1853
1.46k
    const EC_POINT *p = NULL;
1854
1.46k
    const BIGNUM *p_scalar = NULL;
1855
1856
1.46k
    BN_CTX_start(ctx);
1857
1.46k
    x = BN_CTX_get(ctx);
1858
1.46k
    y = BN_CTX_get(ctx);
1859
1.46k
    z = BN_CTX_get(ctx);
1860
1.46k
    tmp_scalar = BN_CTX_get(ctx);
1861
1.46k
    if (tmp_scalar == NULL)
1862
0
        goto err;
1863
1864
1.46k
    if (scalar != NULL) {
1865
1.33k
        pre = group->pre_comp.nistp521;
1866
1.33k
        if (pre)
1867
            /* we have precomputation, try to use it */
1868
0
            g_pre_comp = &pre->g_pre_comp[0];
1869
1.33k
        else
1870
            /* try to use the standard precomputation */
1871
1.33k
            g_pre_comp = (felem(*)[3])gmul;
1872
1.33k
        generator = EC_POINT_new(group);
1873
1.33k
        if (generator == NULL)
1874
0
            goto err;
1875
        /* get the generator from precomputation */
1876
1.33k
        if (!felem_to_BN(x, g_pre_comp[1][0]) || !felem_to_BN(y, g_pre_comp[1][1]) || !felem_to_BN(z, g_pre_comp[1][2])) {
1877
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1878
0
            goto err;
1879
0
        }
1880
1.33k
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1881
1.33k
                generator,
1882
1.33k
                x, y, z, ctx))
1883
0
            goto err;
1884
1.33k
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1885
            /* precomputation matches generator */
1886
1.33k
            have_pre_comp = 1;
1887
0
        else
1888
            /*
1889
             * we don't have valid precomputation: treat the generator as a
1890
             * random point
1891
             */
1892
0
            num_points++;
1893
1.33k
    }
1894
1895
1.46k
    if (num_points > 0) {
1896
153
        if (num_points >= 2) {
1897
            /*
1898
             * unless we precompute multiples for just one point, converting
1899
             * those into affine form is time well spent
1900
             */
1901
0
            mixed = 1;
1902
0
        }
1903
153
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1904
153
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1905
153
        if (mixed)
1906
0
            tmp_felems = OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1907
153
        if ((secrets == NULL) || (pre_comp == NULL)
1908
153
            || (mixed && (tmp_felems == NULL))) {
1909
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1910
0
            goto err;
1911
0
        }
1912
1913
        /*
1914
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1915
         * i.e., they contribute nothing to the linear combination
1916
         */
1917
306
        for (i = 0; i < num_points; ++i) {
1918
153
            if (i == num) {
1919
                /*
1920
                 * we didn't have a valid precomputation, so we pick the
1921
                 * generator
1922
                 */
1923
0
                p = EC_GROUP_get0_generator(group);
1924
0
                p_scalar = scalar;
1925
153
            } else {
1926
                /* the i^th point */
1927
153
                p = points[i];
1928
153
                p_scalar = scalars[i];
1929
153
            }
1930
153
            if ((p_scalar != NULL) && (p != NULL)) {
1931
                /* reduce scalar to 0 <= scalar < 2^521 */
1932
153
                if ((BN_num_bits(p_scalar) > 521)
1933
153
                    || (BN_is_negative(p_scalar))) {
1934
                    /*
1935
                     * this is an unusual input, and we don't guarantee
1936
                     * constant-timeness
1937
                     */
1938
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1939
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1940
0
                        goto err;
1941
0
                    }
1942
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1943
0
                        secrets[i], sizeof(secrets[i]));
1944
153
                } else {
1945
153
                    num_bytes = BN_bn2lebinpad(p_scalar,
1946
153
                        secrets[i], sizeof(secrets[i]));
1947
153
                }
1948
153
                if (num_bytes < 0) {
1949
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1950
0
                    goto err;
1951
0
                }
1952
                /* precompute multiples */
1953
153
                if ((!BN_to_felem(x_out, p->X)) || (!BN_to_felem(y_out, p->Y)) || (!BN_to_felem(z_out, p->Z)))
1954
0
                    goto err;
1955
153
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1956
153
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1957
153
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1958
2.44k
                for (j = 2; j <= 16; ++j) {
1959
2.29k
                    if (j & 1) {
1960
1.07k
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1961
1.07k
                            pre_comp[i][j][2], pre_comp[i][1][0],
1962
1.07k
                            pre_comp[i][1][1], pre_comp[i][1][2], 0,
1963
1.07k
                            pre_comp[i][j - 1][0],
1964
1.07k
                            pre_comp[i][j - 1][1],
1965
1.07k
                            pre_comp[i][j - 1][2]);
1966
1.22k
                    } else {
1967
1.22k
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1968
1.22k
                            pre_comp[i][j][2], pre_comp[i][j / 2][0],
1969
1.22k
                            pre_comp[i][j / 2][1],
1970
1.22k
                            pre_comp[i][j / 2][2]);
1971
1.22k
                    }
1972
2.29k
                }
1973
153
            }
1974
153
        }
1975
153
        if (mixed)
1976
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1977
153
    }
1978
1979
    /* the scalar for the generator */
1980
1.46k
    if ((scalar != NULL) && (have_pre_comp)) {
1981
1.33k
        memset(g_secret, 0, sizeof(g_secret));
1982
        /* reduce scalar to 0 <= scalar < 2^521 */
1983
1.33k
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
1984
            /*
1985
             * this is an unusual input, and we don't guarantee
1986
             * constant-timeness
1987
             */
1988
48
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1989
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1990
0
                goto err;
1991
0
            }
1992
48
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1993
