/src/openssl30/crypto/pem/pem_lib.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* We need to use some engine deprecated APIs */ |
11 | | #define OPENSSL_SUPPRESS_DEPRECATED |
12 | | |
13 | | #include <stdio.h> |
14 | | #include "crypto/ctype.h" |
15 | | #include <string.h> |
16 | | #include "internal/cryptlib.h" |
17 | | #include <openssl/buffer.h> |
18 | | #include <openssl/objects.h> |
19 | | #include <openssl/evp.h> |
20 | | #include <openssl/rand.h> |
21 | | #include <openssl/x509.h> |
22 | | #include <openssl/pem.h> |
23 | | #include <openssl/pkcs12.h> |
24 | | #include "crypto/asn1.h" |
25 | | #include <openssl/des.h> |
26 | | #include <openssl/engine.h> |
27 | | |
28 | 0 | #define MIN_LENGTH 4 |
29 | | |
30 | | static int load_iv(char **fromp, unsigned char *to, int num); |
31 | | static int check_pem(const char *nm, const char *name); |
32 | | int ossl_pem_check_suffix(const char *pem_str, const char *suffix); |
33 | | |
34 | | int PEM_def_callback(char *buf, int num, int rwflag, void *userdata) |
35 | 0 | { |
36 | 0 | int i, min_len; |
37 | 0 | const char *prompt; |
38 | | |
39 | | /* We assume that the user passes a default password as userdata */ |
40 | 0 | if (userdata) { |
41 | 0 | i = strlen(userdata); |
42 | 0 | i = (i > num) ? num : i; |
43 | 0 | memcpy(buf, userdata, i); |
44 | 0 | return i; |
45 | 0 | } |
46 | | |
47 | 0 | prompt = EVP_get_pw_prompt(); |
48 | 0 | if (prompt == NULL) |
49 | 0 | prompt = "Enter PEM pass phrase:"; |
50 | | |
51 | | /* |
52 | | * rwflag == 0 means decryption |
53 | | * rwflag == 1 means encryption |
54 | | * |
55 | | * We assume that for encryption, we want a minimum length, while for |
56 | | * decryption, we cannot know any minimum length, so we assume zero. |
57 | | */ |
58 | 0 | min_len = rwflag ? MIN_LENGTH : 0; |
59 | |
|
60 | 0 | i = EVP_read_pw_string_min(buf, min_len, num, prompt, rwflag); |
61 | 0 | if (i != 0) { |
62 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_PROBLEMS_GETTING_PASSWORD); |
63 | 0 | memset(buf, 0, (unsigned int)num); |
64 | 0 | return -1; |
65 | 0 | } |
66 | 0 | return strlen(buf); |
67 | 0 | } |
68 | | |
69 | | void PEM_proc_type(char *buf, int type) |
70 | 0 | { |
71 | 0 | const char *str; |
72 | 0 | char *p = buf + strlen(buf); |
73 | |
|
74 | 0 | if (type == PEM_TYPE_ENCRYPTED) |
75 | 0 | str = "ENCRYPTED"; |
76 | 0 | else if (type == PEM_TYPE_MIC_CLEAR) |
77 | 0 | str = "MIC-CLEAR"; |
78 | 0 | else if (type == PEM_TYPE_MIC_ONLY) |
79 | 0 | str = "MIC-ONLY"; |
80 | 0 | else |
81 | 0 | str = "BAD-TYPE"; |
82 | |
|
83 | 0 | BIO_snprintf(p, PEM_BUFSIZE - (size_t)(p - buf), "Proc-Type: 4,%s\n", str); |
84 | 0 | } |
85 | | |
86 | | void PEM_dek_info(char *buf, const char *type, int len, const char *str) |
87 | 0 | { |
88 | 0 | long i; |
89 | 0 | char *p = buf + strlen(buf); |
90 | 0 | int j = PEM_BUFSIZE - (size_t)(p - buf), n; |
91 | |
|
92 | 0 | n = BIO_snprintf(p, j, "DEK-Info: %s,", type); |
93 | 0 | if (n > 0) { |
94 | 0 | j -= n; |
95 | 0 | p += n; |
96 | 0 | for (i = 0; i < len; i++) { |
97 | 0 | n = BIO_snprintf(p, j, "%02X", 0xff & str[i]); |
98 | 0 | if (n <= 0) |
99 | 0 | return; |
100 | 0 | j -= n; |
101 | 0 | p += n; |
102 | 0 | } |
103 | 0 | if (j > 1) |
104 | 0 | strcpy(p, "\n"); |
105 | 0 | } |
106 | 0 | } |
107 | | |
108 | | #ifndef OPENSSL_NO_STDIO |
109 | | void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, |
110 | | pem_password_cb *cb, void *u) |
111 | 0 | { |
112 | 0 | BIO *b; |
113 | 0 | void *ret; |
114 | |
|
115 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
116 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
117 | 0 | return 0; |
118 | 0 | } |
119 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
120 | 0 | ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u); |
121 | 0 | BIO_free(b); |
122 | 0 | return ret; |
123 | 0 | } |
124 | | #endif |
125 | | |
126 | | static int check_pem(const char *nm, const char *name) |
127 | 124k | { |
128 | | /* Normal matching nm and name */ |
129 | 124k | if (strcmp(nm, name) == 0) |
130 | 124k | return 1; |
131 | | |
132 | | /* Make PEM_STRING_EVP_PKEY match any private key */ |
133 | | |
134 | 0 | if (strcmp(name, PEM_STRING_EVP_PKEY) == 0) { |
135 | 0 | int slen; |
136 | 0 | const EVP_PKEY_ASN1_METHOD *ameth; |
137 | 0 | if (strcmp(nm, PEM_STRING_PKCS8) == 0) |
138 | 0 | return 1; |
139 | 0 | if (strcmp(nm, PEM_STRING_PKCS8INF) == 0) |
140 | 0 | return 1; |
141 | 0 | slen = ossl_pem_check_suffix(nm, "PRIVATE KEY"); |
142 | 0 | if (slen > 0) { |
143 | | /* |
144 | | * NB: ENGINE implementations won't contain a deprecated old |
145 | | * private key decode function so don't look for them. |
146 | | */ |
