Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl30/crypto/ec/ecp_nistz256.c
Line
Count
Source
1
/*
2
 * Copyright 2014-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4
 * Copyright (c) 2015, CloudFlare, Inc.
5
 *
6
 * Licensed under the Apache License 2.0 (the "License").  You may not use
7
 * this file except in compliance with the License.  You can obtain a copy
8
 * in the file LICENSE in the source distribution or at
9
 * https://www.openssl.org/source/license.html
10
 *
11
 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
12
 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
13
 * (2) University of Haifa, Israel
14
 * (3) CloudFlare, Inc.
15
 *
16
 * Reference:
17
 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
18
 *                          256 Bit Primes"
19
 */
20
21
/*
22
 * ECDSA low level APIs are deprecated for public use, but still ok for
23
 * internal use.
24
 */
25
#include "internal/deprecated.h"
26
27
#include <string.h>
28
29
#include "internal/cryptlib.h"
30
#include "crypto/bn.h"
31
#include "ec_local.h"
32
#include "internal/refcount.h"
33
34
#if BN_BITS2 != 64
35
#define TOBN(hi, lo) lo, hi
36
#else
37
62.8k
#define TOBN(hi, lo) ((BN_ULONG)hi << 32 | lo)
38
#endif
39
40
#if defined(__GNUC__)
41
19.6k
#define ALIGN32 __attribute((aligned(32)))
42
#elif defined(_MSC_VER)
43
#define ALIGN32 __declspec(align(32))
44
#else
45
#define ALIGN32
46
#endif
47
48
4.33k
#define ALIGNPTR(p, N) ((unsigned char *)p + N - (size_t)p % N)
49
1.73M
#define P256_LIMBS (256 / BN_BITS2)
50
51
typedef unsigned short u16;
52
53
typedef struct {
54
    BN_ULONG X[P256_LIMBS];
55
    BN_ULONG Y[P256_LIMBS];
56
    BN_ULONG Z[P256_LIMBS];
57
} P256_POINT;
58
59
typedef struct {
60
    BN_ULONG X[P256_LIMBS];
61
    BN_ULONG Y[P256_LIMBS];
62
} P256_POINT_AFFINE;
63
64
typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
65
66
/* structure for precomputed multiples of the generator */
67
struct nistz256_pre_comp_st {
68
    const EC_GROUP *group; /* Parent EC_GROUP object */
69
    size_t w; /* Window size */
70
    /*
71
     * Constant time access to the X and Y coordinates of the pre-computed,
72
     * generator multiplies, in the Montgomery domain. Pre-calculated
73
     * multiplies are stored in affine form.
74
     */
75
    PRECOMP256_ROW *precomp;
76
    void *precomp_storage;
77
    CRYPTO_REF_COUNT references;
78
    CRYPTO_RWLOCK *lock;
79
};
80
81
/* Functions implemented in assembly */
82
/*
83
 * Most of below mentioned functions *preserve* the property of inputs
84
 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
85
 * inputs are fully reduced, then output is too. Note that reverse is
86
 * not true, in sense that given partially reduced inputs output can be
87
 * either, not unlikely reduced. And "most" in first sentence refers to
88
 * the fact that given the calculations flow one can tolerate that
89
 * addition, 1st function below, produces partially reduced result *if*
90
 * multiplications by 2 and 3, which customarily use addition, fully
91
 * reduce it. This effectively gives two options: a) addition produces
92
 * fully reduced result [as long as inputs are, just like remaining
93
 * functions]; b) addition is allowed to produce partially reduced
94
 * result, but multiplications by 2 and 3 perform additional reduction
95
 * step. Choice between the two can be platform-specific, but it was a)
96
 * in all cases so far...
97
 */
98
/* Modular add: res = a+b mod P   */
99
void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
100
    const BN_ULONG a[P256_LIMBS],
101
    const BN_ULONG b[P256_LIMBS]);
102
/* Modular mul by 2: res = 2*a mod P */
103
void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
104
    const BN_ULONG a[P256_LIMBS]);
105
/* Modular mul by 3: res = 3*a mod P */
106
void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
107
    const BN_ULONG a[P256_LIMBS]);
108
109
/* Modular div by 2: res = a/2 mod P */
110
void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
111
    const BN_ULONG a[P256_LIMBS]);
112
/* Modular sub: res = a-b mod P   */
113
void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
114
    const BN_ULONG a[P256_LIMBS],
115
    const BN_ULONG b[P256_LIMBS]);
116
/* Modular neg: res = -a mod P    */
117
void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
118
/* Montgomery mul: res = a*b*2^-256 mod P */
119
void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
120
    const BN_ULONG a[P256_LIMBS],
121
    const BN_ULONG b[P256_LIMBS]);
122
/* Montgomery sqr: res = a*a*2^-256 mod P */
123
void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
124
    const BN_ULONG a[P256_LIMBS]);
125
/* Convert a number from Montgomery domain, by multiplying with 1 */
126
void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
127
    const BN_ULONG in[P256_LIMBS]);
128
/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
129
void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
130
    const BN_ULONG in[P256_LIMBS]);
131
/* Functions that perform constant time access to the precomputed tables */
132
void ecp_nistz256_scatter_w5(P256_POINT *val,
133
    const P256_POINT *in_t, int idx);
134
void ecp_nistz256_gather_w5(P256_POINT *val,
135
    const P256_POINT *in_t, int idx);
136
void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
137
    const P256_POINT_AFFINE *in_t, int idx);
138
void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
139
    const P256_POINT_AFFINE *in_t, int idx);
140
141
/* One converted into the Montgomery domain */
142
static const BN_ULONG ONE[P256_LIMBS] = {
143
    TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
144
    TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
145
};
146
147
static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
148
149
/* Precomputed tables for the default generator */
150
extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
151
152
/* Recode window to a signed digit, see ecp_nistputil.c for details */
153
static unsigned int _booth_recode_w5(unsigned int in)
154
225k
{
155
225k
    unsigned int s, d;
156
157
225k
    s = ~((in >> 5) - 1);
158
225k
    d = (1 << 6) - in - 1;
159
225k
    d = (d & s) | (in & ~s);
160
225k
    d = (d >> 1) + (d & 1);
161
162
225k
    return (d << 1) + (s & 1);
163
225k
}
164
165
static unsigned int _booth_recode_w7(unsigned int in)
166
607k
{
167
607k
    unsigned int s, d;
168
169
607k
    s = ~((in >> 7) - 1);
170
607k
    d = (1 << 8) - in - 1;
171
607k
    d = (d & s) | (in & ~s);
172
607k
    d = (d >> 1) + (d & 1);
173
174
607k
    return (d << 1) + (s & 1);
175
607k
}
176
177
static void copy_conditional(BN_ULONG dst[P256_LIMBS],
178
    const BN_ULONG src[P256_LIMBS], BN_ULONG move)
179
828k
{
180
828k
    BN_ULONG mask1 = 0 - move;
181
828k
    BN_ULONG mask2 = ~mask1;
182
183
828k
    dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
184
828k
    dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
185
828k
    dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
186
828k
    dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
187
828k
    if (P256_LIMBS == 8) {
188
0
        dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
189
0
        dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
190
0
        dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
191
0
        dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
192
0
    }
193
828k
}
194
195
static BN_ULONG is_zero(BN_ULONG in)
196
83.8k
{
197
83.8k
    in |= (0 - in);
198
83.8k
    in = ~in;
199
83.8k
    in >>= BN_BITS2 - 1;
200
83.8k
    return in;
201
83.8k
}
202
203
static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
204
    const BN_ULONG b[P256_LIMBS])
205
32.8k
{
206
32.8k
    BN_ULONG res;
207
208
32.8k
    res = a[0] ^ b[0];
209
32.8k
    res |= a[1] ^ b[1];
210
32.8k
    res |= a[2] ^ b[2];
211
32.8k
    res |= a[3] ^ b[3];
212
32.8k
    if (P256_LIMBS == 8) {
213
0
        res |= a[4] ^ b[4];
214
0
        res |= a[5] ^ b[5];
215
0
        res |= a[6] ^ b[6];
216
0
        res |= a[7] ^ b[7];
217
0
    }
218
219
32.8k
    return is_zero(res);
220
32.8k
}
221
222
static BN_ULONG is_one(const BIGNUM *z)
223
36.0k
{
224
36.0k
    BN_ULONG res = 0;
225
36.0k
    BN_ULONG *a = bn_get_words(z);
226
227
36.0k
    if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
228
34.5k
        res = a[0] ^ ONE[0];
229
34.5k
        res |= a[1] ^ ONE[1];
230
34.5k
        res |= a[2] ^ ONE[2];
231
34.5k
        res |= a[3] ^ ONE[3];
232
34.5k
        if (P256_LIMBS == 8) {
233
0
            res |= a[4] ^ ONE[4];
234
0
            res |= a[5] ^ ONE[5];
235
0
            res |= a[6] ^ ONE[6];
236
            /*
237
             * no check for a[7] (being zero) on 32-bit platforms,
238
             * because value of "one" takes only 7 limbs.
