/src/openssl30/crypto/modes/ocb128.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <string.h> |
11 | | #include <openssl/crypto.h> |
12 | | #include <openssl/err.h> |
13 | | #include "crypto/modes.h" |
14 | | |
15 | | #ifndef OPENSSL_NO_OCB |
16 | | |
17 | | /* |
18 | | * Calculate the number of binary trailing zero's in any given number |
19 | | */ |
20 | | static u32 ocb_ntz(u64 n) |
21 | 0 | { |
22 | 0 | u32 cnt = 0; |
23 | | |
24 | | /* |
25 | | * We do a right-to-left simple sequential search. This is surprisingly |
26 | | * efficient as the distribution of trailing zeros is not uniform, |
27 | | * e.g. the number of possible inputs with no trailing zeros is equal to |
28 | | * the number with 1 or more; the number with exactly 1 is equal to the |
29 | | * number with 2 or more, etc. Checking the last two bits covers 75% of |
30 | | * all numbers. Checking the last three covers 87.5% |
31 | | */ |
32 | 0 | while (!(n & 1)) { |
33 | 0 | n >>= 1; |
34 | 0 | cnt++; |
35 | 0 | } |
36 | 0 | return cnt; |
37 | 0 | } |
38 | | |
39 | | /* |
40 | | * Shift a block of 16 bytes left by shift bits |
41 | | */ |
42 | | static void ocb_block_lshift(const unsigned char *in, size_t shift, |
43 | | unsigned char *out) |
44 | 78 | { |
45 | 78 | int i; |
46 | 78 | unsigned char carry = 0, carry_next; |
47 | | |
48 | 1.32k | for (i = 15; i >= 0; i--) { |
49 | 1.24k | carry_next = in[i] >> (8 - shift); |
50 | 1.24k | out[i] = (in[i] << shift) | carry; |
51 | 1.24k | carry = carry_next; |
52 | 1.24k | } |
53 | 78 | } |
54 | | |
55 | | /* |
56 | | * Perform a "double" operation as per OCB spec |
57 | | */ |
58 | | static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out) |
59 | 78 | { |
60 | 78 | unsigned char mask; |
61 | | |
62 | | /* |
63 | | * Calculate the mask based on the most significant bit. There are more |
64 | | * efficient ways to do this - but this way is constant time |
65 | | */ |
66 | 78 | mask = in->c[0] & 0x80; |
67 | 78 | mask >>= 7; |
68 | 78 | mask = (0 - mask) & 0x87; |
69 | | |
70 | 78 | ocb_block_lshift(in->c, 1, out->c); |
71 | | |
72 | 78 | out->c[15] ^= mask; |
73 | 78 | } |
74 | | |
75 | | /* |
76 | | * Perform an xor on in1 and in2 - each of len bytes. Store result in out |
77 | | */ |
78 | | static void ocb_block_xor(const unsigned char *in1, |
79 | | const unsigned char *in2, size_t len, |
80 | | unsigned char *out) |
81 | 0 | { |
82 | 0 | size_t i; |
83 | 0 | for (i = 0; i < len; i++) { |
84 | 0 | out[i] = in1[i] ^ in2[i]; |
85 | 0 | } |
86 | 0 | } |
87 | | |
88 | | /* |
89 | | * Lookup L_index in our lookup table. If we haven't already got it we need to |
90 | | * calculate it |
91 | | */ |
92 | | static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx) |
93 | 0 | { |
94 | 0 | size_t l_index = ctx->l_index; |
95 | |
|
96 | 0 | if (idx <= l_index) { |
97 | 0 | return ctx->l + idx; |
98 | 0 | } |
99 | | |
100 | | /* We don't have it - so calculate it */ |
101 | 0 | if (idx >= ctx->max_l_index) { |
102 | 0 | void *tmp_ptr; |
103 | | /* |
104 | | * Each additional entry allows to process almost double as |
105 | | * much data, so that in linear world the table will need to |
106 | | * be expanded with smaller and smaller increments. Originally |
107 | | * it was doubling in size, which was a waste. Growing it |
108 | | * linearly is not formally optimal, but is simpler to implement. |
109 | | * We grow table by minimally required 4*n that would accommodate |
110 | | * the index. |
111 | | */ |
112 | 0 | ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3; |
113 | 0 | tmp_ptr = OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK)); |
114 | 0 | if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */ |
115 | 0 | return NULL; |
116 | 0 | ctx->l = tmp_ptr; |
117 | 0 | } |
118 | 0 | while (l_index < idx) { |
119 | 0 | ocb_double(ctx->l + l_index, ctx->l + l_index + 1); |
120 | 0 | l_index++; |
121 | 0 | } |
