Coverage Report

Created: 2025-12-31 06:58

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/openssl30/crypto/modes/ocb128.c
Line
Count
Source
1
/*
2
 * Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <string.h>
11
#include <openssl/crypto.h>
12
#include <openssl/err.h>
13
#include "crypto/modes.h"
14
15
#ifndef OPENSSL_NO_OCB
16
17
/*
18
 * Calculate the number of binary trailing zero's in any given number
19
 */
20
static u32 ocb_ntz(u64 n)
21
0
{
22
0
    u32 cnt = 0;
23
24
    /*
25
     * We do a right-to-left simple sequential search. This is surprisingly
26
     * efficient as the distribution of trailing zeros is not uniform,
27
     * e.g. the number of possible inputs with no trailing zeros is equal to
28
     * the number with 1 or more; the number with exactly 1 is equal to the
29
     * number with 2 or more, etc. Checking the last two bits covers 75% of
30
     * all numbers. Checking the last three covers 87.5%
31
     */
32
0
    while (!(n & 1)) {
33
0
        n >>= 1;
34
0
        cnt++;
35
0
    }
36
0
    return cnt;
37
0
}
38
39
/*
40
 * Shift a block of 16 bytes left by shift bits
41
 */
42
static void ocb_block_lshift(const unsigned char *in, size_t shift,
43
    unsigned char *out)
44
78
{
45
78
    int i;
46
78
    unsigned char carry = 0, carry_next;
47
48
1.32k
    for (i = 15; i >= 0; i--) {
49
1.24k
        carry_next = in[i] >> (8 - shift);
50
1.24k
        out[i] = (in[i] << shift) | carry;
51
1.24k
        carry = carry_next;
52
1.24k
    }
53
78
}
54
55
/*
56
 * Perform a "double" operation as per OCB spec
57
 */
58
static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out)
59
78
{
60
78
    unsigned char mask;
61
62
    /*
63
     * Calculate the mask based on the most significant bit. There are more
64
     * efficient ways to do this - but this way is constant time
65
     */
66
78
    mask = in->c[0] & 0x80;
67
78
    mask >>= 7;
68
78
    mask = (0 - mask) & 0x87;
69
70
78
    ocb_block_lshift(in->c, 1, out->c);
71
72
78
    out->c[15] ^= mask;
73
78
}
74
75
/*
76
 * Perform an xor on in1 and in2 - each of len bytes. Store result in out
77
 */
78
static void ocb_block_xor(const unsigned char *in1,
79
    const unsigned char *in2, size_t len,
80
    unsigned char *out)
81
0
{
82
0
    size_t i;
83
0
    for (i = 0; i < len; i++) {
84
0
        out[i] = in1[i] ^ in2[i];
85
0
    }
86
0
}
87
88
/*
89
 * Lookup L_index in our lookup table. If we haven't already got it we need to
90
 * calculate it
91
 */
92
static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx)
93
0
{
94
0
    size_t l_index = ctx->l_index;
95
96
0
    if (idx <= l_index) {
97
0
        return ctx->l + idx;
98
0
    }
99
100
    /* We don't have it - so calculate it */
101
0
    if (idx >= ctx->max_l_index) {
102
0
        void *tmp_ptr;
103
        /*
104
         * Each additional entry allows to process almost double as
105
         * much data, so that in linear world the table will need to
106
         * be expanded with smaller and smaller increments. Originally
107
         * it was doubling in size, which was a waste. Growing it
108
         * linearly is not formally optimal, but is simpler to implement.
109
         * We grow table by minimally required 4*n that would accommodate
110
         * the index.