239
             */
240
0
        }
241
34.5k
        res = is_zero(res);
242
34.5k
    }
243
244
36.0k
    return res;
245
36.0k
}
246
247
/*
248
 * For reference, this macro is used only when new ecp_nistz256 assembly
249
 * module is being developed.  For example, configure with
250
 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
251
 * performing simplest arithmetic operations on 256-bit vectors. Then
252
 * work on implementation of higher-level functions performing point
253
 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
254
 * and never define it again. (The correct macro denoting presence of
255
 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
256
 */
257
#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
258
void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
259
void ecp_nistz256_point_add(P256_POINT *r,
260
    const P256_POINT *a, const P256_POINT *b);
261
void ecp_nistz256_point_add_affine(P256_POINT *r,
262
    const P256_POINT *a,
263
    const P256_POINT_AFFINE *b);
264
#else
265
/* Point double: r = 2*a */
266
static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
267
{
268
    BN_ULONG S[P256_LIMBS];
269
    BN_ULONG M[P256_LIMBS];
270
    BN_ULONG Zsqr[P256_LIMBS];
271
    BN_ULONG tmp0[P256_LIMBS];
272
273
    const BN_ULONG *in_x = a->X;
274
    const BN_ULONG *in_y = a->Y;
275
    const BN_ULONG *in_z = a->Z;
276
277
    BN_ULONG *res_x = r->X;
278
    BN_ULONG *res_y = r->Y;
279
    BN_ULONG *res_z = r->Z;
280
281
    ecp_nistz256_mul_by_2(S, in_y);
282
283
    ecp_nistz256_sqr_mont(Zsqr, in_z);
284
285
    ecp_nistz256_sqr_mont(S, S);
286
287
    ecp_nistz256_mul_mont(res_z, in_z, in_y);
288
    ecp_nistz256_mul_by_2(res_z, res_z);
289
290
    ecp_nistz256_add(M, in_x, Zsqr);
291
    ecp_nistz256_sub(Zsqr, in_x, Zsqr);
292
293
    ecp_nistz256_sqr_mont(res_y, S);
294
    ecp_nistz256_div_by_2(res_y, res_y);
295
296
    ecp_nistz256_mul_mont(M, M, Zsqr);
297
    ecp_nistz256_mul_by_3(M, M);
298
299
    ecp_nistz256_mul_mont(S, S, in_x);
300
    ecp_nistz256_mul_by_2(tmp0, S);
301
302
    ecp_nistz256_sqr_mont(res_x, M);
303
304
    ecp_nistz256_sub(res_x, res_x, tmp0);
305
    ecp_nistz256_sub(S, S, res_x);
306
307
    ecp_nistz256_mul_mont(S, S, M);
308
    ecp_nistz256_sub(res_y, S, res_y);
309
}
310
311
/* Point addition: r = a+b */
312
static void ecp_nistz256_point_add(P256_POINT *r,
313
    const P256_POINT *a, const P256_POINT *b)
314
{
315
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
316
    BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
317
    BN_ULONG Z1sqr[P256_LIMBS];
318
    BN_ULONG Z2sqr[P256_LIMBS];
319
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
320
    BN_ULONG Hsqr[P256_LIMBS];
321
    BN_ULONG Rsqr[P256_LIMBS];
322
    BN_ULONG Hcub[P256_LIMBS];
323
324
    BN_ULONG res_x[P256_LIMBS];
325
    BN_ULONG res_y[P256_LIMBS];
326
    BN_ULONG res_z[P256_LIMBS];
327
328
    BN_ULONG in1infty, in2infty;
329
330
    const BN_ULONG *in1_x = a->X;
331
    const BN_ULONG *in1_y = a->Y;
332
    const BN_ULONG *in1_z = a->Z;
333
334
    const BN_ULONG *in2_x = b->X;
335
    const BN_ULONG *in2_y = b->Y;
336
    const BN_ULONG *in2_z = b->Z;
337
338
    /*
339
     * Infinity in encoded as (,,0)
340
     */
341
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
342
    if (P256_LIMBS == 8)
343
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
344
345
    in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
346
    if (P256_LIMBS == 8)
347
        in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
348
349
    in1infty = is_zero(in1infty);
350
    in2infty = is_zero(in2infty);
351
352
    ecp_nistz256_sqr_mont(Z2sqr, in2_z); /* Z2^2 */
353
    ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
354
355
    ecp_nistz256_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */
356
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
357
358
    ecp_nistz256_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */
359
    ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
360
    ecp_nistz256_sub(R, S2, S1); /* R = S2 - S1 */
361
362
    ecp_nistz256_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */
363
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
364
    ecp_nistz256_sub(H, U2, U1); /* H = U2 - U1 */
365
366
    /*
367
     * The formulae are incorrect if the points are equal so we check for
368
     * this and do doubling if this happens.
369
     *
370
     * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
371
     * that are bound to the affine coordinates (xi, yi) by the following
372
     * equations:
373
     *     - xi = Xi / (Zi)^2
374
     *     - y1 = Yi / (Zi)^3
375
     *
376
     * For the sake of optimization, the algorithm operates over
377
     * intermediate variables U1, U2 and S1, S2 that are derived from
378
     * the projective coordinates:
379
     *     - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
380
     *     - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
381
     *
382
     * It is easy to prove that is_equal(U1, U2) implies that the affine
383
     * x-coordinates are equal, or either point is at infinity.
384
     * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
385
     * equal, or either point is at infinity.
386
     *
387
     * The special case of either point being the point at infinity (Z1 or Z2
388
     * is zero), is handled separately later on in this function, so we avoid
389
     * jumping to point_double here in those special cases.
390
     *
391
     * When both points are inverse of each other, we know that the affine
392
     * x-coordinates are equal, and the y-coordinates have different sign.