147 | 0 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); |
148 | 0 | if (ameth && ameth->old_priv_decode) |
149 | 0 | return 1; |
150 | 0 | } |
151 | 0 | return 0; |
152 | 0 | } |
153 | | |
154 | 0 | if (strcmp(name, PEM_STRING_PARAMETERS) == 0) { |
155 | 0 | int slen; |
156 | 0 | const EVP_PKEY_ASN1_METHOD *ameth; |
157 | 0 | slen = ossl_pem_check_suffix(nm, "PARAMETERS"); |
158 | 0 | if (slen > 0) { |
159 | 0 | ENGINE *e; |
160 | 0 | ameth = EVP_PKEY_asn1_find_str(&e, nm, slen); |
161 | 0 | if (ameth) { |
162 | 0 | int r; |
163 | 0 | if (ameth->param_decode) |
164 | 0 | r = 1; |
165 | 0 | else |
166 | 0 | r = 0; |
167 | 0 | #ifndef OPENSSL_NO_ENGINE |
168 | 0 | ENGINE_finish(e); |
169 | 0 | #endif |
170 | 0 | return r; |
171 | 0 | } |
172 | 0 | } |
173 | 0 | return 0; |
174 | 0 | } |
175 | | /* If reading DH parameters handle X9.42 DH format too */ |
176 | 0 | if (strcmp(nm, PEM_STRING_DHXPARAMS) == 0 |
177 | 0 | && strcmp(name, PEM_STRING_DHPARAMS) == 0) |
178 | 0 | return 1; |
179 | | |
180 | | /* Permit older strings */ |
181 | | |
182 | 0 | if (strcmp(nm, PEM_STRING_X509_OLD) == 0 |
183 | 0 | && strcmp(name, PEM_STRING_X509) == 0) |
184 | 0 | return 1; |
185 | | |
186 | 0 | if (strcmp(nm, PEM_STRING_X509_REQ_OLD) == 0 |
187 | 0 | && strcmp(name, PEM_STRING_X509_REQ) == 0) |
188 | 0 | return 1; |
189 | | |
190 | | /* Allow normal certs to be read as trusted certs */ |
191 | 0 | if (strcmp(nm, PEM_STRING_X509) == 0 |
192 | 0 | && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) |
193 | 0 | return 1; |
194 | | |
195 | 0 | if (strcmp(nm, PEM_STRING_X509_OLD) == 0 |
196 | 0 | && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) |
197 | 0 | return 1; |
198 | | |
199 | | /* Some CAs use PKCS#7 with CERTIFICATE headers */ |
200 | 0 | if (strcmp(nm, PEM_STRING_X509) == 0 |
201 | 0 | && strcmp(name, PEM_STRING_PKCS7) == 0) |
202 | 0 | return 1; |
203 | | |
204 | 0 | if (strcmp(nm, PEM_STRING_PKCS7_SIGNED) == 0 |
205 | 0 | && strcmp(name, PEM_STRING_PKCS7) == 0) |
206 | 0 | return 1; |
207 | | |
208 | 0 | #ifndef OPENSSL_NO_CMS |
209 | 0 | if (strcmp(nm, PEM_STRING_X509) == 0 |
210 | 0 | && strcmp(name, PEM_STRING_CMS) == 0) |
211 | 0 | return 1; |
212 | | /* Allow CMS to be read from PKCS#7 headers */ |
213 | 0 | if (strcmp(nm, PEM_STRING_PKCS7) == 0 |
214 | 0 | && strcmp(name, PEM_STRING_CMS) == 0) |
215 | 0 | return 1; |
216 | 0 | #endif |
217 | | |
218 | 0 | return 0; |
219 | 0 | } |
220 | | |
221 | | static void pem_free(void *p, unsigned int flags, size_t num) |
222 | 1.46M | { |
223 | 1.46M | if (flags & PEM_FLAG_SECURE) |
224 | 6.62k | OPENSSL_secure_clear_free(p, num); |
225 | 1.46M | else |
226 | 1.46M | OPENSSL_free(p); |
227 | 1.46M | } |
228 | | |
229 | | static void *pem_malloc(int num, unsigned int flags) |
230 | 1.31M | { |
231 | 1.31M | return (flags & PEM_FLAG_SECURE) ? OPENSSL_secure_malloc(num) |
232 | 1.31M | : OPENSSL_malloc(num); |
233 | 1.31M | } |
234 | | |
235 | | static int pem_bytes_read_bio_flags(unsigned char **pdata, long *plen, |
236 | | char **pnm, const char *name, BIO *bp, |
237 | | pem_password_cb *cb, void *u, |
238 | | unsigned int flags) |
239 | 124k | { |
240 | 124k | EVP_CIPHER_INFO cipher; |
241 | 124k | char *nm = NULL, *header = NULL; |
242 | 124k | unsigned char *data = NULL; |
243 | 124k | long len = 0; |
244 | 124k | int ret = 0; |
245 | | |
246 | 124k | do { |
247 | 124k | pem_free(nm, flags, 0); |
248 | 124k | pem_free(header, flags, 0); |
249 | 124k | pem_free(data, flags, len); |
250 | 124k | if (!PEM_read_bio_ex(bp, &nm, &header, &data, &len, flags)) { |
251 | 0 | if (ERR_GET_REASON(ERR_peek_error()) == PEM_R_NO_START_LINE) |
252 | 0 | ERR_add_error_data(2, "Expecting: ", name); |
253 | 0 | return 0; |
254 | 0 | } |
255 | 124k | } while (!check_pem(nm, name)); |
256 | 124k | if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) |
257 | 0 | goto err; |
258 | 124k | if (!PEM_do_header(&cipher, data, &len, cb, u)) |
259 | 0 | goto err; |
260 | | |
261 | 124k | *pdata = data; |
262 | 124k | *plen = len; |
263 | | |
264 | 124k | if (pnm != NULL) |
265 | 0 | *pnm = nm; |
266 | | |
267 | 124k | ret = 1; |
268 | | |
269 | 124k | err: |
270 | 124k | if (!ret || pnm == NULL) |
271 | 124k | pem_free(nm, flags, 0); |
272 | 124k | pem_free(header, flags, 0); |
273 | 124k | if (!ret) |
274 | 0 | pem_free(data, flags, len); |
275 | 124k | return ret; |
276 | 124k | } |
277 | | |
278 | | int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, |
279 | | const char *name, BIO *bp, pem_password_cb *cb, |
280 | | void *u) |
281 | 124k | { |
282 | 124k | return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, |
283 | 124k | PEM_FLAG_EAY_COMPATIBLE); |