122 | 0 | ctx->l_index = l_index; |
123 | |
|
124 | 0 | return ctx->l + idx; |
125 | 0 | } |
126 | | |
127 | | /* |
128 | | * Create a new OCB128_CONTEXT |
129 | | */ |
130 | | OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec, |
131 | | block128_f encrypt, block128_f decrypt, |
132 | | ocb128_f stream) |
133 | 0 | { |
134 | 0 | OCB128_CONTEXT *octx; |
135 | 0 | int ret; |
136 | |
|
137 | 0 | if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) { |
138 | 0 | ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt, |
139 | 0 | stream); |
140 | 0 | if (ret) |
141 | 0 | return octx; |
142 | 0 | OPENSSL_free(octx); |
143 | 0 | } |
144 | | |
145 | 0 | return NULL; |
146 | 0 | } |
147 | | |
148 | | /* |
149 | | * Initialise an existing OCB128_CONTEXT |
150 | | */ |
151 | | int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec, |
152 | | block128_f encrypt, block128_f decrypt, |
153 | | ocb128_f stream) |
154 | 13 | { |
155 | 13 | memset(ctx, 0, sizeof(*ctx)); |
156 | 13 | ctx->l_index = 0; |
157 | 13 | ctx->max_l_index = 5; |
158 | 13 | if ((ctx->l = OPENSSL_malloc(ctx->max_l_index * 16)) == NULL) { |
159 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
160 | 0 | return 0; |
161 | 0 | } |
162 | | |
163 | | /* |
164 | | * We set both the encryption and decryption key schedules - decryption |
165 | | * needs both. Don't really need decryption schedule if only doing |
166 | | * encryption - but it simplifies things to take it anyway |
167 | | */ |
168 | 13 | ctx->encrypt = encrypt; |
169 | 13 | ctx->decrypt = decrypt; |
170 | 13 | ctx->stream = stream; |
171 | 13 | ctx->keyenc = keyenc; |
172 | 13 | ctx->keydec = keydec; |
173 | | |
174 | | /* L_* = ENCIPHER(K, zeros(128)) */ |
175 | 13 | ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc); |
176 | | |
177 | | /* L_$ = double(L_*) */ |
178 | 13 | ocb_double(&ctx->l_star, &ctx->l_dollar); |
179 | | |
180 | | /* L_0 = double(L_$) */ |
181 | 13 | ocb_double(&ctx->l_dollar, ctx->l); |
182 | | |
183 | | /* L_{i} = double(L_{i-1}) */ |
184 | 13 | ocb_double(ctx->l, ctx->l + 1); |
185 | 13 | ocb_double(ctx->l + 1, ctx->l + 2); |
186 | 13 | ocb_double(ctx->l + 2, ctx->l + 3); |
187 | 13 | ocb_double(ctx->l + 3, ctx->l + 4); |
188 | 13 | ctx->l_index = 4; /* enough to process up to 496 bytes */ |
189 | | |
190 | 13 | return 1; |
191 | 13 | } |
192 | | |
193 | | /* |
194 | | * Copy an OCB128_CONTEXT object |
195 | | */ |
196 | | int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src, |
197 | | void *keyenc, void *keydec) |
198 | 0 | { |
199 | 0 | memcpy(dest, src, sizeof(OCB128_CONTEXT)); |
200 | 0 | if (keyenc) |
201 | 0 | dest->keyenc = keyenc; |
202 | 0 | if (keydec) |
203 | 0 | dest->keydec = keydec; |
204 | 0 | if (src->l) { |
205 | 0 | if ((dest->l = OPENSSL_malloc(src->max_l_index * 16)) == NULL) { |
206 | 0 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE); |
207 | 0 | return 0; |
208 | 0 | } |
209 | 0 | memcpy(dest->l, src->l, (src->l_index + 1) * 16); |
210 | 0 | } |
211 | 0 | return 1; |
212 | 0 | } |
213 | | |
214 | | /* |
215 | | * Set the IV to be used for this operation. Must be 1 - 15 bytes. |
216 | | */ |
217 | | int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv, |
218 | | size_t len, size_t taglen) |
219 | 0 | { |
220 | 0 | unsigned char ktop[16], tmp[16], mask; |
221 | 0 | unsigned char stretch[24], nonce[16]; |
222 | 0 | size_t bottom, shift; |
223 | | |
224 | | /* |
225 | | * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths. |
226 | | * We don't support this at this stage |
227 | | */ |
228 | 0 | if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) { |
229 | 0 | return -1; |
230 | 0 | } |
231 | | |
232 | | /* Reset nonce-dependent variables */ |
233 | 0 | memset(&ctx->sess, 0, sizeof(ctx->sess)); |
234 | | |
235 | | /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */ |
236 | 0 | nonce[0] = ((taglen * 8) % 128) << 1; |
237 | 0 | memset(nonce + 1, 0, 15); |