111
         */
112
0
        ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3;
113
0
        tmp_ptr = OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK));
114
0
        if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */
115
0
            return NULL;
116
0
        ctx->l = tmp_ptr;
117
0
    }
118
0
    while (l_index < idx) {
119
0
        ocb_double(ctx->l + l_index, ctx->l + l_index + 1);
120
0
        l_index++;
121
0
    }
122
0
    ctx->l_index = l_index;
123
124
0
    return ctx->l + idx;
125
0
}
126
127
/*
128
 * Create a new OCB128_CONTEXT
129
 */
130
OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec,
131
    block128_f encrypt, block128_f decrypt,
132
    ocb128_f stream)
133
0
{
134
0
    OCB128_CONTEXT *octx;
135
0
    int ret;
136
137
0
    if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) {
138
0
        ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt,
139
0
            stream);
140
0
        if (ret)
141
0
            return octx;
142
0
        OPENSSL_free(octx);
143
0
    }
144
145
0
    return NULL;
146
0
}
147
148
/*
149
 * Initialise an existing OCB128_CONTEXT
150
 */
151
int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec,
152
    block128_f encrypt, block128_f decrypt,
153
    ocb128_f stream)
154
13
{
155
13
    memset(ctx, 0, sizeof(*ctx));
156
13
    ctx->l_index = 0;
157
13
    ctx->max_l_index = 5;
158
13
    if ((ctx->l = OPENSSL_malloc(ctx->max_l_index * 16)) == NULL) {
159
0
        ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
160
0
        return 0;
161
0
    }
162
163
    /*
164
     * We set both the encryption and decryption key schedules - decryption
165
     * needs both. Don't really need decryption schedule if only doing
166
     * encryption - but it simplifies things to take it anyway
167
     */
168
13
    ctx->encrypt = encrypt;
169
13
    ctx->decrypt = decrypt;
170
13
    ctx->stream = stream;
171
13
    ctx->keyenc = keyenc;
172
13
    ctx->keydec = keydec;
173
174
    /* L_* = ENCIPHER(K, zeros(128)) */
175
13
    ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc);
176
177
    /* L_$ = double(L_*) */
178
13
    ocb_double(&ctx->l_star, &ctx->l_dollar);
179
180
    /* L_0 = double(L_$) */
181
13
    ocb_double(&ctx->l_dollar, ctx->l);
182
183
    /* L_{i} = double(L_{i-1}) */
184
13
    ocb_double(ctx->l, ctx->l + 1);
185
13
    ocb_double(ctx->l + 1, ctx->l + 2);
186
13
    ocb_double(ctx->l + 2, ctx->l + 3);
187
13
    ocb_double(ctx->l + 3, ctx->l + 4);
188
13
    ctx->l_index = 4; /* enough to process up to 496 bytes */
189
190
13
    return 1;
191
13
}
192
193
/*
194
 * Copy an OCB128_CONTEXT object
195
 */
196
int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src,
197
    void *keyenc, void *keydec)
198
0
{
199
0
    memcpy(dest, src, sizeof(OCB128_CONTEXT));
200
0
    if (keyenc)
201
0
        dest->keyenc = keyenc;
202
0
    if (keydec)
203
0
        dest->keydec = keydec;
204
0
    if (src->l) {
205
0
        if ((dest->l = OPENSSL_malloc(src->max_l_index * 16)) == NULL) {
206
0
            ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
207
0
            return 0;
208
0
        }
209
0
        memcpy(dest->l, src->l, (src->l_index + 1) * 16);
210
0
    }
211
0
    return 1;
212
0
}
213
214
/*
215
 * Set the IV to be used for this operation. Must be 1 - 15 bytes.
216
 */
217
int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv,
218
    size_t len, size_t taglen)
219
0
{
220
0
    unsigned char ktop[16], tmp[16], mask;
221
0
    unsigned char stretch[24], nonce[16];
222
0
    size_t bottom, shift;
223
224
    /*
225
     * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths.
226
     * We don't support this at this stage
227
     */
228
0
    if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) {
229
0
        return -1;
230
0
    }
231
232
    /* Reset nonce-dependent variables */
233
0
    memset(&ctx->sess, 0, sizeof(ctx->sess));
234
235
    /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */
236
0
    nonce[0] = ((taglen * 8) % 128) << 1;
237
0
    memset(nonce + 1, 0, 15);
238
0
    memcpy(nonce + 16 - len, iv, len);
239
0
    nonce[15 - len] |= 1;
240
241
    /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */
242
0
    memcpy(tmp, nonce, 16);
243
0
    tmp[15] &= 0xc0;
244
0
    ctx->encrypt(tmp, ktop, ctx->keyenc);
245
246
    /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */
247
0
    memcpy(stretch, ktop, 16);
248
0
    ocb_block_xor(ktop, ktop + 1, 8, stretch + 16);
249
250
    /* bottom = str2num(Nonce[123..128]) */
251
0
    bottom = nonce[15] & 0x3f;
252
253
    /* Offset_0 = Stretch[1+bottom..128+bottom] */
254
0
    shift = bottom % 8;
255
0
    ocb_block_lshift(stretch + (bottom / 8), shift, ctx->sess.offset.c);
256
0
    mask = 0xff;
257
0
    mask <<= 8 - shift;
258
0
    ctx->sess.offset.c[15] |= (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift);
259
260
0
    return 1;
261
0
}
262
263
/*
264
 * Provide any AAD. This can be called multiple times. Only the final time can
265
 * have a partial block
266
 */
267
int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad,
268
    size_t len)
269
0
{
270
0
    u64 i, all_num_blocks;
271
0
    size_t num_blocks, last_len;
272
0
    OCB_BLOCK tmp;
273
274
    /* Calculate the number of blocks of AAD provided now, and so far */
275
0
    num_blocks = len / 16;
276
0
    all_num_blocks = num_blocks + ctx->sess.blocks_hashed;
277
278
    /* Loop through all full blocks of AAD */
279
0
    for (i = ctx->sess.blocks_hashed + 1; i <= all_num_blocks; i++) {
280
0
        OCB_BLOCK *lookup;
281
282
        /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
283
0
        lookup = ocb_lookup_l(ctx, ocb_ntz(i));
284
0
        if (lookup == NULL)