393
     * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
394
     * will equal 0, thus the result is infinity, if we simply let this
395
     * function continue normally.
396
     *
397
     * We use bitwise operations to avoid potential side-channels introduced by
398
     * the short-circuiting behaviour of boolean operators.
399
     */
400
    if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
401
        /*
402
         * This is obviously not constant-time but it should never happen during
403
         * single point multiplication, so there is no timing leak for ECDH or
404
         * ECDSA signing.
405
         */
406
        ecp_nistz256_point_double(r, a);
407
        return;
408
    }
409
410
    ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
411
    ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
412
    ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
413
    ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
414
    ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
415
416
    ecp_nistz256_mul_mont(U2, U1, Hsqr); /* U1*H^2 */
417
    ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
418
419
    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
420
    ecp_nistz256_sub(res_x, res_x, Hcub);
421
422
    ecp_nistz256_sub(res_y, U2, res_x);
423
424
    ecp_nistz256_mul_mont(S2, S1, Hcub);
425
    ecp_nistz256_mul_mont(res_y, R, res_y);
426
    ecp_nistz256_sub(res_y, res_y, S2);
427
428
    copy_conditional(res_x, in2_x, in1infty);
429
    copy_conditional(res_y, in2_y, in1infty);
430
    copy_conditional(res_z, in2_z, in1infty);
431
432
    copy_conditional(res_x, in1_x, in2infty);
433
    copy_conditional(res_y, in1_y, in2infty);
434
    copy_conditional(res_z, in1_z, in2infty);
435
436
    memcpy(r->X, res_x, sizeof(res_x));
437
    memcpy(r->Y, res_y, sizeof(res_y));
438
    memcpy(r->Z, res_z, sizeof(res_z));
439
}
440
441
/* Point addition when b is known to be affine: r = a+b */
442
static void ecp_nistz256_point_add_affine(P256_POINT *r,
443
    const P256_POINT *a,
444
    const P256_POINT_AFFINE *b)
445
{
446
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
447
    BN_ULONG Z1sqr[P256_LIMBS];
448
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
449
    BN_ULONG Hsqr[P256_LIMBS];
450
    BN_ULONG Rsqr[P256_LIMBS];
451
    BN_ULONG Hcub[P256_LIMBS];
452
453
    BN_ULONG res_x[P256_LIMBS];
454
    BN_ULONG res_y[P256_LIMBS];
455
    BN_ULONG res_z[P256_LIMBS];
456
457
    BN_ULONG in1infty, in2infty;
458
459
    const BN_ULONG *in1_x = a->X;
460
    const BN_ULONG *in1_y = a->Y;
461
    const BN_ULONG *in1_z = a->Z;
462
463
    const BN_ULONG *in2_x = b->X;
464
    const BN_ULONG *in2_y = b->Y;
465
466
    /*
467
     * Infinity in encoded as (,,0)
468
     */
469
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
470
    if (P256_LIMBS == 8)
471
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
472
473
    /*
474
     * In affine representation we encode infinity as (0,0), which is
475
     * not on the curve, so it is OK
476
     */
477
    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] | in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
478
    if (P256_LIMBS == 8)
479
        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] | in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
480
481
    in1infty = is_zero(in1infty);
482
    in2infty = is_zero(in2infty);
483
484
    ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */
485
486
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */
487
    ecp_nistz256_sub(H, U2, in1_x); /* H = U2 - U1 */
488
489
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */
490
491
    ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */
492
493
    ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */
494
    ecp_nistz256_sub(R, S2, in1_y); /* R = S2 - S1 */
495
496
    ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */
497
    ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */
498
    ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */
499
500
    ecp_nistz256_mul_mont(U2, in1_x, Hsqr); /* U1*H^2 */
501
    ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */
502
503
    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
504
    ecp_nistz256_sub(res_x, res_x, Hcub);
505
    ecp_nistz256_sub(H, U2, res_x);
506
507
    ecp_nistz256_mul_mont(S2, in1_y, Hcub);
508
    ecp_nistz256_mul_mont(H, H, R);
509
    ecp_nistz256_sub(res_y, H, S2);
510
511
    copy_conditional(res_x, in2_x, in1infty);
512
    copy_conditional(res_x, in1_x, in2infty);
513
514
    copy_conditional(res_y, in2_y, in1infty);
515
    copy_conditional(res_y, in1_y, in2infty);
516
517
    copy_conditional(res_z, ONE, in1infty);
518
    copy_conditional(res_z, in1_z, in2infty);
519
520
    memcpy(r->X, res_x, sizeof(res_x));
521
    memcpy(r->Y, res_y, sizeof(res_y));
522
    memcpy(r->Z, res_z, sizeof(res_z));
523
}
524
#endif
525
526
/* r = in^-1 mod p */
527
static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
528
    const BN_ULONG in[P256_LIMBS])
529
123k
{
530
    /*
531
     * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
532
     * ffffffff ffffffff We use FLT and used poly-2 as exponent
533
     */
534
123k
    BN_ULONG p2[P256_LIMBS];
535
123k
    BN_ULONG p4[P256_LIMBS];
536
123k
    BN_ULONG p8[P256_LIMBS];
537
123k
    BN_ULONG p16[P256_LIMBS];
538
123k
    BN_ULONG p32[P256_LIMBS];
539
123k
    BN_ULONG res[P256_LIMBS];
540
123k
    int i;
541
542
123k
    ecp_nistz256_sqr_mont(res, in);
543
123k
    ecp_nistz256_mul_mont(p2, res, in); /* 3*p */
544
545
123k
    ecp_nistz256_sqr_mont(res, p2);
546
123k
    ecp_nistz256_sqr_mont(res, res);
547
123k
    ecp_nistz256_mul_mont(p4, res, p2); /* f*p */
548
549
123k
    ecp_nistz256_sqr_mont(res, p4);
550
123k
    ecp_nistz256_sqr_mont(res, res);
551
123k
    ecp_nistz256_sqr_mont(res, res);
552
123k
    ecp_nistz256_sqr_mont(res, res);
553
123k
    ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */
554
555
123k
    ecp_nistz256_sqr_mont(res, p8);
556
987k
    for (i = 0; i < 7; i++)
557
864k
        ecp_nistz256_sqr_mont(res, res);
558
123k
    ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */
559
560
123k
    ecp_nistz256_sqr_mont(res, p16);
561
1.97M
    for (i = 0; i < 15; i++)
562
1.85M
        ecp_nistz256_sqr_mont(res, res);
563
123k
    ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */
564
565
123k
    ecp_nistz256_sqr_mont(res, p32);
566
3.95M
    for (i = 0; i < 31; i++)
567
3.82M
        ecp_nistz256_sqr_mont(res, res);
568
123k
    ecp_nistz256_mul_mont(res, res, in);
569
570
15.9M
    for (i = 0; i < 32 * 4; i++)
571
15.8M
        ecp_nistz256_sqr_mont(res, res);
572
123k
    ecp_nistz256_mul_mont(res, res, p32);
573
574
4.07M
    for (i = 0; i < 32; i++)
575
3.95M
        ecp_nistz256_sqr_mont(res, res);
576
123k
    ecp_nistz256_mul_mont(res, res, p32);
577
578
2.09M
    for (i = 0; i < 16; i++)
579
1.97M
        ecp_nistz256_sqr_mont(res, res);
580
123k
    ecp_nistz256_mul_mont(res, res, p16);
581
582
1.11M
    for (i = 0; i < 8; i++)
583
987k
        ecp_nistz256_sqr_mont(res, res);
584
123k
    ecp_nistz256_mul_mont(res, res, p8);
585
586
123k
    ecp_nistz256_sqr_mont(res, res);
587
123k
    ecp_nistz256_sqr_mont(res, res);
588
123k
    ecp_nistz256_sqr_mont(res, res);
589
123k
    ecp_nistz256_sqr_mont(res, res);
590
123k
    ecp_nistz256_mul_mont(res, res, p4);
591
592
123k
    ecp_nistz256_sqr_mont(res, res);
593
123k
    ecp_nistz256_sqr_mont(res, res);
594
123k
    ecp_nistz256_mul_mont(res, res, p2);
595
596
123k
    ecp_nistz256_sqr_mont(res, res);
597
123k
    ecp_nistz256_sqr_mont(res, res);
598
123k
    ecp_nistz256_mul_mont(res, res, in);
599
600
123k
    memcpy(r, res, sizeof(res));
601
123k
}
602
603
/*
604
 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
605
 * returns one if it fits. Otherwise it returns zero.