238 | 0 | memcpy(nonce + 16 - len, iv, len); |
239 | 0 | nonce[15 - len] |= 1; |
240 | | |
241 | | /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */ |
242 | 0 | memcpy(tmp, nonce, 16); |
243 | 0 | tmp[15] &= 0xc0; |
244 | 0 | ctx->encrypt(tmp, ktop, ctx->keyenc); |
245 | | |
246 | | /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */ |
247 | 0 | memcpy(stretch, ktop, 16); |
248 | 0 | ocb_block_xor(ktop, ktop + 1, 8, stretch + 16); |
249 | | |
250 | | /* bottom = str2num(Nonce[123..128]) */ |
251 | 0 | bottom = nonce[15] & 0x3f; |
252 | | |
253 | | /* Offset_0 = Stretch[1+bottom..128+bottom] */ |
254 | 0 | shift = bottom % 8; |
255 | 0 | ocb_block_lshift(stretch + (bottom / 8), shift, ctx->sess.offset.c); |
256 | 0 | mask = 0xff; |
257 | 0 | mask <<= 8 - shift; |
258 | 0 | ctx->sess.offset.c[15] |= (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift); |
259 | |
|
260 | 0 | return 1; |
261 | 0 | } |
262 | | |
263 | | /* |
264 | | * Provide any AAD. This can be called multiple times. Only the final time can |
265 | | * have a partial block |
266 | | */ |
267 | | int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad, |
268 | | size_t len) |
269 | 0 | { |
270 | 0 | u64 i, all_num_blocks; |
271 | 0 | size_t num_blocks, last_len; |
272 | 0 | OCB_BLOCK tmp; |
273 | | |
274 | | /* Calculate the number of blocks of AAD provided now, and so far */ |
275 | 0 | num_blocks = len / 16; |
276 | 0 | all_num_blocks = num_blocks + ctx->sess.blocks_hashed; |
277 | | |
278 | | /* Loop through all full blocks of AAD */ |
279 | 0 | for (i = ctx->sess.blocks_hashed + 1; i <= all_num_blocks; i++) { |
280 | 0 | OCB_BLOCK *lookup; |
281 | | |
282 | | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ |
283 | 0 | lookup = ocb_lookup_l(ctx, ocb_ntz(i)); |
284 | 0 | if (lookup == NULL) |
285 | 0 | return 0; |
286 | 0 | ocb_block16_xor(&ctx->sess.offset_aad, lookup, &ctx->sess.offset_aad); |
287 | |
|
288 | 0 | memcpy(tmp.c, aad, 16); |
289 | 0 | aad += 16; |
290 | | |
291 | | /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */ |
292 | 0 | ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp); |
293 | 0 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); |
294 | 0 | ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum); |
295 | 0 | } |
296 | | |
297 | | /* |
298 | | * Check if we have any partial blocks left over. This is only valid in the |
299 | | * last call to this function |
300 | | */ |
301 | 0 | last_len = len % 16; |
302 | |
|
303 | 0 | if (last_len > 0) { |
304 | | /* Offset_* = Offset_m xor L_* */ |
305 | 0 | ocb_block16_xor(&ctx->sess.offset_aad, &ctx->l_star, |
306 | 0 | &ctx->sess.offset_aad); |
307 | | |
308 | | /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */ |
309 | 0 | memset(tmp.c, 0, 16); |
310 | 0 | memcpy(tmp.c, aad, last_len); |
311 | 0 | tmp.c[last_len] = 0x80; |
312 | 0 | ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp); |
313 | | |
314 | | /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */ |
315 | 0 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); |
316 | 0 | ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum); |
317 | 0 | } |
318 | |
|
319 | 0 | ctx->sess.blocks_hashed = all_num_blocks; |
320 | |
|
321 | 0 | return 1; |
322 | 0 | } |
323 | | |
324 | | /* |
325 | | * Provide any data to be encrypted. This can be called multiple times. Only |
326 | | * the final time can have a partial block |
327 | | */ |
328 | | int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx, |
329 | | const unsigned char *in, unsigned char *out, |
330 | | size_t len) |
331 | 0 | { |
332 | 0 | u64 i, all_num_blocks; |
333 | 0 | size_t num_blocks, last_len; |
334 | | |
335 | | /* |
336 | | * Calculate the number of blocks of data to be encrypted provided now, and |
337 | | * so far |
338 | | */ |
339 | 0 | num_blocks = len / 16; |
340 | 0 | all_num_blocks = num_blocks + ctx->sess.blocks_processed; |