284 | 124k | } |
285 | | |
286 | | int PEM_bytes_read_bio_secmem(unsigned char **pdata, long *plen, char **pnm, |
287 | | const char *name, BIO *bp, pem_password_cb *cb, |
288 | | void *u) |
289 | 0 | { |
290 | 0 | return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, |
291 | 0 | PEM_FLAG_SECURE | PEM_FLAG_EAY_COMPATIBLE); |
292 | 0 | } |
293 | | |
294 | | #ifndef OPENSSL_NO_STDIO |
295 | | int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, |
296 | | const void *x, const EVP_CIPHER *enc, |
297 | | const unsigned char *kstr, int klen, |
298 | | pem_password_cb *callback, void *u) |
299 | 0 | { |
300 | 0 | BIO *b; |
301 | 0 | int ret; |
302 | |
|
303 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
304 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
305 | 0 | return 0; |
306 | 0 | } |
307 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
308 | 0 | ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u); |
309 | 0 | BIO_free(b); |
310 | 0 | return ret; |
311 | 0 | } |
312 | | #endif |
313 | | |
314 | | int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, |
315 | | const void *x, const EVP_CIPHER *enc, |
316 | | const unsigned char *kstr, int klen, |
317 | | pem_password_cb *callback, void *u) |
318 | 0 | { |
319 | 0 | EVP_CIPHER_CTX *ctx = NULL; |
320 | 0 | int dsize = 0, i = 0, j = 0, ret = 0; |
321 | 0 | unsigned char *p, *data = NULL; |
322 | 0 | const char *objstr = NULL; |
323 | 0 | char buf[PEM_BUFSIZE]; |
324 | 0 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
325 | 0 | unsigned char iv[EVP_MAX_IV_LENGTH]; |
326 | |
|
327 | 0 | if (enc != NULL) { |
328 | 0 | objstr = EVP_CIPHER_get0_name(enc); |
329 | 0 | if (objstr == NULL || EVP_CIPHER_get_iv_length(enc) == 0 |
330 | 0 | || EVP_CIPHER_get_iv_length(enc) > (int)sizeof(iv) |
331 | | /* |
332 | | * Check "Proc-Type: 4,Encrypted\nDEK-Info: objstr,hex-iv\n" |
333 | | * fits into buf |
334 | | */ |
335 | 0 | || strlen(objstr) + 23 + 2 * EVP_CIPHER_get_iv_length(enc) + 13 |
336 | 0 | > sizeof(buf)) { |
337 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_UNSUPPORTED_CIPHER); |
338 | 0 | goto err; |
339 | 0 | } |
340 | 0 | } |
341 | | |
342 | 0 | if ((dsize = i2d(x, NULL)) <= 0) { |
343 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_ASN1_LIB); |
344 | 0 | dsize = 0; |
345 | 0 | goto err; |
346 | 0 | } |
347 | | /* dsize + 8 bytes are needed */ |
348 | | /* actually it needs the cipher block size extra... */ |
349 | 0 | data = OPENSSL_malloc((unsigned int)dsize + 20); |
350 | 0 | if (data == NULL) { |
351 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
352 | 0 | goto err; |
353 | 0 | } |
354 | 0 | p = data; |
355 | 0 | i = i2d(x, &p); |
356 | |
|
357 | 0 | if (enc != NULL) { |
358 | 0 | if (kstr == NULL) { |
359 | 0 | if (callback == NULL) |
360 | 0 | klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); |
361 | 0 | else |
362 | 0 | klen = (*callback)(buf, PEM_BUFSIZE, 1, u); |
363 | 0 | if (klen <= 0) { |
364 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_READ_KEY); |
365 | 0 | goto err; |
366 | 0 | } |
367 | | #ifdef CHARSET_EBCDIC |
368 | | /* Convert the pass phrase from EBCDIC */ |
369 | | ebcdic2ascii(buf, buf, klen); |
370 | | #endif |
371 | 0 | kstr = (unsigned char *)buf; |
372 | 0 | } |
373 | | /* Generate a salt */ |
374 | 0 | if (RAND_bytes(iv, EVP_CIPHER_get_iv_length(enc)) <= 0) |
375 | 0 | goto err; |
376 | | /* |
377 | | * The 'iv' is used as the iv and as a salt. It is NOT taken from |
378 | | * the BytesToKey function |
379 | | */ |
380 | 0 | if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL)) |
381 | 0 | goto err; |
382 | | |
383 | 0 | if (kstr == (unsigned char *)buf) |
384 | 0 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
385 | |
|
386 | 0 | buf[0] = '\0'; |
387 | 0 | PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); |
388 | 0 | PEM_dek_info(buf, objstr, EVP_CIPHER_get_iv_length(enc), (char *)iv); |
389 | | /* k=strlen(buf); */ |
390 | |
|
391 | 0 | ret = 1; |
392 | 0 | if ((ctx = EVP_CIPHER_CTX_new()) == NULL |
393 | 0 | || !EVP_EncryptInit_ex(ctx, enc, NULL, key, iv) |
394 | 0 | || !EVP_EncryptUpdate(ctx, data, &j, data, i) |
395 | 0 | || !EVP_EncryptFinal_ex(ctx, &(data[j]), &i)) |
396 | 0 | ret = 0; |
397 | 0 | if (ret == 0) |
398 | 0 | goto err; |
399 | 0 | i += j; |
400 | 0 | } else { |
401 | 0 | ret = 1; |
402 | 0 | buf[0] = '\0'; |
403 | 0 | } |
404 | 0 | i = PEM_write_bio(bp, name, buf, data, i); |
405 | 0 | if (i <= 0) |
406 | 0 | ret = 0; |
407 | 0 | err: |
408 | 0 | OPENSSL_cleanse(key, sizeof(key)); |
409 | 0 | OPENSSL_cleanse(iv, sizeof(iv)); |
410 | 0 | EVP_CIPHER_CTX_free(ctx); |