606
 */
607
__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
608
    const BIGNUM *in)
609
391k
{
610
391k
    return bn_copy_words(out, in, P256_LIMBS);
611
391k
}
612
613
/* r = sum(scalar[i]*point[i]) */
614
__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
615
    P256_POINT *r,
616
    const BIGNUM **scalar,
617
    const EC_POINT **point,
618
    size_t num, BN_CTX *ctx)
619
4.33k
{
620
4.33k
    size_t i;
621
4.33k
    int j, ret = 0;
622
4.33k
    unsigned int idx;
623
4.33k
    unsigned char (*p_str)[33] = NULL;
624
4.33k
    const unsigned int window_size = 5;
625
4.33k
    const unsigned int mask = (1 << (window_size + 1)) - 1;
626
4.33k
    unsigned int wvalue;
627
4.33k
    P256_POINT *temp; /* place for 5 temporary points */
628
4.33k
    const BIGNUM **scalars = NULL;
629
4.33k
    P256_POINT(*table)
630
4.33k
    [16] = NULL;
631
4.33k
    void *table_storage = NULL;
632
633
4.33k
    if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
634
4.33k
        || (table_storage = OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
635
4.33k
        || (p_str = OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
636
4.33k
        || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
637
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
638
0
        goto err;
639
0
    }
640
641
4.33k
    table = (void *)ALIGNPTR(table_storage, 64);
642
4.33k
    temp = (P256_POINT *)(table + num);
643
644
8.67k
    for (i = 0; i < num; i++) {
645
4.33k
        P256_POINT *row = table[i];
646
647
        /* This is an unusual input, we don't guarantee constant-timeness. */
648
4.33k
        if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
649
0
            BIGNUM *mod;
650
651
0
            if ((mod = BN_CTX_get(ctx)) == NULL)
652
0
                goto err;
653
0
            if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
654
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
655
0
                goto err;
656
0
            }
657
0
            scalars[i] = mod;
658
0
        } else
659
4.33k
            scalars[i] = scalar[i];
660
661
21.6k
        for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
662
17.3k
            BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
663
664
17.3k
            p_str[i][j + 0] = (unsigned char)d;
665
17.3k
            p_str[i][j + 1] = (unsigned char)(d >> 8);
666
17.3k
            p_str[i][j + 2] = (unsigned char)(d >> 16);
667
17.3k
            p_str[i][j + 3] = (unsigned char)(d >>= 24);
668
17.3k
            if (BN_BYTES == 8) {
669
17.3k
                d >>= 8;
670
17.3k
                p_str[i][j + 4] = (unsigned char)d;
671
17.3k
                p_str[i][j + 5] = (unsigned char)(d >> 8);
672
17.3k
                p_str[i][j + 6] = (unsigned char)(d >> 16);
673
17.3k
                p_str[i][j + 7] = (unsigned char)(d >> 24);
674
17.3k
            }
675
17.3k
        }
676
8.86k
        for (; j < 33; j++)
677
4.52k
            p_str[i][j] = 0;
678
679
4.33k
        if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
680
4.33k
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
681
4.33k
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
682
0
            ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
683
0
            goto err;
684
0
        }
685
686
        /*
687
         * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
688
         * is not stored. All other values are actually stored with an offset
689
         * of -1 in table.
690
         */
691
692
4.33k
        ecp_nistz256_scatter_w5(row, &temp[0], 1);
693
4.33k
        ecp_nistz256_point_double(&temp[1], &temp[0]); /*1+1=2  */
694
4.33k
        ecp_nistz256_scatter_w5(row, &temp[1], 2);
695
4.33k
        ecp_nistz256_point_add(&temp[2], &temp[1], &temp[0]); /*2+1=3  */
696
4.33k
        ecp_nistz256_scatter_w5(row, &temp[2], 3);
697
4.33k
        ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*2=4  */
698
4.33k
        ecp_nistz256_scatter_w5(row, &temp[1], 4);
699
4.33k
        ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*3=6  */
700
4.33k
        ecp_nistz256_scatter_w5(row, &temp[2], 6);
701
4.33k
        ecp_nistz256_point_add(&temp[3], &temp[1], &temp[0]); /*4+1=5  */
702
4.33k
        ecp_nistz256_scatter_w5(row, &temp[3], 5);
703
4.33k
        ecp_nistz256_point_add(&temp[4], &temp[2], &temp[0]); /*6+1=7  */
704
4.33k
        ecp_nistz256_scatter_w5(row, &temp[4], 7);
705
4.33k
        ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*4=8  */
706
4.33k
        ecp_nistz256_scatter_w5(row, &temp[1], 8);
707
4.33k
        ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*6=12 */
708
4.33k
        ecp_nistz256_scatter_w5(row, &temp[2], 12);
709
4.33k
        ecp_nistz256_point_double(&temp[3], &temp[3]); /*2*5=10 */
710
4.33k
        ecp_nistz256_scatter_w5(row, &temp[3], 10);
711
4.33k
        ecp_nistz256_point_double(&temp[4], &temp[4]); /*2*7=14 */
712
4.33k
        ecp_nistz256_scatter_w5(row, &temp[4], 14);
713
4.33k
        ecp_nistz256_point_add(&temp[2], &temp[2], &temp[0]); /*12+1=13*/
714
4.33k
        ecp_nistz256_scatter_w5(row, &temp[2], 13);
715
4.33k
        ecp_nistz256_point_add(&temp[3], &temp[3], &temp[0]); /*10+1=11*/
716
4.33k
        ecp_nistz256_scatter_w5(row, &temp[3], 11);
717
4.33k
        ecp_nistz256_point_add(&temp[4], &temp[4], &temp[0]); /*14+1=15*/
718
4.33k
        ecp_nistz256_scatter_w5(row, &temp[4], 15);
719
4.33k
        ecp_nistz256_point_add(&temp[2], &temp[1], &temp[0]); /*8+1=9  */
720
4.33k
        ecp_nistz256_scatter_w5(row, &temp[2], 9);
721
4.33k
        ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*8=16 */
722
4.33k
        ecp_nistz256_scatter_w5(row, &temp[1], 16);
723
4.33k
    }
724
725
4.33k
    idx = 255;
726
727
4.33k
    wvalue = p_str[0][(idx - 1) / 8];
728
4.33k
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
729
730
    /*
731
     * We gather to temp[0], because we know it's position relative
732
     * to table
733
     */
734
4.33k
    ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
735
4.33k
    memcpy(r, &temp[0], sizeof(temp[0]));
736
737
225k
    while (idx >= 5) {
738
438k
        for (i = (idx == 255 ? 1 : 0); i < num; i++) {
739
216k
            unsigned int off = (idx - 1) / 8;
740
741
216k
            wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
742
216k
            wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
743
744
216k
            wvalue = _booth_recode_w5(wvalue);
745
746
216k
            ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
747
748
216k
            ecp_nistz256_neg(temp[1].Y, temp[0].Y);
749
216k
            copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
750
751
216k
            ecp_nistz256_point_add(r, r, &temp[0]);
752
216k
        }
753
754
221k
        idx -= window_size;
755
756
221k
        ecp_nistz256_point_double(r, r);
757
221k
        ecp_nistz256_point_double(r, r);
758
221k
        ecp_nistz256_point_double(r, r);
759
221k
        ecp_nistz256_point_double(r, r);
760
221k
        ecp_nistz256_point_double(r, r);
761
221k
    }
762
763
    /* Final window */
764
8.67k
    for (i = 0; i < num; i++) {
765
4.33k
        wvalue = p_str[i][0];
766
4.33k
        wvalue = (wvalue << 1) & mask;
767
768
4.33k
        wvalue = _booth_recode_w5(wvalue);
769
770
4.33k
        ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
771
772
4.33k
        ecp_nistz256_neg(temp[1].Y, temp[0].Y);
773
4.33k
        copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