285
0
            return 0;
286
0
        ocb_block16_xor(&ctx->sess.offset_aad, lookup, &ctx->sess.offset_aad);
287
288
0
        memcpy(tmp.c, aad, 16);
289
0
        aad += 16;
290
291
        /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */
292
0
        ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp);
293
0
        ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
294
0
        ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum);
295
0
    }
296
297
    /*
298
     * Check if we have any partial blocks left over. This is only valid in the
299
     * last call to this function
300
     */
301
0
    last_len = len % 16;
302
303
0
    if (last_len > 0) {
304
        /* Offset_* = Offset_m xor L_* */
305
0
        ocb_block16_xor(&ctx->sess.offset_aad, &ctx->l_star,
306
0
            &ctx->sess.offset_aad);
307
308
        /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */
309
0
        memset(tmp.c, 0, 16);
310
0
        memcpy(tmp.c, aad, last_len);
311
0
        tmp.c[last_len] = 0x80;
312
0
        ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp);
313
314
        /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */
315
0
        ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
316
0
        ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum);
317
0
    }
318
319
0
    ctx->sess.blocks_hashed = all_num_blocks;
320
321
0
    return 1;
322
0
}
323
324
/*
325
 * Provide any data to be encrypted. This can be called multiple times. Only
326
 * the final time can have a partial block
327
 */
328
int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx,
329
    const unsigned char *in, unsigned char *out,
330
    size_t len)
331
0
{
332
0
    u64 i, all_num_blocks;
333
0
    size_t num_blocks, last_len;
334
335
    /*
336
     * Calculate the number of blocks of data to be encrypted provided now, and
337
     * so far
338
     */
339
0
    num_blocks = len / 16;
340
0
    all_num_blocks = num_blocks + ctx->sess.blocks_processed;
341
342
0
    if (num_blocks && all_num_blocks == (size_t)all_num_blocks
343
0
        && ctx->stream != NULL) {
344
0
        size_t max_idx = 0, top = (size_t)all_num_blocks;
345
346
        /*
347
         * See how many L_{i} entries we need to process data at hand
348
         * and pre-compute missing entries in the table [if any]...
349
         */
350
0
        while (top >>= 1)
351
0
            max_idx++;
352
0
        if (ocb_lookup_l(ctx, max_idx) == NULL)
353
0
            return 0;
354
355
0
        ctx->stream(in, out, num_blocks, ctx->keyenc,
356
0
            (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c,
357
0
            (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c);
358
0
    } else {
359
        /* Loop through all full blocks to be encrypted */
360
0
        for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) {
361
0
            OCB_BLOCK *lookup;
362
0
            OCB_BLOCK tmp;
363
364
            /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
365
0
            lookup = ocb_lookup_l(ctx, ocb_ntz(i));
366
0
            if (lookup == NULL)
367
0
                return 0;
368
0
            ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset);
369
370
0
            memcpy(tmp.c, in, 16);
371
0
            in += 16;
372
373
            /* Checksum_i = Checksum_{i-1} xor P_i */
374
0
            ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum);
375
376
            /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */
377
0
            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
378
0
            ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
379
0
            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
380
381
0
            memcpy(out, tmp.c, 16);
382
0
            out += 16;
383
0
        }
384
0
    }
385
386
    /*
387
     * Check if we have any partial blocks left over. This is only valid in the
388
     * last call to this function
389
     */
390
0
    last_len = len % 16;
391
392
0
    if (last_len > 0) {
393
0
        OCB_BLOCK pad;
394
395
        /* Offset_* = Offset_m xor L_* */
396
0
        ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset);
397
398
        /* Pad = ENCIPHER(K, Offset_*) */
399
0
        ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc);
400
401
        /* C_* = P_* xor Pad[1..bitlen(P_*)] */
402
0
        ocb_block_xor(in, pad.c, last_len, out);
403
404
        /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
405
0
        memset(pad.c, 0, 16); /* borrow pad */
406
0
        memcpy(pad.c, in, last_len);
407
0
        pad.c[last_len] = 0x80;
408
0
        ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum);
409
0
    }
410
411
0
    ctx->sess.blocks_processed = all_num_blocks;
412
413
0
    return 1;
414
0
}
415
416
/*
417
 * Provide any data to be decrypted. This can be called multiple times. Only
418
 * the final time can have a partial block
419
 */
420
int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx,
421
    const unsigned char *in, unsigned char *out,
422
    size_t len)
423
0
{
424
0
    u64 i, all_num_blocks;
425
0
    size_t num_blocks, last_len;
426
427
    /*
428
     * Calculate the number of blocks of data to be decrypted provided now, and
429
     * so far
430
     */
431
0
    num_blocks = len / 16;
432
0
    all_num_blocks = num_blocks + ctx->sess.blocks_processed;
433
434
0
    if (num_blocks && all_num_blocks == (size_t)all_num_blocks
435
0
        && ctx->stream != NULL) {
436
0
        size_t max_idx = 0, top = (size_t)all_num_blocks;
437
438
        /*
439
         * See how many L_{i} entries we need to process data at hand
440
         * and pre-compute missing entries in the table [if any]...