341 | |
|
342 | 0 | if (num_blocks && all_num_blocks == (size_t)all_num_blocks |
343 | 0 | && ctx->stream != NULL) { |
344 | 0 | size_t max_idx = 0, top = (size_t)all_num_blocks; |
345 | | |
346 | | /* |
347 | | * See how many L_{i} entries we need to process data at hand |
348 | | * and pre-compute missing entries in the table [if any]... |
349 | | */ |
350 | 0 | while (top >>= 1) |
351 | 0 | max_idx++; |
352 | 0 | if (ocb_lookup_l(ctx, max_idx) == NULL) |
353 | 0 | return 0; |
354 | | |
355 | 0 | ctx->stream(in, out, num_blocks, ctx->keyenc, |
356 | 0 | (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c, |
357 | 0 | (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c); |
358 | 0 | } else { |
359 | | /* Loop through all full blocks to be encrypted */ |
360 | 0 | for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) { |
361 | 0 | OCB_BLOCK *lookup; |
362 | 0 | OCB_BLOCK tmp; |
363 | | |
364 | | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ |
365 | 0 | lookup = ocb_lookup_l(ctx, ocb_ntz(i)); |
366 | 0 | if (lookup == NULL) |
367 | 0 | return 0; |
368 | 0 | ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset); |
369 | |
|
370 | 0 | memcpy(tmp.c, in, 16); |
371 | 0 | in += 16; |
372 | | |
373 | | /* Checksum_i = Checksum_{i-1} xor P_i */ |
374 | 0 | ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum); |
375 | | |
376 | | /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */ |
377 | 0 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); |
378 | 0 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); |
379 | 0 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); |
380 | |
|
381 | 0 | memcpy(out, tmp.c, 16); |
382 | 0 | out += 16; |
383 | 0 | } |
384 | 0 | } |
385 | | |
386 | | /* |
387 | | * Check if we have any partial blocks left over. This is only valid in the |
388 | | * last call to this function |
389 | | */ |
390 | 0 | last_len = len % 16; |
391 | |
|
392 | 0 | if (last_len > 0) { |
393 | 0 | OCB_BLOCK pad; |
394 | | |
395 | | /* Offset_* = Offset_m xor L_* */ |
396 | 0 | ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset); |
397 | | |
398 | | /* Pad = ENCIPHER(K, Offset_*) */ |
399 | 0 | ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc); |
400 | | |
401 | | /* C_* = P_* xor Pad[1..bitlen(P_*)] */ |
402 | 0 | ocb_block_xor(in, pad.c, last_len, out); |
403 | | |
404 | | /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ |
405 | 0 | memset(pad.c, 0, 16); /* borrow pad */ |
406 | 0 | memcpy(pad.c, in, last_len); |
407 | 0 | pad.c[last_len] = 0x80; |
408 | 0 | ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum); |
409 | 0 | } |
410 | |
|
411 | 0 | ctx->sess.blocks_processed = all_num_blocks; |
412 | |
|
413 | 0 | return 1; |
414 | 0 | } |
415 | | |
416 | | /* |
417 | | * Provide any data to be decrypted. This can be called multiple times. Only |
418 | | * the final time can have a partial block |
419 | | */ |
420 | | int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx, |
421 | | const unsigned char *in, unsigned char *out, |
422 | | size_t len) |
423 | 0 | { |
424 | 0 | u64 i, all_num_blocks; |
425 | 0 | size_t num_blocks, last_len; |
426 | | |
427 | | /* |
428 | | * Calculate the number of blocks of data to be decrypted provided now, and |
429 | | * so far |
430 | | */ |
431 | 0 | num_blocks = len / 16; |
432 | 0 | all_num_blocks = num_blocks + ctx->sess.blocks_processed; |
433 | |
|
434 | 0 | if (num_blocks && all_num_blocks == (size_t)all_num_blocks |
435 | 0 | && ctx->stream != NULL) { |
436 | 0 | size_t max_idx = 0, top = (size_t)all_num_blocks; |
437 | | |
438 | | /* |
439 | | * See how many L_{i} entries we need to process data at hand |
440 | | * and pre-compute missing entries in the table [if any]... |
441 | | */ |
442 | 0 | while (top >>= 1) |
443 | 0 | max_idx++; |
444 | 0 | if (ocb_lookup_l(ctx, max_idx) == NULL) |
445 | 0 | return 0; |
446 | | |