774
775
4.33k
        ecp_nistz256_point_add(r, r, &temp[0]);
776
4.33k
    }
777
778
4.33k
    ret = 1;
779
4.33k
err:
780
4.33k
    OPENSSL_free(table_storage);
781
4.33k
    OPENSSL_free(p_str);
782
4.33k
    OPENSSL_free(scalars);
783
4.33k
    return ret;
784
4.33k
}
785
786
/* Coordinates of G, for which we have precomputed tables */
787
static const BN_ULONG def_xG[P256_LIMBS] = {
788
    TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
789
    TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
790
};
791
792
static const BN_ULONG def_yG[P256_LIMBS] = {
793
    TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
794
    TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
795
};
796
797
/*
798
 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
799
 * generator.
800
 */
801
static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
802
16.4k
{
803
16.4k
    return (bn_get_top(generator->X) == P256_LIMBS) && (bn_get_top(generator->Y) == P256_LIMBS) && is_equal(bn_get_words(generator->X), def_xG) && is_equal(bn_get_words(generator->Y), def_yG) && is_one(generator->Z);
804
16.4k
}
805
806
__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
807
0
{
808
    /*
809
     * We precompute a table for a Booth encoded exponent (wNAF) based
810
     * computation. Each table holds 64 values for safe access, with an
811
     * implicit value of infinity at index zero. We use window of size 7, and
812
     * therefore require ceil(256/7) = 37 tables.
813
     */
814
0
    const BIGNUM *order;
815
0
    EC_POINT *P = NULL, *T = NULL;
816
0
    const EC_POINT *generator;
817
0
    NISTZ256_PRE_COMP *pre_comp;
818
0
    BN_CTX *new_ctx = NULL;
819
0
    int i, j, k, ret = 0;
820
0
    size_t w;
821
822
0
    PRECOMP256_ROW *preComputedTable = NULL;
823
0
    unsigned char *precomp_storage = NULL;
824
825
    /* if there is an old NISTZ256_PRE_COMP object, throw it away */
826
0
    EC_pre_comp_free(group);
827
0
    generator = EC_GROUP_get0_generator(group);
828
0
    if (generator == NULL) {
829
0
        ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
830
0
        return 0;
831
0
    }
832
833
0
    if (ecp_nistz256_is_affine_G(generator)) {
834
        /*
835
         * No need to calculate tables for the standard generator because we
836
         * have them statically.
837
         */
838
0
        return 1;
839
0
    }
840
841
0
    if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
842
0
        return 0;
843
844
0
    if (ctx == NULL) {
845
0
        ctx = new_ctx = BN_CTX_new_ex(group->libctx);
846
0
        if (ctx == NULL)
847
0
            goto err;
848
0
    }
849
850
0
    BN_CTX_start(ctx);
851
852
0
    order = EC_GROUP_get0_order(group);
853
0
    if (order == NULL)
854
0
        goto err;
855
856
0
    if (BN_is_zero(order)) {
857
0
        ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
858
0
        goto err;
859
0
    }
860
861
0
    w = 7;
862
863
0
    if ((precomp_storage = OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
864
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
865
0
        goto err;
866
0
    }
867
868
0
    preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
869
870
0
    P = EC_POINT_new(group);
871
0
    T = EC_POINT_new(group);
872
0
    if (P == NULL || T == NULL)
873
0
        goto err;
874
875
    /*
876
     * The zero entry is implicitly infinity, and we skip it, storing other
877
     * values with -1 offset.
878
     */
879
0
    if (!EC_POINT_copy(T, generator))
880
0
        goto err;
881
882
0
    for (k = 0; k < 64; k++) {
883
0
        if (!EC_POINT_copy(P, T))
884
0
            goto err;
885
0
        for (j = 0; j < 37; j++) {
886
0
            P256_POINT_AFFINE temp;
887
            /*
888
             * It would be faster to use EC_POINTs_make_affine and
889
             * make multiple points affine at the same time.
890
             */
891
0
            if (group->meth->make_affine == NULL
892
0
                || !group->meth->make_affine(group, P, ctx))
893
0
                goto err;
894
0
            if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) || !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
895
0
                ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
896
0
                goto err;
897
0
            }
898
0
            ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
899
0
            for (i = 0; i < 7; i++) {
900
0
                if (!EC_POINT_dbl(group, P, P, ctx))
901
0
                    goto err;
902
0
            }
903
0
        }
904
0
        if (!EC_POINT_add(group, T, T, generator, ctx))
905
0
            goto err;
906
0
    }
907
908
0
    pre_comp->group = group;
909
0
    pre_comp->w = w;
910
0
    pre_comp->precomp = preComputedTable;
911
0
    pre_comp->precomp_storage = precomp_storage;
912
0
    precomp_storage = NULL;
913
0
    SETPRECOMP(group, nistz256, pre_comp);
914
0
    pre_comp = NULL;
915
0
    ret = 1;
916
917
0
err:
918
0
    BN_CTX_end(ctx);
919
0
    BN_CTX_free(new_ctx);
920
921
0
    EC_nistz256_pre_comp_free(pre_comp);
922
0
    OPENSSL_free(precomp_storage);
923
0
    EC_POINT_free(P);
924
0
    EC_POINT_free(T);
925
0
    return ret;
926
0
}
927
928
__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
929
    const P256_POINT_AFFINE *in,
930
    BN_CTX *ctx)
931
0
{
932
0
    int ret = 0;
933
934
0
    if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
935
0
        && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
936
0
        && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
937
0
        out->Z_is_one = 1;
938
939
0
    return ret;
940
0
}
941
942
/* r = scalar*G + sum(scalars[i]*points[i]) */
943
__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
944
    EC_POINT *r,
945
    const BIGNUM *scalar,
946
    size_t num,
947
    const EC_POINT *points[],
948
    const BIGNUM *scalars[], BN_CTX *ctx)
949
19.6k
{
950
19.6k
    int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
951
19.6k
    unsigned char p_str[33] = { 0 };
952
19.6k
    const PRECOMP256_ROW *preComputedTable = NULL;
953
19.6k
    const NISTZ256_PRE_COMP *pre_comp = NULL;
954
19.6k
    const EC_POINT *generator = NULL;
955
19.6k
    const BIGNUM **new_scalars = NULL;
956
19.6k
    const EC_POINT **new_points = NULL;
957
19.6k
    unsigned int idx = 0;
958
19.6k
    const unsigned int window_size = 7;
959
19.6k
    const unsigned int mask = (1 << (window_size + 1)) - 1;
960
19.6k
    unsigned int wvalue;
961
19.6k
    ALIGN32 union {
962
19.6k
        P256_POINT p;
963
19.6k
        P256_POINT_AFFINE a;
964
19.6k
    } t, p;
965
19.6k
    BIGNUM *tmp_scalar;
966
967
19.6k
    if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
968
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
969
0
        return 0;
970
0
    }
971
972
19.6k
    memset(&p, 0, sizeof(p));
973
19.6k
    BN_CTX_start(ctx);
974
975
19.6k
    if (scalar) {
976
16.4k
        generator = EC_GROUP_get0_generator(group);
977
16.4k
        if (generator == NULL) {
978
0
            ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
979
0
            goto err;
980
0
        }
981
982
        /* look if we can use precomputed multiples of generator */
983
16.4k
        pre_comp = group->pre_comp.nistz256;
984
985
16.4k
        if (pre_comp) {
986
            /*
987
             * If there is a precomputed table for the generator, check that
988
             * it was generated with the same generator.