411 | 0 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
412 | 0 | OPENSSL_clear_free(data, (unsigned int)dsize); |
413 | 0 | return ret; |
414 | 0 | } |
415 | | |
416 | | int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, |
417 | | pem_password_cb *callback, void *u) |
418 | 124k | { |
419 | 124k | int ok; |
420 | 124k | int keylen; |
421 | 124k | long len = *plen; |
422 | 124k | int ilen = (int)len; /* EVP_DecryptUpdate etc. take int lengths */ |
423 | 124k | EVP_CIPHER_CTX *ctx; |
424 | 124k | unsigned char key[EVP_MAX_KEY_LENGTH]; |
425 | 124k | char buf[PEM_BUFSIZE]; |
426 | | |
427 | 124k | #if LONG_MAX > INT_MAX |
428 | | /* Check that we did not truncate the length */ |
429 | 124k | if (len > INT_MAX) { |
430 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_HEADER_TOO_LONG); |
431 | 0 | return 0; |
432 | 0 | } |
433 | 124k | #endif |
434 | | |
435 | 124k | if (cipher->cipher == NULL) |
436 | 124k | return 1; |
437 | 2 | if (callback == NULL) |
438 | 0 | keylen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u); |
439 | 2 | else |
440 | 2 | keylen = callback(buf, PEM_BUFSIZE, 0, u); |
441 | 2 | if (keylen < 0) { |
442 | 2 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_PASSWORD_READ); |
443 | 2 | return 0; |
444 | 2 | } |
445 | | #ifdef CHARSET_EBCDIC |
446 | | /* Convert the pass phrase from EBCDIC */ |
447 | | ebcdic2ascii(buf, buf, keylen); |
448 | | #endif |
449 | | |
450 | 0 | if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]), |
451 | 0 | (unsigned char *)buf, keylen, 1, key, NULL)) |
452 | 0 | return 0; |
453 | | |
454 | 0 | ctx = EVP_CIPHER_CTX_new(); |
455 | 0 | if (ctx == NULL) |
456 | 0 | return 0; |
457 | | |
458 | 0 | ok = EVP_DecryptInit_ex(ctx, cipher->cipher, NULL, key, &(cipher->iv[0])); |
459 | 0 | if (ok) |
460 | 0 | ok = EVP_DecryptUpdate(ctx, data, &ilen, data, ilen); |
461 | 0 | if (ok) { |
462 | | /* Squirrel away the length of data decrypted so far. */ |
463 | 0 | *plen = ilen; |
464 | 0 | ok = EVP_DecryptFinal_ex(ctx, &(data[ilen]), &ilen); |
465 | 0 | } |
466 | 0 | if (ok) |
467 | 0 | *plen += ilen; |
468 | 0 | else |
469 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_DECRYPT); |
470 | |
|
471 | 0 | EVP_CIPHER_CTX_free(ctx); |
472 | 0 | OPENSSL_cleanse((char *)buf, sizeof(buf)); |
473 | 0 | OPENSSL_cleanse((char *)key, sizeof(key)); |
474 | 0 | return ok; |
475 | 0 | } |
476 | | |
477 | | /* |
478 | | * This implements a very limited PEM header parser that does not support the |
479 | | * full grammar of rfc1421. In particular, folded headers are not supported, |
480 | | * nor is additional whitespace. |
481 | | * |
482 | | * A robust implementation would make use of a library that turns the headers |
483 | | * into a BIO from which one folded line is read at a time, and is then split |
484 | | * into a header label and content. We would then parse the content of the |
485 | | * headers we care about. This is overkill for just this limited use-case, but |
486 | | * presumably we also parse rfc822-style headers for S/MIME, so a common |
487 | | * abstraction might well be more generally useful. |
488 | | */ |
489 | | int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher) |
490 | 9.54k | { |
491 | 9.54k | static const char ProcType[] = "Proc-Type:"; |
492 | 9.54k | static const char ENCRYPTED[] = "ENCRYPTED"; |
493 | 9.54k | static const char DEKInfo[] = "DEK-Info:"; |
494 | 9.54k | const EVP_CIPHER *enc = NULL; |
495 | 9.54k | int ivlen; |
496 | 9.54k | char *dekinfostart, c; |
497 | | |
498 | 9.54k | cipher->cipher = NULL; |
499 | 9.54k | memset(cipher->iv, 0, sizeof(cipher->iv)); |
500 | 9.54k | if ((header == NULL) || (*header == '\0') || (*header == '\n')) |
501 | 9.54k | return 1; |
502 | | |
503 | 0 | if (strncmp(header, ProcType, sizeof(ProcType) - 1) != 0) { |
504 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_NOT_PROC_TYPE); |
505 | 0 | return 0; |
506 | 0 | } |
507 | 0 | header += sizeof(ProcType) - 1; |
508 | 0 | header += strspn(header, " \t"); |
509 | |
|
510 | 0 | if (*header++ != '4' || *header++ != ',') |
511 | 0 | return 0; |
512 | 0 | header += strspn(header, " \t"); |
513 | | |
514 | | /* We expect "ENCRYPTED" followed by optional white-space + line break */ |
515 | 0 | if (strncmp(header, ENCRYPTED, sizeof(ENCRYPTED) - 1) != 0 || strspn(header + sizeof(ENCRYPTED) - 1, " \t\r\n") == 0) { |
516 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_NOT_ENCRYPTED); |
517 | 0 | return 0; |
518 | 0 | } |
519 | 0 | header += sizeof(ENCRYPTED) - 1; |
520 | 0 | header += strspn(header, " \t\r"); |
521 | 0 | if (*header++ != '\n') { |
522 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_SHORT_HEADER); |