441
         */
442
0
        while (top >>= 1)
443
0
            max_idx++;
444
0
        if (ocb_lookup_l(ctx, max_idx) == NULL)
445
0
            return 0;
446
447
0
        ctx->stream(in, out, num_blocks, ctx->keydec,
448
0
            (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c,
449
0
            (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c);
450
0
    } else {
451
0
        OCB_BLOCK tmp;
452
453
        /* Loop through all full blocks to be decrypted */
454
0
        for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) {
455
456
            /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
457
0
            OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i));
458
0
            if (lookup == NULL)
459
0
                return 0;
460
0
            ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset);
461
462
0
            memcpy(tmp.c, in, 16);
463
0
            in += 16;
464
465
            /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */
466
0
            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
467
0
            ctx->decrypt(tmp.c, tmp.c, ctx->keydec);
468
0
            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
469
470
            /* Checksum_i = Checksum_{i-1} xor P_i */
471
0
            ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum);
472
473
0
            memcpy(out, tmp.c, 16);
474
0
            out += 16;
475
0
        }
476
0
    }
477
478
    /*
479
     * Check if we have any partial blocks left over. This is only valid in the
480
     * last call to this function
481
     */
482
0
    last_len = len % 16;
483
484
0
    if (last_len > 0) {
485
0
        OCB_BLOCK pad;
486
487
        /* Offset_* = Offset_m xor L_* */
488
0
        ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset);
489
490
        /* Pad = ENCIPHER(K, Offset_*) */
491
0
        ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc);
492
493
        /* P_* = C_* xor Pad[1..bitlen(C_*)] */
494
0
        ocb_block_xor(in, pad.c, last_len, out);
495
496
        /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
497
0
        memset(pad.c, 0, 16); /* borrow pad */
498
0
        memcpy(pad.c, out, last_len);
499
0
        pad.c[last_len] = 0x80;
500
0
        ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum);
501
0
    }
502
503
0
    ctx->sess.blocks_processed = all_num_blocks;
504
505
0
    return 1;
506
0
}
507
508
static int ocb_finish(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len,
509
    int write)
510
0
{
511
0
    OCB_BLOCK tmp;
512
513
0
    if (len > 16 || len < 1) {
514
0
        return -1;
515
0
    }
516
517
    /*
518
     * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)
519
     */
520
0
    ocb_block16_xor(&ctx->sess.checksum, &ctx->sess.offset, &tmp);
521
0
    ocb_block16_xor(&ctx->l_dollar, &tmp, &tmp);
522
0
    ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
523
0
    ocb_block16_xor(&tmp, &ctx->sess.sum, &tmp);
524
525
0
    if (write) {
526
0
        memcpy(tag, &tmp, len);
527
0
        return 1;
528
0
    } else {
529
0
        return CRYPTO_memcmp(&tmp, tag, len);
530
0
    }
531
0
}
532
533
/*
534
 * Calculate the tag and verify it against the supplied tag
535
 */
536
int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag,
537
    size_t len)
538
0
{
539
0
    return ocb_finish(ctx, (unsigned char *)tag, len, 0);
540
0
}
541
542
/*
543
 * Retrieve the calculated tag
544
 */
545
int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len)
546
0
{
547
0
    return ocb_finish(ctx, tag, len, 1);
548
0
}
549
550
/*
551
 * Release all resources
552
 */
553
void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx)
554
30
{
555
30
    if (ctx) {
556
30
        OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16);
557
30
        OPENSSL_cleanse(ctx, sizeof(*ctx));
558
30
    }
559
30
}
560
561
#endif /* OPENSSL_NO_OCB */