989
             */
990
0
            EC_POINT *pre_comp_generator = EC_POINT_new(group);
991
0
            if (pre_comp_generator == NULL)
992
0
                goto err;
993
994
0
            ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
995
0
            if (!ecp_nistz256_set_from_affine(pre_comp_generator,
996
0
                    group, &p.a, ctx)) {
997
0
                EC_POINT_free(pre_comp_generator);
998
0
                goto err;
999
0
            }
1000
1001
0
            if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
1002
0
                preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
1003
1004
0
            EC_POINT_free(pre_comp_generator);
1005
0
        }
1006
1007
16.4k
        if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
1008
            /*
1009
             * If there is no precomputed data, but the generator is the
1010
             * default, a hardcoded table of precomputed data is used. This
1011
             * is because applications, such as Apache, do not use
1012
             * EC_KEY_precompute_mult.
1013
             */
1014
16.4k
            preComputedTable = ecp_nistz256_precomputed;
1015
16.4k
        }
1016
1017
16.4k
        if (preComputedTable) {
1018
16.4k
            BN_ULONG infty;
1019
1020
16.4k
            if ((BN_num_bits(scalar) > 256)
1021
15.1k
                || BN_is_negative(scalar)) {
1022
1.29k
                if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1023
0
                    goto err;
1024
1025
1.29k
                if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1026
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1027
0
                    goto err;
1028
0
                }
1029
1.29k
                scalar = tmp_scalar;
1030
1.29k
            }
1031
1032
80.2k
            for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
1033
63.8k
                BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
1034
1035
63.8k
                p_str[i + 0] = (unsigned char)d;
1036
63.8k
                p_str[i + 1] = (unsigned char)(d >> 8);
1037
63.8k
                p_str[i + 2] = (unsigned char)(d >> 16);
1038
63.8k
                p_str[i + 3] = (unsigned char)(d >>= 24);
1039
63.8k
                if (BN_BYTES == 8) {
1040
63.8k
                    d >>= 8;
1041
63.8k
                    p_str[i + 4] = (unsigned char)d;
1042
63.8k
                    p_str[i + 5] = (unsigned char)(d >> 8);
1043
63.8k
                    p_str[i + 6] = (unsigned char)(d >> 16);
1044
63.8k
                    p_str[i + 7] = (unsigned char)(d >> 24);
1045
63.8k
                }
1046
63.8k
            }
1047
1048
47.1k
            for (; i < 33; i++)
1049
30.7k
                p_str[i] = 0;
1050
1051
            /* First window */
1052
16.4k
            wvalue = (p_str[0] << 1) & mask;
1053
16.4k
            idx += window_size;
1054
1055
16.4k
            wvalue = _booth_recode_w7(wvalue);
1056
1057
16.4k
            ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
1058
16.4k
                wvalue >> 1);
1059
1060
16.4k
            ecp_nistz256_neg(p.p.Z, p.p.Y);
1061
16.4k
            copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1062
1063
            /*
1064
             * Since affine infinity is encoded as (0,0) and
1065
             * Jacobian is (,,0), we need to harmonize them
1066
             * by assigning "one" or zero to Z.
1067
             */
1068
16.4k
            infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] | p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
1069
16.4k
            if (P256_LIMBS == 8)
1070
0
                infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] | p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
1071
1072
16.4k
            infty = 0 - is_zero(infty);
1073
16.4k
            infty = ~infty;
1074
1075
16.4k
            p.p.Z[0] = ONE[0] & infty;
1076
16.4k
            p.p.Z[1] = ONE[1] & infty;
1077
16.4k
            p.p.Z[2] = ONE[2] & infty;
1078
16.4k
            p.p.Z[3] = ONE[3] & infty;
1079
16.4k
            if (P256_LIMBS == 8) {
1080
0
                p.p.Z[4] = ONE[4] & infty;
1081
0
                p.p.Z[5] = ONE[5] & infty;
1082
0
                p.p.Z[6] = ONE[6] & infty;
1083
0
                p.p.Z[7] = ONE[7] & infty;
1084
0
            }
1085
1086
607k
            for (i = 1; i < 37; i++) {
1087
591k
                unsigned int off = (idx - 1) / 8;
1088
591k
                wvalue = p_str[off] | p_str[off + 1] << 8;
1089
591k
                wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1090
591k
                idx += window_size;
1091
1092
591k
                wvalue = _booth_recode_w7(wvalue);
1093
1094
591k
                ecp_nistz256_gather_w7(&t.a,
1095
591k
                    preComputedTable[i], wvalue >> 1);
1096
1097
591k
                ecp_nistz256_neg(t.p.Z, t.a.Y);
1098
591k
                copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1099
1100
591k
                ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1101
591k
            }
1102
16.4k
        } else {
1103
0
            p_is_infinity = 1;
1104
0
            no_precomp_for_generator = 1;
1105
0
        }
1106
16.4k
    } else
1107
3.23k
        p_is_infinity = 1;
1108
1109
19.6k
    if (no_precomp_for_generator) {
1110
        /*
1111
         * Without a precomputed table for the generator, it has to be
1112
         * handled like a normal point.