523 | 0 | return 0; |
524 | 0 | } |
525 | | |
526 | | /*- |
527 | | * https://tools.ietf.org/html/rfc1421#section-4.6.1.3 |
528 | | * We expect "DEK-Info: algo[,hex-parameters]" |
529 | | */ |
530 | 0 | if (strncmp(header, DEKInfo, sizeof(DEKInfo) - 1) != 0) { |
531 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_NOT_DEK_INFO); |
532 | 0 | return 0; |
533 | 0 | } |
534 | 0 | header += sizeof(DEKInfo) - 1; |
535 | 0 | header += strspn(header, " \t"); |
536 | | |
537 | | /* |
538 | | * DEK-INFO is a comma-separated combination of algorithm name and optional |
539 | | * parameters. |
540 | | */ |
541 | 0 | dekinfostart = header; |
542 | 0 | header += strcspn(header, " \t,"); |
543 | 0 | c = *header; |
544 | 0 | *header = '\0'; |
545 | 0 | cipher->cipher = enc = EVP_get_cipherbyname(dekinfostart); |
546 | 0 | *header = c; |
547 | 0 | header += strspn(header, " \t"); |
548 | |
|
549 | 0 | if (enc == NULL) { |
550 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_UNSUPPORTED_ENCRYPTION); |
551 | 0 | return 0; |
552 | 0 | } |
553 | 0 | ivlen = EVP_CIPHER_get_iv_length(enc); |
554 | 0 | if (ivlen > 0 && *header++ != ',') { |
555 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_MISSING_DEK_IV); |
556 | 0 | return 0; |
557 | 0 | } else if (ivlen == 0 && *header == ',') { |
558 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_UNEXPECTED_DEK_IV); |
559 | 0 | return 0; |
560 | 0 | } |
561 | | |
562 | 0 | if (!load_iv(&header, cipher->iv, EVP_CIPHER_get_iv_length(enc))) |
563 | 0 | return 0; |
564 | | |
565 | 0 | return 1; |
566 | 0 | } |
567 | | |
568 | | static int load_iv(char **fromp, unsigned char *to, int num) |
569 | 21 | { |
570 | 21 | int v, i; |
571 | 21 | char *from; |
572 | | |
573 | 21 | from = *fromp; |
574 | 189 | for (i = 0; i < num; i++) |
575 | 168 | to[i] = 0; |
576 | 21 | num *= 2; |
577 | 148 | for (i = 0; i < num; i++) { |
578 | 146 | v = OPENSSL_hexchar2int(*from); |
579 | 146 | if (v < 0) { |
580 | 19 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_IV_CHARS); |
581 | 19 | return 0; |
582 | 19 | } |
583 | 127 | from++; |
584 | 127 | to[i / 2] |= v << (long)((!(i & 1)) * 4); |
585 | 127 | } |
586 | | |
587 | 2 | *fromp = from; |
588 | 2 | return 1; |
589 | 21 | } |
590 | | |
591 | | #ifndef OPENSSL_NO_STDIO |
592 | | int PEM_write(FILE *fp, const char *name, const char *header, |
593 | | const unsigned char *data, long len) |
594 | 0 | { |
595 | 0 | BIO *b; |
596 | 0 | int ret; |
597 | |
|
598 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
599 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
600 | 0 | return 0; |
601 | 0 | } |
602 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
603 | 0 | ret = PEM_write_bio(b, name, header, data, len); |
604 | 0 | BIO_free(b); |
605 | 0 | return ret; |
606 | 0 | } |
607 | | #endif |
608 | | |
609 | | int PEM_write_bio(BIO *bp, const char *name, const char *header, |
610 | | const unsigned char *data, long len) |
611 | 0 | { |
612 | 0 | int nlen, n, i, j, outl; |
613 | 0 | unsigned char *buf = NULL; |
614 | 0 | EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); |
615 | 0 | int reason = ERR_R_BUF_LIB; |
616 | 0 | int retval = 0; |
617 | |
|
618 | 0 | if (ctx == NULL) { |
619 | 0 | reason = ERR_R_MALLOC_FAILURE; |
620 | 0 | goto err; |
621 | 0 | } |
622 | | |
623 | 0 | EVP_EncodeInit(ctx); |
624 | 0 | nlen = strlen(name); |
625 | |
|
626 | 0 | if ((BIO_write(bp, "-----BEGIN ", 11) != 11) || (BIO_write(bp, name, nlen) != nlen) || (BIO_write(bp, "-----\n", 6) != 6)) |
627 | 0 | goto err; |
628 | | |
629 | 0 | i = header != NULL ? strlen(header) : 0; |
630 | 0 | if (i > 0) { |
631 | 0 | if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1)) |
632 | 0 | goto err; |
633 | 0 | } |
634 | | |
635 | 0 | buf = OPENSSL_malloc(PEM_BUFSIZE * 8); |
636 | 0 | if (buf == NULL) { |
637 | 0 | reason = ERR_R_MALLOC_FAILURE; |
638 | 0 | goto err; |
639 | 0 | } |
640 | | |
641 | 0 | i = j = 0; |
642 | 0 | while (len > 0) { |
643 | 0 | n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len); |
644 | 0 | if (!EVP_EncodeUpdate(ctx, buf, &outl, &(data[j]), n)) |
645 | 0 | goto err; |
646 | 0 | if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) |
647 | 0 | goto err; |
648 | 0 | i += outl; |
649 | 0 | len -= n; |
650 | 0 | j += n; |
651 | 0 | } |
652 | 0 | EVP_EncodeFinal(ctx, buf, &outl); |
653 | 0 | if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) |
654 | 0 | goto err; |
655 | 0 | if ((BIO_write(bp, "-----END ", 9) != 9) || (BIO_write(bp, name, nlen) != nlen) || (BIO_write(bp, "-----\n", 6) != 6)) |
656 | 0 | goto err; |
657 | 0 | retval = i + outl; |
658 | |
|
659 | 0 | err: |
660 | 0 | if (retval == 0) |