1.28k
        } else {
1994
1.28k
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1995
1.28k
        }
1996
        /* do the multiplication with generator precomputation */
1997
1.33k
        batch_mul(x_out, y_out, z_out,
1998
1.33k
            (const felem_bytearray(*))secrets, num_points,
1999
1.33k
            g_secret,
2000
1.33k
            mixed, (const felem(*)[17][3])pre_comp,
2001
1.33k
            (const felem(*)[3])g_pre_comp);
2002
1.33k
    } else {
2003
        /* do the multiplication without generator precomputation */
2004
126
        batch_mul(x_out, y_out, z_out,
2005
126
            (const felem_bytearray(*))secrets, num_points,
2006
126
            NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2007
126
    }
2008
    /* reduce the output to its unique minimal representation */
2009
1.46k
    felem_contract(x_in, x_out);
2010
1.46k
    felem_contract(y_in, y_out);
2011
1.46k
    felem_contract(z_in, z_out);
2012
1.46k
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || (!felem_to_BN(z, z_in))) {
2013
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2014
0
        goto err;
2015
0
    }
2016
1.46k
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2017
1.46k
        ctx);
2018
2019
1.46k
err:
2020
1.46k
    BN_CTX_end(ctx);
2021
1.46k
    EC_POINT_free(generator);
2022
1.46k
    OPENSSL_free(secrets);
2023
1.46k
    OPENSSL_free(pre_comp);
2024
1.46k
    OPENSSL_free(tmp_felems);
2025
1.46k
    return ret;
2026
1.46k
}
2027
2028
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2029
0
{
2030
0
    int ret = 0;
2031
0
    NISTP521_PRE_COMP *pre = NULL;
2032
0
    int i, j;
2033
0
    BIGNUM *x, *y;
2034
0
    EC_POINT *generator = NULL;
2035
0
    felem tmp_felems[16];
2036
0
#ifndef FIPS_MODULE
2037
0
    BN_CTX *new_ctx = NULL;
2038
0
#endif
2039
2040
    /* throw away old precomputation */
2041
0
    EC_pre_comp_free(group);
2042
2043
0
#ifndef FIPS_MODULE
2044
0
    if (ctx == NULL)
2045
0
        ctx = new_ctx = BN_CTX_new();
2046
0
#endif
2047
0
    if (ctx == NULL)
2048
0
        return 0;
2049
2050
0
    BN_CTX_start(ctx);
2051
0
    x = BN_CTX_get(ctx);
2052
0
    y = BN_CTX_get(ctx);
2053
0
    if (y == NULL)
2054
0
        goto err;
2055
    /* get the generator */
2056
0
    if (group->generator == NULL)
2057
0
        goto err;
2058
0
    generator = EC_POINT_new(group);
2059
0
    if (generator == NULL)
2060
0
        goto err;
2061
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2062
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2063
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2064
0
        goto err;
2065
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2066
0
        goto err;
2067
    /*
2068
     * if the generator is the standard one, use built-in precomputation
2069
     */
2070
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2071
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2072
0
        goto done;
2073
0
    }
2074
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) || (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) || (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2075
0
        goto err;
2076
    /* compute 2^130*G, 2^260*G, 2^390*G */
2077
0
    for (i = 1; i <= 4; i <<= 1) {
2078
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2079
0
            pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2080
0
            pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2081
0
        for (j = 0; j < 129; ++j) {
2082
0
            point_double(pre->g_pre_comp[2 * i][0],
2083
0
                pre->g_pre_comp[2 * i][1],
2084
0
                pre->g_pre_comp[2 * i][2],
2085
0
                pre->g_pre_comp[2 * i][0],
2086
0
                pre->g_pre_comp[2 * i][1],
2087
0
                pre->g_pre_comp[2 * i][2]);
2088
0
        }
2089
0
    }
2090
    /* g_pre_comp[0] is the point at infinity */
2091
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2092
    /* the remaining multiples */
2093
    /* 2^130*G + 2^260*G */
2094
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2095
0
        pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2096
0
        pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2097
0
        0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2098
0
        pre->g_pre_comp[2][2]);
2099
    /* 2^130*G + 2^390*G */
2100
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2101
0
        pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2102
0
        pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2103
0
        0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2104
0
        pre->g_pre_comp[2][2]);
2105
    /* 2^260*G + 2^390*G */
2106
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2107
0
        pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2108
0
        pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2109
0
        0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2110
0
        pre->g_pre_comp[4][2]);
2111
    /* 2^130*G + 2^260*G + 2^390*G */
2112
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2113
0
        pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2114
0
        pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2115
0
        0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2116
0
        pre->g_pre_comp[2][2]);
2117
0
    for (i = 1; i < 8; ++i) {
2118
        /* odd multiples: add G */
2119
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2120
0
            pre->g_pre_comp[2 * i + 1][1],
2121
0
            pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2122
0
            pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2123
0
            pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2124
0
            pre->g_pre_comp[1][2]);
2125
0
    }
2126
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2127
2128
0
done:
2129
0
    SETPRECOMP(group, nistp521, pre);
2130
0
    ret = 1;
2131
0
    pre = NULL;
2132
0
err:
2133
0
    BN_CTX_end(ctx);
2134
0
    EC_POINT_free(generator);
2135
0
#ifndef FIPS_MODULE
2136
0
    BN_CTX_free(new_ctx);
2137
0
#endif
2138
0
    EC_nistp521_pre_comp_free(pre);
2139
0
    return ret;
2140
0
}
2141
2142
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2143
0
{
2144
    return HAVEPRECOMP(group, nistp521);
2145
0
}