447 | 0 | ctx->stream(in, out, num_blocks, ctx->keydec, |
448 | 0 | (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c, |
449 | 0 | (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c); |
450 | 0 | } else { |
451 | 0 | OCB_BLOCK tmp; |
452 | | |
453 | | /* Loop through all full blocks to be decrypted */ |
454 | 0 | for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) { |
455 | | |
456 | | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ |
457 | 0 | OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i)); |
458 | 0 | if (lookup == NULL) |
459 | 0 | return 0; |
460 | 0 | ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset); |
461 | |
|
462 | 0 | memcpy(tmp.c, in, 16); |
463 | 0 | in += 16; |
464 | | |
465 | | /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */ |
466 | 0 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); |
467 | 0 | ctx->decrypt(tmp.c, tmp.c, ctx->keydec); |
468 | 0 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); |
469 | | |
470 | | /* Checksum_i = Checksum_{i-1} xor P_i */ |
471 | 0 | ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum); |
472 | |
|
473 | 0 | memcpy(out, tmp.c, 16); |
474 | 0 | out += 16; |
475 | 0 | } |
476 | 0 | } |
477 | | |
478 | | /* |
479 | | * Check if we have any partial blocks left over. This is only valid in the |
480 | | * last call to this function |
481 | | */ |
482 | 0 | last_len = len % 16; |
483 | |
|
484 | 0 | if (last_len > 0) { |
485 | 0 | OCB_BLOCK pad; |
486 | | |
487 | | /* Offset_* = Offset_m xor L_* */ |
488 | 0 | ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset); |
489 | | |
490 | | /* Pad = ENCIPHER(K, Offset_*) */ |
491 | 0 | ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc); |
492 | | |
493 | | /* P_* = C_* xor Pad[1..bitlen(C_*)] */ |
494 | 0 | ocb_block_xor(in, pad.c, last_len, out); |
495 | | |
496 | | /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ |
497 | 0 | memset(pad.c, 0, 16); /* borrow pad */ |
498 | 0 | memcpy(pad.c, out, last_len); |
499 | 0 | pad.c[last_len] = 0x80; |
500 | 0 | ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum); |
501 | 0 | } |
502 | |
|
503 | 0 | ctx->sess.blocks_processed = all_num_blocks; |
504 | |
|
505 | 0 | return 1; |
506 | 0 | } |
507 | | |
508 | | static int ocb_finish(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len, |
509 | | int write) |
510 | 0 | { |
511 | 0 | OCB_BLOCK tmp; |
512 | |
|
513 | 0 | if (len > 16 || len < 1) { |
514 | 0 | return -1; |
515 | 0 | } |
516 | | |
517 | | /* |
518 | | * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A) |
519 | | */ |
520 | 0 | ocb_block16_xor(&ctx->sess.checksum, &ctx->sess.offset, &tmp); |
521 | 0 | ocb_block16_xor(&ctx->l_dollar, &tmp, &tmp); |
522 | 0 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); |
523 | 0 | ocb_block16_xor(&tmp, &ctx->sess.sum, &tmp); |
524 | |
|
525 | 0 | if (write) { |
526 | 0 | memcpy(tag, &tmp, len); |
527 | 0 | return 1; |
528 | 0 | } else { |
529 | 0 | return CRYPTO_memcmp(&tmp, tag, len); |
530 | 0 | } |
531 | 0 | } |
532 | | |
533 | | /* |
534 | | * Calculate the tag and verify it against the supplied tag |
535 | | */ |
536 | | int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag, |
537 | | size_t len) |
538 | 0 | { |
539 | 0 | return ocb_finish(ctx, (unsigned char *)tag, len, 0); |
540 | 0 | } |
541 | | |
542 | | /* |
543 | | * Retrieve the calculated tag |
544 | | */ |
545 | | int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len) |
546 | 0 | { |
547 | 0 | return ocb_finish(ctx, tag, len, 1); |
548 | 0 | } |
549 | | |
550 | | /* |
551 | | * Release all resources |
552 | | */ |
553 | | void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx) |
554 | 30 | { |
555 | 30 | if (ctx) { |
556 | 30 | OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16); |
557 | 30 | OPENSSL_cleanse(ctx, sizeof(*ctx)); |
558 | 30 | } |
559 | 30 | } |
560 | | |
561 | | #endif /* OPENSSL_NO_OCB */ |