1113
         */
1114
0
        new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
1115
0
        if (new_scalars == NULL) {
1116
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1117
0
            goto err;
1118
0
        }
1119
1120
0
        new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
1121
0
        if (new_points == NULL) {
1122
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1123
0
            goto err;
1124
0
        }
1125
1126
0
        memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1127
0
        new_scalars[num] = scalar;
1128
0
        memcpy(new_points, points, num * sizeof(EC_POINT *));
1129
0
        new_points[num] = generator;
1130
1131
0
        scalars = new_scalars;
1132
0
        points = new_points;
1133
0
        num++;
1134
0
    }
1135
1136
19.6k
    if (num) {
1137
4.33k
        P256_POINT *out = &t.p;
1138
4.33k
        if (p_is_infinity)
1139
3.23k
            out = &p.p;
1140
1141
4.33k
        if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1142
0
            goto err;
1143
1144
4.33k
        if (!p_is_infinity)
1145
1.10k
            ecp_nistz256_point_add(&p.p, &p.p, out);
1146
4.33k
    }
1147
1148
    /* Not constant-time, but we're only operating on the public output. */
1149
19.6k
    if (!bn_set_words(r->X, p.p.X, P256_LIMBS) || !bn_set_words(r->Y, p.p.Y, P256_LIMBS) || !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
1150
0
        goto err;
1151
0
    }
1152
19.6k
    r->Z_is_one = is_one(r->Z) & 1;
1153
1154
19.6k
    ret = 1;
1155
1156
19.6k
err:
1157
19.6k
    BN_CTX_end(ctx);
1158
19.6k
    OPENSSL_free(new_points);
1159
19.6k
    OPENSSL_free(new_scalars);
1160
19.6k
    return ret;
1161
19.6k
}
1162
1163
__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
1164
    const EC_POINT *point,
1165
    BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1166
123k
{
1167
123k
    BN_ULONG z_inv2[P256_LIMBS];
1168
123k
    BN_ULONG z_inv3[P256_LIMBS];
1169
123k
    BN_ULONG x_aff[P256_LIMBS];
1170
123k
    BN_ULONG y_aff[P256_LIMBS];
1171
123k
    BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
1172
123k
    BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
1173
1174
123k
    if (EC_POINT_is_at_infinity(group, point)) {
1175
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1176
0
        return 0;
1177
0
    }
1178
1179
123k
    if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) || !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) || !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
1180
0
        ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
1181
0
        return 0;
1182
0
    }
1183
1184
123k
    ecp_nistz256_mod_inverse(z_inv3, point_z);
1185
123k
    ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1186
123k
    ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1187
1188
123k
    if (x != NULL) {
1189
123k
        ecp_nistz256_from_mont(x_ret, x_aff);
1190
123k
        if (!bn_set_words(x, x_ret, P256_LIMBS))
1191
0
            return 0;
1192
123k
    }
1193
1194
123k
    if (y != NULL) {
1195
113k
        ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1196
113k
        ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
1197
113k
        ecp_nistz256_from_mont(y_ret, y_aff);
1198
113k
        if (!bn_set_words(y, y_ret, P256_LIMBS))
1199
0
            return 0;
1200
113k
    }
1201
1202
123k
    return 1;
1203
123k
}
1204
1205
static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
1206
0
{
1207
0
    NISTZ256_PRE_COMP *ret = NULL;
1208
1209
0
    if (!group)
1210
0
        return NULL;
1211
1212
0
    ret = OPENSSL_zalloc(sizeof(*ret));
1213
1214
0
    if (ret == NULL) {
1215
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1216
0
        return ret;
1217
0
    }
1218
1219
0
    ret->group = group;
1220
0
    ret->w = 6; /* default */
1221
0
    ret->references = 1;
1222
1223
0
    ret->lock = CRYPTO_THREAD_lock_new();
1224
0
    if (ret->lock == NULL) {
1225
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1226
0
        OPENSSL_free(ret);
1227
0
        return NULL;
1228
0
    }
1229
0
    return ret;
1230
0
}
1231
1232
NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
1233
0
{
1234
0
    int i;
1235
0
    if (p != NULL)
1236
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1237
0
    return p;
1238
0
}
1239
1240
void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
1241
0
{
1242
0
    int i;
1243
1244
0
    if (pre == NULL)
1245
0
        return;
1246
1247
0
    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
1248
0
    REF_PRINT_COUNT("EC_nistz256", pre);
1249
0
    if (i > 0)
1250
0
        return;
1251
0
    REF_ASSERT_ISNT(i < 0);
1252
1253
0
    OPENSSL_free(pre->precomp_storage);
1254
0
    CRYPTO_THREAD_lock_free(pre->lock);
1255
0
    OPENSSL_free(pre);
1256
0
}
1257
1258
static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
1259
0
{
1260
    /* There is a hard-coded table for the default generator. */
1261
0
    const EC_POINT *generator = EC_GROUP_get0_generator(group);
1262
1263
0
    if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1264
        /* There is a hard-coded table for the default generator. */
1265
0
        return 1;
1266
0
    }
1267
1268
0
    return HAVEPRECOMP(group, nistz256);
1269
0
}
1270
1271
#if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64) || defined(__powerpc64__) || defined(_ARCH_PP64) || defined(__aarch64__)
1272
/*
1273
 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
1274
 */
1275
void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
1276
    const BN_ULONG a[P256_LIMBS],
1277
    const BN_ULONG b[P256_LIMBS]);
1278
void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
1279
    const BN_ULONG a[P256_LIMBS],
1280
    BN_ULONG rep);
1281
1282
static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
1283
    const BIGNUM *x, BN_CTX *ctx)
1284
7.85k
{
1285
    /* RR = 2^512 mod ord(p256) */
1286
7.85k
    static const BN_ULONG RR[P256_LIMBS] = {
1287
7.85k
        TOBN(0x83244c95, 0xbe79eea2), TOBN(0x4699799c, 0x49bd6fa6),
1288
7.85k
        TOBN(0x2845b239, 0x2b6bec59), TOBN(0x66e12d94, 0xf3d95620)
1289
7.85k
    };
1290
    /* The constant 1 (unlike ONE that is one in Montgomery representation) */
1291
7.85k
    static const BN_ULONG one[P256_LIMBS] = {
1292
7.85k
        TOBN(0, 1), TOBN(0, 0), TOBN(0, 0), TOBN(0, 0)
1293
7.85k
    };
1294
    /*
1295
     * We don't use entry 0 in the table, so we omit it and address
1296
     * with -1 offset.
1297
     */
1298
7.85k
    BN_ULONG table[15][P256_LIMBS];
1299
7.85k
    BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
1300
7.85k
    int i, ret = 0;
1301
7.85k
    enum {
1302
7.85k
        i_1 = 0,
1303
7.85k
        i_10,
1304
7.85k
        i_11,
1305
7.85k
        i_101,
1306
7.85k
        i_111,
1307
7.85k
        i_1010,
1308
7.85k
        i_1111,
1309
7.85k
        i_10101,
1310
7.85k
        i_101010,
1311
7.85k
        i_101111,
1312
7.85k
        i_x6,
1313
7.85k
        i_x8,
1314
7.85k
        i_x16,
1315
7.85k
        i_x32
1316
7.85k
    };
1317
1318
    /*
1319
     * Catch allocation failure early.
1320
     */
1321
7.85k
    if (bn_wexpand(r, P256_LIMBS) == NULL) {
1322
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1323
0
        goto err;
1324
0
    }
1325
1326
7.85k
    if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
1327
0
        BIGNUM *tmp;
1328
1329
0
        if ((tmp = BN_CTX_get(ctx)) == NULL
1330
0
            || !BN_nnmod(tmp, x, group->order, ctx)) {
1331
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1332
0
            goto err;
1333
0
        }
1334
0
        x = tmp;
1335
0
    }
1336
1337
7.85k
    if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
1338
0
        ERR_raise(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
1339
0
        goto err;
1340
0
    }
1341
1342
7.85k
    ecp_nistz256_ord_mul_mont(table[0], t, RR);
1343
#if 0
1344
    /*
1345
     * Original sparse-then-fixed-window algorithm, retained for reference.