661 | 0 | ERR_raise(ERR_LIB_PEM, reason); |
662 | 0 | EVP_ENCODE_CTX_free(ctx); |
663 | 0 | OPENSSL_clear_free(buf, PEM_BUFSIZE * 8); |
664 | 0 | return retval; |
665 | 0 | } |
666 | | |
667 | | #ifndef OPENSSL_NO_STDIO |
668 | | int PEM_read(FILE *fp, char **name, char **header, unsigned char **data, |
669 | | long *len) |
670 | 0 | { |
671 | 0 | BIO *b; |
672 | 0 | int ret; |
673 | |
|
674 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
675 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); |
676 | 0 | return 0; |
677 | 0 | } |
678 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
679 | 0 | ret = PEM_read_bio(b, name, header, data, len); |
680 | 0 | BIO_free(b); |
681 | 0 | return ret; |
682 | 0 | } |
683 | | #endif |
684 | | |
685 | | /* Some helpers for PEM_read_bio_ex(). */ |
686 | | static int sanitize_line(char *linebuf, int len, unsigned int flags, int first_call) |
687 | 16.5M | { |
688 | 16.5M | int i; |
689 | 16.5M | if (first_call) { |
690 | | /* Other BOMs imply unsupported multibyte encoding, |
691 | | * so don't strip them and let the error raise */ |
692 | 294k | const unsigned char utf8_bom[3] = { 0xEF, 0xBB, 0xBF }; |
693 | | |
694 | 294k | if (len > 3 && memcmp(linebuf, utf8_bom, 3) == 0) { |
695 | 17 | memmove(linebuf, linebuf + 3, len - 3); |
696 | 17 | linebuf[len - 3] = 0; |
697 | 17 | len -= 3; |
698 | 17 | } |
699 | 294k | } |
700 | | |
701 | 16.5M | if (flags & PEM_FLAG_EAY_COMPATIBLE) { |
702 | | /* Strip trailing whitespace */ |
703 | 140M | while ((len >= 0) && (linebuf[len] <= ' ')) |
704 | 124M | len--; |
705 | | /* Go back to whitespace before applying uniform line ending. */ |
706 | 15.1M | len++; |
707 | 15.1M | } else if (flags & PEM_FLAG_ONLY_B64) { |
708 | 4.02M | for (i = 0; i < len; ++i) { |
709 | 4.01M | if (!ossl_isbase64(linebuf[i]) || linebuf[i] == '\n' |
710 | 4.00M | || linebuf[i] == '\r') |
711 | 7.81k | break; |
712 | 4.01M | } |
713 | 22.7k | len = i; |
714 | 1.40M | } else { |
715 | | /* EVP_DecodeBlock strips leading and trailing whitespace, so just strip |
716 | | * control characters in-place and let everything through. */ |
717 | 172M | for (i = 0; i < len; ++i) { |
718 | 171M | if (linebuf[i] == '\n' || linebuf[i] == '\r') |
719 | 827k | break; |
720 | 171M | if (ossl_iscntrl(linebuf[i])) |
721 | 69.9M | linebuf[i] = ' '; |
722 | 171M | } |
723 | 1.40M | len = i; |
724 | 1.40M | } |
725 | | /* The caller allocated LINESIZE+1, so this is safe. */ |
726 | 16.5M | linebuf[len++] = '\n'; |
727 | 16.5M | linebuf[len] = '\0'; |
728 | 16.5M | return len; |
729 | 16.5M | } |
730 | | |
731 | 477k | #define LINESIZE 255 |
732 | | /* Note trailing spaces for begin and end. */ |
733 | | static const char beginstr[] = "-----BEGIN "; |
734 | | static const char endstr[] = "-----END "; |
735 | | static const char tailstr[] = "-----\n"; |
736 | 57.2k | #define BEGINLEN ((int)(sizeof(beginstr) - 1)) |
737 | 400k | #define ENDLEN ((int)(sizeof(endstr) - 1)) |
738 | 133k | #define TAILLEN ((int)(sizeof(tailstr) - 1)) |
739 | | static int get_name(BIO *bp, char **name, unsigned int flags) |
740 | 19.0k | { |
741 | 19.0k | char *linebuf; |
742 | 19.0k | int ret = 0; |
743 | 19.0k | int len; |
744 | 19.0k | int first_call = 1; |
745 | | |
746 | | /* |
747 | | * Need to hold trailing NUL (accounted for by BIO_gets() and the newline |
748 | | * that will be added by sanitize_line() (the extra '1'). |
749 | | */ |
750 | 19.0k | linebuf = pem_malloc(LINESIZE + 1, flags); |
751 | 19.0k | if (linebuf == NULL) { |
752 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
753 | 0 | return 0; |
754 | 0 | } |
755 | | |
756 | 19.0k | do { |
757 | 19.0k | len = BIO_gets(bp, linebuf, LINESIZE); |
758 | | |
759 | 19.0k | if (len <= 0) { |
760 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_NO_START_LINE); |
761 | 0 | goto err; |
762 | 0 | } |
763 | | |
764 | | /* Strip trailing garbage and standardize ending. */ |
765 | 19.0k | len = sanitize_line(linebuf, len, flags & ~PEM_FLAG_ONLY_B64, first_call); |
766 | 19.0k | first_call = 0; |
767 | | |
768 | | /* Allow leading empty or non-matching lines. */ |
769 | 19.0k | } while (strncmp(linebuf, beginstr, BEGINLEN) != 0 |
770 | 19.0k | || len < TAILLEN |
771 | 19.0k | || strncmp(linebuf + len - TAILLEN, tailstr, TAILLEN) != 0); |
772 | 19.0k | linebuf[len - TAILLEN] = '\0'; |
773 | 19.0k | len = len - BEGINLEN - TAILLEN + 1; |
774 | 19.0k | *name = pem_malloc(len, flags); |
775 | 19.0k | if (*name == NULL) { |
776 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
777 | 0 | goto err; |
778 | 0 | } |
779 | 19.0k | memcpy(*name, linebuf + BEGINLEN, len); |
780 | 19.0k | ret = 1; |
781 | | |