1346
     */
1347
    for (i = 2; i < 16; i += 2) {
1348
        ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
1349
        ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
1350
    }
1351
1352
    /*
1353
     * The top 128bit of the exponent are highly redudndant, so we
1354
     * perform an optimized flow
1355
     */
1356
    ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */
1357
    ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */
1358
1359
    ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */
1360
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */
1361
1362
    ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */
1363
    ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */
1364
1365
    ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */
1366
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */
1367
1368
    ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */
1369
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */
1370
1371
    /*
1372
     * The bottom 128 bit of the exponent are processed with fixed 4-bit window
1373
     */
1374
    for(i = 0; i < 32; i++) {
1375
        /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
1376
         * split into nibbles */
1377
        static const unsigned char expLo[32]  = {
1378
            0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
1379
            0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
1380
        };
1381
1382
        ecp_nistz256_ord_sqr_mont(out, out, 4);
1383
        /* The exponent is public, no need in constant-time access */
1384
        ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
1385
    }
1386
#else
1387
    /*
1388
     * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
1389
     *
1390
     * Even though this code path spares 12 squarings, 4.5%, and 13
1391
     * multiplications, 25%, on grand scale sign operation is not that
1392
     * much faster, not more that 2%...
1393
     */
1394
1395
    /* pre-calculate powers */
1396
7.85k
    ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
1397
1398
7.85k
    ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
1399
1400
7.85k
    ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
1401
1402
7.85k
    ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
1403
1404
7.85k
    ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
1405
1406
7.85k
    ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
1407
1408
7.85k
    ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
1409
7.85k
    ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
1410
1411
7.85k
    ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
1412
1413
7.85k
    ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
1414
1415
7.85k
    ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
1416
1417
7.85k
    ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
1418
7.85k
    ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
1419
1420
7.85k
    ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
1421
7.85k
    ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
1422
1423
7.85k
    ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
1424
7.85k
    ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
1425
1426
    /* calculations */
1427
7.85k
    ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
1428
7.85k
    ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
1429
1430
219k
    for (i = 0; i < 27; i++) {
1431
212k
        static const struct {
1432
212k
            unsigned char p, i;
1433
212k
        } chain[27] = {
1434
212k
            { 32, i_x32 }, { 6, i_101111 }, { 5, i_111 },
1435
212k
            { 4, i_11 }, { 5, i_1111 }, { 5, i_10101 },
1436
212k
            { 4, i_101 }, { 3, i_101 }, { 3, i_101 },
1437
212k
            { 5, i_111 }, { 9, i_101111 }, { 6, i_1111 },
1438
212k
            { 2, i_1 }, { 5, i_1 }, { 6, i_1111 },
1439
212k
            { 5, i_111 }, { 4, i_111 }, { 5, i_111 },
1440
212k
            { 5, i_101 }, { 3, i_11 }, { 10, i_101111 },
1441
212k
            { 2, i_11 }, { 5, i_11 }, { 5, i_11 },
1442
212k
            { 3, i_1 }, { 7, i_10101 }, { 6, i_1111 }
1443
212k
        };
1444
1445
212k
        ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
1446
212k
        ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
1447
212k
    }
1448
7.85k
#endif
1449
7.85k
    ecp_nistz256_ord_mul_mont(out, out, one);
1450
1451
    /*
1452
     * Can't fail, but check return code to be consistent anyway.
1453
     */
1454
7.85k
    if (!bn_set_words(r, out, P256_LIMBS))
1455
0
        goto err;
1456
1457
7.85k
    ret = 1;
1458
7.85k
err:
1459
7.85k
    return ret;
1460
7.85k
}
1461
#else
1462
#define ecp_nistz256_inv_mod_ord NULL
1463
#endif
1464
1465
const EC_METHOD *EC_GFp_nistz256_method(void)
1466
245k
{
1467
245k
    static const EC_METHOD ret = {
1468
245k
        EC_FLAGS_DEFAULT_OCT,
1469
245k
        NID_X9_62_prime_field,
1470
245k
        ossl_ec_GFp_mont_group_init,
1471
245k
        ossl_ec_GFp_mont_group_finish,
1472
245k
        ossl_ec_GFp_mont_group_clear_finish,
1473
245k
        ossl_ec_GFp_mont_group_copy,
1474
245k
        ossl_ec_GFp_mont_group_set_curve,
1475
245k
        ossl_ec_GFp_simple_group_get_curve,
1476
245k
        ossl_ec_GFp_simple_group_get_degree,
1477
245k
        ossl_ec_group_simple_order_bits,
1478
245k
        ossl_ec_GFp_simple_group_check_discriminant,
1479
245k
        ossl_ec_GFp_simple_point_init,
1480
245k
        ossl_ec_GFp_simple_point_finish,
1481
245k
        ossl_ec_GFp_simple_point_clear_finish,
1482
245k
        ossl_ec_GFp_simple_point_copy,
1483
245k
        ossl_ec_GFp_simple_point_set_to_infinity,
1484
245k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1485
245k
        ecp_nistz256_get_affine,
1486
245k
        0, 0, 0,
1487
245k
        ossl_ec_GFp_simple_add,
1488
245k
        ossl_ec_GFp_simple_dbl,
1489
245k
        ossl_ec_GFp_simple_invert,
1490
245k
        ossl_ec_GFp_simple_is_at_infinity,
1491
245k
        ossl_ec_GFp_simple_is_on_curve,
1492
245k
        ossl_ec_GFp_simple_cmp,
1493
245k
        ossl_ec_GFp_simple_make_affine,
1494
245k
        ossl_ec_GFp_simple_points_make_affine,
1495
245k
        ecp_nistz256_points_mul, /* mul */
1496
245k
        ecp_nistz256_mult_precompute, /* precompute_mult */
1497
245k
        ecp_nistz256_window_have_precompute_mult, /* have_precompute_mult */
1498
245k
        ossl_ec_GFp_mont_field_mul,
1499
245k
        ossl_ec_GFp_mont_field_sqr,
1500
245k
        0, /* field_div */
1501
245k
        ossl_ec_GFp_mont_field_inv,
1502
245k
        ossl_ec_GFp_mont_field_encode,
1503
245k
        ossl_ec_GFp_mont_field_decode,
1504
245k
        ossl_ec_GFp_mont_field_set_to_one,
1505
245k
        ossl_ec_key_simple_priv2oct,
1506
245k
        ossl_ec_key_simple_oct2priv,
1507
245k
        0, /* set private */
1508
245k
        ossl_ec_key_simple_generate_key,
1509
245k
        ossl_ec_key_simple_check_key,
1510
245k
        ossl_ec_key_simple_generate_public_key,
1511
245k
        0, /* keycopy */
1512
245k
        0, /* keyfinish */
1513
245k
        ossl_ecdh_simple_compute_key,
1514
245k
        ossl_ecdsa_simple_sign_setup,
1515
245k
        ossl_ecdsa_simple_sign_sig,
1516
245k
        ossl_ecdsa_simple_verify_sig,
1517
245k
        ecp_nistz256_inv_mod_ord, /* can be #define-d NULL */
1518
245k
        0, /* blind_coordinates */
1519
245k
        0, /* ladder_pre */
1520
245k
        0, /* ladder_step */
1521
245k
        0 /* ladder_post */
1522
245k
    };
1523
1524
245k
    return &ret;
1525
245k
}