782 | 19.0k | err: |
783 | 19.0k | pem_free(linebuf, flags, LINESIZE + 1); |
784 | 19.0k | return ret; |
785 | 19.0k | } |
786 | | |
787 | | /* Keep track of how much of a header we've seen. */ |
788 | | enum header_status { |
789 | | MAYBE_HEADER, |
790 | | IN_HEADER, |
791 | | POST_HEADER |
792 | | }; |
793 | | |
794 | | /** |
795 | | * Extract the optional PEM header, with details on the type of content and |
796 | | * any encryption used on the contents, and the bulk of the data from the bio. |
797 | | * The end of the header is marked by a blank line; if the end-of-input marker |
798 | | * is reached prior to a blank line, there is no header. |
799 | | * |
800 | | * The header and data arguments are BIO** since we may have to swap them |
801 | | * if there is no header, for efficiency. |
802 | | * |
803 | | * We need the name of the PEM-encoded type to verify the end string. |
804 | | */ |
805 | | static int get_header_and_data(BIO *bp, BIO **header, BIO **data, char *name, |
806 | | unsigned int flags) |
807 | 19.0k | { |
808 | 19.0k | BIO *tmp = *header; |
809 | 19.0k | char *linebuf, *p; |
810 | 19.0k | int len, ret = 0, end = 0, prev_partial_line_read = 0, partial_line_read = 0; |
811 | | /* 0 if not seen (yet), 1 if reading header, 2 if finished header */ |
812 | 19.0k | enum header_status got_header = MAYBE_HEADER; |
813 | 19.0k | unsigned int flags_mask; |
814 | 19.0k | size_t namelen; |
815 | | |
816 | | /* Need to hold trailing NUL (accounted for by BIO_gets() and the newline |
817 | | * that will be added by sanitize_line() (the extra '1'). */ |
818 | 19.0k | linebuf = pem_malloc(LINESIZE + 1, flags); |
819 | 19.0k | if (linebuf == NULL) { |
820 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
821 | 0 | return 0; |
822 | 0 | } |
823 | | |
824 | 190k | while (1) { |
825 | 190k | flags_mask = ~0u; |
826 | 190k | len = BIO_gets(bp, linebuf, LINESIZE); |
827 | 190k | if (len <= 0) { |
828 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
829 | 0 | goto err; |
830 | 0 | } |
831 | | |
832 | | /* |
833 | | * Check if line has been read completely or if only part of the line |
834 | | * has been read. Keep the previous value to ignore newlines that |
835 | | * appear due to reading a line up until the char before the newline. |
836 | | */ |
837 | 190k | prev_partial_line_read = partial_line_read; |
838 | 190k | partial_line_read = len == LINESIZE - 1 && linebuf[LINESIZE - 2] != '\n'; |
839 | | |
840 | 190k | if (got_header == MAYBE_HEADER) { |
841 | 190k | if (memchr(linebuf, ':', len) != NULL) |
842 | 0 | got_header = IN_HEADER; |
843 | 190k | } |
844 | 190k | if (!strncmp(linebuf, endstr, ENDLEN) || got_header == IN_HEADER) |
845 | 19.0k | flags_mask &= ~PEM_FLAG_ONLY_B64; |
846 | 190k | len = sanitize_line(linebuf, len, flags & flags_mask, 0); |
847 | | |
848 | | /* Check for end of header. */ |
849 | 190k | if (linebuf[0] == '\n') { |
850 | | /* |
851 | | * If previous line has been read only partially this newline is a |
852 | | * regular newline at the end of a line and not an empty line. |
853 | | */ |
854 | 0 | if (!prev_partial_line_read) { |
855 | 0 | if (got_header == POST_HEADER) { |
856 | | /* Another blank line is an error. */ |
857 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
858 | 0 | goto err; |
859 | 0 | } |
860 | 0 | got_header = POST_HEADER; |
861 | 0 | tmp = *data; |
862 | 0 | } |
863 | 0 | continue; |
864 | 0 | } |
865 | | |
866 | | /* Check for end of stream (which means there is no header). */ |
867 | 190k | if (strncmp(linebuf, endstr, ENDLEN) == 0) { |
868 | 19.0k | p = linebuf + ENDLEN; |
869 | 19.0k | namelen = strlen(name); |
870 | 19.0k | if (strncmp(p, name, namelen) != 0 || strncmp(p + namelen, tailstr, TAILLEN) != 0) { |
871 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
872 | 0 | goto err; |
873 | 0 | } |
874 | 19.0k | if (got_header == MAYBE_HEADER) { |
875 | 19.0k | *header = *data; |
876 | 19.0k | *data = tmp; |
877 | 19.0k | } |
878 | 19.0k | break; |
879 | 171k | } else if (end) { |
880 | | /* Malformed input; short line not at end of data. */ |
881 | 0 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); |
882 | 0 | goto err; |
883 | 0 | } |
884 | | /* |
885 | | * Else, a line of text -- could be header or data; we don't |
886 | | * know yet. Just pass it through. |
887 | | */ |
888 | 171k | if (BIO_puts(tmp, linebuf) < 0) |
889 | 0 | goto err; |
890 | | /* |
891 | | * Only encrypted files need the line length check applied. |
892 | | */ |
893 | 171k | if (got_header == POST_HEADER) { |
894 | | /* 65 includes the trailing newline */ |
895 | 0 | if (len > 65) |
896 | 0 | goto err; |
897 | 0 | if (len < 65) |
898 | 0 | end = 1; |
899 | 0 | } |
900 | 171k | } |
901 | | |
902 | 19.0k | ret = 1; |
903 | 19.0k | err: |
904 | 19.0k | pem_free(linebuf, flags, LINESIZE + 1); |
905 | 19.0k | return ret; |
906 | 19.0k | } |
907 | | |
908 | | /** |
909 | | * Read in PEM-formatted data from the given BIO. |
910 | | * |
911 | | * By nature of the PEM format, all content must be printable ASCII (except |
912 | | * for line endings). Other characters are malformed input and will be rejected. |
913 | | */ |
914 | | int PEM_read_bio_ex(BIO *bp, char **name_out, char **header, |
915 | | unsigned char **data, long *len_out, unsigned int flags) |
916 | 185k | { |
917 | 185k | EVP_ENCODE_CTX *ctx = NULL; |
918 | 185k | const BIO_METHOD *bmeth; |
919 | 185k | BIO *headerB = NULL, *dataB = NULL; |
920 | 185k | char *name = NULL; |
921 | 185k | int len, taillen, headerlen, ret = 0; |
922 | 185k | BUF_MEM *buf_mem; |
923 | | |
924 | 185k | *len_out = 0; |
925 | 185k | *name_out = *header = NULL; |
926 | 185k | *data = NULL; |
927 | 185k | if ((flags & PEM_FLAG_EAY_COMPATIBLE) && (flags & PEM_FLAG_ONLY_B64)) { |
928 | | /* These two are mutually incompatible; bail out. */ |
929 | 4 | ERR_raise(ERR_LIB_PEM, ERR_R_PASSED_INVALID_ARGUMENT); |
930 | 4 | goto end; |
931 | 4 | } |
932 | 185k | bmeth = (flags & PEM_FLAG_SECURE) ? BIO_s_secmem() : BIO_s_mem(); |
933 | | |
934 | 185k | headerB = BIO_new(bmeth); |
935 | 185k | dataB = BIO_new(bmeth); |
936 | 185k | if (headerB == NULL || dataB == NULL) { |
937 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
938 | 0 | goto end; |
939 | 0 | } |
940 | | |
941 | 185k | if (!get_name(bp, &name, flags)) |
942 | 23.4k | goto end; |
943 | 162k | if (!get_header_and_data(bp, &headerB, &dataB, name, flags)) |
944 | 2.89k | goto end; |
945 | | |
946 | 159k | BIO_get_mem_ptr(dataB, &buf_mem); |
947 | 159k | len = buf_mem->length; |
948 | | |
949 | | /* There was no data in the PEM file */ |
950 | 159k | if (len == 0) |
951 | 21 | goto end; |
952 | | |
953 | 159k | ctx = EVP_ENCODE_CTX_new(); |
954 | 159k | if (ctx == NULL) { |
955 | 0 | ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); |
956 | 0 | goto end; |
957 | 0 | } |
958 | | |
959 | 159k | EVP_DecodeInit(ctx); |
960 | 159k | if (EVP_DecodeUpdate(ctx, (unsigned char *)buf_mem->data, &len, |
961 | 159k | (unsigned char *)buf_mem->data, len) |
962 | 159k | < 0 |
963 | 158k | || EVP_DecodeFinal(ctx, (unsigned char *)&(buf_mem->data[len]), |
964 | 158k | &taillen) |
965 | 158k | < 0) { |
966 | 357 | ERR_raise(ERR_LIB_PEM, PEM_R_BAD_BASE64_DECODE); |
967 | 357 | goto end; |
968 | 357 | } |
969 | 158k | len += taillen; |
970 | 158k | buf_mem->length = len; |
971 | | |
972 | 158k | headerlen = BIO_get_mem_data(headerB, NULL); |
973 | 158k | *header = pem_malloc(headerlen + 1, flags); |
974 | 158k | *data = pem_malloc(len, flags); |
975 | 158k | if (*header == NULL || *data == NULL) |
976 | 39 | goto out_free; |
977 | 158k | if (headerlen != 0 && BIO_read(headerB, *header, headerlen) != headerlen) |
978 | 0 | goto out_free; |
979 | 158k | (*header)[headerlen] = '\0'; |
980 | 158k | if (BIO_read(dataB, *data, len) != len) |
981 | 0 | goto out_free; |
982 | 158k | *len_out = len; |
983 | 158k | *name_out = name; |
984 | 158k | name = NULL; |
985 | 158k | ret = 1; |
986 | 158k | goto end; |
987 | | |
988 | 39 | out_free: |
989 | 39 | pem_free(*header, flags, 0); |
990 | 39 | *header = NULL; |
991 | 39 | pem_free(*data, flags, 0); |
992 | 39 | *data = NULL; |
993 | 185k | end: |
994 | 185k | EVP_ENCODE_CTX_free(ctx); |
995 | 185k | pem_free(name, flags, 0); |
996 | 185k | BIO_free(headerB); |
997 | 185k | BIO_free(dataB); |
998 | 185k | return ret; |
999 | 39 | } |
1000 | | |
1001 | | int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, |
1002 | | long *len) |
1003 | 164k | { |
1004 | 164k | return PEM_read_bio_ex(bp, name, header, data, len, PEM_FLAG_EAY_COMPATIBLE); |
1005 | 164k | } |
1006 | | |
1007 | | /* |
1008 | | * Check pem string and return prefix length. If for example the pem_str == |
1009 | | * "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" the return value is 3 for the |
1010 | | * string "RSA". |
1011 | | */ |
1012 | | |
1013 | | int ossl_pem_check_suffix(const char *pem_str, const char *suffix) |
1014 | 0 | { |
1015 | 0 | int pem_len = strlen(pem_str); |
1016 | 0 | int suffix_len = strlen(suffix); |
1017 | 0 | const char *p; |
1018 | 0 | if (suffix_len + 1 >= pem_len) |
1019 | 0 | return 0; |
1020 | 0 | p = pem_str + pem_len - suffix_len; |
1021 | 0 | if (strcmp(p, suffix)) |
1022 | 0 | return 0; |
1023 | 0 | p--; |
1024 | 0 | if (*p != ' ') |
1025 | 0 | return 0; |
1026 | 0 | return p - pem_str; |
1027 | 0 | } |